Камаз 44108 тягач В наличии!
Тягач КАМАЗ 44108-6030-24
евро3, новый, дв.КАМАЗ 740.55-300л.с., КПП ZF9, ТНВД ЯЗДА, 6х6, нагрузка на седло 12т, бак 210+350л, МКБ, МОБ
 
карта сервера
«ООО Старт Импэкс» продажа грузовых автомобилей камаз по выгодным ценам
+7 (8552) 31-97-24
+7 (904) 6654712
8 800 1005894
звонок бесплатный

Наши сотрудники:
Виталий
+7 (8552) 31-97-24

[email protected]

 

Екатерина - специалист по продаже а/м КАМАЗ
+7 (904) 6654712

[email protected]

 

Фото техники

20 тонный, 20 кубовый самосвал КАМАЗ 6520-029 в наличии
15-тонный строительный самосвал КАМАЗ 65115 на стоянке. Техника в наличии
Традиционно КАМАЗ побеждает в дакаре

тел.8 800 100 58 94

Техника в наличии

тягач КАМАЗ-44108
Тягач КАМАЗ 44108-6030-24
2014г, 6х6, Евро3, дв.КАМАЗ 300 л.с., КПП ZF9, бак 210л+350л, МКБ,МОБ,рестайлинг.
цена 2 220 000 руб.,
 
КАМАЗ-4308
КАМАЗ 4308-6063-28(R4)
4х2,дв. Cummins ISB6.7e4 245л.с. (Е-4),КПП ZF6S1000, V кузова=39,7куб.м., спальное место, бак 210л, шк-пет,МКБ, ТНВД BOSCH, система нейтрализ. ОГ(AdBlue), тент, каркас, рестайлинг, внутр. размеры платформы 6112х2470х730 мм
цена 1 950 000 руб.,
КАМАЗ-6520
Самосвал КАМАЗ 6520-057
2014г, 6х4,Евро3, дв.КАМАЗ 320 л.с., КПП ZF16, ТНВД ЯЗДА, бак 350л, г/п 20 тонн, V кузова =20 куб.м.,МКБ,МОБ, со спальным местом.
цена 2 700 000 руб.,
 
КАМАЗ-6522
Самосвал 6522-027
2014, 6х6, дв.КАМАЗ 740.51,320 л.с., КПП ZF16,бак 350л, г/п 19 тонн,V кузова 12куб.м.,МКБ,МОБ,задняя разгрузка,обогрев платформы.
цена 3 190 000 руб.,

СУПЕР ЦЕНА

на АВТОМОБИЛИ КАМАЗ
43118-010-10 (дв.740.30-260 л.с.) 2 220 000
43118-6033-24 (дв.740.55-300 л.с.) 2 300 000
65117-029 (дв.740.30-260 л.с.) 2 200 000
65117-6010-62 (дв.740.62-280 л.с.) 2 350 000
44108 (дв.740.30-260 л.с.) 2 160 000
44108-6030-24 (дв.740.55,рест.) 2 200 000
65116-010-62 (дв.740.62-280 л.с.) 1 880 000
6460 (дв.740.50-360 л.с.) 2 180 000
45143-011-15 (дв.740.13-260л.с) 2 180 000
65115 (дв.740.62-280 л.с.,рест.) 2 190 000
65115 (дв.740.62-280 л.с.,3-х стор) 2 295 000
6520 (дв.740.51-320 л.с.) 2 610 000
6520 (дв.740.51-320 л.с.,сп.место) 2 700 000
6522-027 (дв.740.51-320 л.с.,6х6) 3 190 000


Перегон грузовых автомобилей
Перегон грузовых автомобилей
подробнее про услугу перегона можно прочесть здесь.


Самосвал Форд Нужны самосвалы? Обратите внимание на Ford-65513-02.

КАМАЗы в лизинг

ООО «Старт Импэкс» имеет возможность поставки грузовой автотехники КАМАЗ, а так же спецтехники на шасси КАМАЗ в лизинг. Продажа грузовой техники по лизинговым схемам имеет определенные выгоды для покупателя грузовика. Рассрочка платежа, а так же то обстоятельство, что грузовики до полной выплаты лизинговых платежей находятся на балансе лизингодателя, и соответственно покупатель автомобиля не платит налогов на имущество. Мы готовы предложить любые модели бортовых автомобилей, тягачей и самосвалов по самым выгодным лизинговым схемам.

Контактная информация.

г. Набережные Челны, Промкомзона-2, Автодорога №3, база «Партнер плюс».

тел/факс (8552) 388373.
Схема проезда



инженеров.net - научно-познавательный сайт. Такт двигателя


4ех тактный бензиновый двигатель внутреннего сгорания

 

4ех тактный бензиновый двигатель стал основной рабочей «лошадкой» во многих сферах жизни человека, особенно в транспортной.

История 4ех тактного ДВС началась с французского инженер Этьена Ленуара. Он создал первый надёжно работавший двигатель в 1860 году. Двигатель Ленуара работал на газовом топливе. Спустя 16 лет немецкий конструктор Николас Отто создал более совершенный 4-тактный газовый двигатель. Двигатель Отто и стал основой поршневого двигателестроения. А закрепил его на рынке автомобилестроения Генри Форд и его знаменитая массовая модель Форд Т, выпускавшийся с 1908 года.

Столь успешным двигатель стал благодаря своей простой и в тоже время работоспособной конструкцией. Физика работы двигателя основана на термобарических процессах газов.

Соединение горючего и воздуха приводит к образованию смеси. Сгорающая смесь воздуха и горючего способствует образованию давления. Оно направляется на поршень. Который в свою очередь вращает коленчатый вал через кривошипно-шатунный механизм. В свою очередь с вала уже снимается полезная работа. Отмечается цикличность работы механизма в целом.

dvs_old

Процесс работы двигателя.

Такт 1– Впуск.

Вначале впуска поршень находится в верхнем положении, так называемая верхняя мертвая точка (ВМТ) и должен опуститься в крайнее нижнее положение – нижняя мертвая точка (НМТ). При этом впускной клапан открыт свежая порция топливной смеси засасывается внутрь цилиндра. Впускной клапан открывается деталями распределительного вала — кулачками.

Такт 2 – Сжатие.

Поршень двигается в обратном направлении. Рабочая смесь постепенно сжимается. Она становится намного горячее. Степенью сжатия можно называть отношение объемов цилиндра в НМТ и камеры сгорания в ВМТ. Если используется инжекторная система смесеобразования, то на данном этапе в цилиндр еще подается порция топлива, которое распыляется через форсунку.

Такт 3 – Рабочий такт.

Рабочий ход поршня обеспечивает сгорание топлива с дальнейшим расширением. После полного сжатия горючего свеча дает искру, которая в свою очередь, воспламеняет смесь. Воздушно-топливная смесь сгорая расширяется, создавая повышенное давление на поршень. Происходит выталкивание поршня с ускорением.

Такт 4 – Выпуск.

Когда поршень попадает в крайнее нижнее положение, выпускной клапан открыт. Поршень движется вверх и выталкивает из цилиндра уже отработанные газы. При дохождения поршня до ВМТ, выпускной клапан закрывается. С этого момента рабочий цикл из 4 тактов повторяется.Запуск не обязательно начинается после выпуска. Открытие обеих клапанов одновременно называется перекрытием. Оно важно для того, чтобы цилиндры лучше наполнялись горючей смесью и лучше были очищены от отработанных газов.

4-Stroke-Engine

Основные параметры ДВС

Мощность и крутящий момент двигателя

Изменяется в лошадиных силах или в Ваттах. Мощность — основной параметр двигателя. Мощность двигателя показывает то количество энергии который можно «снять» с вала двигателя при оптимальном режиме работы двигателя. Показывает, какую работу двигатель может выполнить за промежуток времени, а более точнее, сколько энергии успеет передать сгорающее топливо кривошип — шатунной системе через поршень за временной промежуток рабочего такта. Мощность находится в прямой зависимости от крутящего момента.Крутящий момент — сила, с которой проворачивается вал двигателя. Зависит от плеча воздействия шатуна на кривошип вала двигателя. Или какое тормозное усилие нужно приложить к валу двигателя, чтобы его остановить.

moment & powerДиаграмма зависимость мощности и крутящего момента от числа оборотов коленчатого вала двигателя Audi 4,2 л V8 FSI.

Объем двигателя

Объем цилиндра  — это закрытый объем, в котором рабочее тело (сгорающая топливно-воздушная смесь) действует на часть замкнутого пространства — поршень Объем двигателя складывается из всех объемов всех цилиндров.Сложив объем углубления в головке над поршнем и объем полости цилиндра, получают объем камеры сгорания.Рабочим объемом именуют пространство, которое высвобождается передвигающимся поршнем в цилиндре.Полный объем равен сумме рабочего объема и объема камеры сгорания.Литраж определяют сложением всех рабочих объемов цилиндров.

volum dvs

Количество цилиндров

В современных моторах количество цилиндров варьируется в широких диапазонах. Теоретически их может быть от 1 до не ограниченного количества. Но на практике в основном применяют в 4ех тактных двигателях компоновку от 4 до 12 цилиндров. Количество цилиндров зависит от мощности, степени сжатия и скорости оборота коленчатого вала. Огромную мощность, высокие обороты и высокую степень сжатия очень сложно организовать в цилиндре большого диаметра.

12vМощность. Она зависит от количества и энергии рабочего тела (сгорающей газовой смеси), рабочее тело сильно нагревает поршень и цилиндр, чем больше поршень по диаметру, тем больше вероятность его нагрева и прогорания в центре. Именно с центра поршня тяжело снять излишки тепла.Обороты коленчатого вала. Чем больше обороты, тем выше линейные и осевые скорости в кривошип-шатунном механизме и тем больше инертные силы, тем выше нагрузки действующие на поршень, шатун, вал, цилиндр. Поэтому тихоходные живут дольше своих «оборотистых собратья».Степень сжатия. Чем больше нужно сжимать газ, тем большие нагрузки испытывает поршень и кривошип-шатунный механизм.С выше сказанным вывод один — чем меньше диаметр цилиндра тем меньшие нагрузки испытывают элементы кривошип-шатунной группы. Но для создания большой мощности нужен больший объем камеры сгорания. Многоцилиндровость — это техническое решения, которое позволило решить главную задачу — увеличить мощность двигателя, не увеличивая при этом линейные и осевые инерционные силы и как итог механические нагрузки, а также поддержания в разумных пределах тепловых нагрузок, действующие на двигатель.

Степень сжатия

Степень сжатия очень сильно влияет на то, какое топливо следует применять для бензинового двигателя.

Степень сжатия определяют следующим способом, если разделить полный объем цилиндра на объем камеры сгорания. Она показывает уменьшение объема во время движения поршня. Степень сжатия сильно влияет на экономичность, экологичность и КПД двигателя.Также топливная смесь может подаваться в цилиндры под давлением, что увеличивает количество свежего заряда.

ss

Свежий заряд подаеться в цилиндры двигатели двумя способами:• Без наддува: воздух или смесь всасывается в цилиндре под дествием разряжения и наполняет цилиндр с атмосферным давление.• С наддувом: процесс протекает под давлением, в цилиндры подается газовая смесь с давлением в несколько раз выше атмосферного.

nadduf

Дополнительные параметры ДВС

На выбор двигателя для механических средств также влияют дополнительные параметры, которые в одних системах могут прижиться, а в других создадут ряд проблем.

Способы смесеобразования

• Внешний: горючая смесь образуется за пределами цилиндров. К таким относятся карбюраторные и газовые двигатели.• Внутренний: горючее впрыскивается непосредственно внутри цилиндров. Инжекторный тип смесеобразования.

Способы охлаждения

1. Жидкостный.2. Воздушный.

Способ смазки

• Смешанный (масло смешивают со смесью горючих материалов).• Раздельный (масло уже сразу заливают в картер).

Частота вращения

• Двигатели на тихом ходу.• Двигатели, имеющие повышенную частоту вращения.• Быстроходные двигатели.

Материал двигателя

Изготовление современных двигателей возможно из 3-х типов материалов:• чугуна или других ферросплавов. Они наиболее прочные, но при этом имеют немалый вес.• алюминия и его сплавов. Вес небольшой, прочность средняя.• магниевых сплавов. По весу они самые маленькие, а вот прочностью они наделены высокой. Но цена таких двигателей огромна.

Компоновка ДВС

ryad1. Рядный.

Все цилиндры располагаются в ряд. Такая конструкция двигателей самая простая, детали к ним имеют несложную технологию производства.

v vier2. V- образный двигатель.Цилиндры в таком двигателе расставлены в форме буквы V, в двух плоскостях, двумя рядами под углом 600 или 900. Образовавшийся между ними угол – это угол развала. Плюсом такого двигателя является мощность. Его габариты могут быть уменьшены за счет смещения в развал других важных компонентов. Его длина меньше, а ширина больше. Но из-за сложности таких конструкций бывает непросто определить центр их тяжести.

opozitnik3. Оппозитные двигатели (маркировка В).Они относительно уравновешены, для уменьшения вибрации все элементы располагают симметрично. Их конструктивная особенность – центральное крепление вала на жестком блоке. Это так же влияет на степень вибрации. Угол развала составляет 1800.

VR vier4. Рядно-смещенные агрегаты (маркировки VR).Данную компоновку отличает малый угол развала (150) V-образного двигателя в содружестве с рядным аналогом. Это позволяет уменьшить размеры продольного и поперечного агрегатов. Маркировка VR расшифровывается как V – образный, R — рядный.

W vivier5. W (или дубль V) — образный.Самый сложный двигатель. Известен двумя видами компоновки.1) Три ряда, угол развала большой.2) Две компоновки VR. Они компактны, несмотря на большое количество цилиндров.

 

zvezda

6. Радиальный (звездообразный) поршневой двигатель.Имеет небольшой размер длины с плотным размещение нескольких штук цилиндров. Они располагаются вокруг коленчатого вала радиальными лучами с равными углами. Ее отличает от других наличие кривошипно-шатунного механизма. В данной конструкции один цилиндр выступает главным, остальные – прицепные – крепятся к первому по периферии. Недостаток: в состоянии покоя нижние цилиндры могут пострадать от протекания масла. Рекомендуют до начала запуска двигателя проверить, что в нижних цилиндрах масло отсутствует. В противном случае возможны гидроудар и поломка. Чтобы увеличить размер и мощность двигателя, достаточно удлинить коленчатый вал образованием нескольких рядов – звезд.

Дополнительные системы двигателя внутреннего сгорания.

Запуск двигателя — Стартер

starterДля устойчивой работы ДВС требуются минимальные обороты 800 обр/мин. Запуск двигателя и вывод оборотов коленчатого вала, механизмов и агрегатов на нужные параметры для устойчивой и самоподдерживающей работы осуществляется стартером. Это электродвигатель для проворачивания коленчатого вала. Реже запуск двигателя осуществляется посредством подачи в цилиндры сжатого воздуха под давлением.

Топливная система

Топливная система для двигателя внутреннего сгорания состоит из следующих элементов:— топливный бак (хранения запаса топлива, баллон, для хранения сжатого газа). Топливом для бензиновых ДВС является бензин или газ.— топливный насос (подача и прокачка топлива по топливной системе).— топливопровод (магистраль из стальных трубок для соединения топливного бака с системой смесеобразования).— фильтры грубой и тонкой очистки топлива (очистка топлива от инородных частиц, которые могут засорить конструктивные элементы топливной системы).— системя для образования газо-воздушной системы. Для образования рабочей газовой смеси из топлива и воздуха используются 2 вида систем.

Карбюраторная система

karburator

Карбюратор – один из узлов, входящих в систему питания двигателя. В нем как раз и готовится такая смесь из воздуха и горючего. Карбюратор также регулирует, сколько ее поступит в камеры сгорания. Известно несколько его видов: барботажные, мембранно-игольчатые и поплавковые.Принцип действия основан на гидродинамических силах, создаваемых в карбюраторе конструктивно. Бензин, подаваясь в карбюратор и под действие движущегося атмосферного воздуха, принудительно испаряясь, смешивается с воздухом, образуя паровоздушную смесь. Далее смесь поступает во впускной коллектор двигателя, откуда далее в цилиндры. Пассивный принцип смесеобразования.

Инжекторная система

injektИнжекторные системы — это уже активная система смесеобразования. Инжекторная система состоит из управляющего электронного блока и форсунок. Форсунке подают заряд топлива (распыляя его) в засасываемый атмосферный воздух, подчиняясь командам электронного блока управления. Топливная смесь образуется либо во впускном коллекторе, либо же непосредственно в цилиндре, перед тактом сжатия смеси. Система осуществляют непосредственную дозировку нужного количества топлива.

 

Система смазки

smazkaДанный вид системы предназначен для смазки трущихся поверхностей двигателя во время работы. Смазка снижает коэффициент трения, что уменьшает потери энергии, снижает быстрый износ деталей двигателя, а также происходит удаление продуктов нагара и охлаждение поверхности деталей. Система смазки двигателя включает в себя следующие элементы:— поддон картера двигателя с маслозаборником (предназначен для хранения масла).— масляный насос (предназначен для перекачки масла и создания давления в системе).— масляный фильтр (очистка масла от посторонних механических примесей).— масляный радиатор (для охлаждения забираемого из картера масла перед подачей его в смазываемые детали).— соединительные магистрали и каналы элементов системы смазки.

Система охлаждения

01Система охлаждения нужна для отвода тепла от «горячих» элементов двигателя. При работе двигателя выделяется тепловая энергия от сгорающей рабочей смеси, только 40% данной энергии расходуется на полезную работу хода поршня, вся остальная энергия или в виде лучистой энергии оседает на стенках камеры сгорания или в виде горячих газов выходит через выхлопную систему в атмосферу.Если не снимать эти «излишки» энергии, то в конечном итоге это приведет к выводу двигателя из строя, прогорание поршней, головы блока цилиндров, клапанов, заклинивание поршня в цилиндре. Для отвода энергии от двигателя используют теплоноситель — специальную охлаждающую жидкость, которая принудительно прокачивается через рубашку охлаждения блока цилиндров и головки цилиндров, снимая «излишки тепла», а далее по патрубкам поступает в радиатор, где часть ненужной энергии отдает окружающей атмосфере. После охлаждения жидкость вновь прокачивается через «рубашку охлаждения» двигателя. Охлаждающая система состоит:— «рубашка охлаждения» (служит для обеспечения контакта охлаждающей жидкости с горячими элементами двигателя для снятия «излишков тепла»).— центробежный насос (помпа) (служит для создания давления в системе и прокачки через систему жидкости).— термостат (служит для разделения системы охлаждения на 2 контура, контур с радиатор и контур без радиатора).— радиаторы охлаждающей жидкости и отопителя (предназначены для теплообмена между охлаждающей жидкости и окружающей средой).— расширительный бачок (предназначен для хранения дополнительного количества охлаждающей жидкости).— соединительные патрубки элементов системы охлаждения.

Система электропитания

Система электропитания имеет два основных источника электричества — это генератор и аккумулятор. Система электропитания предназначена для бесперебойного обеспечения электроэнергией потребителей. В первую очередь электрическая система питает элементы двигателя — это система зажигания, генератор при старте, электронную систему управления двигателя, электробензонасос, инжекторную систему. Так же в электрической энергии нуждается ряд автомобильных систем, это система освещения, габаритов, систем удобств пассажиров, электронные системы.

Аккумулятор

akbАккумулятор — это первичный источник энергии в автомобили. Именно благодаря той энергии, которая запасена в нем и начинается работа всего автомобиля и двигателя в частности. Чтобы завести двигатель, стартер берет энергию именно от аккумулятора. Аккумуляторы бывают разной емкости, но напряжение, которое они выдают стандартное — 6, 12 Вольт, для мототехники и транспортных средств соответственно. Основная характеристика аккумулятора — это емкость и пусковой ток. Емкость у аккумуляторов бывает от 18 до 200 А/ч. Значение емкости показывает, сколько ампер и за какое время способен выдать аккумулятор. Пусковой ток измеряется в амперах и показывает пиковое значение по току, которое может выдать аккумулятор за короткое время, порядка 30 секунд. Важная характеристика для запуска двигателя стартером.

Генератор

generatorГенератор — это электротехническое устройство, преобразующее механическую энергию в электрическую. При работающем двигателе генератор генератор является основным источником электрического тока, а аккумулятор вспомогательным. Генератор питает всю электрическую систему как двигателя, так и машины в целом, также от работающего генератора вырабатываемый ток заряжает аккумулятор. Генератор вырабатывает переменный ток, который в с вою очередь через диодный мост преобразуется в постоянный. Именно постоянный ток нужен в электрической системе автомобиля. Основные характеристики генератора — это напряжение и сила тока вырабатываемая им. Генераторы бывают 12 и 24 вольтные. Сила тока, вырабатываемая генератором колеблется в широких диапазонах, т.к. зависит от частоты вращения ротора.

Система зажигания

shema_shigПредназначена для воспламенения горючей смеси топлива и воздуха в цилиндре от электрической искры. В зависимости от способа управления процессом зажигания различают следующие типы систем зажигания: контактная, бесконтактная (транзисторная) и электронная (микропроцессорная). Контактный способ — перераспределение электрической энергии происходит механическим путем, через прерыватель — распределитель. В бесконтактной системе прерыватель транзисторный, распределитель — механический. В электронной системе и прерыватель и распределитель — это микропроцессорный блок в котором и осуществляются процессы прерывания и распределения с помощью полупроводниковых устройств. Принцип работы системы зажигания заключается в накоплении и преобразовании катушкой зажигания низкого напряжения (12В) электрической сети автомобиля в высокое напряжение (до 30000В), распределении и передаче высокого напряжения к соответствующей свече зажигания и образовании в нужный момент искры на свече зажигания.

Система контроля и управления работы двигателя

Контроль и управление двигателем бывает 2 видов — механический и электронный. В первом случае человек управляет работой двигателя полностью и полностью ведет контроль за его работой, подбирая нужные условия работы, непосредственно воздействуя на элементы двигателя через рычаги и тросики. Во втором случае за всем следит электроника, она подбирает оптимальные условия для работы двигателя и следит за работой двигателя. Управление работой двигателя полностью ведется электроникой. человек лишь вносит управляющий сигнал в электронную система, а та в свою очередь обрабатывая сигнал, подбирает нужные условия работы двигателя. Электронная система управления контролирует работу двигателя с помощью множества датчиков, которые измеряя физические величины выдают, преобразуют их значения в электрический сигнал. Например: давления топлива, частоты вращения коленчатого вала, положения педали акселератора, расходомер воздуха (при наличии), детонации, температуры охлаждающей жидкости, температуры масла, температуры воздуха на впуске, положения дроссельной заслонки, давления во впускном коллекторе, кислородные датчики и др. Информация, получаемая от датчиков, является основой управления двигателем.

zewerok.ru

ДВС - четырехтактный двигатель, принцип работы

ДВС - четырехтактный двигатель, принцип работы

Четырехтактный двигатель был впервые продемонстрирован Николаусом Отто в 1876 году и поэтому он также известен как цикл Отто.  Технически правильный термин - четырехтактный цикл. Четырехтактные двигателя является наиболее распространенным типом двигателя в настоящее время. Они установлены практически на всех легковых автомобилях и грузовиках.

Четырехтактный двигатель был впервые продемонстрирован Николаусом Отто в 1876 году и поэтому он также известен как  цикл Отто.  Технически правильный термин - четырехтактный цикл. Четырехтактные двигателя, возможно, является наиболее распространенным типом двигателя в настоящее время. Они установлены на всех легковых автомобилях и грузовиках.  

otto.gif 

Четыре такта цикла - это впуск, компрессия, расширение и выпуск выхлопных газов. Каждому соответствует один полный ход поршня, поэтому полный цикл требует двух оборотов коленчатого вала.

otto_in.gifТакт впуска. Во время впуска, поршень движется от ВМТ (верхней мертвой точки) вниз к НМТ (нижней мертвой точке), засасывая свежий заряд топливо-воздушной смеси. Изображенный на рисунке двигатель имеет 'тарельчатый' впускной клапан, который открывается потоком всасываемого свежего заряда. Некоторые ранние двигатели работали именно таким образом. Однако, в современных двигателях впускной клапан открывается кулачком распределительного клапана.

otto_cmp.gifТакт сжатия. После достижения НМТ поршень начинает двигаться вверх к ВМТ, давление в цилиндре возрастает, впускной клапан закрывается и происходит сжатие топливо-воздушной смеси.

otto_pwr.gifТакт расширения, или рабочий ход. Незадолго до конца цикла сжатия топливо-воздушная смесь поджигается искрой от свечи зажигания. Во время пути поршня из ВМТ в НМТ топливо сгорает, и под действием тепла сгоревшего топлива рабочая смесь расширяется, толкая поршень. При расширении газы совершают полезную работу, поэтому ход поршня при этом такте коленчатого вала называют рабочим ходом.

otto_exh.gifТакт выпуска. После НМТ рабочего цикла открывается выпускной клапан, и движущийся вверх поршень вытесняет отработанные газы из цилиндра двигателя. При достижении поршнем ВМТ выпускной клапан закрывается, и цикл начинается сначала.

Анимационные рисунки показывают основной принцип работы одного цилиндра четырех-тактного двигателя.

{seyretpic id= 20 align=center}

ingenerov.net

Четырёхтактный двигатель - это... Что такое Четырёхтактный двигатель?

Работа четырёхтактного двигателя в разрезе. Цифрами обозначены такты

Четырёхтактный двигатель — поршневой двигатель внутреннего сгорания, в котором рабочий процесс в каждом из цилиндров совершается за два оборота коленчатого вала, то есть за четыре хода поршня (такта). Этими тактами являются:

  1. Впуск — (такт впуска, поршень идёт вниз) свежая порция топливо-воздушной смеси всасывается в цилиндр через открытый впускной клапан.
  2. Сжатие (такт сжатия, поршень идёт вверх) впускной и выпускной клапаны закрыты, и топливо-воздушная смесь сжимается в объёме.
  3. Рабочий ход (такт рабочего хода, поршень идёт вниз) сжатое топливо воспламеняется свечой зажигания, расположенной над поршнем, при сгорании высвобождается энергия, которая воздействует на поршень, заставляя его двигаться вниз. Фактически на такте рабочего хода происходит работа двигателя.
  4. Выпуск (такт выпуска, поршень идёт вверх) на этом такте открываются выпускные клапаны, и выхлопные газы, проходя через них, очищают цилиндр.

По окончании 4-го такта всё повторяется в том же порядке.

История

Цикл Отто

Идеализированный цикл Отто, показанный в координатах давление (Р) и объём (V):  такт впуска(A) , представляющий собой изобарическое расширение; за ним следует  такт сжатия (B) , представляющий собой адиабатический процесс. Далее следуют сжигание топлива, которое является изохорическим процессом, и адиабатическое расширение, характеризующие  такт рабочего хода (C) . Цикл завершается изохорическим процессом и изобарическим сжатием, характеризующими такт выпуска (D) . TDC — верхняя мёртвая точка; BDC — нижняя мёртвая точка

Четырёхтактный двигатель впервые был запатентован Алфоном де Роше (англ.) в 1861 году. До этого около 1854—1857 годов два итальянца (Евгенио Барсанти и Феличе Матоцци) изобрели двигатель, который, по имеющейся информации, мог быть очень похож на четырёхтактный двигатель, однако тот патент был утерян.

Первым человеком, реально построившим четырёхтактный двигатель, был немецкий инженер Николаус Отто. Вот почему четырёхтактный принцип сегодня известен, в основном, как цикл Отто, а четырёхтактный двигатель, использующий свечи зажигания, часто называется двигателем Отто.

Цикл Отто состоит из адиабатического сжатия, сообщения теплоты при постоянном объёме, адиабатического расширения и отдачи теплоты при постоянном объёме. В случае четырёхтактного цикла Отто имеется также изобарическое сжатие и изобарическое расширение, которые обычно не рассматриваются, так как в идеализированном процессе они не играют роли в сообщении рабочему газу теплоты или в совершении газом работы.

Это видеоролик о работе двигателя Отто. (2 мин 16 сек, 320×240, 340 кбит/с)

Октановое число топлива

Мощность на коленчатый вал двигателя внутреннего сгорания передаётся на вал от расширяющихся газов, в основном, во время такта рабочего хода. Сжатие топливо-воздушной смеси до очень малого объёма повышает эффективность рабочего хода, но увеличение степени сжатия в цилиндре также сильнее нагревает сжимающуюся топливо-воздушную смесь (согласно закону Шарля).

Если топливо легковоспламеняемое, с низкой температурой вспышки, то это может привести к возгоранию топливо-воздушной смеси до того, как поршень достигнет верхней мёртвой точки. Это, в свою очередь, будет заставлять поршень двигаться в сторону, противоположную требуемому направлению вращения коленчатого вала. Топливо, которое воспламеняется в верхней мёртвой точке, но до того, как поршень начнёт двигаться вниз, может повредить поршень и цилиндр из-за наличия в малом объёме очень большого количества тепловой энергии, не имеющей возможности выхода. Это повреждение часто проявляет себя как стук двигателя, и оно ведёт к перманентному повреждению двигателя, если случается постоянно.

Октановое число является мерой сопротивления топлива к самовоспламенению под воздействием возрастающих температур. Топлива с более высокими октановыми числами позволяют осуществлять более высокую степень сжатия без риска повреждения двигателя вследствие самовоспламенения.

Для работы дизельных двигателей самовоспламенение необходимо. Они предотвращают возможное повреждение двигателей путём раздельного впрыска топлива под большим давлением в цилиндр очень незадолго до того, как поршень достигнет верхней мёртвой точки. Воздух без топлива может быть сжат очень сильно без опасности самовоспламенения, и в то же время, находящееся под высоким давлением топливо в системе подачи топлива не может самовоспламениться без присутствия воздуха.

Факторы, ограничивающие мощность двигателя

Четырёхтактный цикл 1=верхняя мёртвая точка 2=нижняя мёртвая точка A: такт впуска  B: такт сжатия  C: такт рабочего хода   D: такт выпуска 

Максимальная мощность двигателя вырабатывается при максимальном количестве всасываемого воздуха. Мощность, вырабатываемая поршневым двигателем, связана с его размерами (объёмом цилиндра), объёмным КПД, потерь энергии, степени сжатия топливо-воздушной смеси, содержания кислорода в воздухе и частоты вращения. Это справедливо как для двухтактных, так и для четырёхтактных двигателей. Частота вращения в конечном счёте ограничена прочностью материалов и свойствами смазки. Клапана, поршни и коленчатые валы испытывают больши́е динамические нагрузки. На слишком высоких оборотах двигателя могут происходить физические повреждения и дрожание поршневых колец, и это приводит к потерям энергии и даже разрушению двигателя. Поршневые кольца колеблются вертикально в каналах, в которых они находятся. Эти колебания колец ухудшают уплотнение между кольцами и стенками цилиндра, что приводит к потерям давления в цилиндре и мощности. Если вал двигателя вращается слишком быстро, то пружины клапанов не успевают достаточно быстро срабатывать, и клапана не успевают закрываться. Эта ситуация называется "плаванием клапанов" (англ.), и она может привести к контакту поршня и клапанов, вызвав серьёзные повреждения. На высоких скоростях условия смазки на границе поверхностей поршня и цилиндра ухудшаются. Это ограничивает скорость поршней промышленных двигателей величиной около 10 м/с.

Потоки через впускной и выпускной каналы

Выходная мощность двигателя зависит от всасывающей способности, и от возможностей выхлопных газов быстро перемещаться через клапанные каналы, как правило расположенные в головках цилиндров (англ.). Для увеличения выходной мощности можно минимизировать количество изгибов тех каналов, по которым движутся всасываемые и выхлопные потоки, а также сделать их более плавными, благодаря чему уменьшится сопротивление этим потокам. Для этого радиусы поворотов клапанных каналов и сёдла клапанов можно модифицировать таким образом, чтобы их аэродинамическое сопротивление было минимальным. Можно, кроме того, использовать разделение потока на несколько частей.

Принудительное нагнетание воздуха в цилиндры

Один из путей увеличения мощности — это принудительное нагнетание дополнительного количества воздуха в цилиндры, благодаря чему при каждом рабочем ходе может вырабатываться больше мощности. Такое принудительное нагнетание может производиться некоторыми типами компрессорных устройств, называемых нагнетателями. Последние могут приводиться в движение от коленчатого вала или выхлопных газов.

Нагнетание повышает предел мощности двигателя внутреннего сгорания при том же самом объёме цилиндра. В общем случае, нагнетатель всегда работает, но есть конструкции, позволяющие отключать его, или позволяющие ему работать с разными скоростями (относительно скорости двигателя).

Недостатком механически осуществляемого нагнетания является то, что часть выходной мощности расходуется на приведение в движение нагнетателя. Воздух в цилиндре сжимается дважды, но расширяется только в один этап. Поэтому часть мощности понапрасну расходуется с выхлопами высокого давления.

Турбонагнетание

Турбонагнетатель или турбокомпрессор (ТК, ТН) — это такой нагнетатель, который приводится в движение выхлопными газами. Получил своё название от слова «турбина» (фр. turbine от лат. turbo — вихрь, вращение). Это устройство состоит из двух частей: роторного колеса турбины, приводимого в движение выхлопными газами, и центробежного компрессора, закреплённых на противоположных концах общего вала. Струя рабочего тела (в данном случае, выхлопных газов) воздействует на лопатки, закреплённые по окружности ротора, и приводит их в движение вместе с валом, который изготовляется единым целым с ротором турбины из сплава, близкого к легированной стали. На вале, помимо ротора турбины, закреплён ротор компрессора, изготовленный из алюминиевых сплавов, который при вращении вала позволяет «закачивать» под давлением воздух в цилиндры ДВС. Таким образом, в результате действия выхлопных газов на лопатки турбины одновременно раскручиваются ротор турбины, вал и ротор компрессора. Применение турбокомпрессора совместно с промежуточным охладителем (интеркулером) позволяет обеспечивать подачу более плотного воздуха в цилиндры ДВС (в современных турбированных двигателях используется именно такая схема). Часто при применении в двигателе турбокомпрессора говорят о турбине, не упоминая компрессора. Турбокомпрессор — это одно целое. Нельзя использовать энергию выхлопных газов для подачи воздушной смеси под давлением в цилиндры ДВС при помощи только турбины. Нагнетание воздуха обеспечивает именно та часть турбокомпрессора, которая именуется компрессором.

На холостом ходу, при небольших оборотах, турбокомпрессор вырабатывает небольшую мощность и приводится в движение малым количеством выхлопных газов. В этом случае турбонагнетатель малоэффективен, и двигатель работает примерно так же, как без нагнетания. Когда от двигателя требуется намного большая выходная мощность, то его обороты, а также зазор дросселя, увеличиваются. Пока количества выхлопных газов достаточно для вращения турбины, по впускному трубопроводу подаётся намного больше воздуха.

Турбонагнетание позволяет двигателю работать более эффективно, потому что турбонагнетатель использует энергию выхлопных газов, которая, в противном случае, была бы (большей частью) потеряна.

Однако существует технологическое ограничение, известное как «турбояма» («турбозадержка») (за исключением моторов с двумя турбокомпрессорами — маленьким и большим, когда на малых оборотах работает маленький ТК, а на больших — большой, совместно обеспечивая подачу необходимого количества воздушной смеси в цилиндры). Мощность двигателя увеличивается не мгновенно из-за того, что на изменение частоты вращения двигателя, обладающего некоторой инерцией, будет затрачено определённое время, а также из-за того, что чем больше масса турбины, тем больше времени потребуется на её раскручивание и создание давления, достаточного для увеличения мощности двигателя. Кроме того, повышенное выпускное давление приводит к тому, что выхлопные газы передают часть своего тепла механическим частям двигателя (эта проблема частично решается заводами-изготовителями японских и корейских ДВС путём установки системы дополнительного охлаждения турбокомпрессора антифризом).

Отношение длины шатуна к длине хода поршня

Более длинный шатун уменьшает боковые нагрузки со стороны поршня на стенки цилиндра, и уменьшает ударные нагрузки. Как следствие двигатель с длинным шатуном служит дольше, и он надёжнее. Однако увеличение длины шатуна ведёт к увеличению габаритов двигателя, его массы и стоимости. Кроме того, при возрастании длины шатуна увеличивается время нахождения поршня в верхней мёртвой точке. Как следствие, увеличивается время, в течение которого газ в цилиндре находится при высокой температуре, что ведёт к повышенному нагреву двигателя.

В настоящее время более актуальным параметром оценки ДВС является отношение хода поршня к диаметру цилиндра или наоборот. Для более быстроходных бензиновых двигателей это отношение близко к 1, на дизельных моторах ход поршня, как правило, чуть больше диаметра цилиндра.

Газораспределительный механизм

Клапаны обычно управляются через распределительный вал, вращающийся со скоростью, равной половине скорости коленчатого вала. Распределительный вал имеет несколько кулачковых механизмов, каждый из которых рассчитан так, чтобы открывать и закрывать «свой» клапан в определённое время цикла.

Во многих двигателях используются один или несколько распределительных валов, расположенных над рядом цилиндров (или над каждым рядом цилиндров). Помимо верхнего расположения распредвала часто встречается, казалось бы, забытое на легковых авто нижнее положение распредвала в блоке цилиндров. При этом кинематическая цепочка включает (снизу вверх) толкатели штанги и коромысла. Эта система, применение которой обусловлено простотой, надёжностью и компактностью, успешно себя зарекомендовала на грузовых автомобилях. Эта схема позволяет конструировать моторы с более низким центром тяжести.

Первая из описанных выше конструкций газораспределительного механизма обычно позволяет двигателям работать с бо́льшими скоростями, поскольку в этом случае имеется более короткая кинематическая цепь от кулачка к клапану.

Баланс энергии

Двигатели Отто имеют КПД около 35 % — иными словами, 35 % энергии, генерируемой при сжигании топлива, преобразуется в энергию вращательного движения выходного вала двигателя, а остальное теряется в виде тепла. Для сравнения: шеститактный двигатель может преобразовывать в полезную вращательную энергию более 50 % энергии, высвобождаемой при горении топлива.

Современные двигатели часто конструктивно имеют намеренно меньший КПД, чем они могли бы иметь. Это необходимо для уменьшения выбросов с помощью таких средств как система рециркуляции выхлопных газов и каталитический конвертер.

Уменьшению КПД можно препятствовать с помощью системы контроля двигателя (англ.), использующей технологии эффективного сжигания топлива.[1]

Применение

Сегодня двигатели внутреннего сгорания в легковых и грузовых автомобилях, самолётах и во многих других машинах в большинстве случаев используют четырёхтактный цикл. Четырёхтактные двигатели могут быть как бензиновыми, так и дизельными.

Примечания

  1. ↑ Air pollution from motor vehicles By Asif Faiz, Christopher S. Weaver, Michael P. Walsh

dic.academic.ru

Четырёхтактный двигатель — WiKi

Работа четырёхтактного двигателя в разрезе. Цифрами обозначены такты

Четырёхтактный двигатель — поршневой двигатель внутреннего сгорания, в котором рабочий процесс в каждом из цилиндров совершается за два оборота коленчатого вала, то есть за четыре хода поршня (такта). Начиная с середины XX века — наиболее распространённая разновидность поршневого ДВС, особенно в двигателях средней и большой мощности.

Порядок работы

Рабочий цикл четырёхтактного двигателя происходит за четыре такта, каждый из которых составляет один ход поршня между мертвыми точками, при этом двигатель проходит следующие фазы:

  • Впуск. Длится от 0 до 180° поворота кривошипа. При впуске поршень движется вниз от верхней мертвой точки, открыт впускной клапан. В цилиндре образуется разрежение, за счёт которого в него засасывается свежий заряд. При наличии нагнетателя смесь нагнетается в цилиндр под давлением.
  • Такт сжатия. 180—360° поворота кривошипа. Поршень движется к ВМТ, при этом заряд сжимается поршнем до давления степени сжатия. За счёт сжатия достигается бо́льшая удельная мощность, чем могла бы быть у двигателя, работающего при атмосферном давлении (такого как двигатель Ленуара), за счёт того, что в небольшом объёме заключен весь заряд рабочей смеси. Кроме того, повышение степени сжатия позволяет увеличить КПД двигателя. В двигателях Отто любой конструкции сжимается горючая смесь, в дизелях — чистый воздух.

В конце такта сжатия происходит зажигание заряда в двигателях Отто или начало впрыска топлива в двигателях Дизеля.

  • Рабочий ход 360—540° кривошипа — движение поршня в сторону нижней мёртвой точки под давлением горячих газов, передаваемого поршнем через шатун коленчатому валу. В двигателе Отто при этом происходит процесс изохорного расширения, в дизеле за счёт продолжающегося горения рабочей смеси подвод теплоты продолжается столько, сколько длится впрыск порции топлива. Поэтому сгорание в дизеле обеспечивает процесс, близкий к адиабатному, расширение происходит при одинаковом давлении.
  • Выпуск. 540—720° поворота кривошипа — очистка цилиндра от отработавшей смеси. Выпускной клапан открыт, поршень движется в сторону верхней мёртвой точки, вытесняя выхлопные газы.

В реальных двигателях фазы газораспределения подбираются таким образом, чтобы учитывалась инерция газовых потоков и геометрия трактов впуска и выпуска. Как правило, начало впуска опережает ВМТ от 15 до 25°, конец впуска отстает примерно на столько же от НМТ, так как инерция потока газов обеспечивает лучшее заполнение цилиндра. Выхлопной клапан опережает НМТ рабочего хода на 40 — 60°, при этом давление сгоревших газов к НМТ падает и противодавление на поршень при выхлопе оказывается ниже, что повышает КПД. Закрытие выхлопного клапана также относится за ВМТ впуска для более полного удаления выхлопных газов.

Так как процесс горения и распространение фронта пламени в двигателях Отто требуют определенного времени, зависящего от режима работы двигателя, а максимальное давление из соображений геометрии кривошипно-шатунного механизма желательно иметь от 40 до 45° от ВМТ начала рабочего хода, зажигание осуществляется с опережением — от 2 — 8° на холостом ходу до 25 — 30° на режимах полной нагрузки.

Рабочий процесс дизельного двигателя отличается от описанного выше тем, что заряд в камере сгорания — чистый воздух, нагретый от сжатия до температуры воспламенения. За некоторое время до ВМТ, называемое временем инициации, в камеру сгорания начинает впрыскиваться жидкое топливо, распыленное до капель, каждая из которых подвергается инициации, то есть нагревается, испаряясь с поверхности, при испарении вокруг каждой из капель образуется и воспламеняется в горячем воздухе горючая смесь. Время инициации для каждого дизеля стабильно, зависит от особенностей конструкции и изменяется только с его изнашиванием, поэтому, в отличие от момента зажигания, момент впрыска в дизеле задается раз и навсегда при его конструировании и изготовлении. Так как смесь во всем объёме камеры сгорания в дизеле не образуется, а факел распыла форсунки занимает небольшой объём камеры, количество воздуха на каждый объём впрыснутого топлива должно быть избыточным, в противном случае процесс горения протекает не до конца, а выхлопные газы содержат большое количество недогоревшего углерода в виде сажи. Само горение длится столько времени, сколько длится впрыскивание данной конкретной порции топлива — от нескольких градусов после ВМТ на холостом ходу до 45-50° на режимах полной мощности. В мощных дизелях цилиндр может снабжаться несколькими форсунками.

Главные особенности четырёхтактного двигателя

  • Газообмен в цилиндре практически полностью обеспечивается перемещением рабочего поршня;
  • Для переключения полости цилиндра на впуск и на выхлоп используется отдельный газораспределительный механизм;
  • Каждая фаза газообмена выполняется во время отдельного полуоборота коленчатого вала;
  • Привод систем газораспределения, зажигания и впрыска топлива должен вращаться с частотой вдвое меньшей, чем частота вращения коленчатого вала двигателя. Для этого могут применяться как шестерёнчатые редукторы, так цепная или ременная передача.

История

Цикл Отто

  Идеализированный цикл Отто, показанный в координатах давление (Р) и объём (V): такт впуска(A) , представляющий собой изобарическое расширение; за ним следует такт сжатия (B) , представляющий собой адиабатический процесс. Далее следуют сжигание топлива, которое является изохорическим процессом, и адиабатическое расширение, характеризующие такт рабочего хода (C) . Цикл завершается изохорическим процессом и изобарическим сжатием, характеризующими такт выпуска (D) . TDC — верхняя мёртвая точка; BDC — нижняя мёртвая точка

Четырёхтактный двигатель впервые был запатентован Алфоном де Роше (англ.) в 1861 году. До этого около 1854—1857 годов два итальянца (Евгенио Барсанти и Феличе Матоцци) изобрели двигатель, который, по имеющейся информации, мог быть очень похож на четырёхтактный двигатель, однако тот патент был утерян.

Первым человеком, построившим первый практически используемый четырёхтактный двигатель, был немецкий инженер Николаус Отто. Поэтому четырёхтактный цикл известен как цикл Отто, а четырёхтактный двигатель, использующий свечи зажигания, называется двигателем Отто.

Идеальный цикл Отто состоит из адиабатического сжатия, сообщения теплоты при постоянном объёме, адиабатического расширения и отдачи теплоты при постоянном объёме. В практическом четырёхтактном цикле Отто имеются также изобарическое сжатие (выхлоп) и изобарическое расширение (впуск), которые обычно не рассматриваются, так как в идеализированном процессе они не играют роли ни в сообщении рабочему газу теплоты, ни в совершении газом работы.

Это видеоролик о работе двигателя Отто. (2 мин 16 сек, 320×240, 340 кбит/с)

Газораспределительный механизм

Атрибутивный агрегат четырёхтактного двигателя, управляет газообменом при смене тактов, обеспечивая поочередное подключение полости цилиндра к впускному и выхлопному коллекторам.

Управление газораспределением может осуществляться:

МЕХАНИЧЕСКИ: — распределительным кулачковым валом или валами с клапанами; — цилиндрическими гильзовыми золотниками, движущимися возвратно-поступательно либо вращающимися в головке цилиндров;МИКРОПРОЦЕССОРОМ. В этом случае привод клапанов осуществляется непосредственно мощными быстродействующими электромагнитами (БМВ) или с использованием гидропривода (ФИАТ).

В первом случае клапанами управляет распределительный вал, вращающийся вдвое медленнее коленчатого вала. Распределительный вал имеет несколько кулачков, каждый из которых управляет одним впускным или выхлопным клапаном. От распредвалов часто приводятся дополнительные сервисные устройства двигателя — масляные, топливные насосы, распределитель зажигания, ТНВД, иногда — механические нагнетатели и др.

В разных двигателях используются один или несколько распределительных валов, расположенных возле коленвала, над рядом цилиндров или даже над каждым рядом клапанов. Привод распредвалов осуществляется от коленвала либо распределительными шестернями, либо пластинчато-роликовой цепью, либо зубчатым ремнем. В некоторых старых конструкциях использовались валики с коническими шестернями (В-2). В любом случае валы синхронизированы с частотами вращения 1 : 2.

В любом случае вал, расположенный рядом с коленчатым, называется нижним, в головке над или рядом с клапанами — верхним. Клапаны по расположению относительно камеры сгорания также могут быть верхними — расположенными над донышком поршня, или нижними — расположены рядом с цилиндрами сбоку. Нижние клапаны приводятся от нижнего вала через короткие стаканообразные толкатели. Привод верхних клапанов от нижнего вала осуществляется, как правило, штанговым механизмом, от верхнего либо через рокеры (коромысла), либо через стаканообразные толкатели. Во многих двигателях используются гидравлические толкатели, автоматически выбирающие зазоры в клапанных парах и делающие механизм газораспределения необслуживаемым.

Клапан представляет собой стержень с тарелкой, выполненной из жаростойких материалов. Стержень клапана совершает возвратно-поступательные движения в направляющей втулке, тарелка коническим герметизирующим пояском ложится на клапанное седло, также выполняемое из жаростойких материалов. И седло, и направляющая втулка являются контактными поверхностями, через которые осуществляется охлаждение клапана. Особено важно это положение для выхлопных клапанов, которые постоянно работают в потоках горячих газов (а при неправильной установке зажигания или момента впрыска — в потоке пламени) и нуждаются в интенсивном теплоотводе. Поэтому для улучшения охлаждения внутри стержня клапана может располагаться полость с теплопроводным материалом — с натрием, с медью. А сами контактирующие поверхности должны быть гладкими и иметь минимально возможные зазоры. Многие клапаны имеют механизмы поворота, обеспечивающие принудительное вращение вокруг продольной оси в процессе работы.

Открытие клапана осуществляет соответствующий кулачок, закрытие — либо возвратна клапанная пружина/пружины, либо особый десмодромный механизм (Даймлер-Бенц), позволяющий из-за отсутствия пружин достичь очень высоких скоростей перемещения клапанов и, соответственно, существенно поднять обороты двигателя без существенного повышения усилий в механизме распределения. Дело в том, что чем слабее клапанная пружина, тем медленнее возврат клапана в седло. Уже при работе на относительно невысоких оборотах слабые пружины позволяют клапанам «зависать» и соприкасаться с поршнями (двигатели ВАЗ без внутреннего ряда клапанных пружин — на 5500-6000 об/мин). Чем сильнее клапанные пружины, тем большие напряжения испытывают детали ГРМ и тем более качественное масло должно использоваться для его смазки. Десмодромный механизм позволяет перемещать клапана с такой скоростью, которая ограничена только моментом их инерции, то есть, существенно более высокой, чем достижимые для клапанов скорости в реальных двигателях.

Электромагнитное или электрогидравлическое управление с микропроцессором, сверх этого, позволяет легко корректировать фазы газораспределения двигателя, добиваясь наивыгоднейшей характеристики распределения на каждом режиме.

Некоторые ранние модели двигателей («Харлей-Дэвидсон», «Пежо») имели впускные клапаны со слабыми пружинами, обеспечивавшими «автоматическое» открывание клапана после начала впуска под действием вакуума над поршнем.

Для коррекции фаз газораспределения в ГРМ с распредвалами используются разного рода дифференцирующие механизмы, их конструкция зависит от компоновки двигателя и ГРМ (которая во многом определяет компоновку всего ДВС).

Системы смазки и охлаждения

Работа ДВС сопровождается выделением значительного количества теплоты из-за высоких температур рабочих газов и существенных контактных напряжений в трущихся деталях. Поэтому для обеспечения работы двигателя детали, образующие пары трения, необходимо охлаждать и смазывать, а из зазоров между ними вымывать продукты механического износа. Смазывающее масло, помимо обеспечения масляного клина в зазорах, отводит значительное количество тепла от нагруженных трущихся поверхностей. Для охлаждения гильз цилиндров и элементов головки двигателя дополнительно используется система принудительного охлаждения, которая может быть жидкостной и воздушной.

Система смазки двигателя состоит из ёмкости с маслом, в таком качестве часто используется поддон картера — в системе с масляным картером или отдельный масляный бак — в системе с сухим картером. Из ёмкости масло засасывается масляным насосом, шестерёнчатым или, реже, коловратным, и по каналам поступает под давлением к пáрам трения. В системе с масляным картером гильзы цилиндров и некоторые второстепенные детали смазываются разбрызгиванием, системы с сухим картером предусматривают наличие специальных лубрикаторов, обеспечивающих смазку и охлаждение этих же деталей. В двигателях средней и большой мощности в систему смазки включаются элементы масляного охлаждения поршней в виде залитых в донышки змеевиков или специальных форсунок, обливающих днище поршня со стороны картера. Как правило, система смазки содержит один или несколько фильтров для очистки масла от продуктов износа пар трения и осмоления собственно масла. Фильтры используются либо с картонной шторкой с определённой степенью пористости, либо центробежные. Для охлаждения масла часто применяют воздушно-масляные радиаторы или водомасляные теплообменники.

Система воздушного охлаждения в простейшем случае представлена просто массивным оребрением цилиндров и головок. Набегающий поток воздуха снаружи и масло изнутри охлаждает двигатель. Если обеспечить теплоотвод набегающим потоком невозможно, в систему включается вентилятор с воздуховодами. Наряду с таким неоспоримыми достоинствами, как простота двигателя и относительно высокая живучесть в неблагоприятных условиях, а также относительно меньшая масса, воздушное охлаждение имеет серьёзные недостатки:

— большое количество воздуха, продувающего двигатель, несёт большое количество пыли, которая оседает на оребрении, особенно при подтекании масла, неизбежном в эксплуатации, в результате эффективность охлаждения резко снижается;

— невысокая теплоёмкость воздуха заставляет продувать через двигатель существенные его объёмы, для чего требуется существенный отбор мощности для работы вентилятора охлаждения;

— форма деталей двигателя плохо соответствует условиям хорошего обтекания воздушным потоком, в связи с чем добиться равномерного охлаждения элементов двигателя очень трудно; из-за разницы рабочих температур в отдельных элементах конструкции возможны большие термические напряжения, что снижает долговечность конструкции.

Поэтому воздушное охлаждение применяется в ДВС нечасто и, как правило, либо на дешевых конструкциях, либо в тех случаях, когда работа двигателя протекает в особых условиях. Так, на транспортёре переднего края ЗАЗ-967 используется двигатель с воздушным охлаждением МеМЗ-968, отсутствие водяной рубашки, рукавов и радиатора охлаждения повышает живучесть транспортёра в условиях поля боя.

Жидкостное охлаждение имеет ряд преимуществ и применяется на ДВС в большинстве случаев. Преимущества:

— высокая теплоёмкость жидкости способствует быстрому и эффективному отводу тепла из зон теплообразования;

— гораздо более равномерное теплораспределение в элементах конструкции двигателя, что существенно снижает тепловые напряжения;

— использование жидкостного охлаждения позволяет быстро и эффективно регулировать поток тепла в системе охлаждения и, стало быть, быстрее и гораздо равномернее, чем в случае с воздушным охлаждением, прогревать двигатель до температур рабочего диапазона;

— жидкостное охлаждение позволяет увеличивать как линейные размеры деталей двигателя, так и его теплонапряжённость за счёт высокой эффективности теплоотведения; поэтому все средние и крупные двигатели имеют жидкостное охлаждение, за исключением ПДП-двухтактных двигателей, у которых зона продувочных окон гильз охлаждается продувочным воздухом из соображений компоновки;

— специальная форма водо-воздушного или водо-водяного теплообменника позволяет максимально эффективно передавать тепло двигателя в окружающую среду.

Недостатки водяного охлаждения:

— повышение веса и сложность конструкции двигателя из-за наличия водяной рубашки;

— наличие теплообменника/радиатора;

— снижение надёжности агрегата из-за наличия стыков рукавов, шлангов и патрубков с возможными течами жидкости;

— обязательное прекращение работы двигателя при потере хотя бы части охлаждающей жидкости.

Современные системы жидкостного охлаждения используют в качестве теплоносителя специальные антифризы, замерзающие при низких температурах и содержащие пакеты присадок разного назначения — ингибиторы коррозии, моющие, смазывающие, антипенные, а иногда и герметизирующие места возможных течей. С целью повышения КПД двигателя системы герметизируют, при этом повышая рабочий диапазон температур к области кипения воды. Такие системы охлаждения работают при давлении выше атмосферного, их элементы рассчитаны на поддержание повышенного давления. Этиленгликолевые антифризы имеют высокий коэффициент объёмного расширения. Поэтому в таких системах часто применяются отдельные расширительные бачки или радиаторы с увеличенными верхними бачками.

С целью стабилизации рабочей температуры и для ускорения прогрева двигателя в системы охлаждения устанавливают термостаты. Для воздушного охлаждения термостат — сильфон, заполненный церезином или этиловым спиртом в сочетании с обоймой и системой рычагов, поворачивающих заслонки, обеспечивающие переключение и распределение воздушных потоков. В системах жидкостного охлаждения точно такой же термоэлемент осуществляет открытие клапана или переключение системы клапанов, направляющих жидкость либо в радиатор, либо в специальный канал, обеспечивающий циркуляцию нагреваемой жидкости и равномерное прогревание двигателя.

Радиатор или теплообменник охлаждения имеет вентилятор, продувающий через него поток атмосферного воздуха, с гидростатическим или электрическим приводом.

Баланс энергии

Двигатели Отто имеют термический КПД около 40 %, что с механическими потерями дает фактический КПД от 25 до 33%.

Современные двигатели могут иметь уменьшенный КПД для удовлетворения высоких экологических требований.

КПД ДВС можно повысить с помощью современных систем процессорного управления топливоподачей, зажиганием и фазами газораспределения. Степень сжатия современных двигателей, как правило, имеет значения, близкие к предельным (спорный момент, см. Цикл Миллера).

Факторы, влияющие на мощность двигателя

  Четырёхтактный цикл 1=верхняя мёртвая точка 2=нижняя мёртвая точка A: такт впуска B: такт сжатия C: такт рабочего хода D: такт выпуска

Мощность поршневого двигателя зависит от объёма цилиндров, объёмным КПД, потерь энергии — газодинамических, тепловых и механических, степени сжатия топливо-воздушной смеси, содержания кислорода в воздухе и частоты вращения. Мощность двигателя зависит также от пропускной способности тактов всасывания и выхлопа, а значит, от их проходных сечений, длины и конфигурации каналов, а также от диаметров клапанов, больше впускных. Это справедливо для любых поршневых двигателей. Максимальная мощность ДВС достигается при наивысшем наполнении цилиндров. Частота вращения коленвала в конечном счёте ограничена прочностью материалов и свойствами смазки. Клапана, поршни и коленчатые валы испытывают больши́е динамические нагрузки. На высоких оборотах двигателя могут происходить физические повреждения поршневых колец, механический контакт клапанов с поршнями, что приводит к разрушению двигателя. Поршневые кольца вертикально колеблются в канавках поршней. Эти колебания ухудшают уплотнение между поршнем и гильзой, что приводит к потере компрессии, падении мощности и КПД в целом. Если коленвал вращается слишком быстро, клапанные пружины не успевают достаточно быстро закрывать клапана. Это может привести к контакту поршней с клапанами и вызывать серьёзные повреждения, поэтому на скоростных спортивных двигателях используют привод клапанов без возвратных пружин. Так, «Даймлер-Бенц» серийно выпускает моторы с десмодромным управлением клапанами (с двойными кулачками, один открывает клапан, другой прижимает его к седлу), БМВ использует электромагнитное управление клапанами. На высоких скоростях ухудшаются условия работы смазки во всех парах трения.

Совокупно с потерями на преодоление инерции возвратно-поступательно движущихся элементов ЦПГ, это ограничивает среднюю скорость поршней большинства серийных двигателей 10 м/с.

Применение

Четырёхтактные двигатели могут быть как бензиновыми, так и дизельными. Они находят самое широкое применение в качестве первичных двигателей на стационарных и транспортных энергоустановках.

Как правило, четырёхтактные двигатели используются в тех случаях, когда имеется возможность более или менее широко варьировать соотношение оборотов вала со снимаемой мощностью и крутящим моментом либо тогда, когда это соотношение не играет роли при работе машины. Например, двигатель, нагруженный электрогенератором, в принципе может иметь любую рабочую характеристику и согласуется с нагрузкой только по рабочему диапазону оборотов, которые в принципе могут быть любыми, приемлемыми для генератора. Использование промежуточных передач вообще делает четырёхтактный двигатель более адаптированным к нагрузкам в самых широких пределах. Они же являются более предпочтительными в тех случаях, когда установка длительное время работает вне установившегося режима — благодаря более совершенной газодинамике их работа в переходных режимах и режимах со снятием частичной мощности оказывается более устойчивой.

При работе на вал в заданном диапазоне оборотов, особенно тихоходный (гребной вал теплохода), предпочтительнее использование двухтактных двигателей, как имеющих более выгодные массово-мощностные характеристики на низких оборотах.

Примечания

Ссылки

  • Рикардо Г.Р. Быстроходные двигатели внутреннего сгорания. — М.: ГНТИ Машиностроительной литературы, 1960.

ru-wiki.org

Такт работы двигателя

В нижней мертвой точке (НМТ) у поршня происходит "перекладка" т. е. изменение опоры поршня на цилиндр с левой стороны юбки на правую.

Чем больше зазор между юбкой поршня и цилиндром, тем интенсивнее перекладка, а значит шумность двигателя, дальнейший износ юбки поршня и нижней части цилиндра, по которой "бьет" правая сторона юбки поршня.

После прохода поршнем нижней мертвой точки начинается второй такт работы двигателя - сжатие топливо-воздушной смеси.

Работа двигателя во время такта впуск

1.Такт сжатия

Непосредственно сжатие (повышение давления в цилиндре) начинается не сразу после начала движения поршня вверх. Дело в том, что топливо-воздушная смесь при открытом впускном клапане некоторое время продолжает поступать в цилиндр, несмотря на начало повышения давления. Поэтому закрытие впускного клапана должно быть согласовано с характером течения смеси у его тарелки.

С точки зрения наилучшего наполнения цилиндра (и, соответственно, наибольшей мощности) в момент закрытия впускного клапана смесь у клапана должна остановиться, т. е. в этот момент через клапан нет ни прямого - в цилиндр, ни обратного - из цилиндра, течения. Здесь на процесс очень сильно влияет конструкция впускной системы, частота вращения, положение дроссельной заслонки. В общем случае, чем больше частота вращения и открытие дроссельной заслонки, тем больше при неизменной длине впускного канала должен запаздывать с закрытием впускной клапан.

На практике, как правило, выбирают компромиссный вариант, однако существуют конструкции с переменными фазами газораспределения (при которых изменяется запаздывание закрытия впускного клапана) и с переменной длиной каналов впускной системы, улучшающих наполнение цилиндров и параметры двигателя в широком диапазоне режимов. Компромиссные решения обычно приводят к ухудшению параметров двигателя за счет обратного выброса смеси на низких частотах вращения и "недозарядки" цилиндра (т. е. снижения количества поступающей смеси относительно максимально возможного) на высоких оборотах. Меньшее по сравнению с традиционными конструкциями запаздывание закрытия клапана имеют двигатели с многоклапанными головками (с тремя или четырьмя клапанами на цилиндр).При движении поршня вверх при закрытых клапанах происходит сжатие топливо-воздушной смеси. При этом давление в цилиндре зависит от утечек смеси через поршневые кольца и клапаны. Их износ или повреждения, а также царапины и риски на поверхности цилиндра также увеличивают утечки смеси через поршневые кольца. Поршневые кольца под действием трения и давления в цилиндре прижимаются к нижним поверхностям канавок, а уплотнение полости цилиндра над поршнем достигается с одной стороны по стыку колец с поверхностью цилиндров, а с другой - по нижним торцевым поверхностям колец и канавок.

Перекладка поршня

2.Перекладка поршня в нижней мертвой точке.

Под действием сил давления и трения торцевые поверхности колец и канавок изнашиваются, а торцевой зазор в канавках увеличивается. При большом зазоре кольца вблизи мертвых точек (ВМТ и НМТ) передвигаются от одного торца канавки к другому. Возникает так называемый "насосный" эффект, характерный для изношенных двигателей, из-за которого значительно увеличивается расход масла. Возрастает также прорыв газов в картер из камеры сгорания. Кроме того, при большом торцевом зазоре кольца достаточно быстро разбивают края канавок, вследствие чего "насосный" эффект и прорыв газов быстро прогрессируют.Когда поршень находится вблизи ВМТ, не доходя до нее обычно 5-30° по углу поворота коленчатого вала (ПКВ), происходит искровой разряд на свече зажигания. Этот угол, называемый углом опережения зажигания, при работе двигателя обязательно регулируется. Дело в том, что процесс горения смеси происходит с некоторым запаздыванием с момента искрового разряда на величину так называемого времени формирования фронта пламени. В двигателях с искровым зажиганием это величина условная и равна времени с момента искрового разряда до начала "видимого" сгорания (начала повышения давления свыше давления в цилиндре без сгорания). В дизелях процесс видимого сгорания также происходит с задержкой. При этом время задержки воспламенения в дизелях имеет физический смысл как время, необходимое для нагрева и испарения топпива, впрыскиваемого в цилиндр.Поскольку горение смеси - химическая реакция, времена формирования фронта пламени (задержки воспламенения) и горения зависят от давления и температуры смеси, а также от интенсивности ее перемешивания (турбулентности): чем они больше, тем быстрее идет процесс. Открытие дроссельной заслонки приводит к увеличению давления и плотности смеси во впускном коллекторе, увеличиваются давление и температура в цилиндре на такте всасывания и, соответственно, в конце такта сжатия, улучшается перемешивание смеси. Эти факторы определяют уменьшение времени горения и формирования фронта пламени. При увеличении частоты вращения эти времена уменьшаются не так быстро, как время цикла (время, за которое коленчатый вал делает 2 оборота). Поэтому при неизменном моменте зажигания процесс сгорания с увеличением частоты сдвигается далеко в область рабочего хода и "растягивается" по циклу, что приводит к ухудшению параметров двигателя. Чтобы этого не происходило, угол опережения зажигания приходится увеличивать на 25-30° с ростом частоты вращения. Зависимость угла опережения от нагрузки более слабая - при открытии дроссельной заслонки обычно требуется уменьшать угол опережения зажигания в среднем на 8.Непосредственно перед воспламенением смеси давление в цилиндре достаточно высоко - свыше 1,0-И ,2 МПа. Это давление несколько ниже максимального давления, которое было бы в цилиндре при проверке компрессии, т. к. воспламенение начинается до прихода поршня в ВМТ. Максимальное давление в цилиндре (без сгорания) зависит от степени сжатия б = Vh/VKC, где Vh - рабочий объем цилиндра (Vh = Fn.S), Fn - площадь поршня; S - ход поршня; VKc - объем камеры сгорания.Степень сжатия - величина чисто геометрическая.  По этой весьма приближенной зависимости давление измеряемое компрессометром, численно должно быть существенно выше степени сжатия. Однако в действительности из-за задержки закрытия впускного клапана, возможного некоторого разрежения в цилиндре и начале сжатия, потерь тепла и т. д. максимальное давление (компрессия) существенно ниже - порядка 1,1-1 ,5 МПа.При приближении поршня к ВМТ начинают "работать" так называемые вытеснители. Вытеснители образуются поверхностями днища поршня и головки, которые при положении поршня в ВМТ подходят друг к другу наиболее близко обычно зазор между поршнем и головкой в таких местах 0,5-5-1,0 мм. При подходе поршня к ВМТ смесь, расположенная между вытеснительными поверхностями, как бы "вытесняется" в зону камеры сгорания, образуя потоки определенного направления.Чем ближе подходят друг к другу поршень и головка, тем сильнее эффект вытеснения, т. е. больше скорость вытеснения потока. Вытеснители выполняют весьма важную задачу - турбупизируют (т. е. интенсивно перемешивают) смесь в момент воспламенения, а это повышает скорость и полноту сгорания. Турбулизация смеси препятствует также распространению детонации.При движении поршня к ВМТ во время такта работы двигателя давление в цилиндре быстро растет. Увеличивается и давление в зазоре между верхней частью боковой поверхности поршня (огневым поясом) и цилиндром. Рост давления при сгорании приводит к существенному увеличению усилия прижатия компрессионных колец к поверхности цилиндра и нижним поверхностям канавок поршня. Наибольшие усилия испытывает верхнее кольцо, поскольку давление в канавке верхнего кольца значительно выше, чем среднего. Под действием силы давления газов и силы трения кольца о цилиндр верхнее кольцо разворачивается (закручивается) в канавке. После непродолжительной работы кольцо приобретает характерный профиль поперечного сечения с несимметричной бочкообразностью наружной поверхности и небольшой вогнутостью на нижнем торце, а нижняя поверхность канавки становится конической со скругленным краем. От формы наружной поверхности кольца сильно зависят износ цилиндра и расход масла. В частности, при сжатии в цилиндре закручивание кольца может привести к его маслосъемному действию при движении поршня вверх, т. е. к вытеснению части масла со стенок цилиндра в камеру сгорания. В этом случае скребковая верхняя кромка кольца уменьшает и без того тонкую масляную пленку между кольцом и цилиндром, в результате чего возможно образование прижогов на кольце и задиров на поверхности цилиндра.При движении поршня вверх по мере роста давления толщина масляной пленки уменьшается, а вблизи ВМТ становится очень малой. Чтобы недостаток смазки не приводил к повышенному износу, очень важное значение имеют материалы трущихся деталей, состояние их поверхностей, а также упругость колец.Стойкую к износу пару трения "кольцо-цилиндр" образуют обычно твердые гладкие покрытия колец и, как правило, более мягкий материал цилиндра, на поверхности которого создается шероховатость в виде наклонных рисок определенной глубины. Чем глубже риски, тем больше масла в них находится, тем лучше смазка колец и цилиндра.При подходе поршня к ВМТ на поршень действует сила давления газов. Поршень опирается на поршневой палец и чем больше сила давления поршня на палец, тем выше трение в отверстии бобышек поршня и тем труднее поршню повернуться на неподвижном пальце. На практике это выглядит как поворот поршня вместе с шатуном вблизи ВМТ, т. е. как уже упомянутая выше "перекладка", но с гораздо большими усилиями. Для уменьшения этих усилий и снижения возможного стука поршня при повышенном зазоре в цилиндре ось пальца на поршне обычно смещают на 0,05 мм влево, если смотреть на поршень спереди. Тогда, как это видно на схеме, момент сил, поворачивающих поршень вблизи ВМТ, компенсируется моментом от сил давления газов на поршень.Силы давления газов и силы инерции, действующие на поршень, передаются через поршневой палец и шатун на шейку коленчатого вала.Вблизи ВМТ суммарные силы от давления газов и инерции вызывают большие напряжения в шатуне и бобышках поршня. В эксплуатации представляют большую опасность случаи значительного (во много раз) увеличения давления в ВМТ. Обычно это связано с попаданием в камеру сгорания различных жидкостей, например, воды через входной патрубок воздушного фильтра, топлива, масла или охлаждающей жидкости при возникновении соответствующих неисправностей. В таких случаях происходит деформация стержня шатуна - так называемая потеря устойчивости, а также поломки шатуна и поршня, опасные серьезными повреждениями в двигателе. Далее поговорим о такте впуска двигателя.

Рабочий цикл двигателя состоит из четырех тактов: Такт впуска, такт сжатия, такт расширения, такт выпуска. 

www.autoezda.com

Такт работы двигателя

В нижней мертвой точке (НМТ) у поршня происходит "перекладка" т. е. изменение опоры поршня на цилиндр с левой стороны юбки на правую.

Чем больше зазор между юбкой поршня и цилиндром, тем интенсивнее перекладка, а значит шумность двигателя, дальнейший износ юбки поршня и нижней части цилиндра, по которой "бьет" правая сторона юбки поршня.

После прохода поршнем нижней мертвой точки начинается второй такт работы двигателя - сжатие топливо-воздушной смеси.

Работа двигателя во время такта впуск

1.Такт сжатия

Непосредственно сжатие (повышение давления в цилиндре) начинается не сразу после начала движения поршня вверх. Дело в том, что топливо-воздушная смесь при открытом впускном клапане некоторое время продолжает поступать в цилиндр, несмотря на начало повышения давления. Поэтому закрытие впускного клапана должно быть согласовано с характером течения смеси у его тарелки.

С точки зрения наилучшего наполнения цилиндра (и, соответственно, наибольшей мощности) в момент закрытия впускного клапана смесь у клапана должна остановиться, т. е. в этот момент через клапан нет ни прямого - в цилиндр, ни обратного - из цилиндра, течения. Здесь на процесс очень сильно влияет конструкция впускной системы, частота вращения, положение дроссельной заслонки. В общем случае, чем больше частота вращения и открытие дроссельной заслонки, тем больше при неизменной длине впускного канала должен запаздывать с закрытием впускной клапан.

На практике, как правило, выбирают компромиссный вариант, однако существуют конструкции с переменными фазами газораспределения (при которых изменяется запаздывание закрытия впускного клапана) и с переменной длиной каналов впускной системы, улучшающих наполнение цилиндров и параметры двигателя в широком диапазоне режимов. Компромиссные решения обычно приводят к ухудшению параметров двигателя за счет обратного выброса смеси на низких частотах вращения и "недозарядки" цилиндра (т. е. снижения количества поступающей смеси относительно максимально возможного) на высоких оборотах. Меньшее по сравнению с традиционными конструкциями запаздывание закрытия клапана имеют двигатели с многоклапанными головками (с тремя или четырьмя клапанами на цилиндр).При движении поршня вверх при закрытых клапанах происходит сжатие топливо-воздушной смеси. При этом давление в цилиндре зависит от утечек смеси через поршневые кольца и клапаны. Их износ или повреждения, а также царапины и риски на поверхности цилиндра также увеличивают утечки смеси через поршневые кольца. Поршневые кольца под действием трения и давления в цилиндре прижимаются к нижним поверхностям канавок, а уплотнение полости цилиндра над поршнем достигается с одной стороны по стыку колец с поверхностью цилиндров, а с другой - по нижним торцевым поверхностям колец и канавок.

Перекладка поршня

2.Перекладка поршня в нижней мертвой точке.

Под действием сил давления и трения торцевые поверхности колец и канавок изнашиваются, а торцевой зазор в канавках увеличивается. При большом зазоре кольца вблизи мертвых точек (ВМТ и НМТ) передвигаются от одного торца канавки к другому. Возникает так называемый "насосный" эффект, характерный для изношенных двигателей, из-за которого значительно увеличивается расход масла. Возрастает также прорыв газов в картер из камеры сгорания. Кроме того, при большом торцевом зазоре кольца достаточно быстро разбивают края канавок, вследствие чего "насосный" эффект и прорыв газов быстро прогрессируют.Когда поршень находится вблизи ВМТ, не доходя до нее обычно 5-30° по углу поворота коленчатого вала (ПКВ), происходит искровой разряд на свече зажигания. Этот угол, называемый углом опережения зажигания, при работе двигателя обязательно регулируется. Дело в том, что процесс горения смеси происходит с некоторым запаздыванием с момента искрового разряда на величину так называемого времени формирования фронта пламени. В двигателях с искровым зажиганием это величина условная и равна времени с момента искрового разряда до начала "видимого" сгорания (начала повышения давления свыше давления в цилиндре без сгорания). В дизелях процесс видимого сгорания также происходит с задержкой. При этом время задержки воспламенения в дизелях имеет физический смысл как время, необходимое для нагрева и испарения топпива, впрыскиваемого в цилиндр.Поскольку горение смеси - химическая реакция, времена формирования фронта пламени (задержки воспламенения) и горения зависят от давления и температуры смеси, а также от интенсивности ее перемешивания (турбулентности): чем они больше, тем быстрее идет процесс. Открытие дроссельной заслонки приводит к увеличению давления и плотности смеси во впускном коллекторе, увеличиваются давление и температура в цилиндре на такте всасывания и, соответственно, в конце такта сжатия, улучшается перемешивание смеси. Эти факторы определяют уменьшение времени горения и формирования фронта пламени. При увеличении частоты вращения эти времена уменьшаются не так быстро, как время цикла (время, за которое коленчатый вал делает 2 оборота). Поэтому при неизменном моменте зажигания процесс сгорания с увеличением частоты сдвигается далеко в область рабочего хода и "растягивается" по циклу, что приводит к ухудшению параметров двигателя. Чтобы этого не происходило, угол опережения зажигания приходится увеличивать на 25-30° с ростом частоты вращения. Зависимость угла опережения от нагрузки более слабая - при открытии дроссельной заслонки обычно требуется уменьшать угол опережения зажигания в среднем на 8.Непосредственно перед воспламенением смеси давление в цилиндре достаточно высоко - свыше 1,0-И ,2 МПа. Это давление несколько ниже максимального давления, которое было бы в цилиндре при проверке компрессии, т. к. воспламенение начинается до прихода поршня в ВМТ. Максимальное давление в цилиндре (без сгорания) зависит от степени сжатия б = Vh/VKC, где Vh - рабочий объем цилиндра (Vh = Fn.S), Fn - площадь поршня; S - ход поршня; VKc - объем камеры сгорания.Степень сжатия - величина чисто геометрическая.  По этой весьма приближенной зависимости давление измеряемое компрессометром, численно должно быть существенно выше степени сжатия. Однако в действительности из-за задержки закрытия впускного клапана, возможного некоторого разрежения в цилиндре и начале сжатия, потерь тепла и т. д. максимальное давление (компрессия) существенно ниже - порядка 1,1-1 ,5 МПа.При приближении поршня к ВМТ начинают "работать" так называемые вытеснители. Вытеснители образуются поверхностями днища поршня и головки, которые при положении поршня в ВМТ подходят друг к другу наиболее близко обычно зазор между поршнем и головкой в таких местах 0,5-5-1,0 мм. При подходе поршня к ВМТ смесь, расположенная между вытеснительными поверхностями, как бы "вытесняется" в зону камеры сгорания, образуя потоки определенного направления.Чем ближе подходят друг к другу поршень и головка, тем сильнее эффект вытеснения, т. е. больше скорость вытеснения потока. Вытеснители выполняют весьма важную задачу - турбупизируют (т. е. интенсивно перемешивают) смесь в момент воспламенения, а это повышает скорость и полноту сгорания. Турбулизация смеси препятствует также распространению детонации.При движении поршня к ВМТ во время такта работы двигателя давление в цилиндре быстро растет. Увеличивается и давление в зазоре между верхней частью боковой поверхности поршня (огневым поясом) и цилиндром. Рост давления при сгорании приводит к существенному увеличению усилия прижатия компрессионных колец к поверхности цилиндра и нижним поверхностям канавок поршня. Наибольшие усилия испытывает верхнее кольцо, поскольку давление в канавке верхнего кольца значительно выше, чем среднего. Под действием силы давления газов и силы трения кольца о цилиндр верхнее кольцо разворачивается (закручивается) в канавке. После непродолжительной работы кольцо приобретает характерный профиль поперечного сечения с несимметричной бочкообразностью наружной поверхности и небольшой вогнутостью на нижнем торце, а нижняя поверхность канавки становится конической со скругленным краем. От формы наружной поверхности кольца сильно зависят износ цилиндра и расход масла. В частности, при сжатии в цилиндре закручивание кольца может привести к его маслосъемному действию при движении поршня вверх, т. е. к вытеснению части масла со стенок цилиндра в камеру сгорания. В этом случае скребковая верхняя кромка кольца уменьшает и без того тонкую масляную пленку между кольцом и цилиндром, в результате чего возможно образование прижогов на кольце и задиров на поверхности цилиндра.При движении поршня вверх по мере роста давления толщина масляной пленки уменьшается, а вблизи ВМТ становится очень малой. Чтобы недостаток смазки не приводил к повышенному износу, очень важное значение имеют материалы трущихся деталей, состояние их поверхностей, а также упругость колец.Стойкую к износу пару трения "кольцо-цилиндр" образуют обычно твердые гладкие покрытия колец и, как правило, более мягкий материал цилиндра, на поверхности которого создается шероховатость в виде наклонных рисок определенной глубины. Чем глубже риски, тем больше масла в них находится, тем лучше смазка колец и цилиндра.При подходе поршня к ВМТ на поршень действует сила давления газов. Поршень опирается на поршневой палец и чем больше сила давления поршня на палец, тем выше трение в отверстии бобышек поршня и тем труднее поршню повернуться на неподвижном пальце. На практике это выглядит как поворот поршня вместе с шатуном вблизи ВМТ, т. е. как уже упомянутая выше "перекладка", но с гораздо большими усилиями. Для уменьшения этих усилий и снижения возможного стука поршня при повышенном зазоре в цилиндре ось пальца на поршне обычно смещают на 0,05 мм влево, если смотреть на поршень спереди. Тогда, как это видно на схеме, момент сил, поворачивающих поршень вблизи ВМТ, компенсируется моментом от сил давления газов на поршень.Силы давления газов и силы инерции, действующие на поршень, передаются через поршневой палец и шатун на шейку коленчатого вала.Вблизи ВМТ суммарные силы от давления газов и инерции вызывают большие напряжения в шатуне и бобышках поршня. В эксплуатации представляют большую опасность случаи значительного (во много раз) увеличения давления в ВМТ. Обычно это связано с попаданием в камеру сгорания различных жидкостей, например, воды через входной патрубок воздушного фильтра, топлива, масла или охлаждающей жидкости при возникновении соответствующих неисправностей. В таких случаях происходит деформация стержня шатуна - так называемая потеря устойчивости, а также поломки шатуна и поршня, опасные серьезными повреждениями в двигателе. Далее поговорим о такте впуска двигателя.

Рабочий цикл двигателя состоит из четырех тактов: Такт впуска, такт сжатия, такт расширения, такт выпуска. 

www.autoezda.com

Такт работы двигателя

В нижней мертвой точке (НМТ) у поршня происходит "перекладка" т. е. изменение опоры поршня на цилиндр с левой стороны юбки на правую.

Чем больше зазор между юбкой поршня и цилиндром, тем интенсивнее перекладка, а значит шумность двигателя, дальнейший износ юбки поршня и нижней части цилиндра, по которой "бьет" правая сторона юбки поршня.

После прохода поршнем нижней мертвой точки начинается второй такт работы двигателя - сжатие топливо-воздушной смеси.

Работа двигателя во время такта впуск

1.Такт сжатия

Непосредственно сжатие (повышение давления в цилиндре) начинается не сразу после начала движения поршня вверх. Дело в том, что топливо-воздушная смесь при открытом впускном клапане некоторое время продолжает поступать в цилиндр, несмотря на начало повышения давления. Поэтому закрытие впускного клапана должно быть согласовано с характером течения смеси у его тарелки.

С точки зрения наилучшего наполнения цилиндра (и, соответственно, наибольшей мощности) в момент закрытия впускного клапана смесь у клапана должна остановиться, т. е. в этот момент через клапан нет ни прямого - в цилиндр, ни обратного - из цилиндра, течения. Здесь на процесс очень сильно влияет конструкция впускной системы, частота вращения, положение дроссельной заслонки. В общем случае, чем больше частота вращения и открытие дроссельной заслонки, тем больше при неизменной длине впускного канала должен запаздывать с закрытием впускной клапан.

На практике, как правило, выбирают компромиссный вариант, однако существуют конструкции с переменными фазами газораспределения (при которых изменяется запаздывание закрытия впускного клапана) и с переменной длиной каналов впускной системы, улучшающих наполнение цилиндров и параметры двигателя в широком диапазоне режимов. Компромиссные решения обычно приводят к ухудшению параметров двигателя за счет обратного выброса смеси на низких частотах вращения и "недозарядки" цилиндра (т. е. снижения количества поступающей смеси относительно максимально возможного) на высоких оборотах. Меньшее по сравнению с традиционными конструкциями запаздывание закрытия клапана имеют двигатели с многоклапанными головками (с тремя или четырьмя клапанами на цилиндр).При движении поршня вверх при закрытых клапанах происходит сжатие топливо-воздушной смеси. При этом давление в цилиндре зависит от утечек смеси через поршневые кольца и клапаны. Их износ или повреждения, а также царапины и риски на поверхности цилиндра также увеличивают утечки смеси через поршневые кольца. Поршневые кольца под действием трения и давления в цилиндре прижимаются к нижним поверхностям канавок, а уплотнение полости цилиндра над поршнем достигается с одной стороны по стыку колец с поверхностью цилиндров, а с другой - по нижним торцевым поверхностям колец и канавок.

Перекладка поршня

2.Перекладка поршня в нижней мертвой точке.

Под действием сил давления и трения торцевые поверхности колец и канавок изнашиваются, а торцевой зазор в канавках увеличивается. При большом зазоре кольца вблизи мертвых точек (ВМТ и НМТ) передвигаются от одного торца канавки к другому. Возникает так называемый "насосный" эффект, характерный для изношенных двигателей, из-за которого значительно увеличивается расход масла. Возрастает также прорыв газов в картер из камеры сгорания. Кроме того, при большом торцевом зазоре кольца достаточно быстро разбивают края канавок, вследствие чего "насосный" эффект и прорыв газов быстро прогрессируют.Когда поршень находится вблизи ВМТ, не доходя до нее обычно 5-30° по углу поворота коленчатого вала (ПКВ), происходит искровой разряд на свече зажигания. Этот угол, называемый углом опережения зажигания, при работе двигателя обязательно регулируется. Дело в том, что процесс горения смеси происходит с некоторым запаздыванием с момента искрового разряда на величину так называемого времени формирования фронта пламени. В двигателях с искровым зажиганием это величина условная и равна времени с момента искрового разряда до начала "видимого" сгорания (начала повышения давления свыше давления в цилиндре без сгорания). В дизелях процесс видимого сгорания также происходит с задержкой. При этом время задержки воспламенения в дизелях имеет физический смысл как время, необходимое для нагрева и испарения топпива, впрыскиваемого в цилиндр.Поскольку горение смеси - химическая реакция, времена формирования фронта пламени (задержки воспламенения) и горения зависят от давления и температуры смеси, а также от интенсивности ее перемешивания (турбулентности): чем они больше, тем быстрее идет процесс. Открытие дроссельной заслонки приводит к увеличению давления и плотности смеси во впускном коллекторе, увеличиваются давление и температура в цилиндре на такте всасывания и, соответственно, в конце такта сжатия, улучшается перемешивание смеси. Эти факторы определяют уменьшение времени горения и формирования фронта пламени. При увеличении частоты вращения эти времена уменьшаются не так быстро, как время цикла (время, за которое коленчатый вал делает 2 оборота). Поэтому при неизменном моменте зажигания процесс сгорания с увеличением частоты сдвигается далеко в область рабочего хода и "растягивается" по циклу, что приводит к ухудшению параметров двигателя. Чтобы этого не происходило, угол опережения зажигания приходится увеличивать на 25-30° с ростом частоты вращения. Зависимость угла опережения от нагрузки более слабая - при открытии дроссельной заслонки обычно требуется уменьшать угол опережения зажигания в среднем на 8.Непосредственно перед воспламенением смеси давление в цилиндре достаточно высоко - свыше 1,0-И ,2 МПа. Это давление несколько ниже максимального давления, которое было бы в цилиндре при проверке компрессии, т. к. воспламенение начинается до прихода поршня в ВМТ. Максимальное давление в цилиндре (без сгорания) зависит от степени сжатия б = Vh/VKC, где Vh - рабочий объем цилиндра (Vh = Fn.S), Fn - площадь поршня; S - ход поршня; VKc - объем камеры сгорания.Степень сжатия - величина чисто геометрическая.  По этой весьма приближенной зависимости давление измеряемое компрессометром, численно должно быть существенно выше степени сжатия. Однако в действительности из-за задержки закрытия впускного клапана, возможного некоторого разрежения в цилиндре и начале сжатия, потерь тепла и т. д. максимальное давление (компрессия) существенно ниже - порядка 1,1-1 ,5 МПа.При приближении поршня к ВМТ начинают "работать" так называемые вытеснители. Вытеснители образуются поверхностями днища поршня и головки, которые при положении поршня в ВМТ подходят друг к другу наиболее близко обычно зазор между поршнем и головкой в таких местах 0,5-5-1,0 мм. При подходе поршня к ВМТ смесь, расположенная между вытеснительными поверхностями, как бы "вытесняется" в зону камеры сгорания, образуя потоки определенного направления.Чем ближе подходят друг к другу поршень и головка, тем сильнее эффект вытеснения, т. е. больше скорость вытеснения потока. Вытеснители выполняют весьма важную задачу - турбупизируют (т. е. интенсивно перемешивают) смесь в момент воспламенения, а это повышает скорость и полноту сгорания. Турбулизация смеси препятствует также распространению детонации.При движении поршня к ВМТ во время такта работы двигателя давление в цилиндре быстро растет. Увеличивается и давление в зазоре между верхней частью боковой поверхности поршня (огневым поясом) и цилиндром. Рост давления при сгорании приводит к существенному увеличению усилия прижатия компрессионных колец к поверхности цилиндра и нижним поверхностям канавок поршня. Наибольшие усилия испытывает верхнее кольцо, поскольку давление в канавке верхнего кольца значительно выше, чем среднего. Под действием силы давления газов и силы трения кольца о цилиндр верхнее кольцо разворачивается (закручивается) в канавке. После непродолжительной работы кольцо приобретает характерный профиль поперечного сечения с несимметричной бочкообразностью наружной поверхности и небольшой вогнутостью на нижнем торце, а нижняя поверхность канавки становится конической со скругленным краем. От формы наружной поверхности кольца сильно зависят износ цилиндра и расход масла. В частности, при сжатии в цилиндре закручивание кольца может привести к его маслосъемному действию при движении поршня вверх, т. е. к вытеснению части масла со стенок цилиндра в камеру сгорания. В этом случае скребковая верхняя кромка кольца уменьшает и без того тонкую масляную пленку между кольцом и цилиндром, в результате чего возможно образование прижогов на кольце и задиров на поверхности цилиндра.При движении поршня вверх по мере роста давления толщина масляной пленки уменьшается, а вблизи ВМТ становится очень малой. Чтобы недостаток смазки не приводил к повышенному износу, очень важное значение имеют материалы трущихся деталей, состояние их поверхностей, а также упругость колец.Стойкую к износу пару трения "кольцо-цилиндр" образуют обычно твердые гладкие покрытия колец и, как правило, более мягкий материал цилиндра, на поверхности которого создается шероховатость в виде наклонных рисок определенной глубины. Чем глубже риски, тем больше масла в них находится, тем лучше смазка колец и цилиндра.При подходе поршня к ВМТ на поршень действует сила давления газов. Поршень опирается на поршневой палец и чем больше сила давления поршня на палец, тем выше трение в отверстии бобышек поршня и тем труднее поршню повернуться на неподвижном пальце. На практике это выглядит как поворот поршня вместе с шатуном вблизи ВМТ, т. е. как уже упомянутая выше "перекладка", но с гораздо большими усилиями. Для уменьшения этих усилий и снижения возможного стука поршня при повышенном зазоре в цилиндре ось пальца на поршне обычно смещают на 0,05 мм влево, если смотреть на поршень спереди. Тогда, как это видно на схеме, момент сил, поворачивающих поршень вблизи ВМТ, компенсируется моментом от сил давления газов на поршень.Силы давления газов и силы инерции, действующие на поршень, передаются через поршневой палец и шатун на шейку коленчатого вала.Вблизи ВМТ суммарные силы от давления газов и инерции вызывают большие напряжения в шатуне и бобышках поршня. В эксплуатации представляют большую опасность случаи значительного (во много раз) увеличения давления в ВМТ. Обычно это связано с попаданием в камеру сгорания различных жидкостей, например, воды через входной патрубок воздушного фильтра, топлива, масла или охлаждающей жидкости при возникновении соответствующих неисправностей. В таких случаях происходит деформация стержня шатуна - так называемая потеря устойчивости, а также поломки шатуна и поршня, опасные серьезными повреждениями в двигателе. Далее поговорим о такте впуска двигателя.

Рабочий цикл двигателя состоит из четырех тактов: Такт впуска, такт сжатия, такт расширения, такт выпуска. 

www.autoezda.com


© 2007—2018
423800, Набережные Челны , база Партнер Плюс, тел. 8 800 100-58-94 (звонок бесплатный)