Камаз 44108 тягач В наличии!
Тягач КАМАЗ 44108-6030-24
евро3, новый, дв.КАМАЗ 740.55-300л.с., КПП ZF9, ТНВД ЯЗДА, 6х6, нагрузка на седло 12т, бак 210+350л, МКБ, МОБ
 
карта сервера
«ООО Старт Импэкс» продажа грузовых автомобилей камаз по выгодным ценам
+7 (8552) 31-97-24
+7 (904) 6654712
8 800 1005894
звонок бесплатный

Наши сотрудники:
Виталий
+7 (8552) 31-97-24

[email protected]

 

Екатерина - специалист по продаже а/м КАМАЗ
+7 (904) 6654712

[email protected]

 

Фото техники

20 тонный, 20 кубовый самосвал КАМАЗ 6520-029 в наличии
15-тонный строительный самосвал КАМАЗ 65115 на стоянке. Техника в наличии
Традиционно КАМАЗ побеждает в дакаре

тел.8 800 100 58 94

Техника в наличии

тягач КАМАЗ-44108
Тягач КАМАЗ 44108-6030-24
2014г, 6х6, Евро3, дв.КАМАЗ 300 л.с., КПП ZF9, бак 210л+350л, МКБ,МОБ,рестайлинг.
цена 2 220 000 руб.,
 
КАМАЗ-4308
КАМАЗ 4308-6063-28(R4)
4х2,дв. Cummins ISB6.7e4 245л.с. (Е-4),КПП ZF6S1000, V кузова=39,7куб.м., спальное место, бак 210л, шк-пет,МКБ, ТНВД BOSCH, система нейтрализ. ОГ(AdBlue), тент, каркас, рестайлинг, внутр. размеры платформы 6112х2470х730 мм
цена 1 950 000 руб.,
КАМАЗ-6520
Самосвал КАМАЗ 6520-057
2014г, 6х4,Евро3, дв.КАМАЗ 320 л.с., КПП ZF16, ТНВД ЯЗДА, бак 350л, г/п 20 тонн, V кузова =20 куб.м.,МКБ,МОБ, со спальным местом.
цена 2 700 000 руб.,
 
КАМАЗ-6522
Самосвал 6522-027
2014, 6х6, дв.КАМАЗ 740.51,320 л.с., КПП ZF16,бак 350л, г/п 19 тонн,V кузова 12куб.м.,МКБ,МОБ,задняя разгрузка,обогрев платформы.
цена 3 190 000 руб.,

СУПЕР ЦЕНА

на АВТОМОБИЛИ КАМАЗ
43118-010-10 (дв.740.30-260 л.с.) 2 220 000
43118-6033-24 (дв.740.55-300 л.с.) 2 300 000
65117-029 (дв.740.30-260 л.с.) 2 200 000
65117-6010-62 (дв.740.62-280 л.с.) 2 350 000
44108 (дв.740.30-260 л.с.) 2 160 000
44108-6030-24 (дв.740.55,рест.) 2 200 000
65116-010-62 (дв.740.62-280 л.с.) 1 880 000
6460 (дв.740.50-360 л.с.) 2 180 000
45143-011-15 (дв.740.13-260л.с) 2 180 000
65115 (дв.740.62-280 л.с.,рест.) 2 190 000
65115 (дв.740.62-280 л.с.,3-х стор) 2 295 000
6520 (дв.740.51-320 л.с.) 2 610 000
6520 (дв.740.51-320 л.с.,сп.место) 2 700 000
6522-027 (дв.740.51-320 л.с.,6х6) 3 190 000


Перегон грузовых автомобилей
Перегон грузовых автомобилей
подробнее про услугу перегона можно прочесть здесь.


Самосвал Форд Нужны самосвалы? Обратите внимание на Ford-65513-02.

КАМАЗы в лизинг

ООО «Старт Импэкс» имеет возможность поставки грузовой автотехники КАМАЗ, а так же спецтехники на шасси КАМАЗ в лизинг. Продажа грузовой техники по лизинговым схемам имеет определенные выгоды для покупателя грузовика. Рассрочка платежа, а так же то обстоятельство, что грузовики до полной выплаты лизинговых платежей находятся на балансе лизингодателя, и соответственно покупатель автомобиля не платит налогов на имущество. Мы готовы предложить любые модели бортовых автомобилей, тягачей и самосвалов по самым выгодным лизинговым схемам.

Контактная информация.

г. Набережные Челны, Промкомзона-2, Автодорога №3, база «Партнер плюс».

тел/факс (8552) 388373.
Схема проезда



Механические флотационные машины. Механические машины


Механическая машина - Большая Энциклопедия Нефти и Газа, статья, страница 1

Механическая машина

Cтраница 1

Механические машины с кипящим слоем и пневматические успешно прошли промышленные испытания при флотации крупнозернистых сильвинитов ( - 3 ч - 0 8 мм) Верхнекамского и Старо-бинского месторождений. Машины с кипящим слоем зарекомендовали себя положительно при флотации мелкозернистого сильвинита ( - 0 8 мм), но более высокие технологические показатели они имеют при раздельной флотации крупных и мелких фракций.  [1]

Механические машины проще и стабильнее, чем гидравлические, и поэтому предпочтительнее при тех испытаниях, где необходимо выдерживание постоянной нагрузки во времени, например при измерениях модулей и пределов упругости. В общем механический привод предпочтительнее для малых машин, при применении же более мощных машин удобнее гидравлический привод, так как гидравлические машины легче регулировать и они дают более широкий диапазон скоростей деформации.  [2]

Механические машины нужны, чтобы выполнять механическую работу. Подъемный кран поднимает грузы, а автомобиль эти грузы перевозит. Экскаватор копает землю, а бульдозер ее разравнивает.  [3]

Механические машины в свою очередь подразделяются на рычажные, десятиклавишные и многоклавишные. По степени автоматизации управления работой механические машины делятся на неавтоматические, полуавтоматические и автоматические. К рычажным машинам относятся арифмометры неавтоматические.  [4]

Современные механические машины имеют весьма сложные разветвленные кинематические цепи. Однако в большинстве случаев они образуются путем параллельного или последовательного соединения простейших цепей. Так, например, на рис. 3.113 представлена структурная схема кривошипно-ползун-лого механизма и клапанного распределения одноцилиндрового дизеля. Зде сь распределительный вал с кулачками 4 и 4 связан с главным кривошипным валом особой передачей, обеспечивающей z 14 2 const. Поэтому каждому положению главного вала соответствует вполне определенное положение клапанов 5 и 5, управляющих поступлением горючей смеси и продувкой цилиндра.  [5]

Любая механическая машина имеет какой-то источник энергии. В автомобиле энергия выделяется при сгорании бензина.  [6]

Однокамерная флотационная механическая машина применяется для обогащения крупного зернистого материала размером до 3 мм.  [7]

Однокамерная флотационная механическая машина представляет собой камеру прямоугольного сечения, в которой процесс агитации и аэрации пульпы происходит с помощью вращающегося импеллера.  [8]

Рассмотрим вначале простую механическую машину, использующую энергию, запасенную в сжатом газе. Попытаемся подсчитать максимальную величину полезной работы, которая может быть получена от системы.  [9]

В механических машинах перемешивание и аэрация производятся с помощью импеллера, расположенного у днища камеры машины. Это диск с лопатками, вращающийся в статоре на вертикальном валу - он действует наподобие турбины, засасывая наружный воздух и обеспечивая циркуляцию суспензии. На рис. 2.2 показан разрез через секцию механической флото-машины отечественной конструкции. Пена передвигается по поверхности к приемному желобу с помощью пеногонов - вращающихся горизонтальных валов с лопастями.  [11]

На механических машинах тормоз, а на гидравлических машинах обратные вентили, которые защищают силоизмеритель при внезапном падении нагрузки, искажают измеряемые усилия. При изучении сравнительно быстрых изменений силы и деформации в качестве измерителя силы лучше всего использовать тен-зометрические месдозы, включаемые последовательно с испытуемым образцом.  [12]

В механических машинах чаще задается определенная скорость абсолютной деформации. Механические машины с заданной скоростью нагруже-ния применяют редко.  [14]

Страницы:      1    2    3    4

www.ngpedia.ru

Механические флотационные машины

Во всех аэрационных узлах флотационных машин засасывание воздуха из атмосферы и образование пульповоздушной смеси, выбрасываемой под действием центробежных сил в камеру, обусловлено образованием небольшого вакуума в полости вращающегося импеллера. В качестве импеллеров используются мешалки различных конструкций (дисковые с радиально расположенными лопатками, стержневые типа беличьего колеса с осевыми насосами внутри них и другие.). При этом аэрация пульпы определяется окружной скоростью импеллера и конструктивными особенностями аэрирующих узлов и камер механических флотационных машин.

Наибольшее распространение получили механические флотационные машины конструкции Механобра ФМ с вместимостью камер от 0,14 до 6,3м3. Конструкция флотационной машины данного типа представлена на рисунке 1.1.

Рисунок 5.1 - Флотационная машина конструкции Механобра с всасывающими (а) и прямоточной (б) камерами.

Стандартная машина ФМ собирается из двухкамерных секций: первая камера является всасывающей, вторая прямоточной. В случае необходимости машина может собираться из одних всасывающих камер или из звеньев, состоящих из одной всасывающей и нескольких прямоточных камер.

В каждой камере устанавливается блок аэраторов, который полностью монтируется на заводе и является самостоятельным конструктивным узлом. Блок аэратора состоит из вертикального вала 10 с насаженным на нем импеллером. Импеллер представляет собой диск 19 с шестью радиальными лопатками 17. Вал вращается внутри трубы 2 , верхний конец которой закрыт наглухо. В нижней части труба расширяется и к ней крепится надымпеллерный диск 9 с лопатками статора 16 , расположенными под углом 60 градусов к радиусу. Направляющие лопатки статора способствуют превращению тангенциальной составляющей динамического напора пульпы в статический, увеличивая тем самым аэрацию. Радиальный зазор между лопатками импеллера и статора не должен превышать 5-8 мм.

Исходная пульпа из приемного кармана 1 поступает в аэратор по трубе большего диаметра 20 , а воздух по наклонной трубе меньшего диаметра 3. Для внутрикамерной циркуляции надымпеллерный диск имеет круглые отверстия, расположенные по окружности над лопатками 17 импеллера. Кроме того, для регулирования внутрикамерной циркуляции в нижней части трубы 2 имеется отверстие 18, которое прикрывается заслонкой 14. Тягой 5 она устанавливается в таком положении, чтобы был обеспечен оптимальный поток пульпы на импеллер, необходимый для достижения максимальной аэрации.

Для всасывания промпродуктов в каждой камере может быть установлен патрубок, идущий от центральной трубы к передней стенке камеры. В тех камерах, куда промпродукт не поступает, патрубок не устанавливается, а отверстие в расширенной части вертикальной трубы закрывается пробкой 15. Пенный продукт удаляется в сборный желоб.

Всасывающая и прямоточная камеры разделены перегородкой 4. В каждой второй камере секции или в последней камере прямоточной машины имеется устройство для регулирования уровня пульпы и удаления камерного продукта (хвостов). Основная часть пульпы переливается через отверстие 13 в боковой стенке 12 камеры и поступает в приемный карман следующей камеры. Чтобы вместе с камерным продуктом не уходила пена, разгрузочное отверстие экранировано перегородкой 6.

Для регулирования высоты слоя пены в камере (секции) или, что то же, уровня пульпы разгрузочное отверстие со стороны межкамерного кармана прикрыто заслонкой 11, положение которой регулируется специальным устройством 8. Для разгрузки крупных частиц (песков), находящихся в нижнем слое пульпы, внизу межкамерной перегородки 12 имеется небольшое отверстие, которое может перекрываться шибером при опускании его тягой 7.

Для создания спокойной зоны пенообразования предусмотрен успокоитель, состоящий из радикальных Г-образных пластин, расположенных вокруг статора и прикрепленных ко дну камеры. Для устранения застаивания пены в задней части камеры, и ускорения пеносъема задняя стенка выполнена изогнутой в сторону пенного порога, лопасти пеносъемщика имеют шарнирную подвеску.

К недостаткам машин ФМ относятся большой износ лопаток статора и сильные восходящие потоки пульпы, вызывающие бурление и нарушение процесса ценообразования, что имеет особенно большое значение при флотации руд с низким содержанием полезного компонента. Однако машины отличаются большой производительностью по потоку пульпы и засасываемому воздуху; по конструктивным параметрам они находятся на уровне лучших зарубежных образцов.

studfiles.net

Механические машины бытовые

Механические швейные машины для бытового применения

15255075100

По умолчаниюПо Имени (A - Я)По Имени (Я - A)По Цене (возрастанию)По Цене (убыванию)По Рейтингу (убыванию)По Рейтингу (возрастанию)По Модели (A - Я)По Модели (Я - A)

  Описание: Швейная машина Pfaff Select 4.2  Характеристики Pfaff Sele..

62 322 р.

Описание: Швейная машина Family Silver Line 3022s  Характеристики Family Sil..

18 972 р.

Швейная машина Brother LS-3125

Электромеханическая швейная машина Brother LS-3125 проста в использовании, имеет необходимый набор р..

6 936 р.

Швейная машина Family 8024A

Характеристики Family Gold Master 8024A:   ..

18 247 р.

-20%

Швейная машина Family Effect Line 312

Надежная бытовая швейная машинка для всех видов тканей. Относится к среднему классу бытовых швейных ..

11 968 р. 9 520 р.

Швейная машина Family Effect Line 323s

Швейная машинка среднего класса с расширенными возможностями. Удобная и практичная модель швейной ма..

14 053 р.

Швейная машина Family GM 8018A

Швейная машина Family GM 8018A  Оптимальный набор операций данной модели позвол..

17 000 р.

Швейная машина Family GM 8124E

Особенностью машины является наличие простого механического швейного советника - устройства, которое..

20 400 р.

Швейная машина Family Gold Line 7018

Характеристики Family Gold Line 7018: Электромеханическая швейная машина. Тип чел..

16 433 р.

Швейная машина Family Gold Line 7023

 Характеристики Family Gold Line 7023: Электромеханическая швейная машина. Т..

17 567 р.

Швейная машина Family Silver Line 3004

Электромеханическая швейная машина. Тип челнока:   Качающийся  ..

11 764 р.

Швейная машина Family Silver Line 3008

Характеристики Family Silver Line 3008: Электромеханическая швейная машина. Тип ч..

11 560 р.

Швейная машина Family Silver Line 3012

Характеристики Family Silver Line 3012: Электромеханическая швейная машина. Тип ч..

14 280 р.

Швейная машина Family Silver Line 3016s

  Характеристики Family Silver Line 3016s: Электромеханическая швейная машина. ..

13 033 р.

Описание: Швейная машина Husqvarna Viking E10  Характеристики Husqvarna Viki..

12 920 р.

Показано с 1 по 15 из 38 (всего 3 страниц)

xn----ctbjndt3a1d.xn--p1ai

1.Механические счетные машины

Часто лавры первого конструктора механического калькулятора ошибочно отдают известному математику Блезу Паскалю. На самом деле достоверно известно, что немецкий астроном и математик Вильгельм Шикард, который за двадцать лет до Паскаля в письме своему другу Иоганну Кеплеру в 1623 году писал о машине, которая способна вычитать, складывать, делить и умножать. Но и версия, что именно Шикард является пионером в этой области, не верна: в 1967 году были обнаружены неизвестные записные книжки Леонардо да Винчи, построившего то же самое, что и Шикард, но более чем за 120 лет до него.

Первым механическим счетным устройством,которое существовало не на бумаге ,а работало ,была счетная машина, построенная в 1642 году выдающимся французским ученым Блезом Паскалем. Механический «компьютер» Паскаля мог складывать и вычитать. «Паскалина» – так называли машину – состояла из набора вертикально установленных колес с нанесенными на них цифрами от 0 до 9. При полном обороте колеса оно сцеплялось с соседним колесом и поворачивало его на одно деление. Число колес определяло число разрядов – так, два колеса позволяли считать до 99, три – уже до 999, а пять колес делали машину «знающей» даже такие большие числа как 99999. Считать на «Паскалине» было очень просто.

В 1673 году немецкий математик и философ Готфрид Вильгельм Лейбниц создал механическое счетное устройство, которое не только складывало и вычитало, но и умножало и делило. Машина Лейбница была сложнее «Паскалины». Числовые колеса, теперь уже зубчатые, имели зубцы девяти различных длин, и вычисления производились за счет сцепления колес. Именно несколько видоизмененные колеса Лейбница стали основой массовых счетных приборов – арифмометров, которыми широко пользовались не только в ХIХ веке, но и сравнительно недавно наши дедушки и бабушки.

Арифмометры получили очень широкое применение. На них выполняли даже очень сложные расчеты, например, расчеты баллистических таблиц для артиллерийских стрельб. Существовала и специальная профессия — счетчик — человек, работающий с арифмометром, быстро и точно со­блюдающий определенную последовательность инструкций (такую последовательность инструкций впоследствии стали называть программой). Но многие расчеты производились очень медленно — даже десятки счетчиков должны были работать по несколько недель и месяцев. Причина проста — при таких расчетах выбор выполняемых действий и запись результатов производились человеком, а скорость его работы весьма ограничена.

2.Идеи Бэббиджа.

Из всех изобретателей прошлых столетий, внесших вклад в развитие вычислительной техники, наиболее близко к созданию компьютера в современном представлении подошел англичанин Чарльз Бэббидж.

Желание механизировать вычисления возникло у Бэббиджа в связи с недовольством, которое он испытывал, сталкиваясь с ошибками в математических таблицах, используемых в самых различных областях.

В 1822 г. Бэббидж построил пробную модель вычислительного устройства, назвав ее "Разностной машиной": работа модели основывалась на принципе, известном в математике как "метод конечных разностей". Данный метод позволяет вычислять значения многочленов, употребляя только операцию сложения и не выполнять умножение и деление, которые значительно труднее поддаются автоматизации. При этом предусматривалось применение десятичной системы счисления (а не двоичной, как в современных компьютерах).

Однако "Разностная машина" имела довольно ограниченные возможности. Репутация Бэббиджа как первооткрывателя в области автоматических вычислений завоевана в основном благодаря другому, более совершенному устройству—Аналитической машине (к идее создания которой он пришел в 1834 г.), имеющей удивительно много общего с современными компьютерами.

Предполагалось, что это будет вычислительная машина для решения широкого круга задач, способная выполнять основные операции: сложение, вычитание, умножение, деление. Предусматривалось наличие в машине "склада" и "мельницы" (в современных компьютерах им соответствуют память и процессор). Причем планировалось, что работать она будет по программе, задаваемой с помощью перфокарт, а результаты можно будет выдавать на печать (и даже представлять их в графическом виде) или на перфокарты. Но Бэббидж не смог довести до конца работу по созданию Аналитической машины—она оказалась слишком сложной для техники того времени.

studfiles.net

МАШИНЫ И МЕХАНИЗМЫ - это... Что такое МАШИНЫ И МЕХАНИЗМЫ?

 МАШИНЫ И МЕХАНИЗМЫ механические устройства, облегчающие труд и повышающие его производительность. Машины могут быть разной степени сложности - от простой одноколесной тачки до лифтов, автомобилей, печатных, текстильных, вычислительных машин. Энергетические машины преобразуют один вид энергии в другой. Например, генераторы гидроэлектростанции преобразуют механическую энергию падающей воды в электрическую энергию. Двигатель внутреннего сгорания преобразует химическую энергию бензина в тепловую, а затем в механическую энергию движения автомобиля(см. такжеЭЛЕКТРОМАШИННЫЕ ГЕНЕРАТОРЫ И ЭЛЕКТРОДВИГАТЕЛИ;ДВИГАТЕЛЬ ТЕПЛОВОЙ;ТУРБИНА).Так называемые рабочие машины преобразуют свойства или состояние материалов (металлорежущие станки, транспортные машины) либо информацию (вычислительные машины). Машины состоят из механизмов (двигательного, передаточного и исполнительного) - многозвенных устройств, передающих и преобразующих силу и движение. Простой механизм, называемый полиспастом(см. БЛОКИ И ПОЛИСПАСТЫ),увеличивает силу, приложенную к грузу, и за счет этого позволяет вручную поднимать тяжелые предметы. Другие механизмы облегчают работу, увеличивая скорость. Так, велосипедная цепь, входящая в зацепление со звездочкой, преобразует медленное вращение педалей в быстрое вращение заднего колеса. Однако механизмы, увеличивающие скорость, делают это за счет уменьшения силы, а увеличивающие силу - за счет уменьшения скорости. Увеличить одновременно и скорость и силу невозможно. Механизмы могут также просто изменять направление силы. Пример - блок на конце флагштока: чтобы поднять флаг, тянут за шнур вниз. Изменение направления может сочетаться с увеличением силы или скорости. Так, тяжелый груз можно приподнять, нажимая на рычаг вниз.ОСНОВНЫЕ ПРИНЦИПЫ РАБОТЫ МАШИН И МЕХАНИЗМОВОсновной закон. Хотя механизмы и позволяют получить выигрыш в силе или скорости, возможности такого выигрыша ограничиваются законом сохранения энергии. В применении к машинам и механизмам он гласит: энергия не может ни возникать, ни исчезать, она может быть лишь преобразована в другие виды энергии или в работу. Поэтому на выходе машины или механизма не может оказаться больше энергии, чем на входе. К тому же в реальных машинах часть энергии теряется из-за трения. Поскольку работа может быть превращена в энергию и наоборот, закон сохранения энергии для машин и механизмов можно записать в виде Работа на входе = Работа на выходе + Потери на трение. Отсюда видно, в частности, почему невозможна машина типа вечного двигателя: из-за неизбежных потерь энергии на трение она рано или поздно остановится.Выигрыш в силе или скорости. Механизмы, как указывалось выше, могут применяться для увеличения силы или скорости. Идеальный, или теоретический, выигрыш в силе или скорости - это коэффициент увеличения силы или скорости, который был бы возможен в отсутствие потерь энергии, обусловленных трением. Идеальный выигрыш на практике недостижим. Реальный выигрыш, например в силе, равен отношению силы (называемой нагрузкой), которую развивает механизм, к силе (называемой усилием), которая прикладывается к механизму.Механический КПД. Коэффициентом полезногодействия машины называется процентное отношение работы на ее выходе к работе на ее входе. Для механизма КПД равен отношению реального выигрыша к идеальному. КПД рычага может быть очень высоким - до 90% и даже больше. В то же время КПД полиспаста из-за значительного трения и массы движущихся частей обычно не превышает 50%. КПД домкрата может составлять лишь 25% из-за большой площади контакта между винтом и его корпусом, а следовательно, большого трения. Это приблизительно такой же КПД, как у автомобильного двигателя. См. АВТОМОБИЛЬ ЛЕГКОВОЙ. КПД можно в известных пределах повысить, уменьшив трение за счет смазки и применения подшипников качения. См. также СМАЗКА.ПРОСТЕЙШИЕ МЕХАНИЗМЫПростейшие механизмы можно найти почти в любых более сложных машинах и механизмах. Их всего шесть: рычаг, блок, дифференциальный ворот, наклонная плоскость, клин и винт. Некоторые авторитетные специалисты утверждают, что на самом деле можно говорить всего лишь о двух простейших механизмах - рычаге и наклонной плоскости, - так как нетрудно показать, что блок и ворот представляют собой варианты рычага, а клин и винт - варианты наклонной плоскости.Рычаг. Это жесткий стержень, который может свободно поворачиваться относительно неподвижной точки, называемой точкой опоры. Примером рычага могут служить лом, молоток с расщепом, тачка, метла. Рычаги бывают трех родов, различающихся взаимным расположением точек приложения нагрузки и усилия и точки опоры (рис. 1). Идеальный выигрыш в силе рычага равен отношению расстояния DE от точки приложения усилия до точки опоры к расстоянию DL от точки приложения нагрузки до точки опоры. Для рычага I рода расстояние DE обычно больше DL, а поэтому идеальный выигрыш в силе больше 1. Для рычага II рода идеальный выигрыш в силе тоже больше единицы. Что же касается рычага III рода, то величина DE для него меньше DL, а стало быть, больше единицы выигрыш в скорости.Рис. 1. РЫЧАГИ I, II И III РОДАБлок. Это колесо с желобом по окружности для каната или цепи. Блоки применяются в грузоподъемных устройствах. Система блоков и тросов, предназначенная для повышения грузоподъемности, называется полиспастом. Одиночный блок может быть либо с закрепленной осью (уравнительным), либо подвижным (рис. 2). Блок с закрепленной осью действует как рычаг I рода с точкой опоры на его оси. Поскольку плечо усилия равно плечу нагрузки (радиус блока), идеальный выигрыш в силе и скорости равен 1. Подвижный же блок действует как рычаг II рода, поскольку нагрузка расположена между точкой опоры и усилием. Плечо нагрузки (радиус блока) вдвое меньше плеча усилия (диаметр блока). Поэтому для подвижного блока идеальный выигрыш в силе равен 2.Рис. 2. БЛОК может быть закрепленным (уравнительным) или подвижным. Уравнительный блок действует как рычаг I рода, а подвижный - как рычаг II рода.Более простой способ определения идеального выигрыша в силе для блока или системы блоков - по числу параллельных концов каната, удерживающих нагрузку, как это нетрудно сообразить, взглянув на рис. 2. Уравнительные и подвижные блоки можно сочетать по-разному для увеличения выигрыша в силе. В одной обойме можно установить два, три или большее число блоков, а конец троса можно прикрепить либо к неподвижной, либо к подвижной обойме.Дифференциальный ворот. Это, в сущности, два колеса, соединенные вместе и вращающиеся вокруг одной оси (рис. 3), например, колодезный ворот с ручкой.Рис 3. ВОРОТ, действующий как рычаг I рода, представляет собой, в сущности, два скрепленных вместе колеса, вращающихся вокруг общей оси.Дифференциальный ворот может давать выигрыш как в силе, так и в скорости. Это зависит от того, где прилагается усилие, а где - нагрузка, поскольку он действует как рычаг I рода. Точка опоры расположена на закрепленной (фиксированной) оси, а поэтому плечи усилия и нагрузки равны радиусам соответствующих колес. Пример такого устройства для выигрыша в силе - отвертка, а для выигрыша в скорости - шлифовальный круг.Зубчатые колеса. Система двух находящихся в зацеплении зубчатых колес, сидящих на валах одинакового диаметра (рис. 4), в какой-то мере аналогична дифференциальному вороту (см. также ЗУБЧАТАЯ ПЕРЕДАЧА). Скорость вращения колес обратно пропорциональна их диаметру. Если малая ведущая шестерня A (к которой приложено усилие) по диаметру вдвое меньше большого зубчатого колеса B, то она должна вращаться вдвое быстрее. Таким образом, выигрыш в силе такой зубчатой передачи равен 2. Но если точки приложения усилия и нагрузки поменять местами, так что колесо B станет ведущим, то выигрыш в силе будет равен 1/2, а выигрыш в скорости - 2.Рис. 4. ЗУБЧАТЫЕ КОЛЕСА, действующие в принципе так же, как и ворот, могут давать как выигрыш в силе, так и выигрыш в скорости.Наклонная плоскость. Наклонная плоскость применяется для перемещения тяжелых предметов на более высокий уровень без их непосредственного поднятия. К таким устройствам относятся пандусы, эскалаторы, обычные лестницы, а также конвейеры (с роликами для уменьшения трения). Идеальный выигрыш в силе, обеспечиваемый наклонной плоскостью (рис. 5), равен отношению расстояния, на которое перемещается нагрузка, к расстоянию, проходимому точкой приложения усилия. Первое есть длина наклонной плоскости, а второе - высота, на которую поднимается груз. Поскольку гипотенуза больше катета, наклонная плоскость всегда дает выигрыш в силе. Выигрыш тем больше, чем меньше наклон плоскости. Этим объясняется то, что горные автомобильные и железные дороги имеют вид серпантина: чем меньше крутизна дороги, тем легче по ней подниматься.Рис. 5. НАКЛОННАЯ ПЛОСКОСТЬ дает выигрыш в силе, равный (в идеале) отношению длины к высоте.Клин. Это, в сущности, сдвоенная наклонная плоскость (рис. 6). Главное его отличие от наклонной плоскости в том, что она обычно неподвижна, и груз под действием усилия движется по ней, а клин вгоняют под нагрузку или в нагрузку. Принцип клина используется в таких инструментах и орудиях, как топор, зубило, нож, гвоздь, швейная игла.Рис. 6. КЛИН - как бы сдвоенная наклонная плоскость. Идеальный выигрыш в силе равен отношению длины клина к толщине на тупом конце.Идеальный выигрыш в силе, даваемый клином, равен отношению его длины к толщине на тупом конце. Реальный выигрыш клина, в отличие от других простейших механизмов, трудно определить. Сопротивление, встречаемое им, непредсказуемо меняется для разных участков его "щек". Из-за большого трения его КПД столь мал, что идеальный выигрыш не имеет особого значения.Винт. Резьба винта (рис. 7) - это, в сущности, наклонная плоскость, многократно обернутая вокруг цилиндра. В зависимости от направления подъема наклонной плоскости винтовая резьба может быть левой (A) или правой (B). Сопрягающаяся деталь, естественно, должна иметь резьбу такого же направления. Примеры простых устройств с винтовой резьбой - домкрат, болт с гайкой, микрометр, тиски.Рис. 7. ВИНТ с прямоугольной резьбой - по существу, наклонная плоскость, многократно обернутая вокруг цилиндра. A - левая, B - правая резьба.Поскольку резьба - наклонная плоскость, она всегда дает выигрыш в силе. Идеальный выигрыш равен отношению расстояния, проходимого точкой приложения усилия за один оборот винта (длины окружности), к расстоянию, проходимому при этом нагрузкой по оси винта. За один оборот нагрузка перемещается на расстояние между двумя соседними витками резьбы (a и b или b и c на рис. 7), которое называется шагом резьбы. Шаг резьбы обычно значительно меньше ее диаметра, так как иначе слишком велико трение.КОМБИНИРОВАННЫЕ МЕХАНИЗМЫКомбинированный механизм состоит из двух или большего числа простых. Это не обязательно сложное устройство; многие довольно простые механизмы тоже можно считать комбинированными. Например, в мясорубке имеются ворот (ручка), винт (проталкивающий мясо) и клин (нож-резак). Стрелки наручных часов поворачиваются системой зубчатых колес разного диаметра, находящихся в зацеплении друг с другом. Один из наиболее известных несложных комбинированных механизмов - домкрат. Домкрат (рис. 8) представляет собой комбинацию винта и ворота. Головка винта подпирает нагрузку, а другой его конец входит в резьбовую опору. Усилие прилагается к рукоятке, закрепленной в головке винта. Таким образом, расстояние усилия равно длине окружности, описываемой концом ручки. Длина окружности дается выражением 2pr, где p = 3,14159, а r - радиус окружности, т.е. в данном случае длина ручки. Очевидно, что чем длиннее ручка, тем больше идеальный выигрыш в силе. Расстояние, проходимое нагрузкой за один оборот ручки, равно шагу резьбы. В идеале можно получить очень большой выигрыш в силе, если длинную ручку сочетать с малым шагом резьбы. Поэтому несмотря на малый КПД домкрата (около 25%) он дает большой реальный выигрыш в силе.Рис. 8. ДОМКРАТ - пример несложного комбинированного механизма (сочетание винта и ворота). Выигрыш в силе, создаваемый комбинированным механизмом, равен произведению выигрышей отдельных механизмов, входящих в его состав. Так, идеальный выигрыш в силе (ИВС) для домкрата равен отношению длины окружности, описываемой ручкой, к шагу резьбы. Для входящего в состав домкрата ворота ИВС равен отношению длины окружности, описываемой ручкой (расстояние усилия), к длине окружности винта (расстояние нагрузки). Для винта домкрата ИВС равен отношению длины окружности винта (расстояния усилия) к шагу резьбы винта (расстоянию нагрузки). Перемножая ИВС отдельных механизмов домкрата, получаем для комбинированного механизма ИВС = (Окружность ручки/Окружность винта) * (Окружность винта/Шаг резьбы) = (Окружность ручки/Шаг резьбы). Для более сложных комбинированных механизмов вычислить ИВС труднее. Поэтому для них обычно указывают лишь реальный выигрыш.См. такжеКУЛАЧКОВЫЙ МЕХАНИЗМ;ДИНАМИКА;СТАНКИ МЕТАЛЛОРЕЖУЩИЕ;МЕХАНИКА.ЛИТЕРАТУРАПопов С.А. Курсовое проектирование по теории механизмов и машин. М., 1986

Энциклопедия Кольера. — Открытое общество. 2000.

  • СТАНКИ МЕТАЛЛОРЕЖУЩИЕ
  • БАТИСТА-И-САЛЬДИВАР Рубен Фульхенсио

Смотреть что такое "МАШИНЫ И МЕХАНИЗМЫ" в других словарях:

  • Машины и Механизмы — «Машины и Механизмы» Специализация: научно популярный Периодичность: ежемесячно Сокращённое название: ММ Язык: русский Адрес редакции: 197110, Санкт Петербург, ул. Большая Разночинная 28 …   Википедия

  • Машины и механизмы, применяемые при монтаже. — 8. Машины и механизмы, применяемые при монтаже. Кран на автомобильном ходу г.п. 10 т и кран на гусеничном ходу г.п. до 100 т. Автотранспортные средства для перевозки упакованных поставочных единиц к месту монтажа г.п. 5 т, тракторы на гусеничном… …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ 12.2.106-85: Система стандартов безопасности труда. Машины и механизмы, применяемые при разработке рудных, нерудных и россыпных месторождений полезных ископаемых. Общие гигиенические требования и методы оценки — Терминология ГОСТ 12.2.106 85: Система стандартов безопасности труда. Машины и механизмы, применяемые при разработке рудных, нерудных и россыпных месторождений полезных ископаемых. Общие гигиенические требования и методы оценки оригинал документа …   Словарь-справочник терминов нормативно-технической документации

  • машины — 3.26 машины (machinery): Устройство, состоящее из соединенных между собой частей или компонентов, по крайней мере, один из которых движется, с соответствующими исполнительными механизмами, силовыми цепями и цепями управления и т.д., объединенных… …   Словарь-справочник терминов нормативно-технической документации

  • Машины погрузочно – разгрузочные — – основная цель этих машин и механизмов – работы по перемещению различных грузов. Обычно это самоходные универсальные машины на базе, как правило, колесных транспортных средств. В них тоже применяются быстросъемные рабочие… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Машины грузоподьемные — – краны всех типов, краны экскаваторы (экскаваторы, предназначенные для работы с крюком, подвешенным на канате), тали, лебедки для подъема груза и людей. [Правила техники безопасности при эксплуатации теплопотребляющих установок и тепловых… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Машины для рыхления заполнителей — – устройства и механизмы, предназначенные для восста­новления сыпучести смерзшихся заполнителей при их выгрузке; по принципу действия делятся на вибрационные и виброударные. [Терминологический словарь по бетону и железобетону. ФГУП «НИЦ… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Машины разгрузочные — – предназначены для выгрузки заполнителей из полува­гонов и платформ (из полувагонов выгрузка осуществ­ляется многоковшовым элеватором, из платформ тол­кателем; подача в штабель, силоса ленточными кон­вейерами). [Терминологический словарь… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • МАШИНЫ МУСОРНЫЕ, МУСОРОУДАЛИТЕЛИ — вспомогательные судовые механизмы, служащие для выгрузки из кочегарных отделений золы и шлака, вычищенных из топок котлов. По своему устройству мусорные машины разделяются на: мусорные лебедки, поднимающие мусор в ведрах из кочегарок на верхнюю… …   Морской словарь

  • МАШИНЫ ШПИЛЕВЫЕ — судовые вспомогательные механизмы, служащие для выбирания ката и др. тяжелых работ по тяге тросов и цепей. М. Ш. бывают паровые и электрические. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР,… …   Морской словарь

dic.academic.ru

Механические счетные машины

Реферат

по предмету:

«Компьютерные сети. Интернет и мультимедиа технологии»

на тему:

«Поколения ЭВМ. Основные характеристики»

Выполнила: студентка 441 группы

(индивидуальное обучение)

Паркина Ольга

Проверила: Овтайкина Г.В

 

2012-2013 уч. г

 

 

Содержание:

1.Введение

2.Механические счетные машины

3.Идеи Бэббиджа.

4.Предыстория возникновения.

5.Электромеханические счетные машины

6.Машины Фон-Неймановского типа.

7.Развитие элементной базы компьютеров

8.Компьютеры с хранимой в памяти программой.

9. Появление IBM PC.

10.Открытая архитектура и появление клонов.

11.Заключение

12.Список используемой литературы

 

Введение.

Еще не так давно, всего три десятка лет назад, ЭВМ представляла собой целый комплекс огромных шкафов, занимавших несколько больших помещений. А всего и делала-то, что довольно быстро считала. Нужна была буйная фантазия журналистов, чтобы увидеть в этих гигантских арифмометрах «думающие агрегаты, и даже пугать людей тем, что ЭВМ вот-вот станут разумнее человека.

Тогдашняя переоценка возможностей человека объяснима. Представьте себе: на железных дорогах ещё пыхтели паровозы, ещё только-только появлялись вертолеты, и на них смотрели как на диковинку; ещё редко кто видел телевизор; ещё об ЭВМ знали только узкие специалисты... и вдруг сенсация - машина переводит с языка на язык! Пусть всего пару коротеньких предложений, но ведь переводит сама! Было от чего прийти в изумление. К тому же ЭВМ стремительно совершенствовалась: резко сокращались её размеры, она работала все быстрее и быстрее, обрастала все новыми приспособлениями, с помощью которых стала печатать текст, чертить чертежи и даже рисовать картинки. Неудивительно, что люди верили всяким вымыслам относительно нового технического чуда. И когда один язвительный кибернетик сам сочинил туманно-загадочные стихи, а потом выдал их за сочинение машины, то ему поверили.

Что же говорить о современных компьютерах, компактных, быстродействующих, оснащённых руками - манипуляторами, экранами дисплеев, печатающими, рисующими и чертящими устройствами, анализаторами образов, звуков, синтезаторами речи и другими «органами»! На всемирной выставке в Осаке компьютеризированные роботы уже ходили по лестнице, перенося вещи с этажа на этаж, играли с листа на фортепьяно, беседовали с посетителями. Так и кажется, что они вот-вот сравняются по своим способностям с человеком, а то и превзойдут его.

Да компьютеры многое могут. Но, конечно, далеко не всё. Прежде всего, «умные» машины способны эффективно помочь школьнику в учебе. Почему-то считается, что компьютеры нужны прежде всего на уроках математики, физики, химии, т.е. при изучении тех наук, которые вроде бы поближе к технике, а на уроках русского языка достаточно, мол, традиционных «технических» средств - доски, мела и тряпки.

Конечно, язык неизмеримо сложнее любой математической, химической или физической системы условных знаков. Язык охватывает все без исключения области человеческих знаний, и сами эти знания без него невозможны. Язык - оформитель и выразитель нашего мышления, а мышление - самое сложное из всего, что только известно нам, во всяком случае до сегодняшнего дня. Однако компьютеры все шире вторгаются в гуманитарные области, и процесс этот будет идти нарастающими темпами.

Семейство компьютеров - электронных технических приспособлений для переработки информации - довольно велико и разнообразно. Есть маленькие счетные устройства - микрокалькуляторы, которые помещаются в наручных часах, шариковых ручках: крохотные кнопки-числа, которые нужно нажимать иголкой или остриём карандаша, и несколько операций - четыре действия арифметики, вычисление процентов, возведение в степень, извлечение корня. Вот и все - для работы с языком возможности маловаты.

Компьютеры побольше - размером с карточку - календарь и такие же плоские. На них и кнопок никаких нет, и вообще нет никаких движущихся деталей. Все просто напечатано, а цифры индикатора - на жидких кристаллах. Дотрагиваешся до печатных цифр - они выстраиваются на индикаторе из кристаллов; энергия - от напечатанной полоски - фотоэлемента. Такую «машинку» ни сломать, ни разбить нельзя, разве что порвать.

Есть калькуляторы величиной с записную книжку, с книгу среднего формата. Увеличиваются их возможности: аппарат выполняет целый набор сложных алгебраических операций, у него появляется оперативная память, так что работу уже можно легко программировать.

Есть даже модели карманных калькуляторов с внешней памятью - целый набор ферромагнитных пластинок, на которых можно записать довольно сложную программу с большим количеством исходных данных. По мере необходимости пластинки вводятся в приемник машинки, она «глотает» их и перерабатывает информацию не хуже, чем первые вычислительные шкафы- мастодонты. А ведь кроха - в кармане помещается!

Так незаметно из простого электронного счетчика вырастает настоящий компьютер с широкими возможностями. И вот уже появляется настольная ЭВМ с солидной внешней памятью, экраном дисплея и алфавитной клавиатурой. Это уже персональный, индивидуальный компьютер, возможностей которого вполне достаточно для работы с языком. А удобства - лучше не придумаешь: программа записана на небольшой пластинке- дискетке, информация вводится прямо с клавиатуры, где есть цифры и алфавит (русский или латинский), все, что вам нужно, высвечивается здесь же на экране дисплея. Никакой мороки ни с перфокартами, ни с перфолентами, никаких забот о машинном времени, никаких ожиданий, когда заработает именно ваша программа и будут получены результаты - всё здесь, всё под рукой, всё на глазах.

Есть индивидуальные компьютеры с памятью на компакт-диске. Это небольшой радужно отсвечивающий диск размером с маленькую пластинку для проигрывателя, только «проигрывается» он не с помощью иглы, а с помощью лазерного луча. На одном таком диске умещается столько информации, что если её напечатать в книге, то понадобятся целые тома. Но если возможностей индивидуального компьютера все же не хватает, приходится обращяться к большим ЭВМ. Об истории развития и возможностях ЭВМ будет сказано ниже.

Механические счетные машины

Часто лавры первого конструктора механического калькулятора ошибочно отдают известному математику Блезу Паскалю. На самом деле достоверно известно, что немецкий астроном и математик Вильгельм Шикард, который за двадцать лет до Паскаля в письме своему другу Иоганну Кеплеру в 1623 году писал о машине, которая способна вычитать, складывать, делить и умножать. Но и версия, что именно Шикард является пионером в этой области, не верна: в 1967 году были обнаружены неизвестные записные книжки Леонардо да Винчи, построившего то же самое, что и Шикард, но более чем за 120 лет до него.

Первым механическим счетным устройством,которое существовало не на бумаге ,а работало ,была счетная машина, построенная в 1642 году выдающимся французским ученым Блезом Паскалем. Механический «компьютер» Паскаля мог складывать и вычитать. «Паскалина» – так называли машину – состояла из набора вертикально установленных колес с нанесенными на них цифрами от 0 до 9. При полном обороте колеса оно сцеплялось с соседним колесом и поворачивало его на одно деление. Число колес определяло число разрядов – так, два колеса позволяли считать до 99, три – уже до 999, а пять колес делали машину «знающей» даже такие большие числа как 99999. Считать на «Паскалине» было очень просто.

В 1673 году немецкий математик и философ Готфрид Вильгельм Лейбниц создал механическое счетное устройство, которое не только складывало и вычитало, но и умножало и делило. Машина Лейбница была сложнее «Паскалины». Числовые колеса, теперь уже зубчатые, имели зубцы девяти различных длин, и вычисления производились за счет сцепления колес. Именно несколько видоизмененные колеса Лейбница стали основой массовых счетных приборов – арифмометров, которыми широко пользовались не только в ХIХ веке, но и сравнительно недавно наши дедушки и бабушки.

Арифмометры получили очень широкое применение. На них выполняли даже очень сложные расчеты, например, расчеты баллистических таблиц для артиллерийских стрельб. Существовала и специальная профессия — счетчик — человек, работающий с арифмометром, быстро и точно со­блюдающий определенную последовательность инструкций (такую последовательность инструкций впоследствии стали называть программой). Но многие расчеты производились очень медленно — даже десятки счетчиков должны были работать по несколько недель и месяцев. Причина проста — при таких расчетах выбор выполняемых действий и запись результатов производились человеком, а скорость его работы весьма ограничена.

Идеи Бэббиджа.

Из всех изобретателей прошлых столетий, внесших вклад в развитие вычислительной техники, наиболее близко к созданию компьютера в современном представлении подошел англичанин Чарльз Бэббидж.

Желание механизировать вычисления возникло у Бэббиджа в связи с недовольством, которое он испытывал, сталкиваясь с ошибками в математических таблицах, используемых в самых различных областях.

В 1822 г. Бэббидж построил пробную модель вычислительного устройства, назвав ее "Разностной машиной": работа модели основывалась на принципе, известном в математике как "метод конечных разностей". Данный метод позволяет вычислять значения многочленов, употребляя только операцию сложения и не выполнять умножение и деление, которые значительно труднее поддаются автоматизации. При этом предусматривалось применение десятичной системы счисления (а не двоичной, как в современных компьютерах).

Однако "Разностная машина" имела довольно ограниченные возможности. Репутация Бэббиджа как первооткрывателя в области автоматических вычислений завоевана в основном благодаря другому, более совершенному устройству—Аналитической машине (к идее создания которой он пришел в 1834 г.), имеющей удивительно много общего с современными компьютерами.

Предполагалось, что это будет вычислительная машина для решения широкого круга задач, способная выполнять основные операции: сложение, вычитание, умножение, деление. Предусматривалось наличие в машине "склада" и "мельницы" (в современных компьютерах им соответствуют память и процессор). Причем планировалось, что работать она будет по программе, задаваемой с помощью перфокарт, а результаты можно будет выдавать на печать (и даже представлять их в графическом виде) или на перфокарты. Но Бэббидж не смог довести до конца работу по созданию Аналитической машины—она оказалась слишком сложной для техники того времени.

studopedya.ru

Глава 12. Ручные машины (срс)

12.1. Общие сведения. Определение, классификация, общие требования

Ручными называют машины, рабочий орган которых приводится в движение дви­гателем, а вспомогательное движение (подача) - оператором вручную. Ручные машины применяют в строительстве для выполнения самых разнообразных работ. Ради ком­плексного описания механизации отдельных видов работ некоторые из этих машин бы­ли рассмотрены ранее (главы 7, 10, 11). В целом же ручные машины принято классифи­цировать по приводимым ниже признакам.

По принципу действия различают машины непрерывно-силовые и импульсно-силовые. К первым относятся машины с непрерывно вращающимся рабочим органом (сверлильные, шлифовальные машины, дисковые пилы и т. п.). Возникающий при рабо­те этих машин реактивный момент воспринимается оператором, что является их суще­ственным недостатком и накладывает определенные ограничения на мощность их при­водов. Ко вторым относятся машины, работающие в прерывисто-импульсном режиме -ударном (молотки, перфораторы, вырубные ножницы) и безударном (ножевые ножни­цы). Машины ударного действия могут работать в чисто ударном (молотки, бетоноломы, трамбовки), ударно-поворотном (перфораторы) или в ударно-вращательном (гайко­верты) режимах.

По характеру движения рабочего органа различают ручные машины с вращатель­ным, возвратным и сложным движением. К первой группе относятся машины как с кру­говым вращательным движением (дисковые пилы, сверлильные машины, бороздоделы и т. п.), так и машины с движением рабочего органа по замкнутому контуру (цепные и ленточные пилы, долбежники, ленточные шлифовальные машины и т. п.). Возвратное движение рабочего органа реализуется в машинах с возвратно-поступательным (ножни­цы, напильники, лобзики и т. п.), и колебательным (вибровозбудители) движениями ра­бочего органа, а также в машинах ударного действия (трамбовки, молотки, пневмопробойники и т. п.). К ручным машинам со сложным движением относятся машины удар­но-поворотного и ударно-вращательного действия и машины с иными видами движений рабочего органа, не соответствующими приведенным выше характеристикам.

По режиму работы ручные машины делят на машины легкого, среднего, тяжело­го и сверхтяжелого режимов. В легком режиме работают сверлильные машины, в сверх­тяжелом - все типы машин ударного действия. Ручные машины могут быть реверсивны­ми и нереверсивными, одно- и многоскоростными, с дискретным и бесступенчатым ре­гулированием рабочих скоростей.

По назначению и области применения ручные машины подразделяют на машины общего назначения для обработки различных материалов, машины для обработки ме­таллов, дерева, пластмасс, камня и бетона, машины для работы по грунту и машины для сборочных работ. Особую группу составляют универсальные машины с комплектом на­садок для выполнения определенных видов работ.

По виду привода ручные машины могут быть электрическими, пневматически­ми, гидравлическими, с приводом от двигателей внутреннего сгорания, а также пиро­технические.

Электрическим ручным машинам присваивают три класса защиты от поражения электрическим током. I и II класс имеют машины с номинальным напряжением более 42 В, у которых доступные для прикосновения металлические детали отделены от час­тей, находящихся под напряжением, только рабочей (машины I класса) или двойной (усиленной) (машины II класса) изоляцией. III класс защиты имеют ручные машины с номинальным напряжением до 42 В, питающиеся от автономных источников электро­энергии, либо от преобразователей или трансформаторов с раздельными обмотками.

По конструктивному исполнению ручные машины с вращающимся рабочим ор­ганом делят на прямые и угловые, соответственно при совпадающих (параллельных) осях вращения рабочего органа и привода или расположенных друг к другу под углом.

Основными параметрами ручных машин являются: потребляемая мощность, для электрических машин - напряжение, род, сила и частота тока; для пневматических ма­шин - рабочее давление сжатого воздуха. Единой системы индексации ручных машин не существует. Индексы определяют разработчики машин и их изготовители. Наиболее широко используют индексы, состоящие из буквенной и цифровой частей. Первой бук­вой "И" обозначают все ручные машины ("механизированный инструмент"), вторая буква обозначает вид привода: Э - электрический, Г - гидравлический, П - пневматиче­ский, Д - от двигателя внутреннего сгорания. Первая цифра цифровой части индекса обозначает группу машин: 1 - сверлильные, 2 - шлифовальные, 3 - резьбозавертывающие, 4 - ударные, 5 - фрезерные, 6 - специальные и универсальные, 7 - многошпиндель­ные, 8 - насадки и головки инструментальные, 9 - вспомогательное оборудование, 10 -резервная группа. Вторая цифра обозначает исполнение машины: 0 - прямая, 1 - угло­вая, 2 - многоскоростная, 3 - реверсивная. Последними двумя цифрами обозначают но­мер модели. Буквы после цифр обозначают очередную модернизацию. Например, ин­декс ИЭ-1202А расшифровывается как ручная электросверлильная многоскоростная машина второй модели, прошедшая первую модернизацию.

Чаще всего ручные машины используют в строительстве в условиях ограничен­ного пространства и времени, из-за чего к этим машинам предъявляют требования ком­пактности и комплектности, обеспечивающие удобство перемещения и быстроту запу­ска машины в работу. Конструкция машины должна исключать возможность получения оператором травм, поражения электрическим током, шумо- и виброболезни, а ее внеш­ний вид должен отвечать требованиям эстетики. Соответственно первому требованию при разработке и изготовлении ручных машин стремятся максимально снизить их мас­су и габариты. Желательно, чтобы эти машины работали с минимальными потерями энергии. Однако в ряде случаев это требование не является обязательным. Так, пневма­тические ручные машины имеют значительно меньший КПД по сравнению с электри­ческими, но они легче и безопаснее. Коллекторный двигатель имеет меньший КПД, чем асинхронный, но из-за меньшей массы машин с коллекторными двигателями их приме­няют чаще. Форма и расположение рукояток, выключателей, а также уравновешенность и внешний вид современных ручных машин обеспечивают максимальное удобство в ра­боте и отвечают современным требованиям технической эстетики. В конструкциях руч­ных машин широко использован принцип поузловой унификации, обеспечивающий снижение трудоемкости и стоимости их изготовления и ремонта.

studfiles.net


© 2007—2018
423800, Набережные Челны , база Партнер Плюс, тел. 8 800 100-58-94 (звонок бесплатный)