|
||||
|
Екатерина - специалист по продаже а/м КАМАЗ
43118-010-10 (дв.740.30-260 л.с.) | 2 220 000 |
43118-6033-24 (дв.740.55-300 л.с.) | 2 300 000 |
65117-029 (дв.740.30-260 л.с.) | 2 200 000 |
65117-6010-62 (дв.740.62-280 л.с.) | 2 350 000 |
44108 (дв.740.30-260 л.с.) | 2 160 000 |
44108-6030-24 (дв.740.55,рест.) | 2 200 000 |
65116-010-62 (дв.740.62-280 л.с.) | 1 880 000 |
6460 (дв.740.50-360 л.с.) | 2 180 000 |
45143-011-15 (дв.740.13-260л.с) | 2 180 000 |
65115 (дв.740.62-280 л.с.,рест.) | 2 190 000 |
65115 (дв.740.62-280 л.с.,3-х стор) | 2 295 000 |
6520 (дв.740.51-320 л.с.) | 2 610 000 |
6520 (дв.740.51-320 л.с.,сп.место) | 2 700 000 |
6522-027 (дв.740.51-320 л.с.,6х6) | 3 190 000 |
Нужны самосвалы? Обратите внимание на Ford-65513-02. |
Контактная информация.
г. Набережные Челны, Промкомзона-2, Автодорога №3, база «Партнер плюс».
тел/факс (8552) 388373.
Схема проезда
Если рассматривать устройство и принцип работы ДВС, то рано или поздно придется столкнуться с таким изделием, как маховик. По своему конструктивному исполнению он не представляет чего-то сложного, но выполняемые им функции чрезвычайно важны, и непонятно, каким образом можно обойтись без него.
По сути дела, маховик двигателя является составной частью нескольких самостоятельных систем. К его функциям можно отнести:
Чтобы лучше понять принцип его работы и те возможности, которые реализует конкретное устройство, надо рассмотреть отдельно каждый случай применения.
Конструктивно различают такие виды его исполнения:
Наиболее распространенным является сплошной маховик. По сути дела – это обычный металлический диск, на котором по торцу выполнен венец.
Для разных моделей автомобиля используется свое исполнение, обычно диаметр диска тридцать-сорок сантиметров. Как пример можно привести диск ВАЗ 2101, его вес равен 6,7 кг, а диаметр сцепления двести мм, тогда как для ВАЗ 2110 – вес 6,3 кг. Не существует единого варианта для любых моделей, на все ВАЗ, например, такие как 2112, 2114, 2110, применяется свое исполнение.
Однако зачастую это не самый лучший вариант маховика, используемого на автомобиле. Дело в том, что ДВС работает неравномерно, кроме того режимы движения постоянно меняются (ускорение, замедление), что приводит к дополнительным нагрузкам на коленвал. Пусть будет самая простая ситуация – автомобиль движется равномерно и прямо. Впереди освобождается дорога, предположим, что трактор свернул в сторону, получив свободное пространство, водитель начинает разгоняться.
При этом возникает несколько дополнительных источников нагрузки. Неравномерность процессов воспламенения топлива приводит к тому, что коленвал вращается также неравномерно. Ее частично сглаживает маховик. Но есть еще одна особенность – при ускорении автомобиля коленвал раскручивается с большей частотой, чем работал раньше.
Для вала она превышает частоту вращения маховика, вал уже раскрутился, а маховик, благодаря своей инерционности, – нет, вследствие чего возникают дополнительные нагрузки, так называемые «крутильные колебания». Они передаются в трансмиссию, в результате чего появляется дополнительный стук, вибрация в КПП и прочие подобные подарки. Выходом из такой ситуации может стать использование двухмассового маховика.
Что же это за устройство, позволяющее добиться отличного результата? Двухмассовый маховик показан на фото, по сути дела, он представляет собой два диска, соединённых между собой пружинами.
Конструктивное исполнение конкретного двухмассового устройства может быть отличным от показанного выше. В любом случае – это два диска, соединенных подшипником. Первый диск крепится на коленвал, и на нем располагается венец для подключения стартера, второй связан со сцеплением. Между дисками установлена пружинная демпферная система. Диски имеют возможность вращаться друг относительно друга, при этом пружины гасят рывки и различные колебания, возникающие при работе ДВС.
Такой двухмассовый маховик обеспечивает защиту деталей сцепления от рывков и ударов, позволяет уберечь трансмиссию от перегрузок, снижает износ синхронизаторов.
Однако не все хорошо, во всяком случае, двухмассовый маховик не может похвастаться широким применением, например, как обычный маховик ВАЗ 2108.
А все дело в том, что при движении на малых оборотах, особенно на автомобилях с дизельными двигателями, обладающими при этом повышенным моментом, неравномерность воспламенения топлива максимальна. Следствием движения в таком режиме будет возникновение значительных крутильных колебаний, приводящих к увеличенному уровню нагрузки на демпферные пружины. В результате чего двухмассовый маховик выходит из строя.Стоит отметить, что кроме двухмассового маховика есть и другие его разновидности, но это тема уже отдельного разговора.
Нет ничего удивительного, что для машин ВАЗ, например таких, как 2112, 2114, 2110, как уже отмечалось, используются разнообразные маховики. В авто этого семейства применяют обычный, а не двухмассовый маховик. Правда, для представителя каждого семейства ВАЗ он свой, отличающийся весом и размерами диска сцепления.
Так, на всю классику ВАЗ ставится маховик от 2101, на Ниву и Шеви Ниву – от 21213. Восьмерки комплектуются изделиями от 2109. Десятки, Калины, Приоры, Гранты используют маховик от ВАЗ 2110. Все виды маховиков, от ВАЗ различных семейств, например таких, как 2112, 2114, 2110, отличаются различным посадочным местом, внешним диаметром и венцом.Роль и значение маховика в ДВС переоценить трудно, да наверное, просто невозможно. Именно он сглаживает рывки, создает нормальные условия для работы трансмиссии и уменьшает вибрацию от мотора, передаваемую на кузов. С целью повышения его эффективности используются различные конструкции, хотя зачастую и исполнение в виде обычного диска вполне успешно работает в двигателе.
znanieavto.ru
Новый вопрос от читателя нашего АВТО БЛОГА.
«Добрый день Сергей, сразу хочу сказать вам спасибо, за ваш сайт, для просто то что нужно, иногда такие вопросы рассказываете, ответ на которые не могу найти нигде. Меня зовут Аркадий я недавно купил автомобиль, подержанный нашего автопрома, ВАЗ 2114, наверное, нужно было бы побольше денег накопить, и взять нормальное авто. Тот же Логан хотя бы. Как взял сразу начались проблемы, то одно сломается, то другое сейчас все и не упомнить. Но вот последняя поломка с которой у меня к вам и вопрос. Пару дней назад автомобиль перестал заводиться, поворачиваю ключ, а из-за под капота металлический хруст и тишина, мой ВАЗ 2114, не заводится. Перепугался страшно, думал все что то с двигателем не то. Оттащил машину на сервис, сегодня позвонили и сказали, что это маховик накрылся и что двигатель тут не причем. А вот что такое маховик и для чего он служит, я понятие не имею, не разводят ли меня на станции? Может, поменяют, что то другое, а мне лапшу на уши вешают? Не подскажите в этом вопросе?»
Что же Аркадий, постараюсь вам помочь, читайте дальше …
Итак, маховик – это большое вращающееся колесо, накопитель кинетической энергии. Это если по научному. Применяются не только в автомобилестроении, но и в других видах промышленности. Самые ранние применения это ветряная мельница и гончарный круг.
Но вам же интересно применительно к автомобилю. Буду объяснять простым языком, для профессионалов эта информация будет не интересна. Маховик автомобиля находится на одной стороне колен.вала (коленчатого вала) двигателя, крепится он очень прочно, несколькими болтами. Представляет из себя, большой, дискообразный круг, с «венцом» сверху. «Венец маховика», это зубчатое колесо, которое одевается на маховик в разогретом состоянии, после того как венец маховика остынет, две детали становятся практически не разъемные. То есть маховик становится похож на одну большую шестерню.
Металл маховика очень прочный, но не ломкий, способен выдержать большие нагрузки. Предназначений у маховика два.
Первое. После того как вы сели в автомобиль и повернули ключ зажигания, стартер начинает своей малой шестерней раскручивать большую шестерню маховика. Маховик присоединен к колен.валу, который заставляет поршни двигаться. Поршни начинают сдавливать топливо, подается искра и автомобиль заводится. То есть является очень важной частью при пуске двигателя. Без него приходилось бы крутить двигатель вручную как раньше, «кривым стартером», как называли его водители прошлого века, загнутый ключ который вставлялся в двигатель и выполнял функцию маховика. Но это еще не все функции.
Второе. Маховик — призван бороться с сторонней энергией двигателя, то есть он гасит колебания двигателя, которые пошли бы в кузов. Благодаря такой функции, наш с вами двигатель работает ровно, без детонации (колебания двигателя). Вообще то колебания двигателя есть, но они не такие мощные. А двигатели некоторых иномарок вообще не слышно. Можно понять, что он работает только по приборам, по тахометру, например. Это говорит о очень хорошей сбалансированности двигателя и маховик играет здесь не последнюю роль.
Вот в принципе и все. И последнее на СТО вас не обманывают, такой хруст и скрежет из под вашего капота, разносится именно из-за маховика. Стартер пытается зайти в зацепление с «венцом», а там либо сломаны зубы, либо они вообще сточились. Стачиваются зубы маховика, из-за некачественной закалки или металла. Так что не бойтесь, вас мастера не обманывают. Надеюсь, я вам ответил, читайте наш АВТОБЛОГ
Уравновешивающий вал
В результате возвратно-поступательного и вращательного движения поршней, шатунов и коленчатого вала образуется сила инерции. Для уменьшения или даже устранения данной силы параллельно коленчатому валу устанавливаются один или два уравновешивающих вала. На графике изображено изменение силы инерции (вертикальная ось) при различных углах поворота коленчатого вала (горизонтальная ось). Когда сила инерции первого и четвертого цилиндров имеет максимальное значение, сила инерции второго и третьего цилиндров мала. Исходя из этого, можно сделать вывод, что малая и большая силы инерции образуются два раза за один оборот коленчатого вала. Для снижения вибрации используется уравновешивающий вал, имеющий в сечении форму полукруга и вращающийся в противоположном направлении в два раза быстрее коленчатого вала. Таким образом, образуемая уравновешивающим валом сила инерции снижает или даже полностью устраняет вибрацию двигателя.
Прокладки и сальники
Головка цилиндров
Прокладка головки цилиндров
Жаропрочные кольца
Комплект прокладок и уплотнителей двигателя
Блок цилиндров
Масляный поддон картера
Сальник
Жидкий герметик
Прокладки — это уплотнительный материал, зажимаемый между двумя сопрягаемыми деталями и предотвращающий утечку через это соединение жидкостей и газов. Большинство прокладок можно использовать только один раз. Они изготавливаются из мягкого материала, такого как пробка, резина, нитрил, бумага, жаростойкие материалы или графит, или мягких сплавов и металлов, например латуни, меди, алюминия или мягкой листовой стали. Эти материалы могут использоваться по отдельности или в сочетании с другими материалами для получения требуемого уплотнения. Выбор материала и конструкции прокладки зависит от материала, из которого изготовлены сопрягаемые детали, и их формы, а также от давления и температуры. Прокладка головки цилиндров уплотняет стык головки и блока цилиндров и предотвращает утечку давления из камер сгорания. К прокладкам головок цилиндров современных двигателей предъявляются такие требования, как стойкость к воздействию высоких температур и детонации. Такие прокладки называют анизотропными. Их конструкция обеспечивает быстрый отвод тепла от двигателя к охлаждающей жидкости. Основой прокладок служит стальной каркас, который с двух сторон покрыт специальным материалом, обеспечивающим необходимую степень уплотнения при различных значениях крутящего момента двигателя. Кроме того, в конструкцию некоторых прокладок входят жаропрочные кольца из нержавеющей стали, уплотняющие камеры сгорания, предотвращая утечку тепла и давления. На обе стороны многих прокладок также наносится специальное покрытие на основе силикона для дополнительного уплотнения при запуске и прогреве двигателя в холодную погоду. Прокладка головки цилиндров уплотняет также масляные каналы и направляет поток охлаждающей жидкости между блоком цилиндров и головкой блока. Для предотвращения утечек и коррозии прокладки имеют буртики и кольца.
studfiles.net
|
|
|
|
Маховик
Маховик крепится к коленчатому валу, обеспечивает его плавное вращение и уменьшает неравномерность вращающей силы. Поскольку процесс сгорания происходит только один раз за два оборота коленчатого вала, инерция маховика необходима для тактов впуска, сжатия и выпуска. При отсутствии маховика вращающая сила коленчатого вала на этих тактах будет меньше, что приведет к остановке двигателя при низкой частоте вращения коленчатого вала, например на холостом ходу. В автомобилях с механической коробкой передач ведомый диск сцепления прилегает к плоской стороне маховика, что обеспечивает передачу крутящего момента на коробку передач.
Двухмассовый маховик
Двухмассовый маховик предназначен для поглощения вибраций двигателя для предотвращения их передачи в коробку передач и, следовательно, дребезжания шестерен. Двухмассовый маховик состоит из двух частей: основная часть (1), которая крепится болтами к фланцу коленчатого вала, вторичная часть (2), к которой болтами крепится ведомый диск сцепления, и зубчатый венец (5) привода стартера. В основной части имеются пружины (3), поглощающие вибрацию, и ограничитель крутящего момента (4), не допускающие передачу пиков крутящего момента двигателя, превосходящих предел прочности деталей двигателя и трансмиссии. Когда значение крутящего момента превышает определенный предел, ограничитель позволяет двум частям маховика вращаться независимо друг от друга, предотвращая тем самым повреждение привода ведущих колес и коробки передач.
|
|
|
|
Уравновешивающий вал
В результате возвратно-поступательного и вращательного движения поршней, шатунов и коленчатого вала образуется сила инерции. Для уменьшения или даже устранения данной силы параллельно коленчатому валу устанавливаются один или два уравновешивающих вала. На графике изображено изменение силы инерции (вертикальная ось) при различных углах поворота коленчатого вала (горизонтальная ось). Когда сила инерции первого и четвертого цилиндров имеет максимальное значение, сила инерции второго и третьего цилиндров мала. Исходя из этого, можно сделать вывод, что малая и большая силы инерции образуются два раза за один оборот коленчатого вала. Для снижения вибрации используется уравновешивающий вал, имеющий в сечении форму полукруга и вращающийся в противоположном направлении в два раза быстрее коленчатого вала. Таким образом, образуемая уравновешивающим валом сила инерции снижает или даже полностью устраняет вибрацию двигателя.
poznayka.org
Колебание угловой скорости машины принято характеризовать коэффициентом неравномерности еѐ движения .
max min .ср
Если требуется по заданной средней угловой скорости ср и по заданному коэффициенту неравномерности
движения определить минимальные и максимальные значения угловой скорости, то для этого имеем:
|
|
|
|
|
|
|
|
|
|
| min ср 1 |
| и maxср 1 | 2 | . | ||
|
|
|
| 2 |
|
|
| |
|
| Как видно из уравнений, отличие max | и min от | |||||
| ср | составляет . |
|
|
|
|
|
|
| 2 |
|
|
|
|
|
| |
|
|
|
|
|
|
|
|
Величина коэффициента неравномерности обычно не более 0,04. Следовательно, амплитуда колебаний угловой скорости машины не должна превышать в большин-
стве случаев 2 % от еѐ среднего значения ср .
Вслучае, когда колебания угловой скорости при установившемся движении превышают допустимые отклонения, возникает необходимость уменьшения размаха этих колебаний.
Из физики известно, что чем более инертна материальная система, тем значительнее она сопротивляется изменениям своей скорости, вызываемым действием приложенных к ней сил. Поэтому, например, чтобы заставить вал ведущего звена механизма вращаться с меньшей не-
равномерностью, нужно увеличить инерционность меха-
низма, т.е. J n .
Увеличение приведенного момента инерции механизма J n может быть достигнуто постановкой на ведущий вал механизма добавочной массы в виде маховика (рис. 21).
Рис. 21. Регулирование движения машины с помощью маховика
Основное назначение маховика состоит в ограничении колебаний угловой скорости в пределах, устанавливаемых величиной коэффициента неравномерности .
Момент инерции маховика можно определить по диаграмме энергомасс T f (Jn ) – диаграмме зависимо-
сти кинетической энергии механизма от его приведенного момента инерции.
Эта зависимость для установившегося движения, при периодическом изменении угловой скорости звена приведения, имеет вид замкнутой кривой, так как значения
величин T иJ n периодически повторяются (рис. 22).
Рис. 22. Диаграмма кинетической энергии в функции приведенного момента инерции для установившегося движения механизма
Диаграмму T f (Jn ) можно построить для каж-
дого механизма, если заданы силы, действующие на механизм, массы и моменты инерции звеньев и начальная кинетическая энергия механизма. Для этого необходимо определить для различных положений механизма значение кинетической энергии T по уравнению
ТТ0 А
изначение J n по уравнению
| n |
| VSi |
| 2 |
| i |
| 2 |
| ||
|
|
|
|
| ||||||||
|
|
|
|
|
|
|
| . | ||||
|
|
|
|
|
| |||||||
J n mi |
|
|
|
| J Si |
|
|
|
| |||
|
|
| n |
|
| n |
|
| ||||
| i 1 |
|
|
|
|
| ||||||
Диаграмму T f (Jn ) | можно | получить также | ||||||||||
графическим | построением, если имеются диаграммы | |||||||||||
T f ( ) и | Jn f ( )[1]. |
|
|
|
|
|
|
|
|
58
По диаграмме энергомасс можно определить угловую скорость звена приведения для любого положения механизма.
Пусть данному положению механизма соответствует точка B на кривойT f (Jn ) с координатамиx иy (рис. 23).
Рис. 23. К исследованию зависимости угловой скорости звена приведения от положения механизма
Тогда для этого положения T y T иJ n x J , гдеT – масштаб кинетической энергии;
J – масштаб момента инерции.
Так как T | J n n | 2 | , то n | 2 |
| 2T | . |
2 |
|
| J n | ||||
|
|
|
|
|
|
Подставляя значения T иJ n для точкиB , имеем
2 | 2 T | y | или 2 | 2 T | tg , |
| |||||
n | J | x | n | J |
|
|
|
|
где – угол наклона луча, проведенного из начала ко-
ординат в соответствующую точку, к оси J n .
Таким образом, видим, что квадрат скорости звена приведения пропорционален тангенсу угла .
Проведем | из начала | координат с | кривой |
T f (Jn ) две | касательные, | охватывающие | кривую |
(рис. 24). |
|
|
|
Рис. 24. К определению минимальной и максимальной угловой скорости звена приведения
Очевидно, что нижняя касательная, составляющая с осью J n минимальный уголmin , соответствует мини-
studfiles.net
Материал для маховика —это для примера. С таким же успехом можно было задать вопрос: из какого материала делать ракеты и теннисные ракетки, лодки и шесты для прыжков, топливные баки и корпуса автомобилей? И ответить: рациональнее всего из композитов.
Что такое маховик и для чего он нужен? В политехническом словаре за 1977 год сказано, что маховик — это колесо с массивным ободом, устанавливаемое на валу машины с неравномерной нагрузкой для выравнивания ее хода. Если иметь в виду только эту цель, то для изготовления маховиков целесообразно выбирать как можно более тяжелый материал, чтобы они справлялись со своей задачей при сравнительно небольших размерах.
Маховик — колесо с массивным ободомС тех пор роль маховиков в технике существенно расширилась. Во всяком случае, приведенное определение явно неполное.
Сегодня повышенный интерес к маховикам связан не только и не столько с их традиционным использованием для выравнивания нагрузки на валах поршневых двигателей, компрессоров, насосов и других машин, сколько с проблемой рекуперации механической энергии, то есть использования энергии, погашаемой при торможении машин.
Суть проблемы состоит в следующем. Движущиеся поезда, автомобили, трамваи, троллейбусы, автобусы периодически (и довольно часто) нужно останавливать. Для этого, как известно, служат тормоза. Но при каждом торможении кинетическая энергия транспортного средства переходит в тепло, нагревая тормозные колодки, диски и безвозвратно рассеиваясь в окружающей среде. При современном энергетическом кризисе такое расточительство недопустимо. Как показывают подсчеты, примерно половина энергии, развиваемой двигателями, теряется при торможении.
Вот маховики-то и могут помочь резко снижать эти потери. Маховик — аккумулятор механической энергии, то есть устройство, позволяющее накапливать механическую энергию, хранить ее и при необходимости опять выделять.
Если массивный маховик заставить вращаться с большой скоростью, он может за счет своей инерции развить мощность, достаточную для того, чтобы привести в движение автобус или поезд. Это его свойство и навело на мысль: вместо того, чтобы тратить кинетическую энергию машины на нагрев тормозов, ее нужно расходовать на раскручивание маховика, установленного на машине.
Маховик — аккумулятор механической энергииПри торможении маховик накапливает энергию, а когда возникнет необходимость снова тронуться с места, эта энергия будет передаваться с помощью специальных механизмов на ведущие колеса. Иными словами, разгон будет осуществлять энергия, накопленная при торможении. Это позволит на 30— 50 % сэкономить горючее, значительно уменьшить количество токсичных выхлопных газов, повысить проходимость.
В наше время все это настолько важно, что имеет прямой смысл заняться разработкой транспортных средств, снабженных маховиками, которые играют роль дополнительных источников энергии. И во всем мире такими разработками усиленно занимаются.
Основное требование, предъявляемое к маховику, вытекает из его назначения: он должен накапливать при вращении как можно больше энергии. Если маховик представить в виде тонкого кольца, величина этой энергии Е оценивается формулой:
Е=0,5 mV2, (1)
где m— масса кольца, V — линейная скорость его вращения.
Из этой формулы следует, что для увеличения энергоемкости маховик следует делать как можно тяжелее и вращать с максимально возможной скоростью.
Возникает вопрос, какой применить материал для маховика?
Нужно взять материал с максимально высокой плотностью γ, чему соответствует вольфрам, плотность которого 19 300 кг/м3.
Большую плотность имеют только осмий (γ=22 500 кг/м3), иридий (γ=22 400 кг/м3) и платина (γ=21 450 кг/м3), но это очень дорогие металлы.
Рассмотрим вариант применения вольфрама.
До какой скорости можно раскручивать маховик? Ясно, что не до бесконечно большой. Предельная скорость вращения ограничена прочностью материала. Известно, что при достижении определенной скорости вращения маховик может разорваться. Поскольку эти скорости составляют десятки и сотни метров в секунду, от такого разрушения ничего хорошего ждать не приходится. В лучшем случае дело кончится поломкой вала и ходовой части машины. Но при разрыве маховика разлетающиеся с огромной скоростью обломки могут разрушить близлежащие постройки и, что самое страшное, привести к человеческим жертвам. Так что допускать разрушения ни в коем случае нельзя.
Знаете ли вы, какие силы разрывают маховик? Часто можно услышать ответ: силы инерции или центробежные силы. Ничего подобного. Таких сил просто-напросто не существует. Вернее, они существуют на бумаге или в нашем воображении — так легче и удобнее проводить расчеты, но в маховике их нет. А есть силы связи между отдельными частями маховика (силы упругости), которые в результате стремления частей двигаться по инерции (то есть равномерно и прямолинейно) при вращательном движении приводят к деформации маховика. Возникающие при деформации силы обеспечивают всем частям вращающегося тела ускорения, необходимые для движения по окружности.
Если для обеспечения вращения нужны силы, превышающие прочность связи отдельных частей тела, оно разрушается. Таким образом, непосредственной причиной разрушения маховика является не его вращение и не действие воображаемых центробежных сил, а его деформация.
Для тонкостенного кольца, которым мы моделируем маховик, величину напряжений σ, возникающих в нем, можно оценить соотношением:
σ=γv2, (2)
где γ — плотность материала, v — линейная скорость вращения маховика.
Из этого уравнения можно рассчитать предельную допустимую скорость vпред, которая приводит к разрушению. Оно произойдет, когда величина напряжения σ достигнет предела прочности σв материала, из которого маховик изготовлен. При этом скорость v будет равна предельной скорости vпред которая рассчитывается из выражения
vпред = √σв / γ= √σуд (3)
Отношение прочности σв к плотности γ называется удельной прочностью σуд материала. Следовательно, предельно допустимая скорость вращения маховика равна корню из его удельной прочности.
Формула (1) определяет величину всей энергии, запасаемой маховиком. А удельная энергия, запасаемая единицей массы маховика (например, одним килограммом), составляет:
е=Е/m=0,5v2. (4)
Предельную величину удельной энергии епред, которую в состоянии накопить каждый килограмм массы маховика, можно рассчитать из уравнения (4), где вместо v следует поставить значение vпред из формулы (3), то есть:
епред=0,5σв/γ=0,5σуд (5)
Таким образом, максимальная удельная энергия, которую можно «накачать» в маховик, однозначно определяется удельной прочностью материала, из которого он изготовлен. При одинаковой прочности двух материалов большую удельную прочность имеет более легкий из них. Значит, чтобы сделать маховик максимально энергоемким, его нужно делать не из тяжелого, а из легкого, но прочного материала.
Итак, супермаховики, то есть маховики, способные запасать очень большое количество энергии, нужно делать из сверхпрочных и легких материалов. Из каких именно?
Чтобы ответить на этот вопрос, давайте сопоставим значения удельной прочности некоторых традиционных машиностроительных материалов (сталей, алюминиевых, титановых, вольфрамовых сплавов) и некоторых композитов. Эти значения приведены в таблице.
Материал | Предел прочности при растяжении, МПа | Плотность, кг/м3 | Удельная прочность, МПа/(кг/м2) |
Легированная сталь | 1500 | 7800 | 0,190 |
Алюминиевые сплавы | 600 | 2700 | 0,220 |
Титановые сплавы | 1500 | 4500 | 0,300 |
Вольфрамовые сплавы | 1500 | 19300 | 0,078 |
Композиты: | |||
Бороалюминий | 1400 | 2700 | 0,520 |
Углеалюминий | 1000 | 2300 | 0,430 |
Углепластики | 1400 | 1550 | 0,900 |
Органопластики | 1500 | 1380 | 1,090 |
Приведенные данные говорят: лучше всего для изготовления супермаховиков подходят композиты, в частности органопластики. Они обладают наибольшей удельной прочностью из всех известных конструкционных материалов.
А вольфрам, который мы хотели использовать, оказался самым неподходящим материалом, поскольку у него самая низкая удельная прочность. Каждый килограмм маховика из огранопластика способен накопить в 14 раз больше энергии, чем из вольфрама. Это связано с тем, что большая прочность и малая плотность органопластика позволяют раскручивать изготовленные из него маховики до огромных скоростей, тогда как вольфрамовые маховики сами себя разрывают при сравнительно низких скоростях вращения.
Но не во всех случаях удается реализовать возможности, заложенные в органопластиковых маховиках. Не будем забывать, что, хотя удельная энергия не зависит от массы маховика, абсолютная величина накапливаемой энергии пропорциональна его массе, поэтому маховик должен быть достаточно тяжелым, а при небольших размерах нужную массу из органопластика набрать трудно. Но если особых ограничений на размеры маховика нет и можно обеспечить максимально допустимые (из соображений прочности) скорости вращения, органопластики находятся вне конкуренции.
Из таблицы видно, что по удельной энергоемкости к органопластикам приближаются углепластики. Хотя они имеют несколько меньшую удельную прочность, их модуль Юнга, (подробнее: Армированные композиты) намного выше, а это означает, что маховики из углепластиков испытывают меньше деформации. Обстоятельство немаловажное. Дело в том, что маховики из органопластиков склонны к расслоению, и одна из главных причин этого — их низкая жесткость.
Супермаховики не только помогают экономить энергию, теряемую при торможении, они могут сами выполнять роль двигателя машины.
Подсчитано, что супермаховик из органопластика массой 127 кг и энергоемкостью 30 квт • ч, раскрученный в течение 5 минут мощным внешним двигателем, может обеспечить движение легкового автомобиля со скоростью 96 км/ч на расстояние 320 км. Электромобилю с аналогичными техническими характеристиками нужна батарея аккумуляторов массой 1 т. Как видим, 1 кг маховика может запасать намного больше энергии, чем современный электрический аккумулятор такой же массы.
Органопластики — это композиты, состоящие из полимерной матрицы и органических волокон. Если раньше органические волокна (капроновые, нейлоновые и др.) не могли конкурировать по прочности с лучшими образцами стеклянных, металлических и керамических волокон, то сегодня картина резко изменилась. Сверхпрочные и очень легкие органические волокна — наиболее перспективные армирующие элементы для полимерных матриц.
Большую популярность приобрели волокна, которые называются у нас СВМ, а за рубежом — Кевлар. Они имеют прочность при растяжении 3000—4000 МПа, легко подвергаются переработке, с ними удобно работать, и их выпуск постоянно растет. Однако в тяжелонагруженных конструкциях применение органопластиков вследствие их низкого модуля Юнга приводит к большим деформациям, что сказывается на работоспособности конструкций. Чтобы этого не происходило, к органическим волокнам добавляют более жесткие углеродные и получают так называемые гибридные композиты, содержащие два и более видов волокон. Если у волокон марки Кевлар-49 модуль упругости 140 000 МПа, то у углеродных волокон — 200 000—700 000 МПа при прочности 1000—3500 МПа.
Волокна кевлар как вид органопластикиВ качестве арматуры можно использовать не только отдельные волокна и нити, но и ткани, сетки, пряжу из органических и углеродных волокон.
Низкая плотность органо- и углепластиков (в пять раз ниже, чем у стали и почти вдвое, чем у алюминия) наряду с высокой прочностью делает их очень привлекательными для конструкторов, занимающихся разработкой не только маховиков, но и космических кораблей, самолетов, подводных лодок, спортивного инвентаря и многих других изделий.
Полимерные композиты уже широко применяются в технике. А внедрение в промышленность композитов на металлической основе отстает от полимерных.
Причина этого ясна. Методы получения новых композитов с полимерными матрицами (угле-, органо-, боропластиков) принципиально не отличаются от методов получения давно известных стеклопластиков, которые разработаны еще полвека назад. Замена стеклянных волокон более совершенными проходит сравнительно безболезненно, на том же оборудовании, теми же специалистами. А опыта промышленного производства металлических композитов пока очень мало. Это совсем новые материалы, они требуют нетрадиционных для металлургии и металлообработки технологий, создания специального оборудования, они просто непривычны для металлургов. А непривычное всегда кажется ненадежным.
Еще один вопрос, который хотелось бы обсудить: в каких случаях следует применять металлические, а в каких — полимерные композиты? Здесь все определяют условия работы материала. В супермаховиках, например, целесообразнее использовать полимерные композиты, поскольку у них удельная прочность выше, а нагрев при работе невелик. И вообще, при температурах, близких к комнатной, полимерные композиты обычно предпочтительнее по механическим свойствам. Но у полимеров есть серьезный недостаток — они не выдерживают высоких температур. Самые термостойкие из них разрушаются при температурах выше 600—700 К. Поэтому для конструкций, работающих в условиях интенсивного нагрева, нужны металлические композиты.
Выбор матричного материала могут диктовать и такие показатели, как электросопротивление, теплопроводность, стойкость к радиации, способность накапливать статическое электричество и др. В одних случаях по этим показателям подходят полимеры, в других — металлы. Поэтому полимерные и металлические композиты не только конкурируют, но и дополняют друг друга. И чем больше различных композитов создадут ученые, тем шире станут возможности техники, тем совершеннее будут изготовленные из них изделия.
libtime.ru
Маховик является важной деталью автомобильного двигателя, которая предназначена для выполнения таких сложных задач, как:
Маховик закреплен с торцевой части коленвала, непосредственно у заднего подшипника коренного типа. Коренной подшипник не только удерживает маховик в одном положении, но и снижает его рабочие нагрузки.
Принцип действия самого маховика заключается в снижении вибрации при вращательном моменте коленчатого вала. При интенсивной работе двигателя на такте движения идет накопление энергии, которая передается коленвалу. В других рабочих тактах происходит обратный процесс – сброс энергии.
Маховик позволяет аккумулировать энергию, обеспечивая равномерное движение коленчатого вала от одного такта к другому.
Как уже было сказано ранее, маховик – важная деталь автомобильного двигателя, относительно небольшой, но весьма увесистый диск, диаметр которого может составить 30-40 см. Торец маховика имеет зубчатые края, что позволяет ему соединяться со стартерным валом для передачи вращательной энергии коленвалу двигателя.
По типу конструкции маховики двигателя могут быть двухмассовыми, сплошными и облегченными. Наиболее распространенным и широко используемым является сплошной маховик. Мы рассмотрим каждый из этих видов.
Двухмассовый маховик (демпферный)
Это часто используемый вид маховика в современном автомобильном двигателе. Двухмассовый маховик – устройство, состоящее из двух дисков, соединенных специальным пружинно-демпферным устройством. Основными элементами двухмассового маховика являются: маховик, подшипник, пружина-дуга с наружными демпфером, нажимная пружина с внутренним демпфером и приводная пластина.
Подобное устройство выполняет ряд важных функций и задач:
Однако чрезмерно интенсивна работа такого вида маховика в конечном итоге может привести к быстрому износу пружинно-демпферного механизма или выходу из строя отдельных его элементов, например, пружины.
Сплошной маховик
Такой вид маховика является более эффективным для использования в автомобильных двигателях современного образца. Сплошной маховик – тяжеловесный чугунный диск, диаметр которого составляет 35-40 см. На внешней поверхности маховика находится стальной венец с зубьями, который обеспечивает движение коленчатого вала при запуске стартера. Одна сторона маховика оснащена ступицей, при помощи которой маховик соединяется с фланцем коленвала, противоположная сторона работает как диск сцепления.
Облегченный маховик
Данный вид маховика часто используют для проведения тюнинга двигателя автомобиля. Облегченный маховик - диск, на который надевается предварительно разогретое зубчатое колесо, после остывания которого, маховик приобретает вид шестерни.
Облегченный маховик имеет небольшую массу, в среднем в полтора раза меньше, чем у обычного маховика. Облегченный маховик позволяет автомобильному двигателю достигать максимальных рабочих оборотов, увеличивать мощность на 5-7 %, улучшать разгонную динамику автомобиля.
Маховик облегченного типа изготавливается из износостойкого металла, который способен выдерживать чрезмерные нагрузки при работе двигателя, при этом работать быстро, бесшумно и эффективно.
autodromo.ru