Камаз 44108 тягач В наличии!
Тягач КАМАЗ 44108-6030-24
евро3, новый, дв.КАМАЗ 740.55-300л.с., КПП ZF9, ТНВД ЯЗДА, 6х6, нагрузка на седло 12т, бак 210+350л, МКБ, МОБ
 
карта сервера
«ООО Старт Импэкс» продажа грузовых автомобилей камаз по выгодным ценам
+7 (8552) 31-97-24
+7 (904) 6654712
8 800 1005894
звонок бесплатный

Наши сотрудники:
Виталий
+7 (8552) 31-97-24

[email protected]

 

Екатерина - специалист по продаже а/м КАМАЗ
+7 (904) 6654712

[email protected]

 

Фото техники

20 тонный, 20 кубовый самосвал КАМАЗ 6520-029 в наличии
15-тонный строительный самосвал КАМАЗ 65115 на стоянке. Техника в наличии
Традиционно КАМАЗ побеждает в дакаре

тел.8 800 100 58 94

Техника в наличии

тягач КАМАЗ-44108
Тягач КАМАЗ 44108-6030-24
2014г, 6х6, Евро3, дв.КАМАЗ 300 л.с., КПП ZF9, бак 210л+350л, МКБ,МОБ,рестайлинг.
цена 2 220 000 руб.,
 
КАМАЗ-4308
КАМАЗ 4308-6063-28(R4)
4х2,дв. Cummins ISB6.7e4 245л.с. (Е-4),КПП ZF6S1000, V кузова=39,7куб.м., спальное место, бак 210л, шк-пет,МКБ, ТНВД BOSCH, система нейтрализ. ОГ(AdBlue), тент, каркас, рестайлинг, внутр. размеры платформы 6112х2470х730 мм
цена 1 950 000 руб.,
КАМАЗ-6520
Самосвал КАМАЗ 6520-057
2014г, 6х4,Евро3, дв.КАМАЗ 320 л.с., КПП ZF16, ТНВД ЯЗДА, бак 350л, г/п 20 тонн, V кузова =20 куб.м.,МКБ,МОБ, со спальным местом.
цена 2 700 000 руб.,
 
КАМАЗ-6522
Самосвал 6522-027
2014, 6х6, дв.КАМАЗ 740.51,320 л.с., КПП ZF16,бак 350л, г/п 19 тонн,V кузова 12куб.м.,МКБ,МОБ,задняя разгрузка,обогрев платформы.
цена 3 190 000 руб.,

СУПЕР ЦЕНА

на АВТОМОБИЛИ КАМАЗ
43118-010-10 (дв.740.30-260 л.с.) 2 220 000
43118-6033-24 (дв.740.55-300 л.с.) 2 300 000
65117-029 (дв.740.30-260 л.с.) 2 200 000
65117-6010-62 (дв.740.62-280 л.с.) 2 350 000
44108 (дв.740.30-260 л.с.) 2 160 000
44108-6030-24 (дв.740.55,рест.) 2 200 000
65116-010-62 (дв.740.62-280 л.с.) 1 880 000
6460 (дв.740.50-360 л.с.) 2 180 000
45143-011-15 (дв.740.13-260л.с) 2 180 000
65115 (дв.740.62-280 л.с.,рест.) 2 190 000
65115 (дв.740.62-280 л.с.,3-х стор) 2 295 000
6520 (дв.740.51-320 л.с.) 2 610 000
6520 (дв.740.51-320 л.с.,сп.место) 2 700 000
6522-027 (дв.740.51-320 л.с.,6х6) 3 190 000


Перегон грузовых автомобилей
Перегон грузовых автомобилей
подробнее про услугу перегона можно прочесть здесь.


Самосвал Форд Нужны самосвалы? Обратите внимание на Ford-65513-02.

КАМАЗы в лизинг

ООО «Старт Импэкс» имеет возможность поставки грузовой автотехники КАМАЗ, а так же спецтехники на шасси КАМАЗ в лизинг. Продажа грузовой техники по лизинговым схемам имеет определенные выгоды для покупателя грузовика. Рассрочка платежа, а так же то обстоятельство, что грузовики до полной выплаты лизинговых платежей находятся на балансе лизингодателя, и соответственно покупатель автомобиля не платит налогов на имущество. Мы готовы предложить любые модели бортовых автомобилей, тягачей и самосвалов по самым выгодным лизинговым схемам.

Контактная информация.

г. Набережные Челны, Промкомзона-2, Автодорога №3, база «Партнер плюс».

тел/факс (8552) 388373.
Схема проезда



3.10. Сила и коэффициент сцепления колес автомобиля с дорогой. Коэффициент сцепления шин с дорогой


3.10. Сила и коэффициент сцепления колес автомобиля с дорогой

Значение тяговой силы, необходимой для движения, ограни­чено вследствие действия силы сцепления колес с дорогой.

Под силой сцепления понимают силу, противодействующую скольжению колеса относительно поверхности дороги. Она равна силе трения, возникающей в месте контакта колеса с дорогой.

Сила сцепления

гдеRZ, — нормальная реакция дороги; φ — коэффициент сцепления.

Равномерное качение колеса без скольжения и буксования воз­можно только при выполнении условия Если тяговая сила больше силы сцепления, то автомобиль движется с пробуксовкой ведущих колес. Это происходит, например, тогда, ког­да при движении по сухой дороге он попадает на участок со скользким покрытием. Если же автомобиль стоял на месте, то не только движение, но и его трогание с места невозможны.

Коэффициент сцепления. Этот коэффициент во многом определяет

значение силы сцепления. В зависимости от направления скольжения колеса относительно поверхности дороги различают коэффициенты продольного φх и поперечного φу сцепления. Эти коэффициенты зависят от одних и тех же факторов, и можно счи­тать, что они практически равны .

На коэффициент продольного сцепления φх оказывают влияние многие конструктивные и эксплуатационные факторы. Он определяется экспериментально. Ниже приведены средние значения φx,- для различных дорог и состояний их поверхности:

Сухое Мокрое

Асфальтобетонное шоссе................... 0,7...0,8 0,35...0,45

Дорога с щебенчатым покрытием .... 0,6...0,7 0,3...0,4

Грунтовая дорога ................................ 0,5...0,6 0,2...0,4

Снег ..................................................... 0,2 0.3

Лед........................................................ 0,1 0.2

Рассмотрим, как влияют различные конструктивные и эксплуатационные факторы на коэффициент продольного сцепления.

Тип и состояние покрытия дороги. На сухих дорогах с твердым покрытием коэффициент сцепления имеет наибольшее значение, так как в этом случае он обусловливается не только трением сколь­жения, но и межмолекулярным взаимодействием материалов ко­леса и дороги (механическим зацеплением). На мокрых дорогах с твердым покрытием коэффициент сцепления существенно уменьшается (в 1,5 2)

Рис. 3.10. Рисунки протектора шин: а, б — дорожный; в, г — универсальный; д—з — повышенной проходимости

Рис. 3.11. Зависимости коэффициента сцепления от давления воздуха в шине (а), скорости движения (б) и вертикальной нагрузки на колесо (в)

раза по сравнению с сухими дорогами, так как между колесом и дорогой образуется пленка из частиц грунта и воды. На деформируемых дорогах коэффициент сцепления зави­сит от внутреннего трения в грунте и сопротивления грунта срезу.

Рисунок протектора шины (рис. 3.10). Дорожный рисунок про­тектора обеспечивает наибольший коэффициент сцепления на дорогах с твердым покрытием, универсальный — на дорогах смешанного типа, а рисунок протектора повышенной проходимости — в тяжелых дорожных условиях и по бездорожью. По мере изнашивания рисунка протектора значение коэффициента сцеп­ления уменьшается.

Внутреннее давление воздуха в шине. При увеличении давле­ния воздуха в шине (рис. 3.11, а) коэффициент сцепления сначала возрастает, а затем уменьшается.

Скорость движения. При увеличении скорости движения (рис. 3.11, б) коэффициент сцепления сначала возрастает, а по­том падает.

Нагрузка на колесо. Увеличение вертикальной нагрузки на колесо (рис. 3.11, в) приводит к незначительному уменьшению ко­эффициента сцепления.

Коэффициент сцепления существенно влияет на безопасность движения. Его недостаточно высокое значение вызывает много­численные аварии и несчастные случаи на дорогах. Как показали исследования, по этой причине происходит 15% общего числа дорожно-транспортных происшествий, а в неблагоприятные пе­риоды года — около 70 %. Исследованиями установлено, что для обеспечения безопасного движения значение коэффициента сцеп­ления должно составлять не менее 0,4.

Рис. 3.12. Силы сопротивления движению автомобиля

studfiles.net

От чего зависит сцепление шин с дорогой? Часть 1

Дорогие друзья! Два года назад я написал статью «Сцепление шин с дорогой не зависит от площади пятна контакта?», и она вызвала бурную реакцию аудитории. Статья до сих пор находится в блоге, и на ее странице много комментариев, вопросов, споров, рассуждений. Кто-то, прочитав, поблагодарил меня за развенчивание мифов и простое, доступное объяснение физики процесса. Кто-то, наоборот, раскритиковал за излишнюю упрощенность и ограниченность моих рассуждений и аргументов.

За два года, что прошли с момента написания этой статьи, я поучаствовал во многих дискуссиях на эту тему, познакомился с новой литературой, пообщался с другими физиками (сам я – тоже физик по специальности), гонщиками и кое-что переосмыслил. Суть моих размышлений не поменялась, они стали более систематизированы и поменялись формулировки. Вот их я и изложу ниже. Поехали.

Сила трения покоя: закон Амонтона-Кулона

Снова вернусь к школьной физике. Напомню, школьная физика и классическая механика достаточно точно описывают повседневные явления. Пока речь не заходит об очень маленьких масштабах или релятивистких скоростях, классическая механика отлично работает. Более того, в какие бы научные труды о сцеплении шин с дорогой я не заглядывал, я видел в них много страшных зубодробящих формул, интегралов, рядов, но в конце концов все сводилось к одной простой школьной формуле, которая называется законом Амонтона-Кулона:

F = µN = µmg                                                                                          (1)

где µ — коэффициент сцепления, N – сила, прижимающие одно тело к другому (в данном случае, вес шины плюс вес части автомобиля, приходящейся на эту шину), m — масса тела (шины и  части автомобиля, приходящейся на эту шину), g — ускорение свободного падения.

То есть сила трения пропорциональна силе, прижимающей одно тело к другому, и коэффициенту трения. В самом простом случае эта сила — вес и представляет собой силу тяжести, то есть произведение массы тела на ускорение свободного падения. И тогда сила трения покоя пропорциональна коэффициенту трения, массе тела и ускорению свободного падения.

Сила трения покоя – она же сила сцепления

Автомобиль движется благодаря силе трения покоя в области контакта шины с дорожным полотном, а не силе трения качения, как иногда думают. Сила трения качения – следствие деформации шины. Она наоборот тормозит движение автомобиля. А пятно контакта шины с дорогой покоится относительно дороги в случае качения шины. Конечно, во время качения в пятне контакта всегда присутствуют элементы протектора, проскальзывающие относительно дороги, но в случае равномерного прямолинейного движения автомобиля в первом приближении их можно не учитывать и считать силу трения силой трения покоя или еще ее называют силой сцепления шины с дорогой, а коэффициент трения покоя – коэффициентом сцепления. При торможении большая часть элементов протектора может скользить вдоль дорожного полотна. В этом случае вращение колеса (и следовательно автомобиль) тормозится силой трения скольжения. Стоит отметить, что обычно сила трения скольжения меньше силы трения покоя.

Перераспределение  веса авто между шинами и сцепление с дорогой

Теперь разберем, что есть что в формуле Амонтона-Кулона. Ускорение свободного падения постоянно, его из обсуждения исключаем. Масса в целом тоже постоянна. Конечно, вес автомобиля распределен между 4 шинами, и при изменении скорости и/или траектории движения распределение веса может существенно меняться: какие-то шины разгружаются, а какие-то нагружаются дополнительно.

Перераспределение веса автомобиля между шинами тоже косвенно влияет на их сцепление с дорогой. Скажем, при торможении вес машины частично смещается с задней оси на переднюю, следовательно, сила прижатия задних шин к дороге уменьшается и поэтому сила их сцепления с дорогой ухудшается. Это повышает вероятность заноса автомобиля, но на тормозной путь не влияет, потому что сила сцепления передних колес с дорогой увеличивается из-за перераспределенной нагрузки. Если на одних и тех же шинах будут тормозить Porsche 911 и Porsche Cayenne, у последнего вследствие большей высоты смещение веса с задних шин на передние будет в большей степени, и Cayenne больше рискует попасть в занос. Но тормозной путь от этого меньше не станет. То, что Cayenne тяжелее – тоже не влияет, об этом читайте статью «Тормозной путь не зависит от массы авто?». Поворачивать Cayenne будет конечно же хуже 911-го и на меньших скоростях – как раз из-за более высокого центра тяжести и большего смещения веса и больших кренов.

Кроме того, на перераспределение веса влияет манера вождения. При аккуратном вождении, когда водитель избегает резких поворотов, перестроений, ускорений и торможений (читай, чем меньше нажата педаль тормоза или чем на меньший угол поворачивается руль), запас сцепления шин с дорогой максимален, то есть шины находятся «максимально далеко» от перехода в состояние полного скольжения и, как следствие, управление автомобилем максимально безопасно. Во-вторых, одно и то же перемещение педалей или руля можно совершить по-разному: быстро, резко или по нарастающей, прогрессивно. Резкое нажатие на педаль или поворот руля приведет к соответствующему резкому перераспределению веса с одних шин на другие, и это чревато их срывом в скольжение и сходом с траектории движения. Постепенное же воздействие на органы управления приводит к столь же плавному перераспределению веса, что позволяет шинам цепляться за дорогу без риска скольжения и потери управляемости или устойчивости автомобиля. Убедиться в этом на практике вы можете на курсах контраварийной подготовки водителей, например, при выполнения упражнения «экстренный объезд препятствия».

Практические рекомендации

1. Если вы хотите водить машину по дорогам общего пользования безопасно, а по гоночному треку быстро, перемещайте органы управления (руль, педали газа и тормоза) плавно и постепенно.

Теперь поговорим о том, что в самой шине влияет на ее сцепление.

Коэффициент сцепления шины с дорогой

Остается последний параметр в формуле силы трения Амонтона-Кулона – коэффициент сцепления µ, который, в первую очередь, зависит от природы соприкасающихся поверхностей. Самый показательный пример – сцепление резины с асфальтом куда лучше, чем той же резины со снегом и тем более льдом, несмотря на разные механизмы трения между шиной и этими тремя покрытиями. А при одном и том же дорожном покрытии коэффициент сцепления будет зависеть уже от состава резины и конструкции протектора. Например, на зимних шинах автомобиль куда лучше держит скользкую дорогу, чем на летних. И главное отличие зимних и летних шин – именно разный состав резины и конструкция протектора.

А если вы когда-нибудь смотрели по телевизору Формулу 1, наверняка слышали о разных типах шин и разных составах: «мягкий состав, сверхмягкий состав, жесткий состав». Именно это и оказывает ключевое влияние на коэффициент сцепления, даже в Формуле 1.

Так что же, все? Больше ничего не влияет? И что, этот коэффициент сцепления постоянен? Влияет, и как раз потому, что коэффициент сцепления не является постоянным и зависит от некоторых факторов. Но для начала расскажу о пресловутой площади пятна контакта.

Влияет ли площадь пятна контакта на сцепление шины с дорогой?

На всякий случай напомню, что такое пятно контакта.  При контакте с плоским дорожным покрытием ВСЯ шина деформируется, сминаясь и становясь плоской в зоне контакта. Эту зону и называют пятном контакта. Пятно контакта имеет площадь, примерно равную размеру ладони. Обыватели часто думают, что чем больше площадь пятна контакта, тем лучше сцепление шины с дорогой. И еще многие думают, что чем шире шина, тем больше площадь пятна контакта. А следовательно, думают, что чем шире шина, тем лучше ее сцепление с дорогой. Ниже я расскажу обо всем этом по порядку.

Как видно из формулы Амонтона-Кулона, площадь пятна контакта в силу трения не входит. Почему? Ведь, казалось бы, чем больше площадь, тем больше элементов шины участвует в зацеплении и тем больше сила трения. С одной стороны – да, а с другой – чем больше площадь соприкосновения, тем меньше давление шины на дорогу. Выходит баш на баш, и площадь не играет никакой роли. Теперь объясню то же самое на языке физики.

Чтобы было понятнее, куда же делась площадь, можно формулу Амонтона-Кулона (1) переписать иначе, с учетом площади пятна контакта и отразить влияние пятна на давление. Все просто: давление тела на опору или, в нашем случае, шины на асфальт  равно весу тела (шины), деленному на площадь контакта:

P = N/S = mg/S                                                                        (2)

где P — давление шины на дорогу, N = mg — все тот же вес шины.

Тогда отсюда можно выразить вес через давление:

N = PS                                                                                     (3)

Теперь, если подставить эту формулу в закон Амонтона-Кулона, получим:

F = µPS                                                                                    (4)

Или, выражаясь человеческим языком, сила сцепления шины с дорогой пропорциональна коэффициенту сцепления, давлению шины на дорогу и площади пятна контакта. Это именно то, как воспринимает силу сцепления большинство людей. Но здесь зарыта собака – в том, что давление напрямую зависит от площади пятна контакта и обратно пропорционально ему. Об этом нам говорит формула (2). Подставляя сюда выражение для давления, получим:

F = µmgS/S                                                                                (5)

Тогда площадь мы успешно сокращаем и приходим к закону Амонтона-Кулона (1) и силе сцепления, не зависящей от площади пятна контакта.

Влияние адгезии на коэффициент сцепления

Многие интуитивно полагают, что механизм трения резины объясняется адгезией — её приклеиванием к дорожному покрытию: чем больше площадь соприкосновения, тем больше приклеивание и тем больше сцепление. При этом приклеивание, вроде бы, не очень зависит от прижимающей силы. Действительно, тот же скотч липнет к гладким чистым поверхностям без всякого усилия, обеспечивая великолепное сцепление. Ключевое слово тут – гладкие чистые поверхности. Если поверхность шероховатая и грязная, как асфальт, то скотч будет держать гораздо хуже. На этом эффекте основан принцип защиты поверхностей в городской среде от наклеивания объявлений. И скотч, и объявления не держатся на неровных поверхностях потому, что реальная площадь контакта гораздо меньше площади самого скотча или бумаги. Если материал текучий и его контакт с неровной поверхностью сохраняется достаточно долго, то склеивание будет возможно. Обычная резина – материал мягкий, но не текучий, а времена ее контакта с дорожным полотном довольно малы. В результате, вкладом прилипания в формирование коэффициента трения можно пренебречь. Для желающих разобраться в вопросе самостоятельно, я могу порекомендовать ознакомиться с теориями Гринвуда-Вильямсона и Джонсона-Кендалла-Робертса и последующим развитием теории механики контактного взаимодействия.

Что же касается езды по гоночному треку на спортивных и гоночных шинах, там эффект прилипания шины к поверхности трека может быть более заметным. Отчасти это связано со специфическим составом резины протектора и отчасти – с более высокой температурой, до которой прогреваются шины при гоночной езде. Этот эффект и объясняет, почему коэффициент сцепления гоночных шин может быть заметно больше 1 (у шин в Формуле 1 – около 1,8).

И вот как такой коэффициент сцепления сказывается на практике:

Тормозной путь гоночного болида F1 со скорости 140 км/ч оказался короче на 32 метра, чем обычного дорожного автомобиля, 48 метров против 80, то есть в 1,66 раза короче. Во столько же раз коэффициент сцепления гоночной шины в этом видео больше, чем у дорожной.

Влияние аэродинамической прижимной силы на силу сцепления

Не стоит путать эффект прилипания шин к поверхности трека с эффектом аэродинамической прижимной силы, благодаря которой пилоты Формулы 1 при торможениях, ускорениях и поворотах могут испытывать перегрузки, в несколько раз превышающие величину ускорения свободного падения. А болиды, соответственно, иметь в несколько раз большую динамику торможения и скорость прохождения поворотов, чем обычные дорожные машины. То есть в повороте боковое ускорение величиной 4g (где g – ускорение свободного падения) болиды развивают не за счет прилипания шины и коэффициента сцепления, якобы, в 4 раза большего, чем у дорожных шин, а за счет большой прижимной силы, которая создается антикрыльями на большой скорости и в несколько раз превышает силу тяжести болида.

Увеличенное пятно контакта – спущенные шины

Из практики, площадь пятна контакта можно увеличить, уменьшив давление в шинах. Если спустить шины до 1 атмосферы, то при норме в 2 атмосферы это вдвое меньшее давление и вдвое большая площадь пятна контакта. Так что же, ездовые характеристики машины улучшатся в 2 раза? Конечно же нет и, более того, они ухудшатся. Хотя… тормозной путь уменьшится, но не из-за увеличившегося пятна контакта, а из-за увеличившейся силы трения качения вследствие более мягкой шины и большей ее деформации. А ускорение не станет лучше и будет только хуже – все из-за той же силы трения качения. Ну а в поворотах… машина будет вести себя, как будто водитель сильно пьян :) В общем, не делайте этого – не спускайте шины без необходимости, и, кстати, об этой необходимости…

Увеличение площади пятна контакта за счет спускания шин реально может помочь, если нужно проехать через какие-то рыхлые, зыбучие места. За счет большей площади контакта с поверхностью уменьшится давление шин на поверхность, а значит, и риск провалиться или увязнуть.

Увеличим ширину шин в 10 раз и спасем мир от ДТП?

Обратный пример, узкие шины мотоцикла не делают его более медленным, чем машина, и, более того, он заметно быстрее ее. Быстрее он по другим причинам, но значительно меньшая ширина шины негативного влияния точно не оказывает.

И еще идея – а давайте увеличим ширину шины в 10 раз и тем самым увеличим сцепление в 10 раз, и раз и навсегда решим все проблемы зимней езды, а на асфальте машина вообще будет останавливаться, как вкопанная! И всем всегда будет хватать тормозного пути! Что, вам не нравится эта идея? Правильно, если б все было так просто, это бы давно уже сделали…

В итоге:

увеличение площади пятна контакта => увеличение количества элементов шины, участвующих в зацеплении, и одновременно уменьшение давления шины на дорогу => оба эффекта компенсируют друг друга в равной степени => сцепление шины с дорогой не меняется

 

Влияет ли ширина шины на площадь пятна контакта?

Более того, увеличив ширину шины, хоть в 10 раз, мы не увеличим площадь пятна контакта, а лишь изменим его форму. Пока вы не закидали меня тухлыми помидорами после этой фразы, я попробую успеть доказать ее :)))

Вспомним, что такое давление – это сила (в нашем случае – сила тяжести, прижимная сила), приходящаяся на единицу площади. Об этом нам говорит формула (2), продублирую ее:

P = N/S = mg/S                                                                                      (2)

где m – масса тела (шины и части машины, приходящейся на эту шину), а S – площадь соприкосновения тел, то есть, в нашем случае площадь пятна контакта.

Отсюда площадь пятна контакта равна

S = mg/P                                                                                                      (6)

То есть площадь пятна контакта шины с дорогой тем больше, чем больше вес машины, приходящийся на эту шину, и чем хуже она накачана. И, конечно, на площадь влияет и жесткость боковин шины. Чем жестче боковины, тем меньше деформируется шина и тем меньше деформируется шина при уменьшении давления воздуха в ней. Хороший пример – современные шины с усиленными боковинами Run Flat, которые даже будучи полностью спущенными могут довезти автомобиль до места назначения, не особо проседая. От ширины шины площадь пятна контакта при одном и том же давлении и одной и той же нагрузке не зависит (в первом приближении).

Ширина шины влияет на форму пятна контакта

Прекрасно! А куда же делась ширина шины??? Очень просто, и тут опять работает принцип «баш на баш». Пятно контакта – следствие деформации шины, которая, в свою очередь, возникает вследствие приложенной сверху силы, то есть cилы тяжести самой шины и автомобиля. Чем шире шина, тем шире пятно контакта, что, казалось бы, должно увеличить площадь пятна. С другой стороны, чем шире шина, тем меньшее давление она оказывает на дорогу и тем меньше деформируется. В итоге, при увеличении ширины профиля шины мы имеем ту же площадь пятна контакта, но более вытянутую по ширине и узкую его форму.

В одном из серьезных научных трудов, который попался мне на глаза за последнее время (Автомобильные шины, диски и ободья, Евзович В.Е., Райбман П.Г.), авторы привели результат эксперимента с тремя шинами, две из которых были одной и той же модели, но разного диаметра ширины:

205/55 R16 с площадью отпечатка 173*143 мм = 247,39 см2

225/45 R17 с площадью отпечатка 185*134 мм = 247,90 см2

Как видим, у более широкой шины пятно более вытянутое и узкое, чем у более узкой шины. При этом в квадратных сантиметрах площадь пятна контакта практически одна и та же.

То есть, да, при одном и том же давлении у широкой шины пятно контакта по площади больше, чем у узкой. Но насколько? В данном примере на десятые доли процента, а вообще – максимум на несколько процентов. Теоретически, мы можем поставить на машину вместо шин с шириной профиля 195 мм шины с профилем, скажем, 245 мм. Но на практике это недопустимо по требованиям завода-изготовителя автомобиля. В любом случае, как я писал выше, площадь пятна контакта непосредственно не влияет на силу сцепления, поэтому ни эти доли процента, ни большее увеличение площади (например, за счет снижения давления в шине) погоды нам не сделают.

В итоге:

увеличиваем ширину профиля шины => увеличиваем ширину пятна контакта и одновременно уменьшаем давление шины на дорогу и деформацию шины в зоне контакта => уменьшаем длину пятна контакта => изменяется форма пятна контакта, но не меняется его итоговая площадь (меняется незначительно)

 

А увеличить площадь пятна контакта можно либо уменьшив давление воздуха в шине, либо увеличив нагрузку на шину сверху.

Сила сцепления шины с дорогой. Итоги

Итак, ширина шины напрямую не влияет на ее сцепление с дорогой по двум причинам:

а) площадь пятна контакта не влияет на сцепление

б) ширина шины не влияет на площадь пятна контакта

Я бы сказал, сила трения имеет «двойную защиту» от ширины шины :)))

Однако ширина шины все же косвенно влияет на силу сцепления, и независимость площади пятна контакта от ширины никак не мешает этому влиянию. Обо всем этом – ниже.

В итоге, сцепление шины с дорогой зависит от:

1) веса, приходящегося на шину, от развесовки автомобиля и динамического перераспределения веса, а значит, и от конструктивных его особенностей – высоты центра тяжести, колесной базы, колеи, подвески, жесткости кузова. Обсуждение этих моментов – отдельная тема и выходит за рамки этой серии статей.

2) коэффициента сцепления (трения покоя). А он, в свою очередь, много от чего зависит, но не от площади пятна контакта! :) Вот параметры, влияющие на величину коэффициента сцепления шины с дорогой, известные мне из университетского курса физики, специальной литературы и из водительского и инструкторского опыта:

Обо всем этом я подробно напишу в следующих статьях. Кроме того, все эти вопросы мы подробно обсуждаем на курсе безопасного вождения «МВА для водителя: Мастерство Вождения Автомбиля». Конкретно в следующей статье — о влиянии дорожного покрытия, типа протектора шины, рисунка протектора и степени его износа на коэффициент сцепления, а также о зависимости коэффициента сцепления от температуры шины.

Продолжение следует…

kaminsky.su

Коэффициент сцепления шин с дорогой и факторы, влияющие на него | AML

Направление ветра, скорость, давление в шинах – все эти факторы имеют особое значение для гонщиков-профессионалов, так как определяют собой поведение автомобиля на дороге. Для простых водителей основным фактором является коэффициент сцепления шин с дорогой, характеризующийся степенью скользкости дорожного покрытия.

От чего зависит коэффициент сцепления шин?

Дорожное покрытие однозначно влияет на поведение автомобиля на дороге. Грунтовка, плиты, брусчатка вызывают тряску. Однако подобные покрытия встречаются значительно реже, чем асфальт. Поэтому главными причинами, определяющими коэффициент сцепления, являются погодные условия: грязь, лед, слякоть, температура и другие.

Пятно сцепления протектора шины с дорожным покрытием

На коэффициент сцепления колеса с дорогой сильно влияет конструкция шины и тип рисунка протектора

Всегда нужно знать, на что обращать внимание и как действовать в определенных обстоятельствах. Вот несколько основных факторов, приводящих к появлению скользкого дорожного покрытия на отдельных участках.

  1. Лужи. Главной опасностью на дороге в дождливую погоду является аквапланирование. Оно характеризуется полной или частичной потерей сцепления шин с дорогой при контакте с водой. Даже в сильный гололед оно отчасти остается, но в случае с водой сцепления почти нет.Маслянистые участки дороги. Разлитые нефтепродукты делают дорогу скользкой.
  2. Заносы из снега или песка. Подобные явления возникают по причине гидрометеорологических бедствий, поэтому еще и сопровождаются плохой видимостью. Очевидно, что в такую погоду лучше не садиться за руль.
  3. Грунтовая дорога. На таких поверхностях при малейшем контакте с водой образуется грязь, которая налипает на шины. Выезд с грунтовой дороги обычно очень скользкий и колёса очень плохо сцепляются с дорожным покрытием.
  4. Частичный гололед. После сильных заморозков на дорогах появляется лед, но позже не весь он тает равномерно. Тени от деревьев, построек препятствуют таянию. Соответственно, в таких местах дороги значительно уменьшается сцепление.

Как предотвратить заносы и скольжения?

Лучше сторониться вышеуказанных мест на проезжей части либо снижать скорость при езде по ним. Особенно опасно проезжать по подобным местам только одной стороной машины. Это чревато заносом из-за разности коэффициентов сцепления с дорогой. Но иногда невозможно проехать иначе, в таком случае необходимо придерживаться следующих рекомендаций:

  • Избегать резких поворотов руля, изменений скорости движения, то есть плавно использовать педали тормоза и газа, стараясь придерживаться максимально прямой траектории движения.
  • Для безопасного движения на поворотах рекомендуется ехать внутренней парой колес по области с плохим сцеплением, а внешней парой держаться сухой поверхности.
Как предотвратить заносы и скольжения?

Как предотвратить заносы и скольжения?

Причины плохого сцепления с дорогой

Плохое сцепление на всей дороге может обуславливаться следующими причинами.

  1. Гололед. Данное погодное явление бывает тяжело заметить на дороге, поэтому при температуре воздуха около ноля лучше почаще проверять поверхность на наличие обледенения. В такие дни рекомендуется выбирать маршрут с интенсивным движением, так как это способствует более быстрому таянию льда.
  2. Дождь. Начало небольшого, на первый взгляд безобидного дождя может послужить причиной возникновения проблем на дороге. На сухой поверхности скапливается множество пыли, грязи, капель нефтяных и масляных отходов от автомобилей. С началом дождя на асфальте образуется небольшая пленка, которая бывает такой же скользкой, как легкое обледенение. При такой погоде лучше придерживаться тех же правил управления автомобилем, как и при гололеде.
  3. Снег. В период заморозков на дорогах с большим движением образуется слякоть, которая препятствует сцеплению.
  4. Булыжная дорога в дождь. Булыжная дорога в смоченном состоянии особенно опасна для проезда из-за особенностей материала изготовления.
  5. Жаркая погода. В зной на асфальте выступает тончайшая маслянистая пленка вяжущего вещества, которая влияет на поведение автомобиля.
  6. Опавшие листья. Ковер из мокрых листьев очень скользкий, лучше объезжать подобные места или быть предельно осторожным.

Таблица. Значения коэффициента сцепления шин с различными дорожными покрытиями.

Дорожное покрытие

Состояние дорожного покрытия

сухое

мокрое

Асфальт, бетон 0,7—0,8 0,45—0,55
Песчаная дорога 0,7—0,8 0,6—0,65
Щебеночное покрытие 0,6—0,7 0,4—0,5
Грунтовая дорога 0,5—0,6 0,4—0,5
Булыжник и брусчатка 0,5—0,55
Дорога, покрытая снегом 0,2—0,4
Снежная укатанная дорога 0,2—0,25
Гололед 0,2—0,25

Как проверить скользкость дороги?

На небольшой скорости можно слегка притормозить либо резко надавить на газ, почти сразу отпустив педаль. Чтобы определить коэффициент сцепления более точно, нужно давить на газ множество раз, на каждый увеличивая резкость нажатия. Если приводные колеса начнут буксовать, это будет указывать на то, что дорога скользкая, и чем раньше они забуксуют, тем выше степень опасности.

Многие ошибочно полагают, что реагировать на опасные участки дороги нужно только по мере необходимости. На самом же деле, чтобы максимально обезопасить себя, нужно вести машину равномерно, независимо от дорожных условий.

Двигаться без резких движений, всегда контролировать руль, не выжимать сцепление в моменты торможения. Изменять скорость лучше только на ровной, прямой дороге. Если придерживаться данных рекомендаций, это значительно повысит устойчивость на дорогах в любых условиях и снизит вероятность заноса.

Понравилась статья? Расскажи друзьям

Получай рассылку лучших статей

automotolife.com

От чего зависит сцепление шин с дорогой? Часть 2

Или от чего зависит коэффициент сцепления?

В прошлой статье я вкратце описал, от чего зависит сцепление шины с дорогой с точки зрения физики. Все известные мнеспециальные справочники и научные труды описывают силу сцепления шин с дорогой известной формулой Амонтона-Кулона: F = µmg, и она отлично подтверждается практикой, несмотря на свою простоту. В итоге, мы имеем единственный параметр, входящий в эту формулу и имеющий отношение к шине – коэффициент сцепления. И за внешней простотой формулы Амонтона-Кулона скрывается достаточно сложный процесс, поскольку коэффициент сцепления не является постоянным и явно зависит от ряда других параметров:

  • тип и качество дорожного покрытия
  • состав резины протектора
  • температура шины
  • скорость движения автомобиля
  • степень проскальзывания шины
  • увод шины

Вот и поговорим о них в этой и следующих статьях.

Влияние качества дорожного покрытия на коэффициент сцепления

Это самый очевидный параметр, влияющий на сцепление шины с дорогой, и не нуждается в долгом обсуждении. Даже ребенку известно, что лед скользкий, а асфальт – нет. Приведу классический набор коэффициентов сцепления шины с разными дорожными покрытиями:

Тип дорожного покрытия

Коэффициент сцепления

Сухой асфальт

0,8

Влажный асфальт

0,6

Мокрый асфальт

0,4

Рыхлый снег

0,3

Укатанный снег

0,2

Лед

0,1

Мокрый лед

0,05

Значения примерны, могут отличаться в зависимости от справочника и, кроме того, были актуальны еще лет 20-30 назад. По некоторым данным, современные шины могут обеспечивать сцепление с сухим асфальтом с коэффициентом 1,0-1,1. Так что, вполне возможно, табличка устарела, но я все же рекомендую вам ориентироваться на нее – целее будете 

Практические рекомендации

1. Помните, что состояние дорожного покрытия очень и очень сильно влияет на сцепление шин с дорогой. Тормозной путь на льду зимой может превышать тормозной путь на асфальте летом до 10 раз. Даже летом в дождь тормозной путь может увеличиться в 2 раза по сравнению с тормозным путем на сухом асфальте. Поэтому всегда думайте о том, по какому покрытию едете, и выбирайте соответствующие дистанцию до автомобиля-лидера и скорость перед поворотом.

Влияние типа протектора на коэффициент сцепления

Состав резины протектора

Как я уже писал выше, в зависимости от предназначения шины, она имеет тот или иной тип протектора: летний, дождевой, зимний, грязевой и т.п.  На фото ниже изображены зимняя и летняя шины. Обращаю ваше внимание на то, что важен не рисунок протектора сам по себе (в ёлочку, в полосочку, в клеточку, в линеечку), а его тип. Конечно, рисунок у них разный, но не он принципиально отличает шины друг от друга, а разный тип протектора. У летней шины гладкие края, есть непрерывные продольные водоотводящие канавки, отсутствуют ламели, а глубина канавок заметно меньше, чем у зимней шины, хотя это и не видно из рисунка. У зимней же шины, наоборот, грубые острые края, котрые помогают разрушить снежно-ледяную корку и «зубами» зацепиться за снежную массу. Аналогичные и более ярко выраженные «зубы» есть у грязевых шин, позволяющие лучше зацепляться за рыхлые поверхности. Сам протектор зимней шины испещрён множеством прорезей – ламелей, канавки более глубокие, чем у летней шины. А самое главное отличие зимней и летней шин в том, что у летней резина жесткая – для асфальта, а у зимней – мягкая – для снега и морозов.

1.jpg 2.jpg

Логика следующая:

мягкий состав => хорошее сцепление на морозе и плохое в жару

жесткий состав => хорошее сцепление с теплым асфальтом и плохое на морозе

Практические рекомендации

2. Всегда учитывайте качество шин, которые установлены на вашем авто. Помните, что зимние шины никогда не будут держать асфальтированную дорогу так же хорошо, как летние, в силу особенностей состава резины. Причем летний асфальт зимние шины держат еще хуже, чем зимний. А летние шины эконом-класса всегда будут уступать в качестве сцепления с дорогой дорогим шинам премиум-класса. Учитывайте это и выбирайте стиль вождения в соответствии с возможностями вашего автомобиля и ваших шин.

3. Не экономьте на шинах, шины – единственное связующее звено автомобиля с дорогой и залог вашей безопасности. Используйте летом летние шины, не нужно ездить на зимних. Избегайте всесезонных шин, они не дают хорошего сцепления ни ни летом, ни зимой. Не стоит экономить и покупать дешевые шины эконом-класса. Лучше переплатить за хороший комплект шин и тем самым сэкономить на кузовном ремонте, а то и на лечении…

Влияние рисунка протектора

Что касается именно рисунка, он больше нужен для эстетического восприятия шины, и даже сами производители шин говорят, что рисунок – маркетинговый инструмент. Вы же не можете, глядя на стенд с шинами в магазине, определить состав их резины? Не можете. А отличить один рисунок от другого – очень даже. Вот на том и стоят…

Если вы когда-нибудь обращали внимание на гоночные шины, в частности, на болидах Формулы 1, наверняка замечали, что у гоночных шин вообще нет рисунка. Протектор есть, а рисунка нет. И это гоночный тип протектора для сухого асфальта.

1_copy.jpg

Но на шинах для дождя уже есть рисунок, там протектор дождевого типа, и рисунок сделан так, чтобы максимально эффективно отводить воду из пятна контакта, чтобы вода не препятствовала контакту шины с асфальтом. При этом и состав резины особый, специально для влажного асфальта, и именно он задает сцепление. Таким образом, канавки в дождевом протекторе не могут повлиять на сцепление как таковое, они лишь не дают потеряться контакту шины с дорогой, а сцепление при наличии контакта обеспечивает состав резины.

_.jpg

Эта логика выглядит следующим образом:

дождевой тип протектора => эффективное удаление воды из пятна контакта => обеспечение лучшего контакта шины с дорогой => меньшая потеря первоначальных сцепных свойств => обеспечение сцепления за счет состава резины

неправильная логика:

дождевой тип протектора => улучшение сцепления с мокрой дорогой из-за рисунка «в ёлочку»

Практические рекомендации

4. Помните, что если у вас шины с модным, современным и навороченным рисунком протектора, это не дает принципиальных преимуществ в дождь или снег и не дает никаких преимуществ на сухом асфальте или льду. Возможно, ваш модный рисунок «нарисован» на высококачественном протекторе дорогих шин, тогда у вас действительно хорошее сцепление с дорогой в силу хорошего состава резины. Но и это не дает вам повода лихачить, поскольку даже самые хорошие шины не могут обойти законы физики.

5. Не стоит также при выборе шин гнаться за красивым рисунком протектора. По рисунку вы не сможете определить качество шины, все определяется составом резиновой смеси, который не виден глазом. Выбирайте шины премиум-сегмента ведущих производителей, ориентируйтесь на независимые шинные тесты и исследования.

Влияние износа протектора

Еще определенное влияние на сцепление шины с дорогой оказывает степень износа протектора. Есть такое народное заблуждение: лысые, то есть сильно изношенные шины плохо держат дорогу, особенно мокрую, потому что нет рисунка. Конечно, в случае с дождем это отчасти так и есть. Гладкие шины – те же гоночные слики буквально всплывают на водяной пленке (явление аквапланирования), а дождевые канавки в протекторе, как я писал выше, помогают отводить воду и избежать этого.

Но не только поэтому лысые шины хуже держат дорогу, а в случае сухого асфальта – вообще не поэтому. Просто состав резины протектора, который и отвечает за сцепление с дорогой, находится в поверхностном слое шины, глубже которого – уже другая резина, играющая другую роль. И когда шина изнашивается «долыса», этой цепкой резины просто не остается, а резина, находящаяся под протектором не может обеспечить должного сцепления, поскольку не предназначена для этого. Таким образом, износ протектора по сути означает не истирание рисунка, а исчезновение состава резины, который обеспечивает хорошее сцепление с дорогой.

Есть еще мнение, что наполовину изношенная шина имеет лучшее сцепление с дорогой, чем новая, но это больше актуально в поворотах, и об этом – в одном из следующих разделов.

Так что наибольшее влияние на сцепление шины с дорогой оказывает именно состав резины протектора. И широкая низкопрофильная спортивная шина обеспечивает лучшее сцепление, чем эко-шина с узким и высоким протектором, не потому что она широкая или с большим диаметром и не потому что у нее новый асимметричный рисунок протектора, а потому что имеет протектор спортивного предназначения с соответствующим составом резины.

В итоге, неправильная логика:

лысая шина => отсутствие рисунка протектора => ухудшение сцепления

правильная логика:

лысая шина => отсутствие резинового слоя с составом, обеспечивающим хорошее сцепление => ухудшение сцепления

Практические рекомендации

6. Не стоит бояться езды на шинах с частичным износом протектора, от этого они держат дорогу только лучше. Но вождение на полностью изношенных «лысых» шинах становится опасным, особенно, на мокрой дороге. Следите за износом и вовремя меняйте шины на новые.

Влияние температуры шины на коэффициент сцепления

Деформация любого тела приводит к его нагреву. Шина в процессе езды деформируется, особенно при разгонах, торможениях и поворотах, и, как следствие, нагревается. При прямолинейном и равномерном движении она тоже деформируется, но в большей степени из-за вертикальных колебаний вследствие дорожных неровностей. Поэтому температура шины, скажем, через час после начала поездки, значительно отличается от ее температуры до поездки, и еще более значительно, если на машине «отжигали» – много и интенсивно тормозили, ускорялись и с ветерком «вваливали» в повороты.

Коэффициент сцепления шины с дорогой зависит от температуры шины, причем его максимуму соответствует некая оптимальная температура. То есть на холодной шине коэффициент имеет какое-то значение, при нагреве увеличивается, а при перегреве шины снова уменьшается. Оптимальная температура для разных шин разная, для летних дорожных шин она находится в интервале 60-90 градусов, для гоночных шин – выше и может превышать 100 градусов.

1_copy_copy.jpg

В обычном дорожном вождении важно не перегреть шину, а в автогонках актуально избежать не только перегрева, но и недогрева. Недогрев в гонке означает недостаточно большой коэффициент сцепления, а значит, недостаточно большую скорость пилотирования. Перегрев опасен не только временным ухудшением сцепления с дорогой, но и повышенным износом протектора шины, а значит, преждевременным уменьшением сцепления, но для изношенной шины уже навсегда.

Практические рекомендации

7. Если вы – любитель динамичной езды, отправились в поездку, а на улице не стоит палящий зной, не стоит сразу динамично разгоняться и тормозить и «закладывать» в повороты. Дайте некоторое время шинам, чтобы они прогрелись до рабочей температуры и достигли максимального сцепления с дорогой.

8. Если же вы выезжаете на гоночный трек, помните, что от гоночной езды обычные дорожные шины могут перегреться и резко ухудшить свои свойства либо временно, пока перегретые, либо уже постоянно, если вы вовремя не отследите их перегрев и они быстро износятся.

Влияние ширины профиля шины на ее нагрев

Так вот как раз на температурную стабильность и устойчивость к перегреву и износу влияет ширина шины. Чем шире шина, тем выше ее теплоемкость и лучше обдув воздухом, тем самым она лучше отводит тепло, меньше нагревается и изнашивается. Следовательно, широкая шина имеет меньший риск уменьшения коэффициента сцепления в течение активной езды по дороге или гонки и дольше сохраняет первоначальные сцепные свойства. Хотя при одинаковом составе широкая шина изначально имеет тот же коэффициент сцепления, что и узкая шина, но она дольше его сохраняет. Так что для любителей активного «отжига» широкая шина должна быть предпочтительнее узкой.

Однако для увлекающихся гоночной ездой водителей важно найти золотую середину. Ведь увеличив ширину резины сверх меры, в результате можно не достичь оптимальной температуры. Излишне широкая шина будет охлаждаться слишком сильно, и есть риск, что, как ни старайся, выше 60 градусов мы шину не нагреем, а значит, получим меньший коэффициент сцепления, чем если бы поставили более узкую шину, и прогрели бы ее до нужной температуры.

Так что при увеличении ширины профиля шины имеет место следующая логика:

широкая шина => меньше перегрев и износ => долгое сохранение первоначальных сцепных свойств при повышенных нагрузках

неправильная логика:

широкая шина => больше площадь пятна контакта => больше сила сцепления с дорогой

Таким образом, ширина шины прямо не влияет на сцепление шины с дорогой, но влияет косвенно. Повторюсь, при одинаковом составе резины широкая шина изначально имеет тот же коэффициент сцепления, что и узкая шина, но дольше его сохраняет за счет меньшего риска перегрева и меньшего износа.

Практические рекомендации

9. Если вы любите динамичную езду и, что особенно важно, выезжаете на гоночный трек, используйте соответствующие шины – с широким и низким профилем, желательно из премиум-сегмента и от зарекомендовавших себя производителей. Для трека лучше всего использовать специализированные шины – полуслики или слики.

10. Помните также, что слишком широкие шины конкретно на вашем автомобиле могут не прогреваться до рабочей температуры вследствие интенсивного охлаждения, и тогда вы не сможете выйти на максимальный коэффициент сцепления и полностью использовать потенциал вашей машины. Во всем нужна мера – в том числе и в установке шин оптимальной ширины.

Влияние давления воздуха в шине на ее нагрев

Еще один фактор, влияющий на нагрев  шины – давление воздуха, до которого она накачана. Как я уже писал, шина нагревается от деформации. Чем больше деформация, тем больше нагрев. А чем больше давление воздуха в шине, тем она жестче и тем меньше деформация и тем меньше нагрев. Справедливо и обратное: низкое давление приводит к быстрому нагреву и, возможно, перегреву. Поэтому в инструкции к любой машине можно наряду с рекомендуемым давлением в шинах увидеть рекомендацию перекачать шины при езде с большим грузом или с большой скоростью.

Так что спущенные шины ухудшают ездовые характеристики из-за большей деформации шины. Но эта деформация плоха как сама по себе (это увеличивает увод, об этом – ниже), так и вследствие повышенного нагрева шины.

В итоге:

пониженное давление в шине => большая мягкость шины => большая деформация шины => увеличенный нагрев => повышенный риск временного снижения коэффициента сцепления и преждевременного износа

Не стоит путать температуру протектора шины и температуру воздуха в шине. Из закона Менделеева-Клапейрона

 PV=RT                                                                                            (7)

где Р – давление воздуха, V – объем воздуха, R – универсальная газовая постоянная, Т – температура воздуха,

немедленно вытекает, что при повышении температуры воздуха повышается и его давление, и, наоборот, при похолодании давление снижается. Это означает, что если сегодня при 0 градусов за окном вы накачали шины до оптимального давления, а завтра похолодало до -15, надо идти подкачивать шины. Хотя воздух из них никуда не делся, его давление заметно снизилось вследствие снижения температуры. Аналогично, при резком потеплении имеет смысл стравить воздух и избавиться от лишнего давления.

То есть:

похолодание на улице => снижение температуры воздуха в шине  => снижение давления воздуха в шине  => необходимость подкачать шины

Но этот факт никак не противоречит тому, что перед поездкой с большой скоростью, в том числе и по гоночному треку, следует перекачать шины во избежание их перегрева. Ведь шины перегреваются от повышенной деформации вследствие недостатка давления воздуха. А к переизбытку давления приводит нагрев воздуха в самой шине.

Практические рекомендации

11. Регулярно (1 раз в 1-2 недели) делайте плановую проверку давления в шинах с помощью манометра. В случае резкой смены температуры на улице делайте внеплановую проверку давления в шинах. Если проверка показала несоответствие давления рекомендованному заводом-изготовителем АВТОМОБИЛЯ, обеспечьте нужное давление – подкачайте спущенные или подспустите перекачанные шины.

12. Перед поездкой с большой скоростью и/или с большим грузом или на гоночном треке увеличьте давление в шинах примерно на 20%. Не забудьте по окончании поездки выпустить лишний воздух.

13. Помните, что давление воздуха в шинах следует проверять на холодных шинах – не менее, чем через 2 часа по окончании поездки. Если же машина проехала больше, чем 1 км пути, воздух в шинах нагревается, и манометр покажет завышенное давление.

Коэффициент сцепления шин с дорогой. Итоги

В этой статье я рассмотрел влияние на коэффициент сцепления шин с дорогой следующих параметров:

  • тип и качество дорожного покрытия
  • состав резины протектора
  • температура шины

И вот выводы:

1. С дорожным покрытием все просто: шины хорошо держатся за асфальт и плохо за лед. Тормозной путь на этих покрытиях может отличаться даже в 10 раз.

2. Что касается самой шины, то наибольший вклад в сцепление вносит состав резины протектора. Рисунок протектора не влияет на сцепление на сухом асфальте, а на мокром влияет косвенно – выдавливает воду из пятна контакта и не дает шине всплыть на водяном клине, но само сцепление обеспечивает состав резины. Внешний вид рисунка протектора – эстетический момент, по нему вы не сможете на глаз определить качество сцепления шины с дорогой. Поэтому и лысая изношенная шина плоха не отсутствием рисунка, а отсутствием резины протектора.

3. Коэффициент сцепления зависит от температуры шины и достигает максимума при ее разогреве до рабочей температуры в 60-90 градусов. Широкий профиль шины страхует ее от перегрева и обеспечивает меньший износ и температурную стабильность за счет лучшего охлаждения воздухом. Поэтому спортивные шины для асфальтовой езды делаются широкими.

В следующей статье – о влиянии скорости движения автомобиля и проскальзывания шин на коэффициент сцепления.

Продолжение следует…

kaminsky.su

3.10. Сила и коэффициент сцепления колес автомобиля с дорогой

Значение тяговой силы, необходимой для движения, ограни­чено вследствие действия силы сцепления колес с дорогой.

Под силой сцепления понимают силу, противодействующую скольжению колеса относительно поверхности дороги. Она равна силе трения, возникающей в месте контакта колеса с дорогой.

Сила сцепления

Рсц = Rzφ,

где Rz — нормальная реакция дороги; φ — коэффициент сцепле­ния.

Равномерное качение колеса без скольжения и буксования воз­можно только при выполнении условия Рт ≤ Рсц . Если тяговая сила

больше силы сцепления (Рт > Рсц), то автомобиль движется с про­буксовкой ведущих колес. Это происходит, например, тогда, ког­да при движении по сухой дороге он попадает на участок со скольз­ким покрытием. Если же автомобиль стоял на месте, то не только движение, но и его трогание с места невозможны.

Коэффициент сцепления. Этот коэффициент во многом опре­деляет значение силы сцепления. В зависимости от направления скольжения колеса относительно поверхности дороги различают коэффициенты продольного φх и поперечного φу сцепления. Эти коэффициенты зависят от одних и тех же факторов, и можно счи­тать, что они практически равны (φх= φу).

На коэффициент продольного сцепления φх оказывают влия­ние многие конструктивные и эксплуатационные факторы. Он определяется экспериментально. Ниже приведены средние зна­чения φх для различных дорог и состояний их поверхности:

Сухое Мокрое

Асфальтобетонное шоссе 0,7...0,8 0,35...0,45

Дорога с щебенчатым покрытием .... 0,6...0,7 0,3...0,4

Грунтовая дорога 0,5...0,6 0,2...0,4

Снег 0,2 0,3

Лед 0,1 0,2

Рассмотрим, как влияют различные конструктивные и эксплу­атационные факторы на коэффициент продольного сцепления.

Рис. 3.10. Рисунки протектора шин:

а, б — дорожный; в, г — универсальный; д—з — повышенной проходимости

Тип и состояние покрытия дороги. На сухих дорогах с твердым покрытием коэффициент сцепления имеет наибольшее значение, так как в этом случае он обусловливается не только трением сколь­жения, но и межмолекулярным взаимодействием материалов ко­леса и дороги (механическим зацеплением). На мокрых дорогах с твердым покрытием коэффициент сцепления существенно умень-

Рис. 3.11. Зависимости коэффициента сцепления от давления воздуха в шине (а), скорости движения (б) и вертикальной нагрузки на колесо (в)

шается (в 1,5 — 2 раза) по сравнению с сухими дорогами, так как между колесом и дорогой образуется пленка из частиц грунта и воды. На деформируемых дорогах коэффициент сцепления зави­сит от внутреннего трения в грунте и сопротивления грунта срезу.

Рисунок протектора шины (рис. 3.10). Дорожный рисунок про­тектора обеспечивает наибольший коэффициент сцепления на дорогах с твердым покрытием, универсальный — на дорогах смешанного типа, а рисунок протектора повышенной проходимо­сти — в тяжелых дорожных условиях и по бездорожью. По мере изнашивания рисунка протектора значение коэффициента сцеп­ления уменьшается.

Внутреннее давление воздуха в шине. При увеличении давле­ния воздуха в шине (рис. 3.11, а) коэффициент сцепления сначала возрастает, а затем уменьшается.

Скорость движения. При увеличении скорости движения (рис. 3.11, б) коэффициент сцепления сначала возрастает, а по­том падает.

Нагрузка на колесо. Увеличение вертикальной нагрузки на ко­лесо (рис. 3.11, в) приводит к незначительному уменьшению ко­эффициента сцепления.

Коэффициент сцепления существенно влияет на безопасность движения. Его недостаточно высокое значение вызывает много­численные аварии и несчастные случаи на дорогах. Как показали исследования, по этой причине происходит 15 % общего числа дорожно-транспортных происшествий, а в неблагоприятные пе­риоды года — около 70 %. Исследованиями установлено, что для обеспечения безопасного движения значение коэффициента сцеп­ления должно составлять не менее 0,4.

studfiles.net

Сцепление шины с дорогой | Шины

Устойчивость и управляемость автомобиля, его тяговые свойства и тормозные характеристики в значительной степени определяются сцеплением шины с дорогой.

Величина сцепления шин оценивается коэффициентом v, равным отношению максимальной величины реакции X, действующей на колесо в контакте шины с дорогой, при которой происходит буксование колеса, к радиальной нагрузке на шину Q:

v = X/Q

Коэффициент сцепления шины с дорогой оценивается в продольном (в плоскости вращения колеса) и боковом (поперечном) направлениях.

В продольном направлении коэффициент сцепления шин с дорогой оценивается отношением максимальной тяговой (или тормозной) силы Рт, при которой наступает буксование (юз) колеса, к радиальной нагрузке на шину Q:

vб = Рб/Q

Величина коэффициента сцепления шин с дорогой в основном определяется конструкцией шины и типом рисунка протектора, составом протекторных резин, а также характером, качеством и состоянием дорожного покрытия.

Сцепление шины с дорогой

Влияние типа рисунка протектора на величину коэффициента сцепления на дорогах с сухим твердым покрытием (асфальт, бетон) менее значительно, чем с влажным. На влажном же покрытии характер рисунка протектора имеет большое значение. Это объясняется тем, что при движении мотоцикла по твердой мокрой дороге между элементами рисунка протектора и дорогой появляется пленка воды. Если элементы рисунка протектора имеют сравнительно небольшие размеры и рассечены щелевидными (дренажными) прорезями, то даже при высокой скорости качения вода выдавливается из-под выступов протектора в стороны и дренажные щели. Благодаря этому коэффициент сцепления повышается. В том случае, когда вода не успевает выдавливаться из-под шашек протектора, между элементами рисунка и полотном дороги остается тонкая пленка воды, которая резко снижает коэффициент сцепления. При этом значительно ухудшается управляемость и устойчивость автомобиля, появляется опасность заноса.

Существенно снижается коэффициент сцепления при качении шин по дорогам, покрытым тонким слоем грязи, а также на заснеженных дорогах и в гололед.

В таблице приведены значения коэффициентов сцепления шин с различными дорожными покрытиями.

Таблица. Средние значения коэффициента сцепления шин с различными дорожными покрытиями

Дорожное покрытие

Состояние дорожного покрытия

сухое

мокрое

Асфальт, бетон 0,7—0,8 0,45—0,55
Песчаная дорога 0,7-0,8 0,6-0,65
Щебеночное покрытие 0,6-0,7 0,4-0,5
Грунтовая дорога 0,5-0,6 04,-0,5
Булыжник и брусчатка 0,5—0,55

Дорога, покрытая снегом

0,2—0,4

Снежная укатанная дорога

0,2-0,25

Гололед

0,2-0,25

ustroistvo-avtomobilya.ru

Определение коэффициента сцепления

Министерство образования Российской Федерации

Липецкий государственный технический университет

Кафедра управления автотранспортом

Лабораторная работа

Липецк 2009

1. Основные сведения

Тяговое усилие на колёсах автомобиля, обеспечиваемое мощностью двигателя, может быть развито лишь в том случае, если между ведущими колёсами и дорогой имеется достаточное сцепление. Отношение максимального тягового усилия на колесе к вертикальной нагрузке на покрытие, при превышении которого начинается пробуксовывание ведущего колеса или проскальзывание заторможенного, называют коэффициентом сцепления.

При любых покрытиях выступающие над их поверхностью твёрдые минеральные частицы, которые делают покрытие шероховатым, при наезде колеса вдавливаются в резину протектора. При проскальзывании колеса они упруго деформируют резину, сопротивление которой является основной причиной сопротивления смещению по покрытию. По мере износа шероховатость покрытия уменьшается, а, следовательно, уменьшается и сцепление его с колесом.

Впадины на поверхности покрытия между выступами шероховатости при увлажнении или загрязнении заполняются грязью, пылью, продуктами износа шин и т.д., что уменьшает возможную глубину вдавливания выступов в резину. Плёнка влаги, смачивая зону контакта между шиной и покрытием, действует как смазка, разделяющая резину и покрытие. Всё это снижает коэффициент сцепления. При высоких скоростях движения шина не успевает полностью деформироваться, т.к. продолжительность контакта с покрытием для этого недостаточна. Следовательно, неровности покрытия вдавливаются в шину на меньшую глубину. В результате с ростом скорости коэффициент сцепления снижается. На сухих покрытиях снижение коэффициента сцепления с ростом скорости менее ощутимо, чем на увлажнённых (что объясняет увлажнение покрытия под имитаторами в данной лабораторной работе).

В среднем можно считать, что коэффициент сцепления шин, имеющих слабоизношенный протектор, и гладкого влажного асфальтобетонного покрытия следующим образом зависит от скорости:

Скорость, км/ч

30

40

60

80

100

120

150

175

Коэффициент сцепления

0,50

0,45

0,39

0,35

0,32

0,29

0,26

0,24

Коэффициенты сцепления при скорости 60 км/ч в зависимости от состояния покрытия имеют следующие значения:

Сухое ……………………………….. 0,7 и более;

Влажное ……………………………. 0,5;

Мокрое ……………………………... 0,4…0,3;

Грязное …………………………….. 0,2…0,3.

Чем ответственнее назначение дороги и чем труднее условия движения по отдельным её участкам, тем более высокие требования предъявляются к коэффициенту сцепления.

В России при обосновании геометрических элементов трассы исходят из значения коэффициента сцепления при сухом чистом покрытии и скорости 60 км/ч, равного 0,6.

Измерение фактического коэффициента сцепления шин с дорогой проводят портативным прибором ППК-МАДИ-ВНИИБД, рассмотренным в данной лабораторной работе.

Измерение коэффициента сцепления с помощью прибора ПКРС-2 (тележка) проводят крайне редко из-за его больших габаритов и неудобства эксплуатации. При отрицательных температурах окружающей среды может использоваться метод измерения длины тормозных следов автомобиля ГАЗ-24.

Методика измерений и правила оформления результатов испытаний коэффициента сцепления определены ГОСТ 30413-96

При оценке сцепных свойств покрытий визуально определяется участок дороги, на котором водителями транспортных средств, причастных к ДТП, применялось экстренное торможение либо где автомобиль потерял управляемость. Это может наблюдаться как в зимний период года по причине образования гололеда или снежного наката, так и летом из–за загрязнения дороги, масляной пленки на свежеуложенном асфальтобетонном покрытии или же от высокой температуры окружающей среды с выступлением на нем битума (выпотевание).

Согласно ГОСТ Р 50597-93 «Автомобильные дороги и улицы. Требования к эксплуатационному состоянию, допустимому по условиям обеспечения безопасности дорожного движения» коэффициент сцепления покрытия должен обеспечивать безопасные условия движения с разрешенной Правилами дорожного движения скоростью и быть не менее 0,3 при его измерении шиной без рисунка протектора и 0,4 – шиной, имеющей рисунок протектора. 1

Если в ходе осмотра выявлены участки, имеющие коэффициент сцепления ниже допустимого, они признаются опасными и, следовательно, должны быть обозначены дорожными знаками 1.15 и 3.24 с учетом требований п. 2.4.23 ГОСТ 23457-86.

Условия движения по СНиП 2.05.02-85

Коэффициент сцепления при скорости 60 км/ч

Легкие

0,23 / 0,35

Затруднительные

0,30 / 0,40

Опасные

0,32 / 0,45

В зимний период допускается снижение приведенных выше сцепных свойств покрытий автомобильных дорог только на время проведения работ по снегоочистке и ликвидации зимней скользкости.

Сроки выполнения таких работ для автомобильных дорог, а также улиц городов и иных населенных пунктов с учетом их транспортно-эксплуатационных характеристик приведены в табл. 3 и 4 ГОСТ Р 50597-93. На это время дорожные организации обязаны выставить временные дорожные знаки, убираемые немедленно по окончании работ.

Работы по повышению сцепных качеств покрытия

Время, необходимое для выполнения работ, сутки, не более

Устранение скользкости покрытия, вызванной выпотеванием битума

4

Очистка покрытия от загрязнения

5

Повышение шероховатости покрытия

1,5

Совершение ДТП на скользком покрытии до истечения нормативного срока не должно освобождать дорожные организации от ответственности, если меры по ликвидации скользкости ими в это время не принимались.

studfiles.net


© 2007—2018
423800, Набережные Челны , база Партнер Плюс, тел. 8 800 100-58-94 (звонок бесплатный)