Камаз 44108 тягач В наличии!
Тягач КАМАЗ 44108-6030-24
евро3, новый, дв.КАМАЗ 740.55-300л.с., КПП ZF9, ТНВД ЯЗДА, 6х6, нагрузка на седло 12т, бак 210+350л, МКБ, МОБ
 
карта сервера
«ООО Старт Импэкс» продажа грузовых автомобилей камаз по выгодным ценам
+7 (8552) 31-97-24
+7 (904) 6654712
8 800 1005894
звонок бесплатный

Наши сотрудники:
Виталий
+7 (8552) 31-97-24

[email protected]

 

Екатерина - специалист по продаже а/м КАМАЗ
+7 (904) 6654712

[email protected]

 

Фото техники

20 тонный, 20 кубовый самосвал КАМАЗ 6520-029 в наличии
15-тонный строительный самосвал КАМАЗ 65115 на стоянке. Техника в наличии
Традиционно КАМАЗ побеждает в дакаре

тел.8 800 100 58 94

Техника в наличии

тягач КАМАЗ-44108
Тягач КАМАЗ 44108-6030-24
2014г, 6х6, Евро3, дв.КАМАЗ 300 л.с., КПП ZF9, бак 210л+350л, МКБ,МОБ,рестайлинг.
цена 2 220 000 руб.,
 
КАМАЗ-4308
КАМАЗ 4308-6063-28(R4)
4х2,дв. Cummins ISB6.7e4 245л.с. (Е-4),КПП ZF6S1000, V кузова=39,7куб.м., спальное место, бак 210л, шк-пет,МКБ, ТНВД BOSCH, система нейтрализ. ОГ(AdBlue), тент, каркас, рестайлинг, внутр. размеры платформы 6112х2470х730 мм
цена 1 950 000 руб.,
КАМАЗ-6520
Самосвал КАМАЗ 6520-057
2014г, 6х4,Евро3, дв.КАМАЗ 320 л.с., КПП ZF16, ТНВД ЯЗДА, бак 350л, г/п 20 тонн, V кузова =20 куб.м.,МКБ,МОБ, со спальным местом.
цена 2 700 000 руб.,
 
КАМАЗ-6522
Самосвал 6522-027
2014, 6х6, дв.КАМАЗ 740.51,320 л.с., КПП ZF16,бак 350л, г/п 19 тонн,V кузова 12куб.м.,МКБ,МОБ,задняя разгрузка,обогрев платформы.
цена 3 190 000 руб.,

СУПЕР ЦЕНА

на АВТОМОБИЛИ КАМАЗ
43118-010-10 (дв.740.30-260 л.с.) 2 220 000
43118-6033-24 (дв.740.55-300 л.с.) 2 300 000
65117-029 (дв.740.30-260 л.с.) 2 200 000
65117-6010-62 (дв.740.62-280 л.с.) 2 350 000
44108 (дв.740.30-260 л.с.) 2 160 000
44108-6030-24 (дв.740.55,рест.) 2 200 000
65116-010-62 (дв.740.62-280 л.с.) 1 880 000
6460 (дв.740.50-360 л.с.) 2 180 000
45143-011-15 (дв.740.13-260л.с) 2 180 000
65115 (дв.740.62-280 л.с.,рест.) 2 190 000
65115 (дв.740.62-280 л.с.,3-х стор) 2 295 000
6520 (дв.740.51-320 л.с.) 2 610 000
6520 (дв.740.51-320 л.с.,сп.место) 2 700 000
6522-027 (дв.740.51-320 л.с.,6х6) 3 190 000


Перегон грузовых автомобилей
Перегон грузовых автомобилей
подробнее про услугу перегона можно прочесть здесь.


Самосвал Форд Нужны самосвалы? Обратите внимание на Ford-65513-02.

КАМАЗы в лизинг

ООО «Старт Импэкс» имеет возможность поставки грузовой автотехники КАМАЗ, а так же спецтехники на шасси КАМАЗ в лизинг. Продажа грузовой техники по лизинговым схемам имеет определенные выгоды для покупателя грузовика. Рассрочка платежа, а так же то обстоятельство, что грузовики до полной выплаты лизинговых платежей находятся на балансе лизингодателя, и соответственно покупатель автомобиля не платит налогов на имущество. Мы готовы предложить любые модели бортовых автомобилей, тягачей и самосвалов по самым выгодным лизинговым схемам.

Контактная информация.

г. Набережные Челны, Промкомзона-2, Автодорога №3, база «Партнер плюс».

тел/факс (8552) 388373.
Схема проезда



Теплопередача в электрических машинах. Теплопередача путем конвекции может происходить


это что такое? Виды, способы, расчет теплопередачи

Теплопередача - это что такое? Виды, способы, расчет теплопередачи

07.10.2017 16:43

Теплопередача - это важный физический процесс. Он предполагает перенос теплоты и является сложным процессом, который состоит из совокупности простых превращений.

Существуют определенные виды теплопередачи: конвекция, теплопроводность, тепловое излучение.

Теплопередача - это что такое? Виды, способы, расчет теплопередачи

Особенности процесса

Теория теплообмена является наукой об особенностях передачи теплоты. Теплопередача - это перенос энергии в газообразных, жидких, твердых средах.

Теория о теплоте появилась в середине XVIII века. Ее автором стал М. В. Ломоносов, который сформулировал механическую теорию теплоты, воспользовавшись законом сохранения и превращения энергии.

Теплопередача - это что такое? Виды, способы, расчет теплопередачи

Варианты теплообмена

Теплопередача - это составная часть теплотехники. Разные тела могут обмениваться своей внутренней энергией в форме теплоты. Вариант теплообмена является самопроизвольным процессом передачи теплоты в свободном пространстве, который наблюдается при неравномерном распределении температур.

Разность в значениях температур является обязательным условием проведения теплообмена. Распространение тепла происходит от тел, имеющих более высокую температуру, к телам, обладающим меньшим ее показателем.

Результаты исследований

Теплопередача - это процесс переноса тепла и внутри твердого тела, но при условии, что есть разность температур.

Многочисленные исследования свидетельствуют о том, что теплопередача ограждающих конструкций является сложным процессом. Для того чтобы упростить изучение сути явлений, связанных с передачей тепла, выделяют элементарные операции: кондукцию, излучение, конвекцию.

Теплопроводность: общая информация

Чаще всего используется какой вид теплопередачи? Переносом вещества внутри тела можно изменить температуру, например, нагревая металлический стержень, увеличить скорость теплового движения атомов, молекул, повысить показатель внутренней энергии, увеличить теплопроводность материала. По мере соударения частиц происходит постепенная передача энергии, в результате чего весь стержень меняет свою температуру.

Если рассматривать газообразные и жидкие вещества, то передача энергии путем теплопроводности в них имеет незначительные показатели.

Теплопередача - это что такое? Виды, способы, расчет теплопередачи

Конвекция

Такие способы теплопередачи связаны с переносом теплоты при движении в газах или жидкостях из области с одним температурным значением в область с другим ее показателем. Существует подразделение конвекции на два вида: вынужденную и свободную.

Во втором случае происходит перемещение жидкости под воздействием разности в плотностях ее отдельных частей из-за нагревания. К примеру, в помещении от горячей поверхности радиатора холодный воздух поднимается вверх, получая от батареи дополнительное тепло.

В тех случаях, когда для перемещения тепла необходимо применение насоса, вентилятора, мешалки, ведут речь о вынужденной конвекции. Прогревание по всему объему жидкости в этом случае происходит существенно быстрее, нежели при свободной конвекции.

Теплопередача - это что такое? Виды, способы, расчет теплопередачи

Излучение

Какой вид теплопередачи характеризует изменение температурного показателя в газообразной среде? Речь идет о тепловом излучении.

Именно оно предполагает перенос тепла в виде электромагнитных волн, подразумевающий двойной переход тепловой энергии в излучение, затем обратно.

Особенности передачи тепла

Для того чтобы проводить расчет теплопередачи, необходимо иметь представление о том, что для теплопроводности и конвекции нужна материальная среда, а для излучения в этом нет необходимости. В процессе теплообмена между телами наблюдается уменьшение температуры у того тела, у которого этот показатель имел большую величину.

На такую же точно величину повышается температура холодного тела, что подтверждает полноценный процесс обмена энергией.

Интенсивность теплообмена зависит от разности в температурах между телами, которые обмениваются энергией. Если она практически отсутствует, процесс завершается, устанавливается тепловое равновесие.

Теплопередача - это что такое? Виды, способы, расчет теплопередачи

Характеристика процесса теплопроводности

Коэффициент теплопередачи связан со степенью нагретости тела. Температурным полем называют сумму показателей температур для разных точек пространства в определенный момент времени. При изменении значения температуры в единицу времени поле является нестационарным, для неизменной величины – стационарным видом.

Изотермическая поверхность

Независимо от температурного поля, всегда можно выявить точки, имеющие одинаковое температурное значение. Геометрическое расположение их образует определенную изотермическую поверхность.

В одной точке пространства не допускается одновременного нахождения двух разных температур, поэтому изотермические поверхности не могут пересекаться между собой. Можно сделать вывод о том, что изменение в теле значения температуры проявляется лишь в тех направлениях, которые пересекают изотермические поверхности.

Максимальный скачок отмечается в направлении нормали к поверхности. Температурный градиент представляет собой отношение наибольшего показателя температур к промежутку между изотермами и является векторной величиной.

Он показывает интенсивность изменения температуры внутри тела, определяет коэффициент теплопередачи. То количество теплоты, которое будет переноситься через любую изотермическую поверхность, называют тепловым потоком.

Под его плотностью подразумевают отношение к единице площади самой изотермической поверхности. Эти величины являются векторами, противоположными по направлению.

Теплопередача - это что такое? Виды, способы, расчет теплопередачи

Закон Фурье

Он является основным законом теплопроводности. Суть его заключается в пропорциональности плотности теплового потока градиенту температуры.

Коэффициент теплопроводности характеризует способность тел пропускать теплоту, он зависит от физических свойств вещества и его химического состава, влажности, температуры, пористости. Влага при заполнении пор стимулирует повышение теплопроводности. При высокой пористости внутри тела содержится повышенное количество воздуха, что сказывается на уменьшении показателя теплопроводности.

Определенный коэффициент сопротивления теплопередаче есть у всех материалов, найти его можно в справочниках.

Теплопроводность в твердой стенке

В качестве обязательного условия для данного процесса считается разность температур поверхностей стенки. В такой ситуации образуется поток теплоты, который направлен от стенки с большим значением температуры к поверхности стенки с небольшой температурой.

По закону Фурье тепловой поток будет пропорционален площади стенки, а также температурному напору, и обратно пропорционален толщине этой стенки.

Приведенное сопротивление теплопередаче зависит от теплопроводности материала, из которого изготовлены стенки. Если они включают в себя несколько разных слоев, их считают многослойными поверхностями.

В качестве примера подобных материалов можно назвать стены домов, где на кирпичный слой наносят внутреннюю штукатурку, а также внешнюю облицовку. В случае загрязнения наружной поверхности передающей тепловую энергию, к примеру, радиаторов либо двигателей, грязь можно рассмотреть как наложение нового слоя, имеющего незначительный коэффициент теплопроводности.

Именно из-за этого снижается теплообмен, возникает угроза перегревания работающего двигателя. Аналогичный эффект вызывает нагар и накипь. При увеличении количества слоев стенки растет ее максимальное термическое сопротивление, уменьшается величина теплового потока.

Для многослойных стенок распределение температуры является ломаной линией. Во многих теплообменных аппаратах осуществляется прохождение теплового потока через стенки круглых трубок. Если нагревающее тело движется внутри таких трубок, то в таком случае тепловой поток направлен к наружным стенкам от внутренних частей. При наружном варианте наблюдается обратный процесс.

Теплопередача - это что такое? Виды, способы, расчет теплопередачи

Теплопередача: особенности процесса

Существует взаимодействие между тепловым излучением, конвекцией, теплопроводностью. Например, в процессе конвекции происходит тепловое излучение. Теплопроводность в пористых материалах невозможна без излучения и конвекции.

При проведении практических вычислений деление сложных процессов на отдельные явления не всегда целесообразно и возможно. В основном результат суммарного воздействия нескольких простейших явлений приписывают тому процессу, который считается основным в конкретном случае.

Второстепенные процессы при таком подходе учитывают только для количественных вычислений.

В современных теплообменных аппаратах происходит передача теплоты от одного вида жидкости к другой жидкости через стенку, которая их разделяет. Важным фактором, который влияет на коэффициент теплообмена, является форма стенки. Если она плоская, в таком случае можно выделить три этапа теплопередачи:

    к поверхности стенки от нагревающей жидкости;теплопроводностью через стенку;к нагреваемой жидкости к поверхности стенки.

Полное термическое сопротивление теплопередачи является величиной, которая обратна коэффициенту теплопередачи.

Заключение

Теплопроводность является процессом передачи внутренней энергии от нагретых участков тела к его холодным частям. Подобный процесс осуществляется с помощью беспорядочно движущихся атомов, молекул, электронов. Такой процесс может происходить в телах, которые имеют неоднородное распределение значений температур, но будет отличаться в зависимости от агрегатного состояния рассматриваемого вещества.

Можно рассматривать данную величину в качестве количественной характеристики способности тела к провождению тепла. Удельной теплопроводностью называют количество тепла, которое может проходить через материал, имеющий толщину 1м, площадь 1 м²/сек.

Долгое время считали, что существует взаимосвязь между передачей тепловой энергии и перетеканием от тела к телу теплорода. Но после проведения многочисленных экспериментов была выявлена зависимость подобных процессов от температуры.

В реальности при проведении математических расчетов, касающихся определения количества теплоты, передаваемой разными способами, учитывают проводимость путем конвекции, а также проникающее излучение. Коэффициент теплопередачи связан со скоростью передвижения жидкости, характером движения, его природой, а также с физическими параметрами движущейся среды.

В качестве носителей лучистой энергии выступают электромагнитные колебания, имеющие разную длину волн. Излучать их могут любые тела, температура которых превышает нулевое значение.

Излучение является результатом процессов, происходящих внутри тела. При попадании его на другие тела наблюдается частичное ее поглощение и частичное поглощение телом.

Закон Планка определяет зависимость плотности поверхностного потока излучения черного тела от абсолютной температуры и длины волны.

Простейшие виды теплообмена, которые были рассмотрены выше, не существуют по отдельности, они взаимосвязаны друг с другом. Сочетание их является сложным теплообменом, который предполагает серьезное изучение и детальное рассмотрение.

В теплотехнических расчетах используют суммарный коэффициент передачи тепла, который представляет собой совокупность коэффициентов теплоотдачи соприкосновением, которое учитывает теплопроводность, конвекцию, излучение.

При правильном подходе и учете отдельных тепловых явлений можно с высокой достоверностью рассчитать количество теплоты, переданное телу.

www.nastroy.info

Тепло передача посредством конвекции - Справочник химика 21

    Передача тепла от одного тела к другому может происходить посредством теплопроводности, конвекции и лучеиспускания. [c.363]

    Передача тепла посредством конвекции (теплопереход) [c.32]

    Тепло может передаваться из одной части пространства в другую посредством теплопроводности, излучения и конвекции. Практически указанные виды теплообмена очень редко наблюдаются раздельно (например, конвекция сопровождается теплопроводностью и излучением). Однако часто один вид передачи тепла преобладает над другими в такой мере, что их влиянием можно пренебречь. Например, можно считать, что прохождение тепла через стенки аппаратов происходит только путем теплопроводности. Теплопроводность преобладает также в процессах нагревания и охлаждения твердых тел. [c.277]

    Теплопередача может осуществляться посредством теплопроводности, конвекции или излучения. Теплопроводность — процесс передачи тепла через твердое тело, например через стенку колбы. Конвекция возможна там, где частицы веществ не имеют фиксированного положения, т. е. в жидкостях и газах. В этом случае тепло переносится при помощи движущихся частиц. Излучение — это передача тепла тепловыми лучами с длиной волны в пределах 0,8—300 мкм. Чаще всего теплопередача осуществляется одновременно всеми тремя способами, хотя, конечно, не в равной мере. [c.14]

    Теплопроводность связана с передачей тепла посредством движения и столкновения атомов и молекул, из которых состоит вещество. Она аналогична процессу диффузии, при котором с помощью подобного же механизма происходит передача материала. Конвекция является переносом тепла посредством движения больших агрегатов молекул, т. е., в сущности, подобна процессу смешения. Очевидно, что теплопередача путем конвекции может происходить только в жидкостях и газах, тогда как теплопроводность является основным видом теплопередачи в твердых телах. В жидкостях и газах, наряду с конвекцией, наблюдается также и теплопроводность, однако первая является значительно более быстрым процессом и обычно полностью маскирует второй процесс. И теплопроводность и конвекция требуют материальной среды и не могут происходить в полном вакууме. Этим подчеркивается основное различие между этими двумя процессами и процессом излучения, который лучше всего происходит в пустоте. Точный процесс, которым осуществляется передача энергии излучением через пустое пространство, еще не установлен, но для нашей цели будет удобно считать его происходящим посредством волнового движения в чисто гипотетической среде (эфире). Считается, что внутренняя энергия вещества передается волновому движению эфира это движение распространяется во всех направлениях, и когда волна сталкивается с веществом, энергия может передаваться, отражаться или поглощаться. При поглощении она может увеличить внутреннюю энергию тела тремя способами 1) вызвав химическую реакцию, [c.418]

    При контактном охлаждении посредством хладоносителя охлаждаемое тело или погружается в бак с хладоносителем или орошается хладоносителем и передача тепла осуществляется прямым контактом посредством конвекции. Если непосредственное соприкосновение охлаждаемого тела нежелательно во избежание каких-либо недопустимых изменений на его поверхности, то передача тепла может быть осуществлена непрямым контактом посредством конвекции и теплопроводности через металлические стенки труб [c.177]

    Передача тепла конвекцией происходит только в жидкостях и газах путем перемещения их частиц. Перемещение частиц обусловлено движением всей массы жидкости или газа (вынужденная или принудительная конвекция), либо разностью плотностей жидкости в разных точках объема, вызываемой неравномерным распределением температуры в массе жидкости или газа (свободная, или естественная, конвекция). Конвекция всегда сопровождается передачей тепла посредством теплопроводности. [c.364]

    Кроме того, конструкция печи влияет на теплопередачу посредством своих элементов, предназначенных для сжигания топлива, превращения в тепло электроэнергии и перемещения газов. От этих конструктивных элементов зависят интенсивность и характер тепловыделения, скорость и направление движения газов, т.е. факторы, которыми определяется температура газовой среды ГД1) (функция времени — продолжительности передачи тепла) и суммарный (включающий излучение и конвекцию) коэффициент теплоотдачи а ., или а . (формула (12.8) и (12.9)). [c.627]

    Вакуумно-порошковая изоляция. При заполнении изолирующего пространства порошком с малым объемным весом (большим отношением объема газовых промежутков к объему твердого материала) было обнаружено, что эффективный коэффициент теплопроводности приближается к коэффициенту теплопроводности газа. Передача тепла через порошок за счет теплопроводности твердого материала оказывается сравнительно небольшой. Кроме того, присутствие порошка препятствует до некоторой степени передаче тепла посредством конвекции и теплового излучения. Если уменьшать давление газа в порошке, то тепловой поток через порошок сначала изменяется слабо, поскольку в области высоких давлений теплопроводность газа почти не зависит от давления. Однако, когда давление газа приближается к значению, при котором средний свободный пробег молекул соизмерим с расстоянием между [c.232]

    Теплопередача через какую-либо стенку от более нагретого теплоносителя к другому, более холодному теплоносителю, является относительно сложным явлением. Если взять, например, трубный пучок испарителя, который обогревается дымовыми газами, то налицо имеется три элементарных способа передачи тепла, которые рассматриваются в качестве основных. Тепло дымовых газов передается к трубкам пучка посредством теплопроводности, конвекции и излучения. Через стенки трубок тепло передается только посредством теплопроводности, а от внутренней поверхности трубки- к [c.19]

    Для традиционных (термических) способов нагрева характерна передача тепла в объем вещества с его поверхности посредством теплопроводности и конвекции. Если теплопроводность объекта низка, что имеет место у диэлектриков, то нагрев происходит очень медленно, с локальным перегревом поверхности. В случае воздействия микроволн на диэлектрик нагрев происходит изнутри одновременно по всему объему образца за счет создания эффекта диэлектрических потерь. [c.7]

    Коксовая печь является одной из наиболее сложных конструкций промышленных печей В коксовых печах передача тепла происходит одновременно посредством теплопроводности, конвекции и теплоизлучения Все виды передачи тепла возможны только при наличии разности температур, причем тепло всегда передается от нагретого тела к холодному [c.145]

    Теплопередача осуществляется посредством теплопроводности, конвекции и лучеиспускания. Теплопроводность характеризуется непосредственной передачей тепла от одной частицы вещества к другой. При конвекции тепло передается вместе с движущимися частицами жидкости или газа. Лучеиспускание состоит в передаче тепла на расстояние в виде лучистой энергии, т. е. электромагнитных колебаний. Обычно при нагревании наблюдаются одновременно разные виды теплопередачи, чаще всего теплопроводность и конвекция. [c.20]

    Лучеиспускание. Каждому известно, что если поместить какой-либо предмет перед открытой дверцей топящейся печи, то этот предмет быстро нагреется. Если же между печью и предметом поставить перегородку, например закрыть дверцу печи, то такого нагревания не произойдет. Отсюда можно сделать. вывод, что тепло помимо указанных выше двух способов (теплопроводности и конвекции) может передаваться также и непосредственно от горячего тела к холодному, даже и в том случае, если между ними нет промежуточного проводящего тепло тела. Такой способ передачи тепла называется лучеиспусканием. Это название дано потому, что распространение тепла здесь происходит при посредстве тепловых лучей, идущих от горячего тела во все стороны по прямым направлениям подобно световым лучам. Таким образом все накаленные [c.41]

    Взаимодействие горючих паров с кислородом воздуха происходит в зоне горения, в которую непрерывно должны поступать горючие пары и воздух. Это возможно, если жидкость будет получать определенное количество тепла, необходимое для испарения. Тепло в процессе горения поступает только из зоны горения (пламени), где оно непрерывно выделяется. Тепло от зоны горения к поверхности жидкости передается посредством излучения. Передача тепла путем теплопроводности невозможна, так как скорость движения паров от поверхности /кидкости к зоне горения больше скорости передачи тепла по ним от зоны горения к жидкости. Передача тепла конвекцией также невозможна, тан как поток паров [c.113]

    Передача тепла может осуществляться посредством одного из трех указанных ниже способов или их сочетания. Эти способы еле дующие 1) теплопроводность, 2) конвекция и 3) излучение [c.418]

    Электронагрев связан с непосредственным превращением электрической энергии в другие виды энергии, которые можно передавать в виде теплоты и которые мы объединили под общим названием термической энергии. По первому закону, 1 квт.-ч электрической энергии эквивалентен 860 ккал теплоты. Имеются три метода превращения 1) посредством сопротивления 2) посредством электрической дуги и 3) посредством индукции. Материал, который следует нагреть, может сам служить сопротивлением благодаря этому тепло выделяется непосредственно в точке его приложения, и проблемы передачи его отпадают. В других случаях можно использовать специальные сопротивления, например проволоку из хромовых сплавов, графитовые или карборундовые формы тогда тепло, получаемое в сопротивлении, передается в точку приложения с помощью излучения или конвекции, или посредством их сочетания. Скорость нагрева сопротивлением дается простой зависимостью  [c.425]

    Одним из наиболее распространенных и старых (предложен в 1880 г.) является термокондуктометрический метод. Действие термокондуктометрических газоанализаторов основано на зависимости электрического сопротивления проводника с большим температурным коэффициентом сопротивления от теплопроводности смеси, окружающей проводник. Тепло передается через газовую среду посредством теплопроводности, конвекции и излучения. Теплопроводность газа связана с его составом. Долю передачи тепла путем конвекции и излучения стремятся уменьшить либо стабилизировать. [c.217]

    Таким образом, оборотная вода в том или ином охладителе охлаждается посредством передачи тепла атмосферному воздуху, причем часть тепла передается в результате поверхностного испарения воды — превращением части воды в пар и переносом этого пара путем диффузии в воздух, другая часть — вследствие разницы между температурами воды и воздуха, т. е. теплоотдачей соприкосновением (теплопроводностью и конвекцией). Весьма небольшое количество тепла отнимается от воды еще излучением, что в тепловом балансе обычно не учитывают. Одновременно имеется приток тепла к охлаждаемой воде от солнечной радиации, который так мал, что в тепловом балансе градирен и брызгальных бассейнов им пренебрегают. [c.320]

    Передача тепла конвекцией от поверхности твердого тела к жидкости (газу) или обратно, а также конвективное распространение тепла в жидких или газообразных веществах происходит в результате перемещения молярных частиц, состоящих из большого числа молекул этих веществ. Перемещение таких частиц обусловлено либо движением всей массы жидкости (газа) под влиянием внешнего воздействия (принудительная конвекция), либо является следствием разности плотностей вещества в различных точках пространства, вызываемой неравномерным распределением температур в массе вещества (естественная конвекция). Конвекция всегда сопровождается передачей тепла посредством теплопроводности. [c.271]

    Передача тепла от тел более нагретых телам менее нагретым осуществляется посредством теплопроводности, конвекции и теплового излучения. - [c.31]

    Различают три вида теплообмена теплопроводность, конвекцию и тепловое излучение. Теплопроводностью называется явление переноса тепла путем непосредственного соприкосновения между частицами с различной температурой. К этому виду относится передача тепла в твердых телах, например, через стенку аппарата. Конвекцией называется явление переноса тепла путем перемеш,ения частиц жидкости или газа и перемешивания их между собой. Теплообмен может осуществляться также посредством лучеиспускания — переноса энергии подобно свету в виде электромагнитных волн. [c.25]

    Рыхлые материалы с малым объемным весом, как, например, порошки и волокна, заполненные газом при атмосферном давлении, применяются для изоляции воздушных ожижителей, резервуаров для жидкого кислорода и азота, газоразделительных колонн и другого оборудования,температура которого не опускается ниже температуры кипения жидкого азота. В таких изолирующих материалах отношение объема газового пространства к объему твердого материала может быть от 10 до 100. На фиг. 5.53 представлены коэффициенты теплопроводности некоторых распространенных рыхлых материалов. Теплопроводность лучших образцов этих материалов приближается к теплопроводности воздуха, указывая на то, что воздух, занимающий пространство между частицами, переносит основную часть тепла. Это поясняет принцип газонаполненной изоляции, твердый материал которой предотвращает теплопередачу посредством излучения и конвекции. В идеальном случае передача тепла за счет теплопроводности твердого материала пренебрежимо мала, и тепло переносится только газом. В действительной изоляции некоторое количество тепла проходит непосредственно по частицам порошка или волокнам, и результирующий коэффициент теплопроводности обычно несколько больше коэффициента теплопроводности газа. Исключением являются очень мелкие порошки, расстояния между частицами которых так малы, что средний свободный пробег молекул газа больше этих расстояний теплопроводность газа в этом случае уменьшается, как и при понижении давления. Таким образом, теплопроводность порошковой изоляции даже в случае заполнения порошка газом при атмосферном давлении может быть меньи г, чем теплопроводность газа, заполняющего пространство между частицами. [c.238]

    Нагретые пороховые газы, проникая по поровым каналам в глубь пласта, расплавляют выпавшие в процессе эксплуатации скважины тяжелые компоненты нефти (смолы, асфальтены, парафины). После сгорания заряда давление в скважине снижается и пороховые газы, находящиеся в пласте, вытесняются пластовым флюидом в ствол скважины, увлекая за собой расправленные отложения. Поэтому роль теплового фактора в процессе ТГХВ значительно усилена по сравнению с другими способами нагревания призабойной зоны скважин. Шпример, при электропрогреве передача тепла осуществляется через скелет продуктивного пласта и частично посредством конвекции в стволе скважины. [c.15]

    Следует отметить, что по отношению к дисперсным материалам термин теплопроводность может применяться лишь условно, если под этим понятием подразумевать не только кон-дуктивную теплопередачу (т. е. собственно теплопроводность), но и передачу тепла посредством конвекции и излучения. Таким образом, определенный для дисперсных сред коэффициент теплопроводности представляет собой некую величину, эквивалентную коэффициенту тенлопроводности в уравнении Фурье, если в целом это уравнение применимо в данных условиях (т. е. если процесс передачи тепла посредством перечисленных механизмов может быть достаточно точно описан этим уравнением). Эту величину поэтому правильнее называть эквивалентным коэффициентом теплопроводности (см. раздел II и др.). Имея это в виду, мы, однако, сохраним ради краткости общепринятый термин теплопроводность . [c.207]

    Движение газов в печных каналах и полостях, вообще говоря, может идти несмешивающимися струями по траекториям, подобным форме канала такое движение называется ламинарным. Это соответствует значению критерия Рейнольдса Ке 2 300. Оно редко наблюдается в печных газоходах. При ламинарном движении перенос массы осуществляется путем молекулярной диффузии, а передача тепла — путем теплопроводности тепло- и массообмен протекают слабо. При Ке>2 300 инерционные силы в потоке превалируют над силами трения настолько, что в потоке образуется множество возбужденных пересекающихся струек масса переносится главным образом путем вихревой диффузии, а теплота — посредством конвекции. Скорость в каждой точке изменяется по величине и направлению. Такое движение называется турбулентным. При постоянном расходе газа через какое-либо сечение средняя скорость турбулентного движения в данной точке остается постоянной по величине и направлена в сторону движения. На рис. 8-1 показано значение вектора мгновенной скорости т в данной точке, являющейся геометрической суммой средней скорости ш (постоянной по величине и направлению) и пульсационной скорости гд, изменяющейся по величине и направлению  [c.93]

    В этом приборе проводник с большим температурным коэффициентом сопротивления (тонкая платиновая проволока) помещается в емкость с определенной газовой смесью, при этом его температура, а следовательно, и величина электрического сопрстивле- ния зависят от теплоотдачи в окружающую среду. Как известно, передача тепла происходит посредством теплопроводности, конвекции и лучеиспускания. Так как только теплопроводность закономерно связана с составом газовой смеси, то в этом газоанализаторе уменьшают долю тепла, передаваемую путем конвекции и лучеиспускания. [c.217]

    Гомогенизация растворимых сред обеспечивается движением перемешиваемых масс, которое может быть свободным или вынужденным. Взаимносмешивающие-ся жидкости, находящиеся в замкнутом пространстве, через некоторое время самопроизвольно смешаются. Это перемешивание вызывается движением частиц жидкости, которое происходит под влиянием молекулярной диффузии или вследствие массопередачи в условиях свободной конвекции, возникающей из-за неодинаковой плотности жидкостей или разной температуры в различных слоях жидкости, или же осуществляется под влиянием обоих процессов одновременно. При нормальной температуре и давлении преобладает влияние молекулярной диффузии. Для перемешивания более быстрого, чем самопроизвольное, используют передачу массы или тепла посредством вынужденной конвекции, которая достигается направленным движением жидкости. [c.53]

    Переда ча тепла перемещением нагретых слоев вещества называется конвекцией. Таким путем нагреваются газы и жидко-, сти. Процесс нагревания конвекцией основан на том, что более нагретые слои вещества как более лепкие поднимаются вверх, а более холодные и тяжелые опускаются вниз такая циркуляция происходит до тех пор, пока вся масса не прогреется ра вномер-но. Конвекция, происходящая вследствие расширения, а следовательно уменьшения плотности газа или жидкости, называется свобюдной в отличие от принужденной конвекции, когда для более интенсив ного пере.мешивания теплых и холодных слоев применяют перекачивание жидкости (насосом) или газа (вентилятором). Конвекция всегда сопровождается передачей тепла посредством теплопроводности. [c.23]

    Для достижения перемешивания более быстрого, чем самопро-, извольное, используют передачу массы или тепла посредством вынужденной конвекции, которая достигается направленным движением жидкости—течением. [c.18]

chem21.info

Теплопередача в электрических машинах

Потери энергии вызывают выделение тепла и нагревание частей электрической машины. Передача тепла от более нагретых частей машины к менее нагретым и в окружающую среду происходит путем теплопроводности, лучеиспускания и конвекции.

Теплопередача путем теплопроводности

Теплопередача путем теплопроводности в электрических машинах происходит главным образом внутри твердых тел (медь, сталь, изоляция), в то время как в газах (воздух, водород) и жидкостях (масло, вода) главное значение имеет передача тепла конвекцией.

Если площадь каждой из двух параллельных поверхностей (например, медь обмотки и стенка паза машины) равна S и температуры ϑ1 и ϑ2 на каждой поверхности постоянны, то через среду между этими поверхностями (в данном случае через изоляцию) в единицу времени передается количество теплоты

(1)

Здесь δ – расстояние между поверхностями, а λпр – коэффициент теплопроводности промежуточной среды, численно равный количеству теплоты, передаваемой в единицу времени через единицу площади при разности температур 1 °С и расстоянии между поверхностями, равном единице длины.

Теплопроводность металлов достаточно велика; например, для меди λпр = 385 Вт/(°С × м), а для электротехнической стали λпр = 20 – 45 Вт/(°С × м). Теплопроводность электроизоляционных материалов, наоборот, мала: например, для изоляции класса A λпр = 0,10 – 0,13 Вт/(°С × м), а для изоляции класса B λпр = 0,15 – 0,20 Вт/(°С × м). Вследствие этого перепады температуры в изоляции обмоток электрических машин получаются значительными, что затрудняет охлаждение обмоток и ограничивает значения линейной нагрузки и плотности тока.

Для машин с изоляцией класса A характерны следующие значения величин: толщина пазовой изоляции δ = 0,5 мм = 5 × 10-4 м, тепловой поток на 1 м² поверхности изоляции Q = 2500 Вт. Если принять λпр = 0,125 Вт/(°С × м), то при этих условиях, согласно выражению (1), перепад температуры в изоляции

В высоковольтных машинах переменного тока толщина изоляции составляет несколько миллиметров, а Θиз = 20 – 25 °С.

Теплопередача лучеиспусканием

Для абсолютно черного тела действителен закон Стефана-Больцмана:

(2)

где qлч – количество теплоты, излучаемое с единицы поверхности тела в единицу времени; αлч – коэффициент лучеиспускания; ϑ1a и ϑ2a – абсолютные температуры излучающей поверхности и окружающей среды.

Согласно опытным данным, для абсолютно черного тела αлч = 5,65 × 10-8 Вт/(К4 × м²). Для не абсолютно черных тел, например для чугунных и стальных поверхностей, лакированной изоляции, αлч уменьшается на 3 – 10 %.

Выражение (2) для практических целей можно преобразовать. Имеем

(3)

Для электрических машин ϑ1a = 273 + ϑ1 и ϑ2a = 273 + ϑ2 изменяются в небольших пределах, и поэтому второй множитель в правой части (3) изменяется относительно мало. Первый же множитель ϑ1a – ϑ2a = Θ представляет собой превышение температуры тела над температурой окружающей среды. Поэтому формулу (2) можно записать в следующем виде:

где λлч – преобразованный коэффициент лучеиспускания, равный количеству теплоты, излучаемой в единицу времени с единицы поверхности при превышении температуры на 1 °С. Для электрических машин в среднем λлч = 6 Вт/(°С × м²).

Полное количество теплоты, излучаемое с поверхности S в единицу времени:

Qлч = λлч × S × Θ .
(5)

Теплопередача при естественной конвекции

Частицы жидкости или газа, соприкасающиеся с нагретым телом, нагреваются,  становятся легче и вследствие этого поднимаются кверху, уступая свое место другим, еще не нагретым частицам, которые в свою очередь, нагреваясь, поднимаются кверху и так далее. Это явление будем называть естественной конвекцией в отличие от искусственной конвекции, которая создается искусственно, например, путем обдува охлаждаемой поверхности воздухом при помощи вентилятора.

Рассмотрим сначала естественную конвекцию.

Количество теплоты, отводимой конвекцией в единицу времени с единицы поверхности, определяется по формуле, аналогичной (4), и равно

qкв = λкв × Θ , (6)

а с поверхности площадью S

Qкв = λкв × S × Θ . (7)

Здесь λкв – коэффициент теплопередачи конвекцией, равный количеству теплоты, отводимому в единицу времени с единицы поверхности при превышении температуры на 1 °С, и Θ – превышение температуры охлаждаемой поверхности над температурой охлаждающей среды.

Значение λкв зависит от размеров и формы охлаждаемой поверхности, ее положения и так далее. Для электрических машин в случае воздушной конвекции можно в среднем принять λкв = 8 Вт/(°С × м²). Теплопередача конвекцией в трансформаторном масле (обмотки трансформатора) осуществляется в 15 – 20 раз интенсивнее, чем в воздухе.

Согласно формулам (5) и (7), количество теплоты, отдаваемой с поверхности путем излучения и конвекции,

где

λлк = λлч + λкв , (9)

причем для воздуха в среднем λлк = 14 Вт/(°С × м²).

Соотношения (5), (7) и (8) используются для расчета температуры в условиях, когда искусственная конвекция отсутствует, например при необдуваемой поверхности бака трансформатора.

В электрических машинах условия рассеяния тепла лучеиспусканием и конвекцией для различных поверхностей различны. В современных вентилируемых машинах отвод тепла путем искусственной конвекции настолько преобладает над отводом тепла лучеиспусканием, что последний обычно не учитывают.

Теплопередача при искусственной конвекции

Для более интенсивного отвода тепла обычно применяют обдув внутренних, а иногда и внешних поверхностей электрических машин воздухом.

Усилие теплоотдачи при искусственной конвекции происходит в разной степени в зависимости от равномерности обдува, формы обдуваемых поверхностей и так далее. Исследование данного вопроса усложняется конструктивным многообразием электрических машин и их частей, а также сложностью аэродинамических явлений во внутренних полостях и каналах машины.

Опыты показывают, что для коэффициента теплоотдачи в рассматриваемом случае можно использовать следующую приближенную эмпирическую формулу:

(10)

где λкв – коэффициент теплоотдачи с обдуваемой поверхности; λ’кв – то же при естественной конвекции; v – скорость движения воздуха относительно охлаждаемой поверхности, м/с; Cв – эмпирический коэффициент, зависящий от степени равномерности обдува поверхности.

Если, например, v = 25 м/с и Cв = 1,3, то теплопередача согласно формуле (10), увеличивается в 7,5 раза и для воздуха равна λкв = 8 × 7,5 = 60 Вт/(°С × м²).

Источник: Вольдек А. И., "Электрические машины. Учебник для технических учебных заведений" – 3-е издание, переработанное – Ленинград: Энергия, 1978 – 832с.

www.electromechanics.ru

Что общего и чем различаются различные виды теплопередачи? — Науколандия

Для теплопроводности необходим контакт тел, между которыми будет происходить теплопередача. При этом температура тел должна быть разной, т. е. они не должны находится в состоянии теплового равновесия.

В основе теплопроводности лежит молекулярный механизм: молекулы с большей кинетической энергией передают ее молекулам с меньшей кинетической энергией. Т. е. более быстрые молекулы толкают более медленные, при этом их скорость выравнивается.

С помощью теплопроводности может происходить передача энергии между частями одного тела.

Теплопроводность вещества как способность проводить тепло зависит от молекулярно-атомного строения вещества. Например, металлы хорошо проводят тепло, а газы – нет, т. к. в последних молекулы находятся далеко друг от друга.

При теплопроводности теплопередача происходит за счет передачи энергии, но не переноса вещества. При конвекции теплопередача осуществляется с помощью переноса вещества.

Поэтому конвекция не может происходить в твердых веществах. Она происходит только в газах и жидкостях. Теплопроводность может происходить и в твердых телах, и в жидкостях, и в газах.

Без частиц вещества теплопроводность и конвекция невозможны. Отличие между ними в том, что при конвекции происходит перемещение больших групп частиц.

Конвекция бывает вынужденной (когда для ее появления действует внешняя сила) и естественной (подчиняющейся физическим законам). Например, нагретый газ легче холодного, поэтому поднимается вверх, – это пример естественной конвекции. Действие ветра или вентилятора создают вынужденную конвекцию.

Теплопередача за счет излучения имеет электромагнитную природу и может происходить в вакууме. Если для теплопроводности необходим контакт тел, для конвекции – перенос вещества между телами, то для теплопередачи путем излучения не требуется ни того, ни другого. Именно излучение как вид теплопередачи доставляет нам энергию от Солнца, за счет которой и «живет» Земля.

Интенсивность излучения зависит от цвета тела, которое излучает или поглощает тепло. Более темные предметы излучают и поглощают энергию посредством излучения больше, чем светлые. Теплопроводность же не зависит от цвета, а зависит от плотности вещества.

scienceland.info

Конвекция. Конвективный теплообмен - СПИШИ У АНТОШКИ

Конвекция – это второй вид теплопередачи, когда внутренняя эергия одного тела передается внутренней энергии другого тела без совершения работы.

Конвекция  (от лат. convectio — доставка)- это перенос энергии струями жидкости или газа.

При конвекции происходит перенос вещества в пространстве.Объяснить явление конвекции можно тепловым расширением тел и законом Архимеда .Конвекция невозможна в твёрдых телах.

Интенсивность конвекции зависит от разности температур слоев жидкости или газа и агрегатного состояния вещества.

Виды конвекции

Существуют различные виды конвекции. Мы рассмотрим свободную и вынужденную конвекции.

виды конвекцииСвободная конвекция в газе или жидкости возникает тогда, когда имеются небольшие области, в которых плотность отличается от плотности основной окружающей их массы вещества. Тогда в условиях земного тяготения под действием силы Архимеда эти области начинают перемещаться. Примером свободной конвекции является всем известное движение воздуха в помещении в котором топится печь или установлен радиатор.

Поместив руку над горячей батареей можно почувствовать, что над ними поднимаются теплые струи воздуха. Это явление можно объяснить таким образом. Часть воздуха, которая соприкасается с теплой батареей, нагревается, расширяется и становится менее плотной, чем окружающий ее более холодный воздух. Под действием архимедовой (выталкивающей) силы эта более теплая часть воздуха начинает подниматься вверх. Ее место заполняет холодный воздух. Через некоторое время, прогревшись, этот слой воздуха также поднимается вверх, уступая место следующей порции воздуха, и т. д. Это и есть конвекция.

В результате перемещения более теплых слоев воздуха происходит перенос тепла (т. е. энергии), или конвективный теплообмен.

Цветы, расположенные рядом с батареей из-за избытка теплого воздуха быстрее высыхают

Точно так же переносится энергия и при нагревании жидкости. Нагретые слои жидкости, менее плотные и поэтому более легкие, вытесняются вверх более тяжелыми, холодными слоями. Холодные слои жидкости, опустившись вниз, в свою очередь, нагреваются от источника тепла и вновь вытесняются менее нагретой жидкостью. Благодаря такому движению жидкость равно¬мерно прогревается.

Поместите в микроволновую печь стакан с холодной водой и частичками заварки или марганца. И пронаблюдайте – как поднимаются слой жидкости при нагревании

Интересно, что в сильные морозы глубокие водоемы не промерзают до дна, и вода внизу имеет температуру +4 градуса Цельсия. Оказывается, что вода при такой температуре имеет наибольшую плотность и опускается на дно. Поэтому дальнейшая конвекция теплой воды наверх становится невозможной и вода более не остывает.

Вынужденная конвекция вызывается внешним механическим воздействием на среду.конвекция

Примерами ее являются обычное перемешивание жидкости ложечкой, движение воздуха в комнате под действием вентилятора, течение жидкости в трубе под действием гидронасоса, работа фена.

Таким образом, конвективный теплообмен может осуществляться в газообразной и жидкой среде при условии, что имеется разность температур между частями этой среды. Конвекция в твердых телах происходить не может, поскольку частицы в них колеблются около определенной точки, удерживаемые сильным взаимным притяжением.

Для осуществле¬ния эффективного конвективного теплообмена в земных условиях в жидкостях и газах их следует прогревать снизу. Если их прогревать сверху, конвекция не происходит, ведь теплые слои и так находятся сверху и опуститься ниже холодных, более тяжелых, они не могут.

Именно поэтому радиаторы отопления устанавливают внизу комнаты, а форточки для проветривания – сверху.

www.spishy-u-antoshki.ru


© 2007—2018
423800, Набережные Челны , база Партнер Плюс, тел. 8 800 100-58-94 (звонок бесплатный)