|
||||
|
Екатерина - специалист по продаже а/м КАМАЗ
43118-010-10 (дв.740.30-260 л.с.) | 2 220 000 |
43118-6033-24 (дв.740.55-300 л.с.) | 2 300 000 |
65117-029 (дв.740.30-260 л.с.) | 2 200 000 |
65117-6010-62 (дв.740.62-280 л.с.) | 2 350 000 |
44108 (дв.740.30-260 л.с.) | 2 160 000 |
44108-6030-24 (дв.740.55,рест.) | 2 200 000 |
65116-010-62 (дв.740.62-280 л.с.) | 1 880 000 |
6460 (дв.740.50-360 л.с.) | 2 180 000 |
45143-011-15 (дв.740.13-260л.с) | 2 180 000 |
65115 (дв.740.62-280 л.с.,рест.) | 2 190 000 |
65115 (дв.740.62-280 л.с.,3-х стор) | 2 295 000 |
6520 (дв.740.51-320 л.с.) | 2 610 000 |
6520 (дв.740.51-320 л.с.,сп.место) | 2 700 000 |
6522-027 (дв.740.51-320 л.с.,6х6) | 3 190 000 |
Нужны самосвалы? Обратите внимание на Ford-65513-02. |
Контактная информация.
г. Набережные Челны, Промкомзона-2, Автодорога №3, база «Партнер плюс».
тел/факс (8552) 388373.
Схема проезда
Химические средства гигиены и косметики
Слово гигиена происходит от греч. гигиенос, что означает целебный, приносящий здоровье, а косметика — от греч., означающее искусство украшать. В настоящее время термин «косметика» употребляют прежде всего в связи с уходом за кожей лица и тела. Гигиена — это раздел профилактической медицины, изучающей влияние внешней среды на здоровье человека.
К важнейшим гигиеническим средствам следует прежде всего отнести мыла и моющие средства. О них была речь ранее. Конечно, охватить все химические средства гигиены и косметики невозможно в небольшой книжке. Поэтому здесь внимание читателей будет обращено лишь на некоторые.
Средства ухода за зубами. Зуб состоит из трех частей: коронки (часть, выступающая над десной), корня (часть, погруженная в альвеолу челюсти) и шейки — место перехода коронки в корень. Коронка покрыта эмалью, а под ней находится дентин. Корень покрыт слоем ткани, называемой цементом. Эмаль, дентин и цемент — это твердые ткани. Внутри зуба имеется полость, которая содержит пульпу, состоящую из рыхлой соединительной ткани, в которой проходят нервы и сосуды, питающие ткани зуба.
Зубы подвержены ряду заболеваний и одним из наиболее распространенных является кариес. К сожалению, никому не удается избежать этого заболевания, но ограничить его распространение на многие зубы можно, принимая профилактические меры. Сущность кариеса состоит в том, что под влиянием микроорганизмов и вырабатываемых ими кислот происходит разрушение тканей зуба. Самой прочной тканью является эмаль. Ее состав близок к минералу гидроксидапатиту Ca5OH(PO4)3. При разрушении эмали микроорганизмы попадают в дентин, а затем в пульпу и вызывают ее воспаление (пульпит).
Закреплению микроорганизмов на эмали способствует зубной камень — твердые пористые отложения на зубах. Микроорганизмы поселяются в порах этого камня. Первая стадия образования зубного камня связана с отложением на зубах мягкого налета из остатков пищи, отживших клеток, слизи. На второй стадии происходит минерализация мягкого налета, т.е. его пропитывание минеральными компонентами слюны. Слюна содержит ионы Ca2+ и HPO24–. Они препятствуют растворению эмали зуба, но, откладываясь в мягком налете в виде малорастворимой соли, приводят к его минерализации.
Слюна здорового человека имеет нейтральную реакцию (рН 7,0...7,5). В результате расщепления бактериями (Стрептококкус мутанис) остатков пищи, содержащей углеводы (в частности, сахар), образуются органические кислоты — в основном молочная. Эти кислоты снижают рН до 4,5...5,0. В данных условиях разрушение эмали ускоряется, что и приводит к весьма неприятным результатам. Давно замечено, что любители сладкого часто не могут похвастаться хорошим состоянием зубов.
Таким образом, одним из путей профилактики кариеса является очистка зубов и полоскание ротовой полости после приема пищи. Это приводит к предотвращению образования мягкого налета и зубного камня.
Трудно сказать, когда люди начали чистить зубы, но имеются сведения, что одним из древнейших препаратов для чистки зубов была табачная зола. Еще сравнительно недавно для чистки зубов широко применяли зубные порошки. Они состоят из абразивного материала: чаще всего это мел CaCO3, реже CaHPO4, а иногда их смеси Эти абразивы получают химическим осаждением, например, в соответствии с уравнением
Ca(NO3)2 + Na2CO3 = CaCO3↓ + 2NaNO3
Природный мел использовать нельзя, так как в нем содержатся твердые частицы от панцирей морских организмов, которые обладают высокой прочностью и могут привести к сильному истиранию и повреждению эмали зуба. К абразивным материалам добавляют MgO, полученный прокаливанием MgCO3. Оксид магния придает порошкам легкость и рыхлость. В некоторые сорта порошков вводят пероксид магния MgO2, который обладает отбеливающими свойствами. В небольших количествах в порошки включают поверхностно-активные вещества, например лаурилсульфат натрия C12h35OSO3Na, а также отдушки — чаще всего ментол или экстракт мяты. В настоящее время существенно сокращено производство зубных порошков, поскольку они стали менее популярными, чем пасты.
Важнейшим средством ухода за зубами являются зубные пасты. Они имеют меньшую истирающую способность по сравнению с порошками, более удобны в применении и характеризуются более высокой эффективностью. Зубные пасты — это многокомпонентные составы. Они подразделяются на гигиенические и лечебно-профилактические. Первые оказывают только очищающее и освежающее действие, а вторые, кроме того, служат для профилактики заболеваний и способствуют лечению зубов и полости рта.
Основные компоненты зубной пасты следующие: абразивные, связующие, загустители, пенообразующие. Абразивные вещества обеспечивают механическую очистку зуба от налетов и его полировку. В качестве абразивов чаще всего применяют химически осажденный мел CaCO3. Установлено, что компоненты зубной пасты способны влиять на минеральную составляющую зуба и, в частности, на эмаль. Поэтому в качестве абразивов стали применять фосфаты кальция: CaHPO4, Ca3(PO4)2, Ca2P2O7, а также малорастворимый полимерный мета-фосфат натрия (NaPO3)x. Кроме того, в качестве абразивов в различных сортах паст применяют оксид и гидроксид алюминия, диоксид кремния, силикат циркония, а также некоторые органические полимерные вещества, например метилметакрилат натрия. На практике часто используют не одно абразивное вещество, а их смесь. Для превращения смеси абразивных порошков в стойкую пасту применяют желатинирующие компоненты. Их часто получают в промышленном масштабе из растений; например, из морских водорослей извлекают природные полисахариды: натриевые соли альгиновых кислот и каррагинаты. Для этой цели реже применяют растительные камеди — трагакант и пектины. Из синтетических веществ широкое применение нашли производные клетчатки (хлопковой и древесной) — натрийкарбоксиметилцеллюлоза, оксиэтилированные этиловый и метиловый эфиры целлюлозы или просто этиловый и метиловый эфиры целлюлозы. Для получения пластичной, тиксотропной массы, легко выдавливающейся из тюбика, применяют полиатомные спирты: глицерин, сорбит, полиэтиленгликоль. Они способствуют сохранению в пасте влаги при хранении, повышают температуру замерзания и улучшают вкусовые свойства пасты. Растительные экстракты и камеди чувствительны к действию микробов. Поэтому для устранения их разрушительного действия в состав паст вводят антисептические вещества: формальдегид, хлорированные фенолы и алкильные эфиры оксибензойных кислот.
В качестве пенообразующих веществ в зубных пастах в прошлом использовали мыла. Однако их низкая пенообразующая способность в жесткой воде и неприятный мыльный привкус снижали качество паст. Вместо мыла стали использовать ализариновое масло (сульфированное касторовое масло)
Оно не связывается в малорастворимое вещество ионами кальция и магния и обладает смачивающими и бактерицидными свойствами. Кроме него в качестве пенообразователей используют натрийлаурилсульфат C12h35OSO3Na и натрийлаурилсаркозинат
Борьбу с кариесом при помощи лечебно-профилактических зубных паст ведут по двум направлениям: 1) укрепление минеральной ткани зуба; 2) предупреждение образования зубного налета. Первое достигается введением в пасты соединений фтора: монофторфосфата натрия, формулу которого условно можно записать в виде двойной соли NaF·NaPO3, а также фторида натрия NaF и фторида олова (II) SnF2. Существуют две точки зрения на влияние фторидных ионов на укрепление эмали зуба. 1. Ионы F– переводят гидроксидапатит эмали CaOH(PO4)3 в менее растворимый в кислотах фторапатит Ca5F(PO4)3. 2. В результате обменной реакции в пасте образуется CaF2, который адсорбируется на гидроксидапатите и предохраняет его от воздействия кислот. Известно также, что фторидные соединения способствуют подавлению жизнедеятельности бактерий, вызывающих образование в полости рта органических кислот. В настоящее время в антикариесных пастах стали широко использовать ферменты, а иногда в них вводят антибиотики.
В зубные пасты обязательно вводят отдушки и вкусовые компоненты. Наиболее распространены отдушки мятного и коричного характера. Мятная отдушка обеспечивается применением ментола, мятных масел — перечной или кудрявой мяты, а также различных модификаторов. В отдушках применяют метилсалицилат, гвоздичное масло, эвкалиптол, коричный альдегид. В качестве подслащивающего компонента чаще всего используют сахарин и некоторые его производные. За рубежом для этой цели рекомендуют сахарат натрия и дульцин вместе с небольшим количеством хлорида натрия или лимонной кислоты. Недавно стали применять натриевую соль цикламеновой кислоты, которая по вкусу напоминает сахар.
Некоторые зарубежные фирмы приступили к производству безабразивных гелеобразных прозрачных зубных паст. В них используют гели SiO2, а также сополимеры акриловой кислоты и аллилового спирта. Эти пасты обладают высокой пенообразующей способностью, имеют приятный вкус и красивый внешний вид. Они легко окрашиваются в различные яркие цвета — красный, синий, зеленый, желтый. Однако их очищающая способность намного ниже, чем паст с использованием абразивов.
Хотя зубные протезы, естественно, не подвергаются кариесу и другим заболеваниям, но от них может зависеть состояние микрофлоры полости рта. Имеет существенное значение и их внешний вид. Поэтому зубные протезы требуют периодической чистки от остатков пищи, пятен и образующегося зубного камня. Для этой цели протезы погружают на ночь или на более короткий срок в растворы кислот: соляной, сульфаминовой или лимонной, а также в растворы, содержащие активный хлор, — гипохлориты или активный кислород — перборат натрия.
Дезодоранты и озоновый «щит» планеты. Каждый знает, что дезодоранты — это средства, устраняющие неприятный запах пота. На чем основано их действие? Пот выделяется особыми железами, расположенными в коже на глубине 1...3 мм. У здоровых людей на 98...99% он состоит из воды. С потом из организма выводятся продукты метаболизма: мочевина, мочевая кислота, аммиак, некоторые аминокислоты, жирные кислоты, холестерин, в следовых количествах белки, стероидные гормоны и др. Из минеральных компонентов в состав пота входят ионы натрия, кальция, магния, меди, марганца, железа, а также хлоридные и иодидные анионы. Неприятный запах пота связан с бактериальным расщеплением его составляющих или с окислением их кислородом воздуха. Дезодоранты (косметические средства от пота) бывают двух типов. Одни тормозят разложение выводимых с потом продуктов метаболизма путем инактивации микроорганизмов или предотвращением окисления продуктов потовыделения. Действие второй группы дезодорантов основано на частичном подавлении процессов потовыделения. Такие средства называют антиперспиранами. Этими свойствами обладают соли алюминия, цинка, циркония, свинца, хрома, железа, висмута, а также формальдегид, таннины, этиловый спирт. На практике из солей в качестве антиперспиранов чаще всего используют соединения алюминия. Перечисленные вещества взаимодействуют с компонентами пота, образуя нерастворимые соединения, которые закрывают каналы потовых желез и тем самым уменьшают потовыделение. В оба типа дезодорантов вводят отдушки.
Чем же создается давление в аэрозольных баллонах? Это не праздный вопрос, так как с ним, можно сказать, связана судьба человечества. Рабочее давление в баллонах создается парами сжиженного газа, либо за счет сжатого газа, например, N2, CO2 или N2O. До сих пор баллоны со сжатыми газами применялись редко, поскольку их рабочее давление падает по мере расходования содержимого баллона, т.е. по мере увеличения объема парового пространства. Давление над сжиженным газом постоянно, так как оно поддерживается испарением жидкости и заполнением увеличивающегося пространства. В качестве веществ, создающих давление в аэрозольных баллонах, оказались удобными фторхлоруглероды.
Так, при 21°C давление паров над жидким CF2Cl2 составляет 5 атм, а над смесью (50%:50%) CF2Cl2 и CF2Cl2 2,5 атм. Эти вещества, кроме того, обладают важным свойством — малой химической активностью по отношению ко многим веществам. Легкокипящие и химически инертные вещества, используемые для создания повышенного давления в аэрозольных баллонах, называют пропеллентами. Таким образом, в аэрозольных баллонах в жидком веществе (основе), ради которого и создается устройство, содержится жидкий пропеллент. Довольно часто растворы аэрозольного баллона (одеколоны, кремы для бритья и др.) содержат воду. Пропелленты CF2Cl2 и CFCl3 со временем частично гидролизуются (взаимодействуют с водой) и поэтому нежелательны. В таких случаях в качестве пропеллента используют CF2Cl — CF2Cl (1,2-дихлортетрафторэтан). В настоящее время принято международное соглашение по сокращению производства аэрозольных баллонов, содержащих в качестве пропеллентов фторхлоруглероды, поскольку установлено, что они плохо влияют на озоновый слой Земли.
В атмосфере на определенной высоте от Земли имеется повышенная концентрация озона. Он получается в результате фотодиссоциации молекулярного кислорода и взаимодействия атомарного кислорода
O2 ← [hν (свет)] → 2O
с молекулярным в соответствии с уравнением
O + O2 ⇄ O3*
Образующиеся молекулы озона содержат избыточную энергию, т.е. они возбуждены. Если не отвести от молекулы озона эту избыточную энергию, то она долго не просуществует, а распадется на исходные атомарный и молекулярный кислород. Чтобы молекула озона стала стабильной, она должна отдать избыток энергии какой-то другой молекуле, например молекуле азота:
O3* + N2 → O3 + N2*
Концентрация озона в атмосфере зависит от двух причин. 1. Для диссоциации молекул O2 на атомы нужно интенсивное коротковолновое солнечное излучение, которое поглощается по мере приближения к Земле. Следовательно, диссоциация O2 на атомы преимущественно протекает в верхних слоях. 2. Для стабилизации образующихся молекул озона необходимо столкновение с другими частицами, т.е. разрежение воздуха не должно быть слишком большим, а следовательно, высота должна быть также не очень большая. В результате этих двух факторов, действующих в противоположных направлениях, озон накапливается в определенных слоях атмосферы. Опыт показывает, что наибольшая его концентрация наблюдается на высоте около 50 км. Этот слой атмосферы и называют озоновым «щитом» планеты. Он играет чрезвычайно важную роль в сохранении жизни на Земле. Оказалось, что молекулы озона, как никакие другие, находящиеся в атмосфере, сильно поглощают фотоны с длиной волны от 200 до 310 нм, т.е. ультрафиолетовое излучение Солнца. Известно, что растения и животные гибнут при интенсивном облучении этим светом. Таким образом, можно сказать, что от концентрации озона зависит судьба нашей планеты.
Концентрация озона в атмосфере зависит от содержания оксидов азота и фторхлорметанов. Оксиды азота постоянно присутствуют в низких концентрациях в результате фотохимического взаимодействия азота и кислорода. Оксид азота (II) разрушает озон, а оксид азота (IV) связывает атомарный кислород в соответствии с уравнениями
Таким образом, оксиды азота играют роль катализаторов в разложении озона.
За 4,6 млрд лет существования нашей планеты установилось равновесие, и жизнь на Земле возникла и развилась при определенном равновесном составе атмосферы. Однако интенсивное развитие сверхзвуковой авиации начинает оказывать влияние на создавшееся в атмосфере равновесие. Поскольку сверхзвуковые самолеты предназначены для полетов в стратосфере, верхний предел которой подходит к «озоновому» слою, то появляется опасность влияния сверхзвуковой техники на этот слой. При сгорании топлива в двигателях самолетов в довольно больших количествах образуются оксиды азота.
Другим источником опасности озоновому слою являются фторхлорметаны (главным образом CF2Cl2 и CFCl3). Эти вещества широко используют в баллонах в аэрозольной упаковке, а также в качестве хладоагентов в промышленных и бытовых холодильниках. Фторхлорметаны — чрезвычайно инертные химические вещества. В атмосфере они разрушаются лишь в верхних слоях под действием ультрафиолетового излучения в диапазоне длин волн 190...225 нм. Одним из продуктов разложения фторхлорметанов является атомарный хлор:
CCl4–xFx — [hν (свет)] → CCl3–xFx + Cl
Скорость разрушения фторхлорметанов максимальна на высоте около 30 км, т.е. в слое, примыкающем к озоновому. Атомарный хлор так же, как и оксиды азота, способен катализировать разложение озона в соответствии с уравнениями
Научная общественность высказывает озабоченность разрушением озонового слоя Земли и требует сокращения использования фторхлорметанов в качестве распылителей аэрозолей.
Необходимо отметить еще раз, что ожоги солнечным светом вызываются ультрафиолетовыми лучами в области длин волн 280...315 нм (эритемная область). Ультрафиолетовые лучи с длинами волн 315...400 нм способствуют образованию на коже человека пигмента меланина, который служит защитой от эритермы (от ожога). В некоторых странах налажен выпуск фотозащитных кремов, которые поглощают или отражают солнечные лучи эритемной области, но пропускают лучи, стимулирующие появление на коже загара. В качестве примеров фотозащитных соединений можно указать на этиловый эфир циннамилиденуксусной кислоты (I) и 2-фенилбен-зоксазол (II):
Косметические средства. В мире считается, что среди наиболее прибыльных отраслей промышленности на одном из первых мест стоит косметическая. Наблюдения показывают, что если нужно, то женщины могут отказать себе во многом, только не в том, что сделает их хотя бы чуточку красивее.
Искусство косметики уходит в далекое прошлое. Так, при раскопках найдены египетские мумии, ногти которых раскрашены. В усыпальницах египетских пирамид обнаружены натуральные краски и косметические инструменты, различные плитки для приготовления смеси красок и румян, сосуды для хранения мазей и масел. Найден письменный документ — папирус Эберса, в котором изложены косметические правила и рецепты. Его написание относят к пятому тысячелетию до новой эры.
Письменные источники далекого прошлого и наблюдения современных путешественников свидетельствуют о том, что на ранней стадии развития к раскрашиванию тела красками были неравнодушны и мужчины. Как атавизм этого можно рассматривать склонность некоторых мужчин к накожной татуировке. По мере развития культуры мужчины теряют этот интерес. Стремление женщин к подкрашиванию кожи (особенно лица) наоборот усиливается. Судя по всему, для женщин нет простой связи между культурой и количеством используемой косметики. Связь скорее можно уловить между количеством косметики и прирожденным вкусом.
Древние рукописи свидетельствуют, что уже тысячи лет назад женщины Востока подкрашивали веки в голубой цвет тончайшей пыльцой из толченой бирюзы. Бирюза — это природный минерал, имеющий состав CuAl6(PO4)4(OH)8·4h3О.
С незапамятных времен для подкрашивания бровей использовался мягкий природный минерал — сурьмяный блеск Sb2S3. В русском языке было выражение «сурьмить брови». Сурьмяный блеск поставлялся в различные страны арабами, которые называли его стиби. От этого названия и пошло латинское стибиум, означавшее в древности не химический элемент, а его сульфид Sb2S3. Природный сурьмяный блеск имеет цвет от серого до черного с синей или радужной побежалостью.
Достоверно известно, что в России косметические краски применялись в конце XVI и особенно широко в XVII в. Историк П.М. Лукьянов в одной из своих книг цитирует саксонского путешественника Олеария, который посетил Россию в первой половине XVII в. и позднее описал свои впечатления: «Женщины в России среднего роста, вообще стройны, нежны лицом и сложением, но в городах все румянятся и так грубо и заметно, что глядя на них подумаешь, будто кто вымазал их рукою полною муки и потом кисточкой намазывал им на щеки красной краской. Брови и ресницы они также подкрашивали черной, а иногда и коричневой краской». Впечатления того же времени другого путешественника по России голландца Стрюйса на этот счет записаны следующими словами: «Хотя женщины обыкновенно белы, и кожа на лице их очень гладкая, все-таки они почти все румянятся или вернее натираются аляповато белилами и приглашают для этого белильшиц». Румянами в то время красили не только щеки, но и губы.
Естественно, что в далеком прошлом в качестве косметических препаратов использовались лишь природные минеральные и органические вещества. С развитием химии для этой цели все чаще стали применять синтетические продукты. Так, например, в качестве пигмента для губных помад применяют малиново-красный бис-ди-метилглиоксимат никеля. Органический реагент ди-метилглиоксим химики-аналитики используют для качественного обнаружения и количественного определения ионов никеля (II), а реакция образования этого соединения носит имя нашего соотечественника Л.А. Чугаева.
Промышленность выпускает перламутровые губные помады и кремы, а также шампуни с перламутровыми блесками. Перламутровый эффект в косметических средствах создается солями висмутила BiOCl и BiO(NO3) или титанированной слюдой — перламутровым порошком, содержащим около 40% TiO2. Давно известны жемчужные или испанские белила. Их основным компонентом является BiO(NO3)2, образующийся при растворении нитрата висмута Bi(NO3)3 в воде. В косметике эти белила используют для приготовления белого грима.
Для создания специальных косметических средств (гримов) применяют оксид цинка ZnO, получаемый прокаливанием основного карбоната (ZnOH)2CO3. В медицине его используют в присыпках (в качестве вяжущего, подсушивающего, дезинфицирующего средства) и для изготовления мазей.
Косметические декоративные пудры — многокомпонентные смеси. В них входят: тальк, каолин, ZnO, TiO2, MgCO3, крахмал, цинковые и магниевые соли стеариновой кислоты, а также органические и неорганические пигменты, в частности Fe2O3. Тальк придает пудре сыпучесть и скользящий эффект. Его недостатком является способность впитываться в кожу и придавать жирный блеск. Тем не менее в состав пудр он входит в количестве до 50...80%. Каолин обладает высокой укрывистостью и способностью впитывать избыток жировых выделений кожи. Его повышенная гигроскопичность способствует слеживаемости и неравномерному распределению пудры на коже, поэтому каолин вводят не более 25%. Оксиды цинка и титана обладают хорошей укрывистостью. Кроме того, оксид цинка обладает антисептическими свойствами и потому одновременно выполняет роль дезинфицирующей добавки. Эти оксиды вводят в пудры до 15%. В больших количествах они приводят к сухости кожи. Крахмал придает коже бархатистость, а благодаря стеаратам цинка и магния пудра хорошо удерживается на коже и делает ее гладкой.
Компактная пудра в отличие от рассыпной содержит связующие добавки: натрийкарбоксиметилцеллюлозу, высшие жирные кислоты, воски, многоатомные спирты и их эфиры, минеральные и растительные масла. Они позволяют получать при прессовании брикеты определенной формы, которые сохраняют прочность при длительном употреблении.
В быту в качестве дезинфицирующего и отбеливающего средства широко используют растворы (3, 6, 10%-ные) пероксида водорода. Более концентрированный — 30%-ный раствор пероксида водорода — называют пергидролем. Пероксид водорода — неустойчивое (особенно на свету) химическое соединение. Оно разлагается на воду и кислород:
2h3O2 = 2h3О + O2
В момент образования кислород находится в атомарном состоянии и лишь затем переходит в молекулярный:
2О = O2
Атомарный кислород обладает особенно сильным окислительным свойством. Благодаря ему растворы пероксида водорода разрушают красящие вещества и отбеливают ткани из хлопчатобумажных и шерстяных тканей, шелк, перья, волосы. Способность пероксида водорода обесцвечивать волосы используют в косметике. Она основана на взаимодействии атомарного кислорода с красящим веществом волос меланином — смесью сложных органических веществ. При окислении меланин переходит в бесцветное соединение. Следует помнить, что пергидроль вызывает ожоги кожи и слизистых оболочек.
В настоящее время для окраски волос имеется большой ассортимент различных органических красителей.
Иногда же для этой цели применяют соли серебра, меди, никеля, кобальта, железа. В таком случае крашение волос осуществляют при помощи двух растворов. Один из них содержит соли данных металлов: нитраты, цитраты, сульфаты или хлориды, а второй — восстановители: пирогаллол, таннин и др. При смешении этих растворов ионы металлов восстанавливаются до атомов, которые и осаждаются на поверхности волос.
Наиболее распространенный лак для ногтей представляет раствор нитроцеллюлозы в органических растворителях. Нитроцеллюлозу получают нитрованием целлюлозы (хлопковой или древесной) смесью азотной и серной кислот. Она является сложным эфиром азотной кислоты и характеризуется общей формулой [C6H7O2(OH)3–x(ONO2)x]n. В качестве растворителей используют амиловый эфир уксусной кислоты, ацетон, различные спирты, этиловый эфир, а также их смеси. В лак добавляют пластификаторы — касторовое масло или другие экстракты, которые препятствуют обезжириванию ногтей и предотвращают их ломкость.
Следует отметить, что косметика тесно соприкасается с гигиеной, так как имеется много косметических средств (лосьоны, кремы, шампуни и др.), которые выполняют и гигиеническую функцию.
librolife.ru
Юрий Кукушкин
Слово гигиена происходит от греч. гигиенос, что означает целебный, приносящий здоровье, а косметика – от греч., означающее искусство украшать. В настоящее время термин «косметика» употребляют прежде всего в связи с уходом за кожей лица и тела. Гигиена – это раздел профилактической медицины, изучающей влияние внешней среды на здоровье человека.
К важнейшим гигиеническим средствам следует прежде всего отнести мыла и моющие средства. О них была речь ранее. Конечно, охватить все химические средства гигиены и косметики невозможно в небольшой книжке. Поэтому здесь внимание читателей будет обращено лишь на некоторые.
Зуб состоит из трех частей: коронки (часть, выступающая над десной), корня (часть, погруженная в альвеолу челюсти) и шейки – место перехода коронки в корень. Коронка покрыта эмалью, а под ней находится дентин. Корень покрыт слоем ткани, называемой цементом. Эмаль, дентин и цемент – это твердые ткани. Внутри зуба имеется полость, которая содержит пульпу, состоящую из рыхлой соединительной ткани, в которой проходят нервы и сосуды, питающие ткани зуба.
Зубы подвержены ряду заболеваний и одним из наиболее распространенных является кариес. К сожалению, никому не удается избежать этого заболевания, но ограничить его распространение на многие зубы можно, принимая профилактические меры. Сущность кариеса состоит в том, что под влиянием микроорганизмов и вырабатываемых ими кислот происходит разрушение тканей зуба. Самой прочной тканью является эмаль. Ее состав близок к минералу гидроксидапатиту Ca5OH(PO4)3. При разрушении эмали микроорганизмы попадают в дентин, а затем в пульпу и вызывают ее воспаление (пульпит).
Закреплению микроорганизмов на эмали способствует зубной камень – твердые пористые отложения на зубах. Микроорганизмы поселяются в порах этого камня. Первая стадия образования зубного камня связана с отложением на зубах мягкого налета из остатков пищи, отживших клеток, слизи. На второй стадии происходит минерализация мягкого налета, т.е. его пропитывание минеральными компонентами слюны. Слюна содержит ионы Ca2+ и HPO24–. Они препятствуют растворению эмали зуба, но, откладываясь в мягком налете в виде малорастворимой соли, приводят к его минерализации.
Слюна здорового человека имеет нейтральную реакцию (рН 7,0...7,5). В результате расщепления бактериями (Стрептококкус мутанис) остатков пищи, содержащей углеводы (в частности, сахар), образуются органические кислоты – в основном молочная. Эти кислоты снижают рН до 4,5...5,0. В данных условиях разрушение эмали ускоряется, что и приводит к весьма неприятным результатам. Давно замечено, что любители сладкого часто не могут похвастаться хорошим состоянием зубов.
Таким образом, одним из путей профилактики кариеса является очистка зубов и полоскание ротовой полости после приема пищи. Это приводит к предотвращению образования мягкого налета и зубного камня.
Трудно сказать, когда люди начали чистить зубы, но имеются сведения, что одним из древнейших препаратов для чистки зубов была табачная зола. Еще сравнительно недавно для чистки зубов широко применяли зубные порошки. Они состоят из абразивного материала: чаще всего это мел CaCO3, реже CaHPO4, а иногда их смеси Эти абразивы получают химическим осаждением, например, в соответствии с уравнением
Ca(NO3)2 + Na2CO3 = CaCO3↓ + 2NaNO3
Природный мел использовать нельзя, так как в нем содержатся твердые частицы от панцирей морских организмов, которые обладают высокой прочностью и могут привести к сильному истиранию и повреждению эмали зуба. К абразивным материалам добавляют MgO, полученный прокаливанием MgCO3. Оксид магния придает порошкам легкость и рыхлость. В некоторые сорта порошков вводят пероксид магния MgO2, который обладает отбеливающими свойствами. В небольших количествах в порошки включают поверхностно-активные вещества, например лаурилсульфат натрия C12h35OSO3Na, а также отдушки – чаще всего ментол или экстракт мяты. В настоящее время существенно сокращено производство зубных порошков, поскольку они стали менее популярными, чем пасты.
Важнейшим средством ухода за зубами являются зубные пасты. Они имеют меньшую истирающую способность по сравнению с порошками, более удобны в применении и характеризуются более высокой эффективностью. Зубные пасты – это многокомпонентные составы. Они подразделяются на гигиенические и лечебно-профилактические. Первые оказывают только очищающее и освежающее действие, а вторые, кроме того, служат для профилактики заболеваний и способствуют лечению зубов и полости рта.
Основные компоненты зубной пасты следующие: абразивные, связующие, загустители, пенообразующие. Абразивные вещества обеспечивают механическую очистку зуба от налетов и его полировку. В качестве абразивов чаще всего применяют химически осажденный мел CaCO3. Установлено, что компоненты зубной пасты способны влиять на минеральную составляющую зуба и, в частности, на эмаль. Поэтому в качестве абразивов стали применять фосфаты кальция: CaHPO4, Ca3(PO4)2, Ca2P2O7, а также малорастворимый полимерный мета-фосфат натрия (NaPO3)x. Кроме того, в качестве абразивов в различных сортах паст применяют оксид и гидроксид алюминия, диоксид кремния, силикат циркония, а также некоторые органические полимерные вещества, например метилметакрилат натрия. На практике часто используют не одно абразивное вещество, а их смесь. Для превращения смеси абразивных порошков в стойкую пасту применяют желатинирующие компоненты. Их часто получают в промышленном масштабе из растений; например, из морских водорослей извлекают природные полисахариды: натриевые соли альгиновых кислот и каррагинаты. Для этой цели реже применяют растительные камеди – трагакант и пектины. Из синтетических веществ широкое применение нашли производные клетчатки (хлопковой и древесной) – натрийкарбоксиметилцеллюлоза, оксиэтилированные этиловый и метиловый эфиры целлюлозы или просто этиловый и метиловый эфиры целлюлозы. Для получения пластичной, тиксотропной массы, легко выдавливающейся из тюбика, применяют полиатомные спирты: глицерин, сорбит, полиэтиленгликоль. Они способствуют сохранению в пасте влаги при хранении, повышают температуру замерзания и улучшают вкусовые свойства пасты. Растительные экстракты и камеди чувствительны к действию микробов. Поэтому для устранения их разрушительного действия в состав паст вводят антисептические вещества: формальдегид, хлорированные фенолы и алкильные эфиры оксибензойных кислот.
В качестве пенообразующих веществ в зубных пастах в прошлом использовали мыла. Однако их низкая пенообразующая способность в жесткой воде и неприятный мыльный привкус снижали качество паст. Вместо мыла стали использовать ализариновое масло (сульфированное касторовое масло)
Formula p.105
Оно не связывается в малорастворимое вещество ионами кальция и магния и обладает смачивающими и бактерицидными свойствами. Кроме него в качестве пенообразователей используют натрийлаурилсульфат C12h35OSO3Na и натрийлаурилсаркозинат
Formula p.101
Считают, что последний обладает антикариесным действием. Уже в концентрации 0,3% он подавляет действие бактерий, образующих в полости рта молочную кислоту, которая разрушает эмаль зуба. Действие лаурилсаркозината сохраняется в полости рта после чистки зубов в течение примерно 12 ч. Хорошими пенообразующими, очищающими и смачивающими свойствами обладает натриевая соль таурида жирной кислоты RCONHCh3SO3Na.
Борьбу с кариесом при помощи лечебно-профилактических зубных паст ведут по двум направлениям: 1) укрепление минеральной ткани зуба; 2) предупреждение образования зубного налета. Первое достигается введением в пасты соединений фтора: монофторфосфата натрия, формулу которого условно можно записать в виде двойной соли NaF·NaPO3, а также фторида натрия NaF и фторида олова (II) SnF2. Существуют две точки зрения на влияние фторидных ионов на укрепление эмали зуба. 1. Ионы F– переводят гидроксидапатит эмали CaOH(PO4)3 в менее растворимый в кислотах фторапатит Ca5F(PO4)3. 2. В результате обменной реакции в пасте образуется CaF2, который адсорбируется на гидроксидапатите и предохраняет его от воздействия кислот. Известно также, что фторидные соединения способствуют подавлению жизнедеятельности бактерий, вызывающих образование в полости рта органических кислот. В настоящее время в антикариесных пастах стали широко использовать ферменты, а иногда в них вводят антибиотики.
В зубные пасты обязательно вводят отдушки и вкусовые компоненты. Наиболее распространены отдушки мятного и коричного характера. Мятная отдушка обеспечивается применением ментола, мятных масел – перечной или кудрявой мяты, а также различных модификаторов. В отдушках применяют метилсалицилат, гвоздичное масло, эвкалиптол, коричный альдегид. В качестве подслащивающего компонента чаще всего используют сахарин и некоторые его производные. За рубежом для этой цели рекомендуют сахарат натрия и дульцин вместе с небольшим количеством хлорида натрия или лимонной кислоты. Недавно стали применять натриевую соль цикламеновой кислоты, которая по вкусу напоминает сахар.
Некоторые зарубежные фирмы приступили к производству безабразивных гелеобразных прозрачных зубных паст. В них используют гели SiO2, а также сополимеры акриловой кислоты и аллилового спирта. Эти пасты обладают высокой пенообразующей способностью, имеют приятный вкус и красивый внешний вид. Они легко окрашиваются в различные яркие цвета – красный, синий, зеленый, желтый. Однако их очищающая способность намного ниже, чем паст с использованием абразивов.
Хотя зубные протезы, естественно, не подвергаются кариесу и другим заболеваниям, но от них может зависеть состояние микрофлоры полости рта. Имеет существенное значение и их внешний вид. Поэтому зубные протезы требуют периодической чистки от остатков пищи, пятен и образующегося зубного камня. Для этой цели протезы погружают на ночь или на более короткий срок в растворы кислот: соляной, сульфаминовой или лимонной, а также в растворы, содержащие активный хлор, – гипохлориты или активный кислород – перборат натрия.
Каждый знает, что дезодоранты – это средства, устраняющие неприятный запах пота. На чем основано их действие? Пот выделяется особыми железами, расположенными в коже на глубине 1...3 мм. У здоровых людей на 98...99% он состоит из воды. С потом из организма выводятся продукты метаболизма: мочевина, мочевая кислота, аммиак, некоторые аминокислоты, жирные кислоты, холестерин, в следовых количествах белки, стероидные гормоны и др. Из минеральных компонентов в состав пота входят ионы натрия, кальция, магния, меди, марганца, железа, а также хлоридные и иодидные анионы. Неприятный запах пота связан с бактериальным расщеплением его составляющих или с окислением их кислородом воздуха. Дезодоранты (косметические средства от пота) бывают двух типов. Одни тормозят разложение выводимых с потом продуктов метаболизма путем инактивации микроорганизмов или предотвращением окисления продуктов потовыделения. Действие второй группы дезодорантов основано на частичном подавлении процессов потовыделения. Такие средства называют антиперспиранами. Этими свойствами обладают соли алюминия, цинка, циркония, свинца, хрома, железа, висмута, а также формальдегид, таннины, этиловый спирт. На практике из солей в качестве антиперспиранов чаще всего используют соединения алюминия. Перечисленные вещества взаимодействуют с компонентами пота, образуя нерастворимые соединения, которые закрывают каналы потовых желез и тем самым уменьшают потовыделение. В оба типа дезодорантов вводят отдушки.
Чем же создается давление в аэрозольных баллонах? Это не праздный вопрос, так как с ним, можно сказать, связана судьба человечества. Рабочее давление в баллонах создается парами сжиженного газа, либо за счет сжатого газа, например, N2, CO2 или N2O. До сих пор баллоны со сжатыми газами применялись редко, поскольку их рабочее давление падает по мере расходования содержимого баллона, т.е. по мере увеличения объема парового пространства. Давление над сжиженным газом постоянно, так как оно поддерживается испарением жидкости и заполнением увеличивающегося пространства. В качестве веществ, создающих давление в аэрозольных баллонах, оказались удобными фторхлоруглероды.
Так, при 21°C давление паров над жидким CF2Cl2 составляет 5 атм, а над смесью (50%:50%) CF2Cl2 и CF2Cl2 2,5 атм. Эти вещества, кроме того, обладают важным свойством – малой химической активностью по отношению ко многим веществам. Легкокипящие и химически инертные вещества, используемые для создания повышенного давления в аэрозольных баллонах, называют пропеллентами. Таким образом, в аэрозольных баллонах в жидком веществе (основе), ради которого и создается устройство, содержится жидкий пропеллент. Довольно часто растворы аэрозольного баллона (одеколоны, кремы для бритья и др.) содержат воду. Пропелленты CF2Cl2 и CFCl3 со временем частично гидролизуются (взаимодействуют с водой) и поэтому нежелательны. В таких случаях в качестве пропеллента используют CF2Cl – CF2Cl (1,2-дихлортетрафторэтан). В настоящее время принято международное соглашение по сокращению производства аэрозольных баллонов, содержащих в качестве пропеллентов фторхлоруглероды, поскольку установлено, что они плохо влияют на озоновый слой Земли.
В атмосфере на определенной высоте от Земли имеется повышенная концентрация озона. Он получается в результате фотодиссоциации молекулярного кислорода и взаимодействия атомарного кислорода
O2 ← [hν (свет)] → 2O
с молекулярным в соответствии с уравнением
O + O2 ↔ O3*
Образующиеся молекулы озона содержат избыточную энергию, т.е. они возбуждены. Если не отвести от молекулы озона эту избыточную энергию, то она долго не просуществует, а распадется на исходные атомарный и молекулярный кислород. Чтобы молекула озона стала стабильной, она должна отдать избыток энергии какой-то другой молекуле, например молекуле азота:
O3* + N2 → O3 + N2*
Концентрация озона в атмосфере зависит от двух причин. 1. Для диссоциации молекул O2 на атомы нужно интенсивное коротковолновое солнечное излучение, которое поглощается по мере приближения к Земле. Следовательно, диссоциация O2 на атомы преимущественно протекает в верхних слоях. 2. Для стабилизации образующихся молекул озона необходимо столкновение с другими частицами, т.е. разрежение воздуха не должно быть слишком большим, а следовательно, высота должна быть также не очень большая. В результате этих двух факторов, действующих в противоположных направлениях, озон накапливается в определенных слоях атмосферы. Опыт показывает, что наибольшая его концентрация наблюдается на высоте около 50 км. Этот слой атмосферы и называют озоновым «щитом» планеты. Он играет чрезвычайно важную роль в сохранении жизни на Земле. Оказалось, что молекулы озона, как никакие другие, находящиеся в атмосфере, сильно поглощают фотоны с длиной волны от 200 до 310 нм, т.е. ультрафиолетовое излучение Солнца. Известно, что растения и животные гибнут при интенсивном облучении этим светом. Таким образом, можно сказать, что от концентрации озона зависит судьба нашей планеты.
Концентрация озона в атмосфере зависит от содержания оксидов азота и фторхлорметанов. Оксиды азота постоянно присутствуют в низких концентрациях в результате фотохимического взаимодействия азота и кислорода. Оксид азота (II) разрушает озон, а оксид азота (IV) связывает атомарный кислород в соответствии с уравнениями
Formula p.109
Таким образом, оксиды азота играют роль катализаторов в разложении озона.
За 4,6 млрд лет существования нашей планеты установилось равновесие, и жизнь на Земле возникла и развилась при определенном равновесном составе атмосферы. Однако интенсивное развитие сверхзвуковой авиации начинает оказывать влияние на создавшееся в атмосфере равновесие. Поскольку сверхзвуковые самолеты предназначены для полетов в стратосфере, верхний предел которой подходит к «озоновому» слою, то появляется опасность влияния сверхзвуковой техники на этот слой. При сгорании топлива в двигателях самолетов в довольно больших количествах образуются оксиды азота.
Другим источником опасности озоновому слою являются фторхлорметаны (главным образом CF2Cl2 и CFCl3). Эти вещества широко используют в баллонах в аэрозольной упаковке, а также в качестве хладоагентов в промышленных и бытовых холодильниках. Фторхлорметаны – чрезвычайно инертные химические вещества. В атмосфере они разрушаются лишь в верхних слоях под действием ультрафиолетового излучения в диапазоне длин волн 190...225 нм. Одним из продуктов разложения фторхлорметанов является атомарный хлор:
CCl4–xFx – [hν (свет)] → CCl3–xFx + Cl
Скорость разрушения фторхлорметанов максимальна на высоте около 30 км, т.е. в слое, примыкающем к озоновому. Атомарный хлор так же, как и оксиды азота, способен катализировать разложение озона в соответствии с уравнениями
Formula p.110
Научная общественность высказывает озабоченность разрушением озонового слоя Земли и требует сокращения использования фторхлорметанов в качестве распылителей аэрозолей.
Необходимо отметить еще раз, что ожоги солнечным светом вызываются ультрафиолетовыми лучами в области длин волн 280...315 нм (эритемная область). Ультрафиолетовые лучи с длинами волн 315...400 нм способствуют образованию на коже человека пигмента меланина, который служит защитой от эритермы (от ожога). В некоторых странах налажен выпуск фотозащитных кремов, которые поглощают или отражают солнечные лучи эритемной области, но пропускают лучи, стимулирующие появление на коже загара. В качестве примеров фотозащитных соединений можно указать на этиловый эфир циннамилиденуксусной кислоты (I) и 2-фенилбен-зоксазол (II):
Formula p.110
В мире считается, что среди наиболее прибыльных отраслей промышленности на одном из первых мест стоит косметическая. Наблюдения показывают, что если нужно, то женщины могут отказать себе во многом, только не в том, что сделает их хотя бы чуточку красивее.
Искусство косметики уходит в далекое прошлое. Так, при раскопках найдены египетские мумии, ногти которых раскрашены. В усыпальницах египетских пирамид обнаружены натуральные краски и косметические инструменты, различные плитки для приготовления смеси красок и румян, сосуды для хранения мазей и масел. Найден письменный документ – папирус Эберса, в котором изложены косметические правила и рецепты. Его написание относят к пятому тысячелетию до новой эры.
Письменные источники далекого прошлого и наблюдения современных путешественников свидетельствуют о том, что на ранней стадии развития к раскрашиванию тела красками были неравнодушны и мужчины. Как атавизм этого можно рассматривать склонность некоторых мужчин к накожной татуировке. По мере развития культуры мужчины теряют этот интерес. Стремление женщин к подкрашиванию кожи (особенно лица) наоборот усиливается. Судя по всему, для женщин нет простой связи между культурой и количеством используемой косметики. Связь скорее можно уловить между количеством косметики и прирожденным вкусом.
Древние рукописи свидетельствуют, что уже тысячи лет назад женщины Востока подкрашивали веки в голубой цвет тончайшей пыльцой из толченой бирюзы. Бирюза – это природный минерал, имеющий состав СuАl6(PO4)4(OH)8·4h3О.
С незапамятных времен для подкрашивания бровей использовался мягкий природный минерал – сурьмяный блеск Sb2S3. В русском языке было выражение «сурьмить брови». Сурьмяный блеск поставлялся в различные страны арабами, которые называли его стиби. От этого названия и пошло латинское стибиум, означавшее в древности не химический элемент, а его сульфид Sb2S3. Природный сурьмяный блеск имеет цвет от серого до черного с синей или радужной побежалостью.
Достоверно известно, что в России косметические краски применялись в конце XVI и особенно широко в XVII в. Историк П.М. Лукьянов в одной из своих книг цитирует саксонского путешественника Олеария, который посетил Россию в первой половине XVII в. и позднее описал свои впечатления: «Женщины в России среднего роста, вообще стройны, нежны лицом и сложением, но в городах все румянятся и так грубо и заметно, что глядя на них подумаешь, будто кто вымазал их рукою полною муки и потом кисточкой намазывал им на щеки красной краской. Брови и ресницы они также подкрашивали черной, а иногда и коричневой краской». Впечатления того же времени другого путешественника по России голландца Стрюйса на этот счет записаны следующими словами: «Хотя женщины обыкновенно белы, и кожа на лице их очень гладкая, все-таки они почти все румянятся или вернее натираются аляповато белилами и приглашают для этого белильшиц». Румянами в то время красили не только щеки, но и губы.
Естественно, что в далеком прошлом в качестве косметических препаратов использовались лишь природные минеральные и органические вещества. С развитием химии для этой цели все чаще стали применять синтетические продукты. Так, например, в качестве пигмента для губных помад применяют малиново-красный бис-ди-метилглиоксимат никеля. Органический реагент ди-метилглиоксим химики-аналитики используют для качественного обнаружения и количественного определения ионов никеля (II), а реакция образования этого соединения носит имя нашего соотечественника Л.А. Чугаева.
Промышленность выпускает перламутровые губные помады и кремы, а также шампуни с перламутровыми блесками. Перламутровый эффект в косметических средствах создается солями висмутила BiOCl и ВiO(NO3) или титанированной слюдой – перламутровым порошком, содержащим около 40% TiO2. Давно известны жемчужные или испанские белила. Их основным компонентом является ВiO(NO3)2, образующийся при растворении нитрата висмута Вi(NO3)3 в воде. В косметике эти белила используют для приготовления белого грима.
Для создания специальных косметических средств (гримов) применяют оксид цинка ZnO, получаемый прокаливанием основного карбоната (ZnOH)2CO3. В медицине его используют в присыпках (в качестве вяжущего, подсушивающего, дезинфицирующего средства) и для изготовления мазей.
Косметические декоративные пудры – многокомпонентные смеси. В них входят: тальк, каолин, ZnO, TiO2, MgCO3, крахмал, цинковые и магниевые соли стеариновой кислоты, а также органические и неорганические пигменты, в частности Fe2O3. Тальк придает пудре сыпучесть и скользящий эффект. Его недостатком является способность впитываться в кожу и придавать жирный блеск. Тем не менее в состав пудр он входит в количестве до 50...80%. Каолин обладает высокой укрывистостью и способностью впитывать избыток жировых выделений кожи. Его повышенная гигроскопичность способствует слеживаемости и неравномерному распределению пудры на коже, поэтому каолин вводят не более 25%. Оксиды цинка и титана обладают хорошей укрывистостью. Кроме того, оксид цинка обладает антисептическими свойствами и потому одновременно выполняет роль дезинфицирующей добавки. Эти оксиды вводят в пудры до 15%. В больших количествах они приводят к сухости кожи. Крахмал придает коже бархатистость, а благодаря стеаратам цинка и магния пудра хорошо удерживается на коже и делает ее гладкой.
Компактная пудра в отличие от рассыпной содержит связующие добавки: натрийкарбоксиметилцеллюлозу, высшие жирные кислоты, воски, многоатомные спирты и их эфиры, минеральные и растительные масла. Они позволяют получать при прессовании брикеты определенной формы, которые сохраняют прочность при длительном употреблении.
В быту в качестве дезинфицирующего и отбеливающего средства широко используют растворы (3, 6, 10%-ные) пероксида водорода. Более концентрированный – 30%-ный раствор пероксида водорода – называют пергидролем. Пероксид водорода – неустойчивое (особенно на свету) химическое соединение. Оно разлагается на воду и кислород:
2h3O2 = 2h3О + O2
В момент образования кислород находится в атомарном состоянии и лишь затем переходит в молекулярный:
2О = O2
Атомарный кислород обладает особенно сильным окислительным свойством. Благодаря ему растворы пероксида водорода разрушают красящие вещества и отбеливают ткани из хлопчатобумажных и шерстяных тканей, шелк, перья, волосы. Способность пероксида водорода обесцвечивать волосы используют в косметике. Она основана на взаимодействии атомарного кислорода с красящим веществом волос меланином – смесью сложных органических веществ. При окислении меланин переходит в бесцветное соединение. Следует помнить, что пергидроль вызывает ожоги кожи и слизистых оболочек.
В настоящее время для окраски волос имеется большой ассортимент различных органических красителей.
Иногда же для этой цели применяют соли серебра, меди, никеля, кобальта, железа. В таком случае крашение волос осуществляют при помощи двух растворов. Один из них содержит соли данных металлов: нитраты, цитраты, сульфаты или хлориды, а второй – восстановители: пирогаллол, таннин и др. При смешении этих растворов ионы металлов восстанавливаются до атомов, которые и осаждаются на поверхности волос.
Наиболее распространенный лак для ногтей представляет раствор нитроцеллюлозы в органических растворителях. Нитроцеллюлозу получают нитрованием целлюлозы (хлопковой или древесной) смесью азотной и серной кислот. Она является сложным эфиром азотной кислоты и характеризуется общей формулой [C6H7O2(OH)3–x(ONO2)x]n. В качестве растворителей используют амиловый эфир уксусной кислоты, ацетон, различные спирты, этиловый эфир, а также их смеси. В лак добавляют пластификаторы – касторовое масло или другие экстракты, которые препятствуют обезжириванию ногтей и предотвращают их ломкость.
Следует отметить, что косметика тесно соприкасается с гигиеной, так как имеется много косметических средств (лосьоны, кремы, шампуни и др.), которые выполняют и гигиеническую функцию.
• Химия в земледелии
• Оглавление
Дата публикации:
28 декабря 2002 года
n-t.ru
Когда другие средства не дали результата, в ход идут инсектициды
Сперва пытаемся отпугнуть вредных насекомых или выгнать их со своего участка. Затем в ход идут биологические методы, народные средства, привлечение естественных врагов из мира растений и животных. Но нередко все они оказываются безрезультатными, и тогда приходится прибегнуть к химическим препаратам. Давайте рассмотрим этот «арсенал» подробнее.
Обращайте внимание: на каждой упаковке действующее вещество обязательно указано.
Пиретроиды. Фото с сайта u-mama.ru
Эти препараты попадают в организм насекомого с пищей и, всасываясь в кишечнике, отравляют его организм. Самый распространённый кишечный яд — хлорофос. Сюда же можно отнести фозалан, волатон (фоксим) и пиретрины. Инсектициды, которые проникают в растение и отравляют его смертельным для насекомого ядом. Насекомое, поедая отравленные части растений, поражается и погибает. Эту группу инсектицидов представляют «Базудин» и «Антио», «Актара», «Конфиделин», «Белт» и другие препараты. Наиболее известные препараты этой группы изготовлены на основе системного инсектицида имидаклоприда, являющегося сильнотоксичным веществом. Они представлены на фото:Системные инсектициды. Фото с сайта u-mama.ru
В следующем видео садовод Анна Ростиславовна рассказывает и показывает, как она применяет системные инсектициды при борьбе с тлёй на яблоне и розах
Многие инсектициды могут одновременно относиться к 2-3 группам, например, «Моспилан» — системный инсектицид контактно-кишечного действия.
Инсектицид «Моспилан». Фото с сайта ozon.ru
Эти препараты отравляют организм насекомого, поступая через дыхательную систему. Применяются в газообразном виде.Это хлорпикрин и бромметил, сероуглерод, этиленоксид и фосфин. Для обработки складов и хранилищ используют «Магтоксин» (фосфид магния) и «Фостоксин» (фосфид алюминия),
Фумигант. Фото с сайта farming.by
По своему действию различают инсектициды
Клещегон. Фото с сайта euro-semena.ru
К акарицидам относят:
Об эффективности химических препаратов при борьбе с вредителями не может быть спора — они, несомненно, гораздо действеннее народных и биологических методов, особенно в промышленных масштабах.
Но, как бы эффективна ни была «химия», мы никогда не должны забывать, что в природе всё взаимосвязано — и каждая капля яда, упавшая на лист растения, цветок, на землю, через какое-то время неизбежно окажется в организме наших потомков. Поэтому прежде, чем рука откроет пакетик с порошком инсектицида, пусть глаза посмотрят в будущее… Может, достаточно будет и народных средств?
7dach.ru
Исходя из народной поговорки: “Повторенье – мать ученья”, напомним, что все химические препараты подразделяются на несколько групп:
1. Инсектициды – препараты, предназначенные для уничтожения насекомых.
2. Фунгициды – препараты для борьбы с вирусными и грибковыми инфекциями.
3. Акарициды – препараты, позволяющие предотвратить появление на участке клещей.
4. Нематициды – препараты для уничтожения нематод.
5. Моллюскоциды – препараты против слизней.
6. Зооциды – препараты для уничтожения грызунов.
7. Гербициды – препараты, предназначенные для борьбы против сорняков.
Данная классификация построена с учетом назначения химических средств.
В зависимости о действия на вредные организмы пестициды условно подразделяют на группы: контактного действия, кишечного, системного,
Ядохимикаты контактного действия проникают в организм вредителя через кожные покровы или закупоривают дыхательные органы. Кишечные ядохимикаты уничтожают насекомых, попадая в их кишечник вместе с пищей (частицами листа, плодов, стеблей, а также соком растения, с приманкой и т.д.). Ядохимикаты поступают в организм защищаемого растения и делают клеточный сок ядовитым для сосущих насекомых, а также предупреждают заражение паразитными микроорганизмами или подавляют их развитие внутри растения. Системные ядохимикаты распределяются по растению и долго сохраняют свое защитное действие, так как мало зависят от погоды и количества выпавших осадков.
Важно: С одной стороны, при неправильном применении пестицидов может возникнуть угроза накопления токсических веществ в плодах и ягодах, а с другой стороны частое использование одних и тех же препаратов приводит к быстрому привыканию к ним и отбору более устойчивых видов вредителей и рас возбудителей болезней.
То есть в данном случае мы будем работать против себя на далекую перспективу. Вот по этой причине надо не отступать от правил использования любых средств, направленных на уничтожение каких-то ненужных нам живых организмов. Не напрасно же эти правила разрабатывались не одним поколением ученых и практиков-садоводов.
На заметку: Каждый химический препарат предназначен для защиты от определенного круга вредителей или болезней. Следовательно, применять препараты можно только после установления вида вредителя или возбудителя болезни. Используйте химические препараты в строгом соответствии с регламентами их применения. Регламент включает в себя научно обоснованную норму расхода препарата, максимальную кратность его использования в одном и том же насаждении на протяжении одного вегетационного периода и, в особенности, срок последней обработки до уборки урожая. Нарушение регламента может привести к нежелательным последствиям.
1 – Не применяйте пестициды, настои и отвары трав во время цветения плодовых и ягодных растений, так как это может привести к гибели насекомых-опылителей.
2 – Пред началом обработки участка пестицидами уничтожьте цветущие сорняки и изолируйте ульи. При использовании препаратов серы и медного купороса изолируйте пчел только на период обработки, при использовании бордоской жидкости, хлорокиси меди – еще на 5-6 ч после нее, а в случае применений всех других пестицидов – на 2 суток.
3 – Опрыскивание проводите в утренние часы – после того как высохнет роса, или вечером – до ее выпадения.
На заметку: Большинство пестицидов эффективно при температуре 20-25 °С, а препараты, применяемые для ранневесеннего искореняющего опрыскивания (3%-ная бордоская жидкость и др.), – при температуре не ниже 5 °С. Напрасным может оказаться проведенное вами опрыскивание во время затяжной прохладной погоды или перед дождем.
4 – Практически все рекомендуемые препараты обладают контактным действием. Следовательно, их эффективность будет определяться равномерностью обработки пораженных частей растения. Это может быть достигнуто при помощи опрыскивателей, выпускаемых промышленностью.
Для борьбы с вредителями применяют различные опрыскиватели, в которые встроены специальные насосы, обеспечивающие оптимальное давление, и наконечники-распылители. На индивидуальных участках можно применять опрыскиватели следующих видов: ручные, малогабаритные переносные и ранцевые.
На заметку: Практика показывает, что лучше один раз “отжалеть” денег и купить ранцевый опрыскиватель проверенной фирмы, тем самым впоследствии сэкономив на точности внесения препарата и длительности его эксплуатации.
Важно: Следите за тем, чтобы раствор попадал на те части и органы растения, которые подлежат обработке, а не распыливался в воздухе и не орошал только почву. Это повысит эффективность и снизит количество применяемых препаратов.
5 – Обработку деревьев начинают с верхних ярусов, постепенно переходя на нижние. Находящиеся снизу овощные культуры необходимо накрывать пленкой, для того чтобы предотвратить попадание на них препаратов.
6 – Следует учитывать особенности каждой культуры. Например, обработку капусты проводят после того, как сформировался кочан, а применение химических препаратов на таких культурах, как редис, лук, укроп, салат, запрещено.
Материал подготовил: специалист по садоводству Буйновский О.И.
sadovniki.org
Слайд 1
Химические средства гигиены и косметики Презентацию выполнила: Ученица 11 «Б» класса Третьякова ЕвгенияСлайд 2
Гигиена – слово «гигиена» происходит от гр. слова « hygieinos », что означает «целебный, приносящий здоровье». Косметика – от гр. слова « kosmetike », т.е. «искусство украшать себя».
Слайд 3
Средства ухода за зубами Зубы подвержены ряду заболеваний и одним из наиболее распространенных является кариес. К сожалению, никому не удается избежать этого заболевания, но ограничить его распространение на многие зубы можно, принимая профилактические меры. Сущность кариеса состоит в том, что под влиянием микроорганизмов и вырабатываемых ими кислот происходит разрушение тканей зуба. Самой прочной тканью является эмаль. Ее состав близок к минералу гидроксидапатиту Ca 5 OH(PO 4 ) 3
Слайд 4
Важнейшим средством ухода за зубами являются зубные пасты. Установлено, что компоненты зубной пасты способны влиять на минеральную составляющую зуба и ,в частности, на эмаль. Поэтому в качестве абразивов стали применять фосфаты кальция: СаНРО 4 , Са 3 (РО 4 ) 2 , Са 2 Р 2 О 7 , а также малорастворимый полимерный мета-фосфат натрия ( NaРОз ).
Слайд 5
Дезодоранты Дезодора́нты (от фр. dés — приставка, означающая удаление, и латин . odor — запах ) — косметические изделия, предназначенные для маскировки, ослабления или устранения неприятных запахов.
Слайд 6
Механизм действия дезодорантов заключается в предотвращении размножения бактерий во влажной среде, и в поглощении естественных запахов тела и других навязчивых запахов. В состав дезодорантов часто входят дезинфицирующие и бактерицидные добавки уничтожающие микроорганизмы и препятствующие появлению неприятного запаха.
Слайд 7
Наиболее часто дезодоранты применяются в зоне подмышек для устранения запаха, вызванного преимущественно продуктами бактериального разложения пота. В продаже распространены дезодоранты-антиперспиранты . Эти средства помимо борьбы с запахом способствуют закрытию потовых желез и таким образом предотвращают выделение пота.
Слайд 8
В аэрозольных баллонах используют сниженные газы ( пропелленты ), температура кипения которых очень низка. Они легко переходят в газовую фазу и не только выталкивают основу (дезодорант) из баллона, но, расширяясь, распыляют ее на мелкие капельки. Долгое время эту роль выполняли только фторхлоруглероды (фреоны) – CF 2 CL 2 , CFCL 3 , CF 2 CL-CF 2 CL
Слайд 9
Косметические средства С незапамятных времен для подкрашивания бровей использовался мягкий природный минерал — сурьмяный блеск Sb 2 S 3 . В русском языке было выражение «сурьмить брови». Сурьмяный блеск поставлялся в различные страны арабами, которые называли его стиби . От этого названия и пошло латинское стибиум , означавшее в древности не химический элемент, а его сульфид Sb 2 S 3 . Природный сурьмяный блеск имеет цвет от серого до черного с синей или радужной побежалостью.
Слайд 10
Древние рукописи свидетельствуют, что уже тысячи лет назад женщины Востока подкрашивали веки в голубой цвет тончайшей пыльцой из толченой бирюзы. Бирюза — это природный минерал, имеющий состав СuА1 6 (РО 4 ) 4 (ОН) 8 ∙4Н 2 О .
Слайд 11
Промышленность выпускает перламутровые губные помады и кремы, а также шампуни с перламутровыми блесками. Перламутровый эффект в косметических средствах создается солями висмутила ВiOСl и BiO (NO 3 ) или титанированной слюдой — перламутровым порошком, содержащим около 40 % ТiO 2 . Давно известны жемчужные или испанские белила. Их основным компонентом является BiO (NO 3 ) 2 , образующийся при растворении нитрата висмута Bi (NO 3 ) з в воде. В косметике эти белила используют для приготовления белого грима.
Слайд 12
Косметические декоративные пудры — многокомпонентные смеси. В них входят: тальк,каолин , ZnO , TiO 2 , MgCO 3 , крахмал, цинковые и магниевые соли стеариновой кислоты, а также органические и неорганические пигменты, в частности Fe 2 O 3 . Тальк придает пудре сыпучесть и скользящий эффект. Его недостатком является способность впитываться в кожу и придавать жирный блеск. Тем не менее, в состав пудр он входит в количестве до 50—80 %. Каолин обладает высокой укрывистостью и способностью впитывать избыток жировых выделений кожи.
Слайд 13
Способность пероксида водорода обесцвечивать волосы используют в косметике. Она основана на взаимодействии атомарного кислорода с красящим веществом волос меланином — смесью сложных органических веществ. При окислении меланин переходит в бесцветное соединение. В настоящее время для окраски волос имеется большой ассортимент различных органических красителей.
Слайд 14
Наиболее распространенный лак для ногтей представляет раствор нитроцеллюлозы в органических растворителях. Нитроцеллюлозу получают нитрованием целлюлозы (хлопковой или древесной) смесью азотной и серной кислот. Она является сложным эфиром азотной кислоты и характеризуется общей формулой [С 6 Н 7 О 2 (ОН) 3-X (ОNO 2 ) X ] N . В качестве растворителей используют амиловый эфир уксусной кислоты, ацетон, различные спирты, этиловый эфир, а также их смеси. В лак добавляют пластификаторы — касторовое масло или другие экстракты, которые препятствуют обезжириванию ногтей и предохраняют их ломкость.
Слайд 15
СПАСИБО ЗА ВНИМАНИЕ!
nsportal.ru
Различают следующие виды препаратов: инсектициды -— препараты, применяемые против вредных насекомых; акарициды — против клещей; фунгициды — против болезней; гербициды — против сорняков.
Инсектициды по характеру оказывают химическое и контактное действие. Они могут разъедать кожные покровы, закупоривать дыхальца, лишать насекомых притока воздуха, проникать внутрь, вызывая нарушение физиологических процессов. Наиболее восприимчивы к инсектицидам гусеницы и личинки младших возрастов. Чувствительность вредителей меняется также в течение суток. Насекомые, ведущие активный дневной образ жизни, восприимчивее к инсектицидам днем.
Акарициды — препараты, уничтожающие клещей, которые обычно располагаются на нижней стороне листовой пластинки, поэтому для получения лучшего эффекта листья побегов необходимо равномерно и обильно смачивать рабочим раствором со всех сторон.
Фунгициды — химические вещества, применяемые для защиты растений от грибных заболеваний. В зависимости от целевого назначения различают фунгициды для протравливания семян, обработки почвы, обработки растений в период покоя и вегетации. Их применяют в качестве профилактических (предупреждающих) и искореняющих средств.
Гербициды. По способу влияния на растения их делят на препараты сплошного и избирательного действия, а по характеру действия — на контактные (наружного действия, не передвигающиеся по растению) и системные (внутреннего действия, передвигающиеся по растению).
Нематициды — химические вещества для борьбы с нематодами.
Родентициды — химические вещества для борьбы с вредными грызунами. Основной формой применения родентицидов является отравленная приманка.
При обработке плодовых и ягодных культур применяют растворы, суспензии и эмульсии, при опыливании — порошкообразные препараты.
Растворы — жидкости, в которых ядохимикаты полностью растворены в воде.
Суспензии — жидкости, в которых порошкообразные твердые ядохимикаты находятся во взвешенном состоянии.
Эмульсии — смеси, в которых размельченные частицы одной жидкости находятся в другой также во взвешенном состоянии.
Аэрозоли. Их создают специальные машины — аэрозольные генераторы.
Что понимается под дозой и концентрацией ядохимиката?
Растворы, суспензии и эмульсии из ядохимикатов и воды, приготовленные для опрыскивания растений, объединяются под общим условным названием «рабочая жидкость».
Необходимо строго соблюдать установленные дозировки расхода препаратов, сроки и качество обработок. Садоводы-любители должны помнить, что пестициды могут накапливаться в растениях, поэтому для каждого из них установлен строгий срок последней обработки — время ожидания.
Для борьбы с вредителями и болезнями плодовых и ягодных культур, а также с сорняками в коллективных садах разрешено, применение слабо токсичных препаратов. Поэтому, используя их, необходимо строго соблюдать установленные регламенты и правила техники безопасности. Пользоваться не разрешенными для продажи населению препаратами опасно!Важным условием эффективной борьбы на коллективных приусадебных участках является одновременность опрыскивания и опыливания всех садовых участков.
Сроки борьбы с теми или иными вредителями и болезнями устанавливают в определенном районе специалисты опытных станций защиты растений. Вместе с тем, для уточнения этих сроков желательно на каждом садовом массиве проводить периодические . обследования. С этой целью систематически осматривают все деревья, ягодные кустарники, плантации земляники, овощные и т. д. Наблюдения проводят ежедневно или через 1—-2 дня. Это позволяет установить оптимальный срок обработки и значительно повысить ее эффективность.
Намечая меры борьбы с применением химических и биологических препаратов, необходимо учитывать пороги вредоносности (степень заселенности растений различными вредными организмами). Пороги вредоносности для разных видов неодинаковы. В тех случаях, когда степень заселенности достигает порога вредоносности или превышает его, применяют химические или биологические средства. Если же вредителей на растении немного, от химических обработок желательно воздержаться.
Опрыскивание начинают с верхних ярусов кроны и постепенно переходят к средним и нижним. Особенно тщательно обрабатывают нижнюю сторону листьев.
Обрабатывать насаждения можно только в сроки, определенные рекомендациями, когда максимально подавляются вредные виды и сохраняются полезные. Нельзя опрыскивать в период цветения. Обработка плодовых и ягодников химическими препаратами прекращается за 30—35 дней до уборки урожая.
Рабочие жидкости (эмульсии, суспензии) ядохимикатов необходимо применять в день их приготовления. Перед заливкой в опрыскиватель их следует тщательно перемешать и профильтровать через сито, марлю или старый капроновый чулок. Наконечники опрыскивателей подбираются с целью более мелкого распыла. Прежде чем приступить к подготовке рабочих растворов, необходимо обязательно проверить, когда были выпущены препараты, так как они имеют определенный срок хранения, который обычно указывается на этикетке. Чтобы не оставалось излишков приготовленной смеси, необходимо произвести расчет требуемого количества препарата. Приводим схему расчета для весенней обработки сада.
Обычно площадь участка в коллективном саду составляет 600—800 м2, на котором можно разместить до 20 плодовых деревьев, 30 ягодных кустарников и 40—50 м2 земляники. Для обработки молодой яблони (до 6 лет) требуется до 2 л рабочей жидкости, куста смородины или крыжовника—1,5 л, земляники— 1,5 л на 10 м2. Используя эти нормы для набора культур, можно рассчитать необходимое количество препарата (карбофос, 10% к. э.) и рабочей жидкости для весенней обработки сада. Расход препарата составляет 75 г на 10 л воды.
Примеры:
Таким образом, для весенней обработки сада потребуется 92,5 л рабочей жидкости и 694 г препарата.
Учитывая повышенную опасность для окружающей среды химических средств, к ним следует прибегать только в крайних случаях, на участках, где, несмотря на принятые профилактические меры, вредители или болезни появились в большом количестве (свыше экономического порога) и когда другие приемы (агротехнические, биологические) не сдерживают их развитие.
Широкое применение в практике защиты растений на приусадебных участках из-за простоты конструкции, удобства и надежности в эксплуатации получили пневматические и гидравлические опрыскиватели с ручным приводом. В зависимости от размеров обрабатываемых участков, характера насаждений, объемов работ, а также своих физических возможностей садоводы могут подбирать необходимую марку аппаратуры.
Пневматические опрыскиватели представляют собой конструкцию, у которой подача или распыление жидкости осуществляется избыточным давлением, создаваемым в рабочей емкости воздушным поршневым насосом. В гидравлических опрыскивателях жидкость в распыливающее устройство подает объемный насос. Распыл происходит за счет созданного рабочего давления и геометрических параметров распылителя. Изготавливаются опрыскиватели ранцевые, позиционные и ручные.
Препараты следует хранить только в хорошо закупоренной посуде, плотно закрытой таре с наклейкой (название химиката и крупная надпись «ЯД») в нежилых запираемых помещениях, изолировано от пищевых продуктов.
При работе необходимо использовать комбинезоны или халаты, рукавицы, головной убор, защитные очки и респираторы, нельзя принимать пищу, курить. Нельзя допускать посторонних лиц, особенно детей, на обрабатываемую территорию.
По окончании работ вымыть теплой водой с мылом руки, лицо, прополоскать рот водой, проветрить одежду. Аппаратуру, емкости промыть и просушить, металлические части смазать маслом. Остатки химических составов и воды после промывки посуды собрать в глубокую яму, удаленную от источников питьевой воды, и закопать. Освободившуюся тару сжечь (бумажную, деревянную, а стеклянную разбить и закопать в отведенную яму).
www.sweli.ru
Сначала коротко о механических и физических способах.
Механический способ дезинфекции предполагает влажную уборку помещений, мытье, стирку, вытряхивание и выколачивание. Сюда же относится фильтрация воздуха и воды, заключающаяся в очистке их от посторонних частиц, в том числе и микробов. Механический способ не приводит к полному освобождению от микробов, поэтому его обычно сочетают с физическим и химическим способами. В общем, следует знать, что трясущий ковры сосед не пылит на ваше развешанное на балконе белье, а занимается механической дезинфекцией. А это - совсем другое дело.
Физический способ дезинфекции — кипячение, обработка паром и горячим воздухом, а также ультрафиолетовое облучение. Дезинфекция лучше всего достигается при кипячении (100оС на 10 минут), которое убивает все микроорганизмы за исключением некоторых бактериальных спор. Очень важно помнить, что температура, при которой вода кипит, снижается по мере повышения высоты над уровнем моря, при этом надо увеличивать время кипячения. Например, на высоте 4000 метров над уровнем моря, где кипение происходит при 86С, потребуется минимум 20 минут кипения для дезинфекции. Важно отметить, что кипячением не достигается стерилизации. Кипячение используется для обработки белья (кипятят в мыльно-содовом растворе в течение 2 часов), посуды (в 2 % содовом растворе в течение 15 минут), питьевой воды, игрушек, остатков пищи. Паровоздушная смесь используется в дезинфекционных камерах, где обеззараживают вещи и постельные принадлежности. Ультрафиолетовое облучение используется для обеззараживания воздуха помещений.
Собственно химический способ дезинфекции состоит в применении химических средств, губительно действующих на возбудителей инфекционных заболеваний. К сегодняшнему дню человек использует в качестве дезинфектантов огромное множество химических соединений, но не останавливается на достигнутом. Поиск новых химических дезинфектантов ведется в двух основных направлениях:
1). Поиск принципиально новых субстанций.
2). Поиск новых биоцидных смесей .
Поскольку химическая наука за последнее столетие шагнула далеко вперед и ожидать появления новых биоцидов не приходится, то весь научный энтузиазм сводится к поиску новых смесей известных дезинфектантов.
Хлорсодержащие препараты.
Самые старые, наиболее известные и популярные дезинфицирующие вещества. Их действие обусловлено выделением при использовании чистого хлора. Родоначальником всего семейства является хлорная известь - белый кристаллический порошок с резким запахом хлора. Сюда входят:
- двутретиосновная соль хлорида кальция (ДТСГК) - препарат, сходный с хлорной известью, но содержащий до 50% активного хлора;
- хлорамин (БХБ) - белый или слегка желтоватый порошок со слабым запахом хлора. Содержит до 30% активного хлора. Может годами храниться, не снижая своей активности. В отличие от хлорной извести хлорамин не разрушает ткани и краски;
- дезам, дихлор, хлорцин, гипохлориты и еще множество других.
Детергенты дезинфицирующего действия.
Содержат в своем составе поверхностно-активные вещества (ПАВ), в сочетании с которыми другие дезинфектанты, содержащиеся в них, многократно усиливают свое действие. Широко известны отечественные препараты "Универсальный", "Уральский", "Вита", "Сана", "Белка", "Посудомой", "Блеск", "Кама", "Санитарный", "Джалита", "Санита".
Перекись водорода.
Это бесцветная прозрачная жидкость без запаха. Является сильным окислителем, за счет чего и уничтожает микроорганизмы. Растворы перекиси водорода нестойкие, разрушаются на свету, хранятся не более 2-х суток.
Спирты (метанол, этанол и изопропранолол).
Имеют хорошую активность против бактерий и вирусов. Этиловый спирт применяется чаще всего в 70%концентрации.
Чистые растворимые фенолы (стеркол и хайколин).
Убивают большинство бактерий, включая туберкулёз, но у них ограниченная активность против вирусов.
Альдегиды (глютаралдегид и формальдегид).
Активны против бактерий, вирусов и грибов, но медленно работают против бактерий туберкулёза и раздражают кожу и глаза.
Здесь описаны далеко не все известные дезинфектанты, однако автор и не ставил целью добиться этого. Думаю, что общее представление о типах дезинфицирующих веществ - это вполне достаточно для такого скромного ресурса.
Перед дезинфекцией или стерилизацией оборудование необходимо тщательно очистить от любой видимой грязи или выделений. Это обычно промывание с водой и детергентом (мыло). Необходимо при этом одевать защитную одежду (передник, перчатки и маску).
Используя различные химические вещества, надо помнить, что они могут быть токсичными при контакте с кожей или вдыхании. Они также могут вызвать коррозию и воспламенение, поэтому защитная одежда (перчатки, фартук и маска) необходимы. Химические дезинфектанты могут поставляться готовыми к употреблению или нуждаться в точном разведении до определённой концентрации. Надо помнить, что дезинфектанты со временем могут терять активность. Потеря активности происходит быстрее при высоких температурах и может усиливаться в присутствии примесей. При использовании дезинфектантов требуется определённая экспозиция.
На качество дезинфекции влияют следующие факторы:
1. Материал, из которого изготовлены предметы, подлежащие стерилизации и их конфигурация. Трудно проводить очистку оборудования, имеющего соединения, щели или отверстия. Бактерицидные средства могут не проникать полностью во все части оборудования, что снижает эффективность стерилизации.
2. Уровень и тип микробной контаминации. Оборудование с высоким уровнем контаминации или контаминированное устойчивыми к дезинфектантам бактериями нуждается в более длительной обработке бактерицидными средствами, чем оборудование с низким уровнем контаминации или контаминации чувствительными микроорганизмами.
3. Наличие органических загрязнений. Бактерицидные средства могут вступать во взаимодействие с кровью, плазмой, гноем и другими органическими веществами на поверхности дезинфицируемого оборудования и в результате этого терять свою активность.
4. Концентрация бактерицидных средств и время экспозиции. Как правило, чем выше концентрация бактерицидного средства, тем меньше период времени, который требуется для адекватной дезинфекции. Исключением являются йодофоры, спирты и спиртсодержащие средства, теряющие активность при использовании их в концентрациях больших, чем рекомендуется производителем.
5. Другие физические и химические факторы. Температура, рН, жесткость воды и наличие других химических соединений, таких как мыло, могут влиять на эффективность дезинфектантов. Решающим фактором является необходимость контакта бактерицидных средств со всеми поверхностями обрабатываемых предметов, инструментов и оборудования. Следует предотвращать образование пузырей воздуха или его проникновение во внутрениие части оборудования.
steriliz.narod.ru