|
||||
|
Екатерина - специалист по продаже а/м КАМАЗ
43118-010-10 (дв.740.30-260 л.с.) | 2 220 000 |
43118-6033-24 (дв.740.55-300 л.с.) | 2 300 000 |
65117-029 (дв.740.30-260 л.с.) | 2 200 000 |
65117-6010-62 (дв.740.62-280 л.с.) | 2 350 000 |
44108 (дв.740.30-260 л.с.) | 2 160 000 |
44108-6030-24 (дв.740.55,рест.) | 2 200 000 |
65116-010-62 (дв.740.62-280 л.с.) | 1 880 000 |
6460 (дв.740.50-360 л.с.) | 2 180 000 |
45143-011-15 (дв.740.13-260л.с) | 2 180 000 |
65115 (дв.740.62-280 л.с.,рест.) | 2 190 000 |
65115 (дв.740.62-280 л.с.,3-х стор) | 2 295 000 |
6520 (дв.740.51-320 л.с.) | 2 610 000 |
6520 (дв.740.51-320 л.с.,сп.место) | 2 700 000 |
6522-027 (дв.740.51-320 л.с.,6х6) | 3 190 000 |
Нужны самосвалы? Обратите внимание на Ford-65513-02. |
Контактная информация.
г. Набережные Челны, Промкомзона-2, Автодорога №3, база «Партнер плюс».
тел/факс (8552) 388373.
Схема проезда
Строительство достаточно трудоемкий процесс. Чтобы исключить лишние финансовые затраты и не растрачивать время, стоит хорошо позаботиться о качестве материалов. В первую очередь необходимо задуматься о том, как проверить марку бетонной смеси.
Заказанный раствор не всегда соответствует прописанным в документе характеристикам. Если добавленное сырье для изготовления бетона не отвечает должным пропорциям, автоматически меняется качество раствора. Чтобы точно узнать марку необходимо провести оценку качества.
Марка бетона — показатель, показывающий предел прочности на сжатие. Для строительства пригодны марки М300-400. М100-250 обладают минимальной прочностью, годятся только для вспомогательных работ. Многое зависит от выбранного поставщика. Стоит поискать проверенные фирмы с хорошей репутацией, которые могут предоставить необходимые документы на предлагаемую продукцию. Если по каким-то причинам вы сомневаетесь в честности поставщика, стоит подумать о дальнейшем исследовании раствора на соответствие указанной марки.
Определение марки бетона может производиться разными методами:
Каждый способ отличается по проценту точности и имеет определенные тонкости.
Контактная проверка производится двумя методами. Первый — с помощью профессионального оборудования — склерометра. Прибор определяет прочность путем ударного импульса. Склерометр бывает механическим и электронным, а его цена варьируется от 10 до 35 тысяч, покупка для одноразового применения просто не рациональна для рядового покупателя.
Склерометр
Второй способ предполагает отправку пробы в лабораторию. Сначала необходимо провести ряд манипуляций:
Экспертиза выдаст заключение об исследовании образца этой марки, ее соответствие установленным нормам.
Испытание образцов в лаборатории
Ультразвуковые приборы, помимо исследования прочности, используются для дефектоскопии. Скорость распространения ультразвука в бетоне достигает 4500 м/с.
Градуировочную зависимость между скоростью распространения звука и прочностью бетона на сжатие фиксируют заранее для каждого состава смеси. В случае использования 2-х градуировочных зависимостей для бетонов альтернативных или неизвестных составов, может возникнуть неточность при определении прочности. На соотношение «прочность бетона — скорость ультразвука» воздействует ряд факторов, от колебания которых в данном случае нужно отталкиваться при применении ультразвуковой проверки:
Ультразвуковая проверка подходит для массовых испытаний конструкций любой формы в неограниченном количестве, а также для ведения постоянного контроля набора или снижения прочности. Минусом метода является погрешность при переходе от акустических показателей к прочностным. Ультразвуковым оборудованием не стоит проводить проверку качества высокопрочных марок, допустимый диапазон ограничивается классами В7,5…В35 (10-40МПа), в соответствии с ГОСТом 17624-87.
Проверка в лаборатории или с помощью специальных средств не всегда целесообразна. Это касается тех случаев, когда возводится небольшая постройка на частной территории. Залитый и застывший раствор можно проверить в домашних условиях несколькими способами. Если он не будет соответствовать необходимым требованиям, можно воспользоваться платной экспертизой и возместить ущерб с поставщика.
Внимательно рассмотрите застывшую конструкцию. Она должна быть гладкой, наличие узоров говорит о несоблюдении правил заливки. Такой раствор скорей всего промерзал, что значительно снизит его прочность. Фактически, бетон марки М300, станет по своим свойствам как М200-250.
Можно провести проверку по звуку удара. Для этого берется молоток или кусок металлической трубы, весом не более 0,5 кг. Здесь важна звенящая тональность при нанесении удара. Глухой звук говорит о низкой прочности и плохом уплотнении. А при появлении трещин, крошек необходимо полностью или частично заменять конструкцию.
Способ подразумевает проверку характеристик раствора при приемке. Можно отметить такие моменты, как:
Если доставлен миксер, определить качество бетона без осмотра можно только по предоставленным документам. В данном случае все зависит от добросовестности продавца.
Молоток и зубило самый простой ответ на вопрос как проверить качество бетона заливки. Для этого проводится тест на удар с помощью молотка. К поверхности полностью засохшего фундамента приставляется зубило, и наносится удар в среднюю силу. Если полученная вмятина превышает 1 см, класс прочности В5 (М75), менее 0,5 см — В10 (М150). Небольшая вмятина остается на В15-25 (М200-250), на В25 (М350) появляется незначительная отметина.
Обратите внимание! Необходимо брать молоток весом 300-400 гр.
Все вышеописанные способы имеют свои преимущества и недостатки, для точности готового результата стоит обратиться за помощью к специалистам. Лабораторное, ультразвуковое и ударно-импульсивное исследования более достоверные и исчерпывающие. Качество напрямую зависит от характеристики составных компонентов, соблюдения пропорций, условий хранения и транспортировки. Поэтому обезопасить себя можно выбором проверенного поставщика с хорошей репутацией, это значительно снизит риск возникновения проблем в будущем.
betonpro100.ru
Строительные конструкции на базе смеси из вяжущего вещества, песка и заполнителя нуждаются в тестировании на предмет надежности и безопасности. Однако подобные исследования не должны стать причиной прерывания эксплуатации испытываемого объекта, поэтому производится определение прочности бетона неразрушающим методом. Это позволяет сократить расходы, снизить трудоемкость и исключить локальные повреждения.
На фото демонстрируется анализ свойств бетона.
Данные способы необходимы для формирования градуировочных зависимостей и их последующей корректировки для косвенных методов, проводимых на тех же самых участках сооружения. Технология определения прочностных качеств бетона может быть применима при освидетельствовании на различных стадиях возведения строений, а также при эксплуатации и реконструкции готовых объектов.
Подобная операция производится в соответствии с государственными стандартами, где отражены основные сведения о способе проведения. На полученные результаты не оказывает никакого влияния состояние поверхности.
Для проведения исследований используются анкерные устройства трех типов.
Так делается отрыв со скалыванием.
Представлены основные типы приспособлений.
Примечание! Выбирая тип приспособления и глубину проникновения анкера, следует брать в расчет предполагаемую прочность состава и размеры заполнителя, что отражено в таблице ниже.
Условия высыхания смеси | Тип применяемого устройства | Глубина погружения анкера в мм | Предполагаемая прочность в МПа | Значение коэффициента | |
Легкий состав | Тяжелый раствор | ||||
Тепловая обработка | 1 | 4835 | <50>50 | 1,2 | 1,32,6 |
2 | 4830 | <50>50 | 1,0 | 1,12,7 | |
3 | 35 | <50 | — | 1,8 | |
Естественное твердение | 1 | 4835 | <50>50 | 1,2 | 1,12,4 |
2 | 4830 | <50>50 | 1,0 | 0,92,5 | |
3 | 35 | <50 | — | 1,5 |
В монолитных конструкциях проверка прочности бетона неразрушающим методом, предполагающим отрыв со скалыванием, производится сразу на трех участках. При корректировке градуировочных зависимостей совместно с данным способом осуществляются три косвенных теста.
Данный метод подразумевает отсечение ребра испытуемой конструкции. В первую очередь он применяется для контроля линейных сегментов вроде ригелей, колонн, свай, перемычек и опорных балок. Проведение операции не требует дополнительной подготовки, однако при наличии защитного слоя толщиной менее 20 мм метод не может быть применим.
Этим инструментом производится скалывание ребра.
Еще одно мероприятие, которое позволяет осуществлять неразрушающий метод контроля бетона, не нашло широкого распространения в нашей стране, что связано с ограниченным температурным режимом. Еще одним отрицательным фактором считается необходимость проделывания борозды сверлом, а это снижает производительность исследования.
Сам способ предполагает снятие регистрации напряжения, которое требуется для местного разрушения затвердевшего состава при отрыве стального диска. При определении прочностных качеств учитывается приложенное усилие и площадь проекции поверхности.
Подобные исследования проводятся, когда нужно оценить значение прочностных характеристик, используя их в качестве одного из нескольких факторов, дающих представление о техническом состоянии сооружения. Полученный результат не допускается использовать, если не была определена частная градуировочная зависимость (см.также статью «Защита бетона от влаги: способы и применяемые материалы»).
Широкое распространение получил способ испытания бетона неразрушающим методом, подразумевающим использование ультразвуковых волн. При проведении операции устанавливается связь между скоростью колебаний и плотностью затвердевшей смеси.
На зависимость могут влиять самые различные факторы.
Демонстрируется проведение операции.
Дополнение! Ультразвуковые изыскания предоставляют возможность выполнять массовые испытания практических любых конструкций неограниченное количество раз. Основной недостаток кроется в допускаемой погрешности.
Неразрушающий контроль прочности бетона этим методом позволяет установить зависимость между прочностью на сжатие и упругостью материала. При исследовании металлический боек основного прибора после удара отдаляется на определенное расстояние, которое является показателем прочностных качеств конструкции.
Так осуществляется проверка отскоком.
Во время испытаний приспособление фиксируется так, чтобы стальной элемент плотно соприкасался с бетонной поверхностью, для чего применяются специальные винты. После крепления маятник устанавливается горизонтально. В этом случае он защелкивается непосредственно спусковым крючком.
Приложив устройство перпендикулярно к плоскости, нажимают на курок. Боек взводится автоматически, после чего самостоятельно освобождается и совершает удар под действием особой пружины. Металлический элемент отскакивает на какое-то расстояние, которое измеряется специальной шкалой.
Схема движения внутреннего стержня.
В качестве основного инструмента для испытаний используется прибор системы КИСИ, который имеет достаточно сложное строение. Прочность затвердевшей смеси удается определить на основании данных устройства после проведения 6-7 тестов по специальному графику.
Благодаря этому методу исследования можно зафиксировать энергию удара, освобождающуюся в момент соприкосновения бойка с бетонной конструкцией. Положительным моментом считается то факт, что приборы неразрушающего контроля бетона, работающие по принципу ударного импульса, имеют компактные размеры. Однако их цена достаточно высока.
Результаты испытаний составов разных классов.
При проведении операции осуществляется измерение размеров следа, оставленного на бетонной поверхности стальным элементом. Метод считается несколько устаревшим, но в связи с дешевизной оборудования он продолжает активно использоваться в строительной среде. После нанесенного удара измеряются оставшиеся отпечатки.
Устройства для определения прочности такого типа базируются на вдавливании стержня непосредственно в плоскость путем статического давления нужной силы или обычного удара. В качестве основных приборов используются маятниковые, молотковые и пружинные изделия.
Ниже приводятся условия проведения операции.
Молоток Кашкарова для проведения пластической деформации.
Важно! Если производится измерение прочности бетона неразрушающим методом с использованием устройств молоткового типа, то образцы должны устанавливаться на идеально ровное основание.
В качестве объекта берется колодец, изготовленный из монолитного железобетона. Его глубина составляет 8 м, а радиус – 12 м. Заливка боковых поверхностей велась захватками, которые разделяют конструкцию на 7 ярусов по высоте.
Результаты исследований представлены в таблице ниже.
Ярус | Косвенные методы исследования | ||||||
Ультразвуковой | Ударный импульс | Упругий отскок | Испытание прессом | ||||
Ср. знач. в м/c | Процентное соотношение | Ср. знач. в МПа | Процентное соотношение | Ср. знач. в у. ед. | Процентное соотношение | Ср. знач. в МПа | |
1 | 4058 | 3,9 | 41,9 | 23,4 | 46,2 | 7,8 | 41,6 |
2 | 4082 | 4,6 | 24,4 | 40,2 | 43,7 | 7,6 | 35,0 |
3 | 4533 | 5,2 | 49,6 | 28,7 | 49,7 | 9,9 | 36,5 |
4 | 4300 | 3,9 | 38,1 | 36,3 | 46,6 | 8,3 | 40,1 |
5 | 4094 | 4,1 | 38,2 | 28,5 | 48,2 | 8,5 | 42,1 |
6 | 4453 | 3,6 | 45,5 | 41,6 | 47,6 | 7,6 | 39,3 |
7 | 3836 | 4,5 | 42,8 | 26,5 | 44,6 | 7,3 | 30,6 |
Ср. знач. V | ≈4,26 | ≈32,2 | ≈8,14 |
Вывод! Из приведенной таблицы становится понятно, что минимальная погрешность при исследованиях характерна для ультразвукового метода. Разброс при проверке ударным импульсом максимален.
Выше были рассмотрены исследования, проводимые при помощи специальных устройств, однако в случае необходимости незамысловатые испытания можно осуществить своими руками. Точную информацию о прочностных качествах получить не удастся, но определить класс бетона вполне реально.
Сначала подготавливается необходимый инструмент: зубило и молоток, вес которого колеблется в пределах 400-800 г. Ударно-режущее приспособление устанавливается перпендикулярно поверхности.
По нему наносятся удары средней силы, по следам которых и будет производиться анализ.
Использование молотка и зубила.
Внимание! Осуществить проверку таким способом можно в течение нескольких минут без какого-либо оборудования. После этого уже будет представление о том, какую прочность имеет затвердевший состав.
Регламентируются неразрушающие методы контроля прочности бетона по ГОСТу 22690-88, пункты которого распространяются на легкие и тяжелые смеси. Однако в нем отражены только механические способы, не включающие ультразвуковое исследование. Их предельные значения представлены в таблице.
Метод определения | Предельные значения в МПа |
Ударный импульс | 5-50 |
Отрыв со скалыванием | 5-100 |
Отрыв дисков | 5-60 |
Скалывание ребра | 10-70 |
Пластическая деформация и упругий отскок | 5-50 |
Приборы и основные стандарты.
Пропорции для приготовления состава из цемента М400 и М500.
Представленная инструкция позволяет получить представление о проведении проверки прочностных качеств бетонных конструкций не только при помощи специального оборудования, но и с использованием подручных средств. Однако самостоятельный метод даст возможность сделать лишь предварительную оценку характеристик (см.также статью «Коррозия бетона: причины и меры противодействия»).
Более подробную информацию о контроле можно получить после просмотра видео в этой статье.
masterabetona.ru
Строительные конструкции на базе смеси из вяжущего вещества, песка и заполнителя нуждаются в тестировании на предмет надежности и безопасности. Однако подобные исследования не должны стать причиной прерывания эксплуатации испытываемого объекта, поэтому производится определение прочности бетона неразрушающим методом. Это позволяет сократить расходы, снизить трудоемкость и исключить локальные повреждения.
На фото демонстрируется анализ свойств бетона.
Данные способы необходимы для формирования градуировочных зависимостей и их последующей корректировки для косвенных методов, проводимых на тех же самых участках сооружения. Технология определения прочностных качеств бетона может быть применима при освидетельствовании на различных стадиях возведения строений, а также при эксплуатации и реконструкции готовых объектов.
Подобная операция производится в соответствии с государственными стандартами, где отражены основные сведения о способе проведения. На полученные результаты не оказывает никакого влияния состояние поверхности.
Для проведения исследований используются анкерные устройства трех типов.
Так делается отрыв со скалыванием.
Представлены основные типы приспособлений.
Примечание! Выбирая тип приспособления и глубину проникновения анкера, следует брать в расчет предполагаемую прочность состава и размеры заполнителя, что отражено в таблице ниже.
Условия высыхания смеси Тип применяемого устройства Глубина погружения анкера в мм Предполагаемая прочность в МПа Значение коэффициента Легкий состав Тяжелый раствор Тепловая обработка 1 4835 <50>50 1,2 1,32,6 2 4830 <50>50 1,0 1,12,7 3 35 <50 — 1,8 Естественное твердение 1 4835 <50>50 1,2 1,12,4 2 4830 <50>50 1,0 0,92,5 3 35 <50 — 1,5В монолитных конструкциях проверка прочности бетона неразрушающим методом, предполагающим отрыв со скалыванием, производится сразу на трех участках. При корректировке градуировочных зависимостей совместно с данным способом осуществляются три косвенных теста.
Данный метод подразумевает отсечение ребра испытуемой конструкции. В первую очередь он применяется для контроля линейных сегментов вроде ригелей, колонн, свай, перемычек и опорных балок. Проведение операции не требует дополнительной подготовки, однако при наличии защитного слоя толщиной менее 20 мм метод не может быть применим.
Этим инструментом производится скалывание ребра.
Еще одно мероприятие, которое позволяет осуществлять неразрушающий метод контроля бетона, не нашло широкого распространения в нашей стране, что связано с ограниченным температурным режимом. Еще одним отрицательным фактором считается необходимость проделывания борозды сверлом, а это снижает производительность исследования.
Сам способ предполагает снятие регистрации напряжения, которое требуется для местного разрушения затвердевшего состава при отрыве стального диска. При определении прочностных качеств учитывается приложенное усилие и площадь проекции поверхности.
Подобные исследования проводятся, когда нужно оценить значение прочностных характеристик, используя их в качестве одного из нескольких факторов, дающих представление о техническом состоянии сооружения. Полученный результат не допускается использовать, если не была определена частная градуировочная зависимость (см.также статью «Защита бетона от влаги: способы и применяемые материалы»).
Широкое распространение получил способ испытания бетона неразрушающим методом, подразумевающим использование ультразвуковых волн. При проведении операции устанавливается связь между скоростью колебаний и плотностью затвердевшей смеси.
На зависимость могут влиять самые различные факторы.
Демонстрируется проведение операции.
Дополнение! Ультразвуковые изыскания предоставляют возможность выполнять массовые испытания практических любых конструкций неограниченное количество раз. Основной недостаток кроется в допускаемой погрешности.
Неразрушающий контроль прочности бетона этим методом позволяет установить зависимость между прочностью на сжатие и упругостью материала. При исследовании металлический боек основного прибора после удара отдаляется на определенное расстояние, которое является показателем прочностных качеств конструкции.
Так осуществляется проверка отскоком.
Во время испытаний приспособление фиксируется так, чтобы стальной элемент плотно соприкасался с бетонной поверхностью, для чего применяются специальные винты. После крепления маятник устанавливается горизонтально. В этом случае он защелкивается непосредственно спусковым крючком.
Приложив устройство перпендикулярно к плоскости, нажимают на курок. Боек взводится автоматически, после чего самостоятельно освобождается и совершает удар под действием особой пружины. Металлический элемент отскакивает на какое-то расстояние, которое измеряется специальной шкалой.
Схема движения внутреннего стержня.
В качестве основного инструмента для испытаний используется прибор системы КИСИ, который имеет достаточно сложное строение. Прочность затвердевшей смеси удается определить на основании данных устройства после проведения 6-7 тестов по специальному графику.
Благодаря этому методу исследования можно зафиксировать энергию удара, освобождающуюся в момент соприкосновения бойка с бетонной конструкцией. Положительным моментом считается то факт, что приборы неразрушающего контроля бетона, работающие по принципу ударного импульса, имеют компактные размеры. Однако их цена достаточно высока.
Результаты испытаний составов разных классов.
При проведении операции осуществляется измерение размеров следа, оставленного на бетонной поверхности стальным элементом. Метод считается несколько устаревшим, но в связи с дешевизной оборудования он продолжает активно использоваться в строительной среде. После нанесенного удара измеряются оставшиеся отпечатки.
Устройства для определения прочности такого типа базируются на вдавливании стержня непосредственно в плоскость путем статического давления нужной силы или обычного удара. В качестве основных приборов используются маятниковые, молотковые и пружинные изделия.
Ниже приводятся условия проведения операции.
Молоток Кашкарова для проведения пластической деформации.
Важно! Если производится измерение прочности бетона неразрушающим методом с использованием устройств молоткового типа, то образцы должны устанавливаться на идеально ровное основание.
В качестве объекта берется колодец, изготовленный из монолитного железобетона. Его глубина составляет 8 м, а радиус – 12 м. Заливка боковых поверхностей велась захватками, которые разделяют конструкцию на 7 ярусов по высоте.
Результаты исследований представлены в таблице ниже.
Ярус Косвенные методы исследования Ультразвуковой Ударный импульс Упругий отскок Испытание прессом Ср. знач. в м/c Процентное соотношение Ср. знач. в МПа Процентное соотношение Ср. знач. в у. ед. Процентное соотношение Ср. знач. в МПа 1 4058 3,9 41,9 23,4 46,2 7,8 41,6 2 4082 4,6 24,4 40,2 43,7 7,6 35,0 3 4533 5,2 49,6 28,7 49,7 9,9 36,5 4 4300 3,9 38,1 36,3 46,6 8,3 40,1 5 4094 4,1 38,2 28,5 48,2 8,5 42,1 6 4453 3,6 45,5 41,6 47,6 7,6 39,3 7 3836 4,5 42,8 26,5 44,6 7,3 30,6 Ср. знач. V ≈4,26 ≈32,2 ≈8,14Вывод! Из приведенной таблицы становится понятно, что минимальная погрешность при исследованиях характерна для ультразвукового метода. Разброс при проверке ударным импульсом максимален.
Выше были рассмотрены исследования, проводимые при помощи специальных устройств, однако в случае необходимости незамысловатые испытания можно осуществить своими руками. Точную информацию о прочностных качествах получить не удастся, но определить класс бетона вполне реально.
Сначала подготавливается необходимый инструмент: зубило и молоток, вес которого колеблется в пределах 400-800 г. Ударно-режущее приспособление устанавливается перпендикулярно поверхности.
По нему наносятся удары средней силы, по следам которых и будет производиться анализ.
Использование молотка и зубила.
Внимание! Осуществить проверку таким способом можно в течение нескольких минут без какого-либо оборудования. После этого уже будет представление о том, какую прочность имеет затвердевший состав.
Регламентируются неразрушающие методы контроля прочности бетона по ГОСТу 22690-88, пункты которого распространяются на легкие и тяжелые смеси. Однако в нем отражены только механические способы, не включающие ультразвуковое исследование. Их предельные значения представлены в таблице.
Метод определения Предельные значения в МПа Ударный импульс 5-50 Отрыв со скалыванием 5-100 Отрыв дисков 5-60 Скалывание ребра 10-70 Пластическая деформация и упругий отскок 5-50Приборы и основные стандарты.
Пропорции для приготовления состава из цемента М400 и М500.
Представленная инструкция позволяет получить представление о проведении проверки прочностных качеств бетонных конструкций не только при помощи специального оборудования, но и с использованием подручных средств. Однако самостоятельный метод даст возможность сделать лишь предварительную оценку характеристик (см.также статью «Коррозия бетона: причины и меры противодействия»).
Более подробную информацию о контроле можно получить после просмотра видео в этой статье.
rusbetonplus.ru
При проверке строительных конструкций определение прочности бетона осуществляется для выяснения их состояния на текущий момент времени. Фактические показатели после начала эксплуатации обычно не совпадают с проектными параметрами. На них непосредственное влияние оказывают деформационные нагрузки и внешние факторы. В процессе диагностики могут использоваться разные методы.
Прежде чем рассмотреть основные способы контроля и оценки прочности бетона, рекомендуется ознакомиться с некоторыми понятиями, чтобы в дальнейшем не возникало вопросов. Все термины и определения, необходимые для более четкого понимания темы, представлены ниже.
При строительстве жилых зданий, промышленных или коммерческих объектов определение прочности бетона позволяет избежать многих негативных последствий. Материал используется на различных этапах возведения строений в различных целях. В зависимости от типа конструкций, требования к смесям могут существенно меняться. К примеру, для заливки фундаментов и стен применяются разные марки бетона, определяющиеся прочностными характеристиками.
Использование смесей, не отвечающих предъявляющимся требованиям, может приводить к образованию трещин, ухудшению эксплуатационных качеств и преждевременному разрушению конструкции. Исследования часто необходимы для определения возможности дальнейшего использования здания в каких-либо целях.
Строительные растворы подразделяются на категории, при которых учитываются различные параметры. Обычно разбивается прочность бетона в МПа по классам, обозначающимся большой буквой с цифрой. Такая маркировка в профессиональной среде считается наиболее удобной. К примеру, раствор B25 будет иметь прочность 25 МПа.
Что касается марки бетона, то она выражает приблизительное значение в килограммах на квадратный сантиметр. Обозначение производится по тому же принципу. Однако при соотношении показателей нормативный коэффициент вариации может составлять 13,5 процентов.
Для примера предлагается ознакомиться со специальной таблицей прочности бетона, в которой приводятся соответствия между классами и марками смесей.
Класс | Марка | Прочность, кгс/кв. м |
B5 | M75 | 65 |
B10 | M150 | 131 |
B15 | M200 | 196 |
B25 | M350 | 327 |
B35 | M450 | 458 |
При протекании химических процессов происходит застывание бетонной смеси. Вода вступает во взаимодействие с вяжущим веществом. Под влиянием некоторых факторов скорость протекания химической реакции может ускоряться или затормаживаться. От них же в некоторой степени будет зависеть конечная прочность бетона.
К важным факторам следует отнести:
Немаловажную роль играет качество используемых наполнителей. Компоненты с мелкой фракцией и глинистыми веществами приводят к снижению прочности. Крупные частицы имеют лучшую адгезию с вяжущим веществом. Их применение положительно сказывается на показателях прочности.
При определении прочности бетона в строительных конструкциях приходится решать непростые технические задачи. Развитие теоретических и практических исследований в сфере контроля качества строительных составов привело к появлению многочисленных методов. Каждый из них имеет конкретную сферу применения, а также свои плюсы и минусы.
Если брать способ воздействия непосредственно на испытываемую конструкцию, то можно выделить три основных метода.
Обследование должно производиться только после детального ознакомления с проектно-технической документацией. Получив определенные сведения об используемом составе и технологии изготовления конструкции, можно приступать к работам по определению прочностных качеств.
Чтобы узнать предел прочности бетона, необходимо сначала определиться с методикой исследования. На ее выбор влияние оказываются следующие факторы:
Несмотря на многообразие методик, результаты, полученные разрушающими способами, являются наиболее достоверными, так как при испытаниях измеряется искомый показатель – усилие, прилагаемое при сжатии. Кроме того, тщательно изучается образец, взятый непосредственно из тела конструкции, а не верхняя часть.
Сущность способов заключается в исследовании образцов, полученных выбуриванием или выпиливанием из готовой конструкции. На них оказывается статическая нагрузка с постепенным увеличением скорости роста. В результате удается рассчитать напряжения при приложенных усилиях.
Габариты и форма взятых образцов зависят от типа проводимых испытаний. Они должны отвечать требованиям ГОСТ 10180.
Метод исследования | Форма испытываемых образцов | Размеры элементов в миллиметрах |
Определение показателей прочности бетона на растяжение и сжатие | Куб | Длина ребер фигуры может составлять 100, 150, 200 или 300 мм |
Цилиндр | Для исследования берется образец высотой в два диаметра, один из которых может иметь те же размеры, что и ребра куба. | |
Проверка прочностных показателей на осевое растяжение | Призма, имеющая квадратное сечение | Размеры испытываемого элемента могут быть следующими: 200 х 200 х 800, 100 х 100 х 400 или 200 х 200 х 800 мм. |
Цилиндр | При проведении исследований берутся образцы тех же размеров, что и в случае, указанном выше. | |
Определение прочностных качеств на растяжение при изгибе и осуществлении раскалывания | Призма, имеющая квадратное сечение | В ходе работ берутся образцы следующих размеров: 200 х 200 х 800, 100 х 100 х 400 и 150 х 150 х 600 мм. |
Для определения прочности бетона собираются его пробы посредством выбуривания или выпиливания отдельных частей.
Каждая взятая заготовка маркируется и описывается в протоколе. После этого она подвергается тщательной подготовке для дальнейших испытаний. Все образцы должны иметь специальную схему, в которой четко отражена ориентация частей непосредственно в конструкции.
В основе данного метода лежат градуировочные зависимости. Они базируются на косвенных характеристиках. К таковым относятся:
В правилах контроля прочности бетона предлагается применять определенный набор измерительных приспособлений при проведении испытаний: штангенциркуль, угловой масштаб, часовой индикатор и некоторые другие инструменты. Количество проводимых испытаний и расстояния между рабочими участками приводятся в таблице.
Применяемый метод исследований | Число проводимых мероприятий | Расстояние в миллиметрах | |
От краев конструкции | Между рабочими зонами | ||
Скалывание ребра | 2 | - | 200 |
Пластическая деформация | 5 | 50 | 30 |
Отрыв | 1 | 50 | Двойной диаметр диска |
Упругий отскок | 5 | 50 | 30 |
Ударный импульс | 10 | 50 | 15 |
Отрыв со скалыванием | 1 | 150 | Глубина выемки, умноженная на 5 |
Вышеуказанные мероприятия должны производиться на участке бетонной конструкции общей площадью 100-600 кв. см. После осуществления основных испытаний данные заносятся в специальный журнал для установки градуировочных зависимостей между косвенными характеристиками и прочностными показателями затвердевшего раствора.
К категории таких способов относятся технологии акустического воздействия и проникающих излучений. Они предоставляют возможность судить о качественных характеристиках конструкции по внутренней структуре, так как измеряется скорость распространения волн упругих колебаний непосредственно по испытываемому материалу.
Чаще всего используется прибор для определения прочности бетона ультразвуковым методом. Он позволяет снять показания без оказания механического воздействия на конструкцию. С его помощью измеряется скорость прохождения ультразвуковых волн через слой бетона. При сквозном исследовании датчики могут располагаться с двух сторона, а при поверхностном – с одной.
Контроль с использованием ультразвука считается наиболее информативным и достаточно простым. Он позволяет не только оценить прочностные параметры, но и найти возможные дефекты внутри слоев. Используемый прибор имеет несколько режимов работы, которые представлены в таблице.
Режим | Описание |
Калибровка | Позволяет приспособить прибор к характеристикам бетона. Измеряются поперечные волны внутри затвердевшей смеси, определяются важные параметры, необходимые для снятия качественных образов структуры массива. |
Обзор | Дает возможность произвести быстрое изучение внутреннего строения конструкции. Измеряется толщина, обнаруживаются дефекты или предметы, находящиеся в массиве (арматура, трубы, кабели). |
Сбор | Собираются данные об ультразвуковых исследованиях. Запись производится в различных положениях. Сканирование осуществляется в виде полосы (или особой ленты). |
Просмотр | Применяется для анализа данных на длительном отрезке времени. На экране в данном случае присутствуют все типы изображений. Они могут отображаться по очереди или сразу. |
Ультразвуковой измеритель прочности бетона позволяет проводить многочисленные испытания многократно, осуществляя постоянный контроль изменения параметров. Недостатком считается погрешность при соотношении акустических характеристик с базовыми параметрами.
Существует прямая зависимость прочности бетона от температуры в процессе застывания. Нормальными условиями принято считать режим от 15 до 20 градусов. С понижением температуры замедляется нарастание прочности. При заморозках затвердевание будет происходить, если в состав были добавлены специальные присадки.
Повышение температуры ускоряет процесс застывания, особенно если влажность является достаточной. Однако нагрев более 85 градусов противопоказан, так как сложно защитить бетонную смесь от пересыхания. Процесс затвердевания можно стимулировать двумя способами. Первый из них заключается в использовании внутреннего тепла, а второй – внешнего.
Используя ультразвуковой измеритель прочности бетона, необходимо особое внимание уделить установлению градуировочных зависимостей. Без них полученные данные не могут считаться доказательными. Для получения более точных результатов придется учесть количество и состав наполнителя, уровень уплотнения, расход цемента и многое другое.
fb.ru
Для увеличения продолжительности срока службы бетонных конструкций требуется периодическая проверка состояния материала. Основной способ, позволяющий определить степень их надежности – неразрушающий контроль бетона, при котором выявляется прочность, однородность, толщина защитного слоя и иные показатели.
Неразрушающим контролем называется выявление характеристик и свойств объектов, изготовленных из бетона, при которых их пригодность к эксплуатации не нарушается. Контроль качества может проводиться как непосредственно на стройплощадке, так и в лабораториях.
Существует множество способов определения свойств, не нарушающих пригодности конструкций, каждый из которых имеет свои достоинства, поэтому выделить и рекомендовать проведение определенного метода невозможно.
Самые простые способы – линейные измерения, проверяющие соответствие элементов сооружения на горизонтальные и вертикальные отклонения. Такие измерения делаются:
Кроме этого существуют более сложные неразрушающие методы контроля прочностных характеристик:
Точность контрольных измерений зависит от следующих факторов:
Методы местных разрушений, кроме получения конкретных данных, формируют и корректируют градуировочные зависимости, на которых в дальнейшем строятся косвенные способы контроля, которые будут проводиться на тех же самых участках. Локальные способы применяются как на стадии возведения объектов, так и в процессе их эксплуатации или перед реконструкцией. Эти способы считаются самыми точными среди всех неразрушающих методов, потому что используют простую градуировочную зависимость, учитывающую следующие параметры:
Операция выполняется в соответствии с правилами, обговоренными в государственных стандартах, и определяет сопротивление бетона в момент отрыва его фрагмента от основания при помощи одного из анкерных устройств:
При выборе приспособления и глубины погружения анкера учитывается размер заполнителя и предполагаемая прочность исследуемого состава. При контроле бетона монолитных конструкций, процедура проводится одновременно на трех участках – в результате проводится исследование трех тестов.
Результаты исследования получаются точными, но сама процедура контроля достаточно трудоемка. Кроме того, отрыв со скалыванием нельзя провести на участках с густым армированием и конструкциях, имеющих тонкие стенки.
Заключается в скалывании выступающего бетонного угла, не требует предварительных работ и сверления поверхности. Используется при контроле прочности линейных бетонных сегментов: свай, колонн, ригелей, опорных балок. Однако может использоваться только на конструкциях, толщина защитного слоя которых не меньше 20мм.
Для выполнения металлические диски приклеиваются на исследуемую поверхность и отрываются от нее через достаточно длительное время (5-24 часа). При отрыве диска от бетона измеряется напряжение, возникающее при подобном разрушении поверхности.
Данный способ не нашел широкого распространения в России из-за ограниченного температурного режима. Еще один недостаток метода – требуется создание борозды, что понижает производительность исследований. Обычно используется в случаях, когда два предыдущих исследования невозможны.
У всех прямых методов контроля имеются общие недостатки:
Такие способы проводятся для оценки прочностных характеристик как одного из факторов, определяющих общее состояние сооружения. Но полученные результаты должны использоваться только после определения частной градуировочной зависимости.
Представляет собой измерение расстояние, на которое отскакивает специальный боек от бетонной поверхности или от стальной пластины, закрепленной на ней. Для проведения испытаний используются достаточно сложные приборы системы КИСИ. Применяются специальные болты, обеспечивающие плотное прилегание стальной пластины, автоматически взведенный маятник, совершающий удар под воздействием пружины и шкала, с помощью которой фиксируется расстояние отскока. Кроме контроля прочности при этом измеряется твердость бетона, для чего прибор оснащается склерометром. Способ упругого отскока позволяет установить зависимость между упругостью и прочностью на сжатие.
Метод ударного импульса - самый востребованный и распространенный метод контроля. Фиксирует энергию удара, возникающую при соприкосновении ударного бойка и бетонной поверхности. Такой способ позволяет измерить прочность бетона, установить его класс, упругость по отношению к различным углам наклона воздействия удара.
При этом выявляются зоны, в которых материал имеет неоднородную структуру и недостаточное уплотнение. Показатели вычисляются в результате нескольких замеров. Приборы, используемые для проведения контроля ударным импульсом, имеют компактные размеры, но довольно дороги.
Контроль методом пластической деформации проводится исследованием отпечатка, оставленного на бетоне стальным шариком или стержнем. Приборы, применяемые при контроле, основаны на действии пружины, молотка или маятника. Способ считается устаревшим, но из-за невысокой цены приборов, повсеместно используется.
Способ основывается на измерении скорости прохождения через измеряемую конструкцию ультразвуковых волн. Исследования проводятся либо сквозным ультразвуковым прозвучиванием (с установкой датчиков с обратной стороны образца) или поверхностным прозвучиванием (датчики устанавливаются с одной стороны). Ультразвуковой метод контроля позволяет проверять ультразвуком прочность бетона на всем объеме конструкции. Кроме прочности могут измеряться:
В процессе производится сквозное или поверхностное прозвучивание. Зависимость между прочностью материала и скоростью прохождения ультразвуковых волн зависит от нескольких факторов, которые необходимо учитывать при проведении измерений:
Этот способ доступен для многократного измерения состояния бетонных конструкций любой формы. Это позволяет проводить постоянное контролирование показателей прочности.
К недостаткам метода относятся погрешности, которые могут возникнуть при переводе акустических показателей в прочностные и невозможность исследования высокопрочных бетонов. Нормы ГОСТ и СНиП определяют возможность измерения ультразвуком марок В7,5-В35.
Кроме вышеописанных методов, которые предназначены, прежде всего, для измерения прочности бетона, существуют методы и приборы, исследующие:
Каждый из приборов и методов предназначен для выполнения определенной функции. В целом получается реальная картина, определяющая качество бетонной конструкции, ее прочность и возможность надежной эксплуатации или необходимость проведения реставрационных работ.
omega-beton.ru
Молоток (склерометр) Шмидта был разработан швейцарским инженером Эрнстом Шмидтом в 1948 году. Молоток Шмидта используется как измеритель прочности бетона и горных пород. Метод измерения основан на определении ударного импульса, возникающего после приложения нагрузки. Прочность бетона определяется по высоте отскока бойка, с помощью установленных градуировочных зависимостей. Применение молотка Шмидта обеспечивает высокую точность измерений и позволяет контролировать большое количество изделий в сжатые сроки. Благодаря своим преимуществам, метод измерения прочностных характеристик с помощью молотка Шмидта является наиболее распространенным измерителем прочности бетонных изделий. Процесс контроля соответствует требованиям ГОСТ 22690. Компания Proceq (Просек) производит молотки Шмидта с 1950г. Современная линейка молотков представлена несколькими моделями, имеющими свои отличительные особенности.
Подробнее...
Локатор (детектор) арматуры Profoscope швейцарской компании Proceq это универсальный прибор для поиска арматурных стержней, определения их диаметра и глубины залегания в изделиях из железобетона. Локатор арматуры Профоскоп имеет уникальную технику визуализации арматурных стержней, это дает возможность фактически видеть арматуру под слоем бетона на глубине до 180мм. Положение стержня под прибором отображается на экране в режиме реального времени (см. видеоролик). Вместе с положением арматуры, локатор отображает ее диаметр и толщину находящегося сверху бетона, позволяя определить точные параметры армирования даже при неизвестном диаметре арматуры и толщине бетонного слоя. Локатор арматуры Profoscope в наличии на складе. |
Подробнее...
Локатор (детектор) арматуры Profometer PM-600 швейцарской компании Proceq это шестое поколение приборов данной серии, пришедшее на смену Profometer 5+. Profometer PM-600 используется для неразрушающего контроля толщины защитного слоя бетона, поиска арматурных стержней и измерения их диаметра. Детектор Profometer PM-600 может применяться в случаях, когда необходимо рассчитать прочность железобетонных конструкций, вычислить положение арматуры при сверлении, а также для приемо-сдаточных проверок и обеспечения качества в серийном производстве сборных бетонных элементов.
При поиске арматурных стержней Profometer PM-6 работает по принципу электромагнитной индукции. Магнитное поле создается датчиком с системой катушек заряжающихся импульсными токами. На поверхности электропроводящего материала в магнитных полях образуются вихревые токи, которые индуцируют магнитное поле в противоположном направлении. Разница между наведенным и полученным магнитным полем используется прибором для получения результатов. Этот метод не подвержен влиянию таких непроводящих материалов как бетон, древесина, пластмасса, кирпич и т. п. Однако любые токопроводящие материалы в магнитном поле окажут влияние на измерение.
Подробнее...
Proceq GPR Live – универсальный прибор для контроля толщины и качества бетона с возможностью поиска и отображения геометрии арматурных стержней. В основе нового прибора Proceq GPR Live – уникальная технология георадиолокации с непрерывным излучением и ступенчатым переключением частот, обеспечивающая работу в очень широком диапазоне толщин (до 70 см). Прибор разработан и создан в Швейцарии, срок гарантии – 2 года.
Если ранее для контроля объектов разной толщины приходилось подбирать прибор с антенной решеткой нужной частоты, то теперь диапазон 0,9 - 3,5 Гц охватывается одним датчиком. При смене объектов контроля больше не нужно подключать другой датчик, это выгодно отличает Proceq GPR Live от традиционных решений в области контроля бетона, которые имеют меньший охват толщин и существенные ограничения по размеру обнаруживаемых дефектов.
Подробнее...
Ультразвуковой томограф А1040 MIRA это модернизированная модель томографа А1040М Полигон. Томограф А1040 MIRA предназначен для контроля конструкций из бетона, железобетона и камня при одностороннем доступе, с целью определения целостности материала в конструкции, поиска инородных включений, полостей, непроливов, расслоений и трещин, а также измерения толщины объекта.
Ультразвуковые преобразователи томографа А1040 MIRA, сделаны по запатентованной технологии «сухой точечный контакт». Их отличает малый размер корпуса, особая конструкция наконечника и высокоэффективный композитный демпфер. Точечное соприкосновение с объектом настолько плотно, что применять контактное вещество больше не нужно. Обязательный доступ к объекту с двух противоположных сторон тоже остался в прошлом. С томографом А1040 вы можете проводить одностороннюю ультразвуковую дефектоскопию бетонной стенки с толщиной до 2х метров.
Подробнее...
Ультразвуковой дефектоскоп А1220 МОНОЛИТ предназначен для поиска инородных включений, пустот и трещин внутри изделий из железобетона, камня, пластмасс, а так же для измерения толщины и анализа внутренней структуры крупнозернистых материалов. На практике низкочастотный дефектоскоп А1220 МОНОЛИТ обычно используется для толщинометрии и дефектоскопии конструкций из бетона, горных пород и асфальта.
Уникальность прибора состоит в том, что вместе с методом сквозного прозвучивания, А1220 позволяет проводить контроль эхо-методом, что делает возможным использовать его для обследования зданий, мостов, тоннелей и других объектов уже находящихся в процессе эксплуатации. Важным преимуществом дефектоскопа является возможность контроля без использования контактной жидкости. Поверхность контролируемая дефектоскопом А 1220 Монолит не требует предварительной подготовки, что значительно облегчает и ускоряет процесс контроля.
Подробнее...
Ультразвуковой тестер UK1401 предназначен для измерений времени и скорости распространения продольных ультразвуковых волн в бетонных и железобетонных конструкциях с целью определения их прочности и целостности. Оценка прочности бетона основана на корреляции скорости распространения ультразвуковых волн с его физико-механическими характеристиками и физическим состоянием.
Работа прибора основана на измерении интервала времени, за который УЗ импульс проходит по объекту контроля от передающего преобразователя к приемному. Скорость ультразвука определяется путем деления расстояния между точками излучения и приема УЗ колебаний, на измеренное время. Для повышения достоверности измерений излучение и прием УЗ импульса периодически повторяются. На дисплей выводится величина, полученная в результате обработки нескольких принятых подряд УЗ сигналов.
Подробнее...
Ультразвуковой низкочастотный дефектоскоп Starmans DIO 1000 LF используется для контроля композитных, пористых и других материалов с высоким затуханием ультразвука, таких как бетон, камень, чугун, углепластик, пластмасса (скорости распространения УЗ волн в различных материалах). Принципиальной особенностью данного прибора, является его низкая рабочая частота от 20кГц до 1МГц.
Помимо поиска дефектов, DIO1000 LF позволяет измерять толщину объектов контроля и имеет полный функционал обработки данных традиционного дефектоскопа DIO 1000 SFE. Таким образом, низкочастотная модель STARMANS DIO 1000 LF сочетает в себе традиционные способы УЗК и современные технологии контроля с использованием дифракционно-временного и электромагнитно-акустического методов. Описание данных методов содержится в статьях Дифракционно-временной метод TOFD и Электромагнитно-акустические преобразователи (ЭМАП).
Прибор Resipod швейцарской компании Proceq - это полностью интегрированный 4-точечный датчик Веннера, предназначенный для измерения удельного электрического сопротивления бетона или камня. Измерение удельного сопротивления поверхности дает очень важную информацию о состоянии бетонной конструкции. Доказано, что удельное сопротивление напрямую связано с вероятностью коррозии и ее скоростью, кроме того последние исследования показали прямую корреляцию между удельным сопротивлением и скоростью карбонизации, а также определением прочности свежих бетонов на сжатие.
Принцип работы. В процессе работы на два внешних датчика подается ток и измеряется разность потенциалов между двумя внутренними датчиками. Удельное сопротивление бетона определяется сопротивлением жидкости в порах, структурой пор и степенью насыщения. Расчетное удельное сопротивление зависит от расстояния между датчиками. На сегодняшний день, Resipod это один из самых точных и быстрых приборов на российском рынке. Прибор имеет прочный, водонепроницаемый корпус, для работы в сложных погодных условиях, все это делает Resipod одним из наиболее универсальных приборов неразрушающего контроля бетонных конструкций. Ниже перечислены основные области применения датчика электрического сопротивления бетона Resipod.
Подробнее...
Измеритель влажности бетона (влагомер) Hygropin, швейцарской компании Proceq это продвинутый прибор для контроля влажности бетонных конструкций. Благодаря маленькому и удобному датчику влагомера Hygropin, измерение влажности бетона по стандарту ASTM F2170 стало проводить быстрее и легче, чем раньше. Применяемая влагомером Hydropin технология контактной проверки доказала свою надежность, при данном методе, измерение проводится прямо там, где прячется влага - под поверхностью бетона. Измеритель влажности Hygropin можно использовать как для сухого, так и для свежего бетона.
Содержание влаги в бетоне отличается от ее содержания на поверхности. Методы поверхностных измерений, в лучшем случае дают результат для глубины до 20 мм и не всегда точно отражают реальный уровень влаги. Тестер влаги Hygropin использует технологию контактного измерения, при которой выявляется фактическое содержание влаги внутри бетона. Для контроля относительной влажности, необходимо расположить измерительную манжету Hygropin на конкретной глубине в бетоне. Это можно сделать либо путем высверливания отверстия или путем предварительной установки отверстия в свежем бетоне.
Подробнее...
Ультразвуковой тестер / дефектоскоп бетона Pundit швейцарской компании Proceq предназначен для комплексной диагностики дефектов, однородности и прочности бетона, а также объектов из камня, кирпича, керамики, древесины и других строительных материалов. Линейка тестеров бетона Pundit представлена пятью модификациями реализующие разные методы УЗК: Pundit Lab+, Pundit 200, Pundit 200 Pulse Echo, Pundit 250 Array и Pundit Live Array Pro. Новые приборы данной серии вместе со стандартным эхо-методом использует технологию скорости ультразвукового импульса (UPV), расширяя их применение на объектах с односторонним доступом.
Подробнее...
Тестер проницаемости бетона Torrent компании Proceq точно и без нарушения целостности измеряет коэффициент проницаемости бетонных конструкций воздухом. Слой бетона защищает арматурные стержни от внешних факторов вызывающих коррозию, поэтому анализ бетона на проницаемость воздуха и воды являются надёжным показателем потенциальной долговечности бетонной конструкции и ее способности сопротивляться проникновению агрессивных газообразных или жидких сред. Измерение проницаемости бетона тестером Torrent занимает от 2 до 12 минут. Полученные данные можно позже проанализировать на дисплее прибора. Тестер Torrent разработан и создан в Швейцарии. Стандартная гарантия – 2 года с возможностью продления до 3 лет. Прибор соответствует требованиями стандартов SIA 262/1 и SN 505 252/1, В РФ методы определения водопроницаемости бетона регламентированы ГОСТ 12730.5-84.
Подробнее...
Индикатор прочности бетона Бетон - 70 предназначен для измерения времени распространения ультразвуковых колебаний (УЗК) в строительных материалах при экспрессных определениях прочности бетона в сборных и монолитных бетонных и железобетонных изделиях и конструкциях.Область применения – строящиеся и эксплуатируемые здания и сооружения, гидротехнические сооружения, сооружения с затрудненным двусторонним доступом к контролируемым участкам, стройплощадки и предприятия стройиндустрии.
Подробнее...
Измеритель адгезии (адгезиметр) DY-2 Family швейцарской компании Proceq определяет прочность сцепления на различных поверхностях. Приборы семейства DY-2 пришли на смену предыдущей серии DYNA. Основные сферы применения прибора - определения прочности сцепления поверхности бетона и других покрытий, например пластиковых, цементных, штукатурных, битумных, а также покрытий нанесенных на металлическое основание. Адгезиметр DY-2 Family так же используется для оценки прочности на растяжение восстановленного слоя бетона.
Измеритель адгезии DY-2 позволяет охватывать всю область задач по измерению прочности бетона методом отрыва дисков, и обладает максимальной простотой управления а так же функцией записи результатов. Так адгезиметр DY-2 фиксирует каждый отдельный параметр испытаний в том числе его время и дату, размер испытательного диска, максимальное прилагаемое усилие, полное время испытаний и тип отрыва. Кривая нагрузки сохраняется вместе с результатами измерений и может быть загружена для отчета на ПК или просмотрена в реальном времени, если DY-2 подключен к ПК во время испытаний.
Подробнее...
С помощью анализатора коррозии Canin+ коррозию стали в бетоне можно выявить и оценить двумя способами: 1. методом анализа потенциала коррозии микрогальванической пары – точные измерения поля потенциала помогают обнаружить активную коррозию арматурных стержней; 2. методом анализа сопротивления бетона – прибор измеряет конкретное электрическое сопротивление бетона.Сочетание данных замеров сопротивления и потенциалов повышает информированность о состоянии стержней арматуры. |
Для удовлетворения индивидуальных требований тестирования устройство Canin+ поставляется на заказ в комплекте со стержневым электродом, роликовым электродом и(или) комплектующими для датчика Веннера, или как полная система со всеми компонентами.
Подробнее...
www.ntcexpert.ru
. контакты 8 929 943 69 68 http://vk.com/club23595476 .
Критериями выбора схем контроля и оценки прочности бетона и готовой к применению бетонной смеси, бетона монолитных, сборно-монолитных и сборных бетонных и железобетонных конструкций являются особенности производства, технологии изготовления, стабильность качества исходных
материалов, условия производства работ на строительной площадке и оснащенность лаборатории приборами неразрушающего контроля.
Контроль и оценку прочности бетона на предприятиях, производящих БСГ следует проводить по контрольным образцам по схемам А или Б.
схема контроля прочности бетона Схема А рекомендуется назначать на предприятиях с хорошо организованным технологическим процессом использованием материалов стабильного качества, когда однородность прочности бетона достаточно высокая (от 5 до 10%), а также контролировать прочность бетона сборных бетонных и железобетонных конструкций в проектном возрасте и прочность бетона на растяжение при изгибе.
схема контроля прочности бетона Схема Б рекомендуется назначать на предприятиях с менее стабильным технологическим процессом, обусловленным плохо налаженной технологией или использованием материалов нестабильного качества, требующим более строго контроля прочности с помощью «скользящих» характеристик однородности бетона, а также контролировать прочность бетона сборных бетонных и железобетонных конструкций в проектном возрасте и прочность бетона на растяжение при изгибе.
схема контроля прочности бетона Схему В применяют для контроля и оценки прочности бетона монолитных и сборных железобетонных конструкций в промежуточном и проектном возрасте.
Объект контроля | Статистический контроль прочности бетона | Нестатистический контроль | ||||
Разрушающий контроль прочности бетона | Неразрушающий | Разрушающий | Неразрушающий | |||
схема А | схема Б | схема В | схема Г | |||
Коэффициент вариации прочности бетона | Коэффициент вариации не вычисляют | |||||
средний | скользящий | текущий | ||||
БСГ (товарный бетон) | + | + | ? | (+)* | ? | |
Сборные конструкции | + | + | + | (+)* | (+)* | |
Монолитные конструкции | ? | (+) | + | (+)* | (+)* |
Примечание:
+ - рекомендуется проводить контроль прочности бетона ;
? – не применяется для контроля прочности бетона ;
(+) – допускается проводить контроль прочности бетона по результатам испытания образцов, изготовленных на строительной площадке и твердевших в условиях, предусмотренных технологическим регламентом на производство монолитных бетонных и железобетонных конструкций.
(+)* – допускается проводить контроль прочности бетона без определения характеристик однородности бетона по прочности, когда при изготовлении единичных конструкций или в начальный период производства невозможно получить число результатов определения прочности бетона, предусмотренное схемами А, Б и В
Т а б л и ц а 10. Расчет требуемой прочности и фактического класса прочности бетона и условия приемки партий бетона и конструкций
Объект контроля | Статистический контроль прочности бетона | Не статистический контроль прочности бетона | ||||
Разрушающий | Неразрушающий | Разрушающий | Неразрушающий | |||
схема А | схема Б | схема В | схема Г | |||
- cредний | - cкользящий | - текущий | - не вычисляют | |||
Товарный бетон (БСГ) | Кт – по табл. 2 R Т = КТ ? В | R Т = Кт ? В | ? | R Т = КТ ? В | ? | |
R ф ? RТ R i min? (Rт-4) МПа | R ф ? Rт R i min? (Rт-4) МПа | R ф ? RТ R i min? (Rт-4) МПа | ||||
Сборные конструкции | Кт – по табл. 2 R Т = КТ ? В | R ф = КТ ? В | Кт – по табл. 2 | R Т = КТ ? В | если R i min? В, то КТ = 0,8 В ф=0,8?R ф | |
R ф ? RТ R i min? (Rт-4) МПа | R ф ? RТ R i min? (Rт-4) МПа | В ф ? В В i min? В | R ф ? RТ R i min? (Rт-4) МПа | В ф ? В | ||
Монолитные конструкции | ? | Кт – по табл. 2 | если R i min? В, то КТ = 0,8 В ф=0,8?R ф | если R i min? В, то КТ = 0,8 В ф=0,8?R ф | ||
В ф ? В В i min? В | В ф ? В В i min? В | B ф ? В | В ф ? В |
Приложение 4
Примеры оформления и контрольные карты статистического анализа контроля прочности бетона по всем схемам контроля прилагаются к методике в файлах Excel:
- 1. Схема А – 2011;
- 2. Схема Б – 2011-1сут;
- 3. Схема В – 2011-
http://vk.com/club23595476 . контакты http://vk.com/club23595476 .
xn--90afcnmwva.xn--p1ai