Камаз 44108 тягач В наличии!
Тягач КАМАЗ 44108-6030-24
евро3, новый, дв.КАМАЗ 740.55-300л.с., КПП ZF9, ТНВД ЯЗДА, 6х6, нагрузка на седло 12т, бак 210+350л, МКБ, МОБ
 
карта сервера
«ООО Старт Импэкс» продажа грузовых автомобилей камаз по выгодным ценам
+7 (8552) 31-97-24
+7 (904) 6654712
8 800 1005894
звонок бесплатный

Наши сотрудники:
Виталий
+7 (8552) 31-97-24

[email protected]

 

Екатерина - специалист по продаже а/м КАМАЗ
+7 (904) 6654712

[email protected]

 

Фото техники

20 тонный, 20 кубовый самосвал КАМАЗ 6520-029 в наличии
15-тонный строительный самосвал КАМАЗ 65115 на стоянке. Техника в наличии
Традиционно КАМАЗ побеждает в дакаре

тел.8 800 100 58 94

Техника в наличии

тягач КАМАЗ-44108
Тягач КАМАЗ 44108-6030-24
2014г, 6х6, Евро3, дв.КАМАЗ 300 л.с., КПП ZF9, бак 210л+350л, МКБ,МОБ,рестайлинг.
цена 2 220 000 руб.,
 
КАМАЗ-4308
КАМАЗ 4308-6063-28(R4)
4х2,дв. Cummins ISB6.7e4 245л.с. (Е-4),КПП ZF6S1000, V кузова=39,7куб.м., спальное место, бак 210л, шк-пет,МКБ, ТНВД BOSCH, система нейтрализ. ОГ(AdBlue), тент, каркас, рестайлинг, внутр. размеры платформы 6112х2470х730 мм
цена 1 950 000 руб.,
КАМАЗ-6520
Самосвал КАМАЗ 6520-057
2014г, 6х4,Евро3, дв.КАМАЗ 320 л.с., КПП ZF16, ТНВД ЯЗДА, бак 350л, г/п 20 тонн, V кузова =20 куб.м.,МКБ,МОБ, со спальным местом.
цена 2 700 000 руб.,
 
КАМАЗ-6522
Самосвал 6522-027
2014, 6х6, дв.КАМАЗ 740.51,320 л.с., КПП ZF16,бак 350л, г/п 19 тонн,V кузова 12куб.м.,МКБ,МОБ,задняя разгрузка,обогрев платформы.
цена 3 190 000 руб.,

СУПЕР ЦЕНА

на АВТОМОБИЛИ КАМАЗ
43118-010-10 (дв.740.30-260 л.с.) 2 220 000
43118-6033-24 (дв.740.55-300 л.с.) 2 300 000
65117-029 (дв.740.30-260 л.с.) 2 200 000
65117-6010-62 (дв.740.62-280 л.с.) 2 350 000
44108 (дв.740.30-260 л.с.) 2 160 000
44108-6030-24 (дв.740.55,рест.) 2 200 000
65116-010-62 (дв.740.62-280 л.с.) 1 880 000
6460 (дв.740.50-360 л.с.) 2 180 000
45143-011-15 (дв.740.13-260л.с) 2 180 000
65115 (дв.740.62-280 л.с.,рест.) 2 190 000
65115 (дв.740.62-280 л.с.,3-х стор) 2 295 000
6520 (дв.740.51-320 л.с.) 2 610 000
6520 (дв.740.51-320 л.с.,сп.место) 2 700 000
6522-027 (дв.740.51-320 л.с.,6х6) 3 190 000


Перегон грузовых автомобилей
Перегон грузовых автомобилей
подробнее про услугу перегона можно прочесть здесь.


Самосвал Форд Нужны самосвалы? Обратите внимание на Ford-65513-02.

КАМАЗы в лизинг

ООО «Старт Импэкс» имеет возможность поставки грузовой автотехники КАМАЗ, а так же спецтехники на шасси КАМАЗ в лизинг. Продажа грузовой техники по лизинговым схемам имеет определенные выгоды для покупателя грузовика. Рассрочка платежа, а так же то обстоятельство, что грузовики до полной выплаты лизинговых платежей находятся на балансе лизингодателя, и соответственно покупатель автомобиля не платит налогов на имущество. Мы готовы предложить любые модели бортовых автомобилей, тягачей и самосвалов по самым выгодным лизинговым схемам.

Контактная информация.

г. Набережные Челны, Промкомзона-2, Автодорога №3, база «Партнер плюс».

тел/факс (8552) 388373.
Схема проезда



Механические свойства и методы их определения (стр. 1 из 3). Способы определения основных свойств металлов


Способы определения свойств металлов — МегаЛекции

В заводских условиях наиболее распространенными являются следующие способы определения свойств металлов: проверка химического состава, металлографические исследования, определение механических свойств, технологические пробы.

Из перечисленных способов определения свойств металлов только испытания на твердость и технологические пробы производятся непосредственно в цехах. Остальные виды механических испытаний, а также определение химического состава и металлографическое исследование внутреннего строения (структуры) металла производятся в заводских лабораториях. Для этого в цехах в соответствии с действующими инструкциями отбирают образцы и направляют их в соответствующие лаборатории.

Результаты испытания или анализа лаборатория передает в виде специального протокола.

Химический состав металлов, кроме методов лабораторного анализа, исследуется также с помощью спектрального анализа, основанного на том, что металлы, раскаленные до состояния газа или пара, дают характерную по цвету линию спектра для каждого содержащегося в них элемента.

В технике широко применяются различные методы неразрушающего контроля, такие как магнитный, ультразвуковой, радиационный, электрический и ряд других, позволяющих выявлять трещины и внутренние дефекты металлов без нарушения целостности деталей (о них более подробно будет рассказано в разделе3.6.

Оглавление

Определение механических свойств

 

Механическими свойствами называется совокупность свойств, определяющих сопротивление металлов воздействию механических усилий, которые могут прилагаться к изделию различными способами. Знание механических свойств позволяет оценивать поведение металла под воздействием внешних нагрузок при работе конструкций и деталей машин в эксплуатации и при обработке деталей давлением или резанием.

В зависимости от способа приложения нагрузки, механические испытания делятся на три следующих вида:

1. Статические испытания - нагрузка на образец остается постоянной в течение длительного промежутка времени или постепенно увеличивается в процессе испытания. Наиболее распространенным из таких методов является испытание на растяжение. Применяются также испытания на изгиб, сжатие, кручение и срез.

Динамические испытания - нагрузка на образец возрастает мгновенно и действует в течение незначительного промежутка времени, т. е. носит характер удара. Наиболее распространенным является испытание на ударную вязкость.

3. Испытания при повторно-знакопеременных нагрузках на выносливость, позволяющие оценить способность металла выдерживать много раз повторяющиеся и меняющиеся по направлению нагрузки без возникновения трещин усталости.

Испытание на растяжение

При испытании на растяжение из проверяемого материала получают образцы определенной формы и размеров (рис.3.16, а). Затем образец закрепляют в зажимах специальной разрывной машины и подвергают растяжению при плавно возрастающей нагрузке до момента разрыва образца (рис. 3.16,б).

Рис.3.16. Круглый образец для испытания на растяжение:

а – до испытания; б – после испытания

 

Действие сил, приложенных к образцу во время растяжения, оценивается напряжениями, т. е. силами в килограммах, приходящимися на единицу площади поперечного сечения образца в квадратных миллиметрах. Напряжения обозначаются греческой буквой s.

В процессе растяжения образца определяются следующие характеристики прочности:

1. Предел пропорциональности sпц, т. е наибольшее напряжение, до которого сохраняется линейная зависимость между удлинением и растягивающим напряжением.

2. Предел текучести (физический) sТ, представляющий собой наименьшее напряжение, при котором образец продолжает удлиняться без заметного увеличения нагрузки, а, следовательно, и напряжения.

3. Условный предел текучести s0,2, т. е. напряжение, при котором образец получает остаточное удлинение, равное 0,2% первоначальной расчетной длины.

4. Временное сопротивление (или предел прочности прирастяжении) sвр, т. е. напряжение, отвечающее наибольшей нагрузке, предшествующей разрушению образца.

Характеристиками пластичности при растяжении являются:

1. Относительное удлинение d, определяемое в процентах;

2. Относительное сужение y площади поперечного сечения, определяемое в процентах.

Таблица 3.12

Механические свойства металлов и сплавов

 

megalektsii.ru

Механические свойства металлических материалов и металлов

Металлы и их сплавы являются одним из самых распространенных материалов для изготовления изделий различных видов. Но так как каждый из типов имеет определенные свойства – перед применением их следует детально изучить.

Зачем нужно знать механические свойства металлов

Основные виды чистых металлов

Основные виды чистых металлов

Металлы относятся к химическим элементам и веществам, которые характеризуются высоким показателем теплопроводности, в большинстве своем имеют жесткость. Под воздействием высоких температур повышается пластичность, обладают ковкостью. Эти характеристики материалов позволяют осуществлять их обработку различными способами.

Металлические материалы и их сплавы характеризуются рядом показателей: химическими, механическими, физическими и эксплуатационными. В совокупности они дают возможность определить фактические характеристики в полном объеме. Выделить наиболее важные из них невозможно. Но для решения определенных задач большее внимание уделяется конкретной группе свойств.

Механические свойства металлов необходимо знать для решения следующих вопросов:

  • производство изделия с определенными качествами;
  • выбор оптимального процесса обработки заготовки;
  • влияние механических характеристик металлических материалов на эксплуатационные свойства продукта.

Для определения конкретных механических свойств применяются различные методы. Испытания металлов и сплавов проводятся с помощью специальных приборов. Это делается в лабораторных условиях. Для достижения точных результатов рекомендуется использовать результаты исследований государственных метрологических организаций.

Механические свойства определяют показатель сопротивляемости того или иного материала на внешние силовые воздействия. Для каждого параметра существует определенные числовые показатели.

Твердость

Методика проверки металлов на твердость

Методика проверки металлов на твердость

При воздействии внешних факторов на металлические изделия происходит их деформация – пластическая или упругая. Твердость описывает сопротивление этим факторам, характеризует степень сохранения изначальной формы и свойств материала, изделия.

В зависимости от желаемых результатов проверка материала на твердость осуществляется тремя методами:

  • статический. На специальный индикатор, расположенный на поверхности металла, прикладывают механическую силу. Это делается постепенно и одновременно с этим фиксируется степень деформации;
  • динамический. Воздействие происходит для фиксации упругой отдачи или формирования отпечатка с определенной конфигурацией;
  • кинетический. Схож со статическим. Разница заключается в непрерывном воздействии для построения диаграммы изменения характеристик образца.

Измерение твердости зависит от выбранного метода — Бринелля (НВ), Роквелла (шкалы А, В и С) или Виккерса (НV). Все зависит от степени воздействия на материал, с помощью которых можно определить поверхностную, проекционную или объемную твердость.

Шкала Мосса применяется для вычисления показателя твердости редко. Ее суть состоит в вычислении характеристиках объекта методом царапания его поверхности.

Вязкость и хрупкость

Описание показателя вязкости

Описание показателя вязкости

Эти характеристики указывают на возможность металла оказывать сопротивление при воздействии ударных нагрузок. Показателем является скорость деформации, т.е. изменение изначальной конфигурации заготовки при внешнем воздействии.

Знание показателя вязкости и хрупкости необходимо для расчета поглощаемой энергии воздействия, которая приводит к деформации металлического образца. В зависимости от необходимых данных различают следующие методы измерения и виды вязкости металлов:

  • статическая. Происходит медленное воздействие на материал до момента его разрушения;
  • циклическая. Образец подвергают многократным нагрузкам с одинаковым или изменяющимся показателем силы. При этом основной величиной циклической вязкости является количество работы, необходимой для разрушения образца;
  • ударная. Для ее расчета применяют маятниковый копер. Заготовку крепят на нижнем основании, маятник с рубящим конусом находится в верхней точке. После его опускания происходит взаимодействие металла и рубящей части. Степень деформации характеризуется вязкостью образца.

В зависимости от системы измерения существуют различные показатели вязкости:

  • СИ — м²/с;
  • СГС – стокс (СТ) или сантистокс (сСт)

Помимо метода испытания необходимо учитывать другие механические свойства металлов – температура на его поверхности и в структуре, влажность в помещении и т.д.

Хрупкость является обратным показателем вязкости. Она определяет, насколько быстро металл или сплав будет разрушаться под воздействием внешней силы.

Напряжение

Виды напряжений

Виды напряжений

Напряжением называется возникновение внутренних сил с различными векторами направленности при внешнем воздействии. Эта величина может быть внутренняя или поверхностная. Является обязательным для расчета при изготовлении несущих стальных конструкций или элементов оборудования, подвергающихся постоянным нагрузкам.

Главным условием для измерения этого показателя является равномерная нагрузка, действующая в определенном направлении. При этом возникает напряженное состояние образца, который подвергается воздействию уравновешенных сил. Помимо этого, воздействие может быть односекторным или много векторным.

Существуют следующие виды напряжения материалов и их сплавов:

  • остаточное. Формируется уже после окончания воздействия внешних факторов. К ним относятся не только механические силы, но и быстрый нагрев или охлаждение образца;
  • временные. Возникают только при внешних нагрузках. После их прекращения изделие приобретает изначальные характеристики;
  • внутреннее. Чаще всего происходит в результате неравномерного нагрева заготовок.

Напряжение является отношением силы воздействия на площадь, на которую она прилагается.

Кроме прямого давления на поверхность может наблюдаться касательное. Расчет этого параметра требует более сложных методик.

Выносливость и усталость

Пример деформации из-за усталости металла

Пример деформации из-за усталости металла

При длительном приложении внешних сил в структуре образца выявляются деформации и дефекты. Они приводят к потере прочности образца и как следствие – к его разрушению. Это называется усталостью металла. Выносливость является обратной характеристикой.

Такое явление наступает в результате появления последовательных напряжений (внутренних или поверхностных) за определенный промежуток времени. Если структура не подвергается изменению – говорят о хорошем показателе выносливости. В противном случае происходит деформация.

В зависимости от точности расчета выполняют следующие испытания образца на выносливость для того, чтобы узнать механические свойства металлов:

  • чистый изгиб. Деталь закрепляется на концах и происходит ее вращение, в результате чего она деформируется;
  • поперечный изгиб. Дополнительно выполняется вращение образца;
  • изгиб в одной плоскости;
  • поперечный и продольный изгиб в одной плоскости;
  • неравномерное кручение с повторением цикла.

Эти испытания позволяют определить показатель выносливости и рассчитать время наступления усталости детали.

Для проведения испытаний необходимо руководствоваться принятыми методиками, которые изложены в ГОСТ-1497-84. Особое внимание уделяется отклонению свойств металла от нормы.

Ползучесть

Пример дефекта, возникшего из-за ползучести

Пример дефекта, возникшего из-за ползучести

Этот показатель определяет степень непрерывной пластической деформации при постоянном воздействии внешних и внутренних факторов. Вычисление этого параметра необходимы для определения жаропрочности металлов и их сплавов.

Для определения ползучести образец нагревают до определенной температуры. После этого наблюдают степень изменения его конфигурации с учетом приложенного напряжения. В зависимости от термического воздействия различают два вида испытаний на ползучесть:

  • низкотемпературное. Степень нагрева образца не превышает 0,4 от температуры его плавления;
  • высокотемпературная. Коэффициент нагрева больше 0,4 температуры нагрева.

Для проведения испытаний используют стандартные образцы прямоугольной или цилиндрической формы. При этом степень погрешности измерения не должна превышать 0,002 мм. В результате испытаний формируется кривая, характеризующая процесс ползучести.

В видеоматериале показан пример работы маятникового копера:

stanokgid.ru

Характеристики основных механических свойств металлов и сплавов и способы их определения

Любое вещество, будь то газ, жидкость или твердое тело, обладает рядом специфических, только ему присущих свойств. Однако эти свойства позволяют не только индивидуализировать элементы, но и объединять их в группы по принципу схожести.

Посмотрите на металлы: с обывательской точки зрения это блестящие элементы, с высокой электро- и теплопроводностью, не восприимчивые к внешним физическим воздействиям, ковкие и легко свариваемые при высоких температурах. Достаточен ли этот перечень. чтобы объединить металлы в одну группу? Конечно же нет, металлы и их производные (сплавы) гораздо сложнее и обладают целым набором химических, физических, механических и технологических свойств. Сегодня мы поговорим лишь об одной группе: механических свойствах металлов.

 

Основные механические свойства металлов

 

Что это за свойства? Под механическими понимают такие свойства субстанции, которые отражают ее умение противостоять действиям извне. Известно девять основных механических свойств металлов:

- Прочность - означает, что приложение статической, динамической или знакопеременной нагрузки не приводит к нарушению внешней и внутренней целостности материала, изменению его строения, формы и размеров.

- Твердость (часто путают с прочностью) - характеризует возможность одного материала противостоять прониканию другого, более твердого предмета.

 

 

- Упругость - означает способность к деформированию без нарушения целостности под действием определенных сил и возвращению первоначальной формы после освобождения от нагрузки.

- Пластичность (часто путают с упругостью и наоборот) - также способность к деформации без нарушения целостности, однако в отличие от упругости, пластичность означает, что объект способен сохранить полученную форму.

- Стойкость к трещинам - под воздействием внешних сил (ударов, натяжений и пр.) материал не образует трещин и сохраняет наружную целостность.

- Вязкость или ударная вязкость - антоним ломкости, то есть возможность сохранять целостность материала при возрастающих физических воздействиях.

- Износостойкость - способность к сохранению внутренней и внешней целостности при длительном трении.

 

 

- Жаростойкость - длительная возможность противостоять изменению формы, размера и разрушению при воздействии больших температур.

- Усталость - время и количество циклических воздействий, которые материал может выдержать без нарушения целостности.

Часто, говоряо тех или иных свойствах, мы путаем их названия: технологические свойства относим к физическим, физические к механическим и наоборот. И это неудивительно, ведь несмотря на глубинные отличия, лежащие в основе той или иной группы свойств, механические свойства не только крайне тесно связаны с другими характеристиками металлов, но и напрямую зависят от них.

 

Физические свойства металлов

 

Наиболее взаимозависимы между собой механические и химические свойства металлов, ведь именно химический состав металла или сплава, его внутреннее строение (особенности кристаллической решетки) диктуют все остальные его параметры. Если говорить о механических и физических свойствах металлов, то их чаще других путают между собой, что обусловлено близостью данных определений.

Физические свойства часто неотделимы от механических. К примеру, тугоплавкие металлы еще и самые прочные. Главное же отличие лежит в природе свойств. Физические свойства - те что проявляется в покое, механические - только под воздействием извне. Не хуже других связаны механические и технологические свойства металлов. Например, механическое свойство металла "прочность" может быть результатом его грамотной технологической обработки (с этой целью нередко используют "закалку" и "старение"). Обратная взаимосвязь не менее важна, к примеру, ковкость проявление хорошей ударной вязкости.

 

 

Делая вывод, можно сказать, что зная некоторые химические, физические или технологические свойства можно предугадать, как будет вести себя металл под воздействием нагрузки (т.е. механически), и наоборот.

В чем отличия механических свойств металлов и сплавов?

Различаются ли механические свойства металлов и сплавов? Безусловно. Ведь любой металлический сплав изначально создается с целью получения каких-либо конкретных свойств. Некоторые сочетания легирующих элементов и основного металла в сплаве способны мгновенно преобразить легируемый элемент. Так алюминий ( не самый прочный и твердый металл в мире) в сочетании с цинком и магнием образует сплав по прочности сравнимый со сталью. Все это дает практически неограниченные возможности в получении веществ наиболее близких к требуемым.

 

 

 

Отдельное внимание следует уделить механическим свойствам наплавленных металлов. Наплавленным считается металл, с помощью которого производилась сварка двух или более частей какого-то металлического элемента или конструкции. Этот металл словно нитки соединяет разорванные части. От того, как будет вести себя "шов" под нагрузкой, будет зависеть безопасность и надежность всей конструкции. Исходя из этого, крайне важно, чтобы свойства наплавленного металла были не хуже, чем у главного металла.

 

Как определить механические свойства?

 

Экспериментальным путем. Среди основных методов определения механических свойств металлов можно выделить:

- испытания на растяжение;

- метод вдавливания по Бринеллю;

 

 

- определение твердости металла по Роквеллу;

- оценка твердости по Виккерсу;

- определение вязкости с помощью маятникового копра;

 

Механические свойства имеют весьма серьезное значение. Их знание позволяет использовать металлы и их сплавы с наибольшей эффективностью и отдачей.

promplace.ru

Механические свойства металлов

Металлами называют химические вещества и элементы, которые характеризуются такими свойствами, как хорошей проводимостью тепла и электрического тока, непрозрачностью, но способны отражать свет, ковкостью, и пластичностью. Металлы используют практически во всех отраслях, сферах нашей жизни. Из них делают различные механизмы, машины, оборудование, приборы и еще очень много разных вещей. Все металлы разделяют по числу, характером и содержанием легирующих частиц (компонентов) и по величине чистоты. Компонентами называются химические частицы, которые могут входить в состав сплава или металла. Обычно каждый металл имеет свои уникальные возможности. Но для его использования выделяют отдельный ряд свойств. Эти свойства называются механическими. В данной статье будут рассмотрены механические свойства металлов.

Понятие механических свойств металлов

Что означают эти механические свойства? Они описывают и объясняют способность того или иного металла осуществлять сопротивление на силовые факторы из внешней среды. И соответственно есть числовые показатели, указывающие степень сопротивления того или иного металла. К основным механическим свойствам металлов и сплавов на сегодняшний день относят твердость, вязкость, прочность, ползучесть, пластичность, износоустойчивость, и ударную вязкость. Величины этих свойств определяют во время опытов, предусматривающие силовую нагрузку на металл или сплав. И такие нагрузки подразделяют на динамические, статические и повторно-переменные. Испытания металла проводят такими способами как растяжение, скручивание, сгибание, сжатия и ударное сгибания.

Понятие прочности металла

Под прочностью металла понимают способностью сплава или металла осуществлять сопротивление, как внешним силовым факторам, так и внутренним факторам, и таким образом не поддаваться деформации. Если внешние факторы вполне понятны, т.е. это удар, пресс, нажим, то к внутре

elhow.ru

Методы исследования механических свойств металлов

Строительные машины и оборудование, справочник

Категория:

   Автомобильные эксплуатационные материалы

Методы исследования механических свойств металлов

Свойства металлов и сплавов определяются внутренним строением и природой атомов, из которых они состоят. Все свойства металлов разделяются на физические, химические, механические и технологические.

К физическим свойствам относятся: блеск, цвет, плотность, плавкость, тепловое расширение, тепло- и электропроводность, магнитность.

К химически м свойствам относится способность металлов вступать в химические реакции с другими элементами и сложными веществами, например с кислородом воздуха, углекислотой, водой и т. д. В результате могут происходить разрушения металлов и необратимые изменения их структуры и свойств.

Механические свойства металлов определяют способность сопротивляться прилагаемым усилиям. К таким свойствам относятся упругость, пластичность, прочность, твердость и т. д.

Технологические свойства характеризуют способность металлов поддаваться различным видам механической обработки: ковке, штамповке, прокатке, обработке режущим инструментом и т. д.

Металлы и сплавы используются в качестве основного конструкционного материала для деталей автомобилей, различных машин, механизмов и сооружений, работающих в условиях больших нагрузок. Поэтому для металлов важнейшими являются их механические свойства. Определение этих свойств производится при испытаниях, которые в зависимости от способа приложения усилия делятся на статические и динамические. При статических испытаниях нагрузка на образец металла возрастает медленно и плавно. При динамических испытаниях нагрузка увеличивается с большой скоростью или изменяется многократно по величине и направлению Вид испытаний определяется назначением и условиями применения деталей машин.

Наиболее распространенными испытаниями для исследования механических свойств металлов являются статические испытания на растяжение и твердость, а также динамические испытания на Удар и усталость.

Испытание на растяжение производится для образцов металлов на специальных разрывных машинах типа ИМ-12А, РМ-500 и др. При этом используются образцы определенной формы и размеров, изготовленные по стандарту. Образец закрепляют в захвате машины и подвергают нагрузке, увеличивая силу, растягивающую образец. По силоизмерительному прибору разрывной машины определяют величину растягивающей силы. Как только растягивающая сила превысит силу сопротивления металла, происходит разрыв образца. Напряжения, возникающие в металле при испытании, автоматически записываются на ленте самописца машины в виде диаграмм растяжения.

На диаграмме растяжения по оси ординат отложено растягивающее усилие Р (в кгс), а по оси абсцисс — деформация или абсолютное удлинение образца (в мм). Удлинение образца при возрастании нагрузки от точки О до точки А пропорционально этому возрастанию, а от точки А до точки Б пропорциональность нарушается. В интервале нагрузок Б — В металл начинает течь, т.е. происходит удлинение образца при постоянной силе Р. В точке Г диаграммы сила достигает максимального значения, на образце образуется шейка и в точке Д он разрывается.

Указанные характерные точки на диаграмме позволяют определить показатели механических свойств — величины напряжений или пределы пропорциональности, упругости, текучести, прочности, истинное сопротивление разрыву, относительное удлинение и относительное сужение.

Следует отметить, что текучесть металлов на участке Б — В характерна только для низкоуглеродистых сталей. Высокоуглеродистые стали не обладают текучестью и не имеют на диаграмме участка текучести. Поэтому для них находят условный предел текучести при остаточном удлинении, равном 0,2%.

Рис. 1. Диаграмма растяжения мягкой стали

Найденное значение твердости по шкалам В, С, А обозначают соответственно HRB, HRC, HRA.

Определение твердости по Роквеллу имеет широкое применение, так как позволяет испытывать твердые и мягкие металла прямо на готовых деталях.

Испытание на удар проводится с целью оценки сопротивляемости образца металла ударной нагрузке. Для этого используют специальную машину, называемую маятниковым копром (копры типа МК-15, PS 30 и др.). Испытуемый образец металла устанавливают на опоры копра и подвергают ударному воздействию массивным маятником, падающим с определенной высоты.

Работа Ау подсчитывается перемножением массы маятника на разность высот его подъема до удара и после удара.

Испытания на усталость позволяют выявить срок службы многих ответственных металлических деталей (шатуны, коленчатые валы двигателей, полуоси и др.), которые подвергаются в процессе работы действию повторных и знакопеременных нагрузок. Свойство металлов выдерживать большое число циклов переменных нагрузок называется выносливостью.

Единицей измерения при испытании на усталость является предел выносливости, т. е. величина допустимого напряжения, которое выдерживает металл без разрушения при заданном числе циклов нагрузки.

Испытания на усталость проводят в зависимости от назначения детали на различных машинах (типа МУИ-6000, ИВМ и др.). Наиболее распространены испытательные машины, нагрузка на которых прикладывается изгибом при вращении, растяжением-сжатием, кручением. Результатом испытания является кривая усталости,представляющая зависимость напряжения от числа циклов, причем минимальная величина напряжения, выдерживаемая металлом в конце испытания, и будет характеризовать предел выносливости.

Читать далее: Термическая обработка стали

Категория: - Автомобильные эксплуатационные материалы

Главная → Справочник → Статьи → Форум

stroy-technics.ru

Свойства металлов

Свойства металлов подразделяются на механические, химические, физические, технологические и эксплуатационные

Механические свойства имеют свою классификацию, которая представлена ниже. В общем случае все свойства металлов можно изобразить в виде схемы

  1. Механические свойства металлов

Характеризуют механическое поведение металлов в определенных условиях. Подразделяются на статические, динамические и усталостные (циклические) свойства

1.1 Статические - определяемые в условиях медленного нагружения

1.1.1 Прочностные - способность сопротивляться пластической деформации (НВ, HRC, σв, σт)

1.1.2 Пластические - способность воспринимать деформацию (δ, ψ)

1.2 Усталостные - сопротивление материала знакопеременным нагрузкам (предел усталости σ-1)

1.3 Динамические - способность сопротивляться ударным нагрузкам (KCU, KCV, KCT)

Методы определения основных механических свойств металлов смотрим здесь

  1. Химические свойства

Характеризуют взаимодействие и/или сопротивление металла различным химически активными средам.

2.1 Антикоррозионные свойства

2.2 Окалиностойкость

  1. Физические свойства

3.1 Магнитные

3.2 Тепловые

3.3 Объемные

3.4 Электрические

  1. Технологические свойства металлов

Определяют возможность изготовления изделия тем или иным способом К технологическим свойствам относятся жидкотекучесть, деформируемость, свариваемость, закаливаемость, прокаливаемость, обрабатываемость резанием

  1. Эксплуатационные свойства

Обеспечивают долговечную работу в определенных условиях. К ним относятся износостойкость, теплостойкость, жаропрочность

 

heattreatment.ru

Механические свойства и методы их определения

2 лекция

МАТЕРИАЛОВЕДЕНИЕ

Механические свойства и методы их определения

Механические свойства материалов определяют на специальных образцах.

Наиболее распространенными механическими характеристиками являются: твердость , пределы прочности и упругости , ударная вязкость

Испытания выполняются на раз­рывных машинах с использованием специальных образцов. Деформация может быть упругой или пластической . Упругая деформация полностью снимается (исчезает) после снятиянагрузки. Пластическая деформация не исчезает после снятия нагрузки (согните алюминиевую проволоку, после того как нагрузка снята, проволока не разгибается — она пластически деформирована).

При этом определяются: предел прочности (sв) — напряжение, при котором происходит разрушение образца

Определение твердости

Твердость характеризует сопротивление материала большим пластическим деформациям.

Наиболее распространенные методы определения твердости связаны с внедрением специального тела, называемого индентором, в испытуемый материал с таким усилием, чтобы в материале остался отпечаток индентора.

Метод Бринелля (НВ )

Вдавливание шарика происходит при постоянной нагрузке, в результате на поверхно­сти образца образуется отпечаток в виде сферической лунки.

Диаметр отпечатка измеряется в двух взаимно перпендикулярных направлениях с помощью микроскопа Бринелля — это лупа со шкалой.

Метод Роквелла

Принципиальное отличие этого метода от рассмотренного ранее заключается в том, что твердость определяется не площадью поверхности отпечатка индентора, а глубиной его проникновения в исследуемый образец.

В качестве индентора используют алмазный конус при испытаниях твердых материалов и стальной закаленный шарик при испытаниях мягких материалов. Значения твердости обозначаются: HRC — алмазный конус, нагрузка 150 кгс; HRA — алмазный конус, нагрузка 60 кгс; HRB — шарик (например, 90 HRA). Шкала по измерению твердости HRC изменена в связи с изменением эталона, поэтому в измеряемые значения следует вносить поправку.

Значения твердости в единицах HRC примерно в 10 раз меньше, чем в единицах НВ, т.е. твердость 30 HRC примерно соответ­ствует 300НВ.

Метод Виккерса

Метод основан на вдавливании четырехгранной алмазной пирамидки с углом между противоположными гранями, равным 136°. Твердость (она обозначается HV ) определяется отношением нагрузки к площади поверхности отпечатка.

Значения твердости по Бринеллю и Виккерсу практически равны.

Метод Шора .

При измерении твердости по Шору груз вместе с укрепленным на нем индентором (обычно это стальной шарик) падает с высоты на образец перпендикулярно его поверхности. Твердость по Шору определяется по высоте отскока шарика(груз с инден­тором).

Определение ударной вязкости и вязкости разрушения

Для определения ударной вязкости используют образцы с надрезом, который служит концентратором напряжений. Образец устанавливают на маятниковом копре так, чтобы удар маятника происходил против надреза, раскрывая его. Маятник поднимают на высоту, при падении он разрушает образец, поднимаясь на высоту(так как часть запасенной при подъеме работы тратится на разрушение образца).

Ударная вязкость — это относительная работа разрушения, т.е. работа, отнесенная к площади образца до разрушения.Вязкость разрушения. Более полную информацию о вязкости металлов дают испытания на вязкости разрушения.

КЛАССОФИКАЦИЯ СТАЛЕЙ

Сплавы с содержанием углерода (С) до 2,14% называются сталями.

Стали классифицируются по химическому составу, способу производства, качеству, степени раскисления, назначению, структуре

По хим. Составу стали классифицируются на углеродистые и легированные.Углеродистые делятся на: низкоуглеродистые – до 0,25% С,среднеуглеродистые – 0,25-0,6% С,высокоуглеродистые – более 0,6% С.По содержанию легирующих элементов делятся:низколегированные – до 2,5% лиг. эл.,среднелегированные – 2,5-10% лиг. эл.,высоколегированные – долее 10% л. э.

По способу производства различают:конверторные,мартеновские,электростали,стали особым методом выплавки.

По назначению стали классифицируются:конструкционные,инструментальные,строительные,стали специального назначения с особыми свойствами.

По качеству различают:обыкновенного качества,качественные,высококачественные,особовысококачественные.Качество стали зависит от вредных примесей, преимущественно от (серы, фосфора)

Качество углеродистых сталей отражается в маркировки. Стали обыкновенного качества маркируют буквами Ст (Ст3). В конце маркировки высококачественных сталей ставится буква А (У10А).

Все легированные стали производят как минимум качественными (10, 20, 45 - % С в 0,00).

Для производства особовысококачественных сталей применяют специальные виды улучшающие обработку, которые могут указываться в маркировках сталей.ВИ (ВИТ) – переплавка в вакуумных индукционных печах,ВД (ВДП) – переплавка в вакуумных дуговых печах,Ш (ЭМП) – электрошлаковый переплав,ШД – вакуумный дуговой переплав сталей после электрошлакового переплава,ОДП – обычная дуговая переплавка,ПДБ – плазменно-дуговая переплавка.

По степени раскисления различают:спокойную (ст) которая раскислена марганцем. Кремнием и алюминием.полуспокойную (пс) раскислена марганцем и алюминием.кипящую (кп) раскисляется марганцем.

В ГОСТах маркировка сталей принято следующее комбинация, чисел и букв.Первая цифра в маркировки указывает на содержание углерода в стали:если цифра однозначная то в 0,0%,если цифра двухзначная то в 0,00%,если цифра не указана то ~ 1%.ПРИМЕР 9ХС – 0,9% углерода

Для обозначение легирующих элементов входящих в состав стали каждому из них присвоена своя буква:

Н-никель, Д-медь, А-азот, Х-хром, Р-бор, П-фосфор, К-кобальт, Б-ниобий, М-малибден, Ц-цирконий, Т-титан, Г- марганец, С-кремний, Ф-ванадий, Ю-алюминий, В-вольфрам.

Цифры идущие после букв, указывают среднее содержание данного легирующего элемента в %. Если цифры нет то легирующего элемента ~ 1%.

Пример:9ХС - 0,9% угл.,1% хрома,1% кремния.Х12 – 1% угл., 12% хрома.

Степень раскисления сталей обозначается буквами в конце маркировки стали: СП - спокойная, ПС - полуспокойная, КП – кипящая.

Для некоторых сталей употребляется специальное условное обозначение:

Р – быстрорежущая сталь, цифра за которой указывается содержание вольфрама в % (Р18-быстрорежущая сталь с 18% вольфрама),маркировка шарикоподшипниковых сталей начинается с буквы Ш и последующей цифры указывающей на содержание хрома в 0,0% (ШХ15 – шарикоподшипниковая сталь 1,5% хрома)

Углеродистые стали обыкновенного качества – Ст0, Ст1, Ст2, Ст3, СТ3Г, …- используется для металлоконструкций слабонагруженных.Углеродистые конструкционные качественные стали – 08, 10, 15, 20, 25, 30, …85 – винты, гайки, болты.Автоматные стали – А11,А20,А30,АС40 (С - свинец, Е - селен ) изделия не ответственные изготавливаются на автоматах.

Углеродистые инструментальные стали – У7, У8, У9, …У13.Высококачественные – У7А, …У13А.Легированные стали –ст. средней прочности 15ХР,20ХМ и т.п.ст. повышенной прочности – 12Х2Н3А, 18Х2НМА изготавливают поршневые кольцаУлучшаемые стали – 30Х,40Х, 50Х изготавливают коленчатые валы.Хромокремнемарганцевые стали – 30ХГСА автомобильное производство.Хромоникелевые стали – 40ХН шест-ни

Хромоникельмолибденовые стали – 40ХНМА, 38ХНЗМФА изготавливают сильно нагруженные детали.Высокопрочные стали – 30ХГСНА, 30Х5МСФА.Рессорно-пружинистые стали – 55С2, 60С2А, 70С3А изготавливают пружины вагонов, автомобильные рессоры.Шарикоподшипниковые стали – ШХ15, ШХ15СГ изготавливают траки гусеничных танков, крестовины рельс.

Инструментальные стали – 9ХС, ХВГС, ХВ2, ХВ4 изготавливают плашки, протяжки.Быстрорежущие стали – Р18, Р6М5, 10Р6М5 крупногабаритный инструмент работающий с знакопеременными нагрузками.Стали специального назначения – 12Х13, 30Х13,12Х18Н10Т изготавливают лопатки турбин, хирургический инструмент.Жаростойкие стали – 15Х5, 12Х17, 15Х28, 25Х2М1 A используются в котлостроительстве.

Чугун — классификация и маркировка

В зависимости от степени графитизации, обусловливающей вид излома, — на серый, белый и половинчатый (или отбелённый).В зависимости от формы включений графита — на чугун с пластинчатым, шаровидным (высокопрочный чугун), вермикулярным и хлопьевидным (ковкий чугун) графитом.в зависимости от характера металлической основы — на перлитный, ферритный, перлитно-ферритный, аустенитный, бейнитный и мартенситный

В зависимости от назначения — на конструкционный и чугун со специальными свойствами; по химическому составу — на легированные и нелегированные.Серый чугун — наиболее широко применяемый вид чугуна (машиностроение, сантехника, строительные конструкции) имеет высокий коэффициент поглощения колебаний при вибрациях деталей (в 2-4 раза выше, чем у стали).

Белый Чугун представляет собой сплав, в котором избыточный углерод, не находящийся в твёрдом растворе железа, присутствует в связанном состоянии в виде карбидов железа Fe3C (цементит)Белый чугун вследствие низких механических свойств и хрупкости имеет ограниченное применение для деталей простой конфигурации, работающих в условиях повышенного абразивного износа

Половинчатый чугун содержит часть углерода в свободном состоянии в виде графита, а часть — в связанном в виде карбидовека. Применяется в качестве фрикционного материала, работающего в условиях сухого трения (тормозные колодки), а также для изготовления деталей повышенной износостойкости (прокатные, бумагоделательные, мукомольные валки).

mirznanii.com


© 2007—2018
423800, Набережные Челны , база Партнер Плюс, тел. 8 800 100-58-94 (звонок бесплатный)