|
||||
|
Екатерина - специалист по продаже а/м КАМАЗ
43118-010-10 (дв.740.30-260 л.с.) | 2 220 000 |
43118-6033-24 (дв.740.55-300 л.с.) | 2 300 000 |
65117-029 (дв.740.30-260 л.с.) | 2 200 000 |
65117-6010-62 (дв.740.62-280 л.с.) | 2 350 000 |
44108 (дв.740.30-260 л.с.) | 2 160 000 |
44108-6030-24 (дв.740.55,рест.) | 2 200 000 |
65116-010-62 (дв.740.62-280 л.с.) | 1 880 000 |
6460 (дв.740.50-360 л.с.) | 2 180 000 |
45143-011-15 (дв.740.13-260л.с) | 2 180 000 |
65115 (дв.740.62-280 л.с.,рест.) | 2 190 000 |
65115 (дв.740.62-280 л.с.,3-х стор) | 2 295 000 |
6520 (дв.740.51-320 л.с.) | 2 610 000 |
6520 (дв.740.51-320 л.с.,сп.место) | 2 700 000 |
6522-027 (дв.740.51-320 л.с.,6х6) | 3 190 000 |
Нужны самосвалы? Обратите внимание на Ford-65513-02. |
Контактная информация.
г. Набережные Челны, Промкомзона-2, Автодорога №3, база «Партнер плюс».
тел/факс (8552) 388373.
Схема проезда
ЭДС аккумулятора (Электродвижущая сила) это разность электродных потенциалов при отсутствии внешней цепи. Электродный потенциал складывается из равновесного электродного потенциала. Он характеризует состояние электрода в состоянии покоя, то есть отсутствии электрохимических процессов, и потенциала поляризации, определяющемуся как разность потенциалов электрода при зарядке (разрядке) и при отсутствии цепи.
Благодаря процессу диффузии, выравниванию плотности электролита в полости корпуса аккумулятора и в порах активной массы пластин, электродная поляризация может сохраняться в аккумуляторе при отключении внешней цепи.
Скорость прохождения диффузии напрямую зависит от температуры электролита, чем выше температура, тем быстрее проходит процесс и может сильно отличаться по времени, от двух часов до суток. Наличие двух составляющих электродного потенциала при переходных режимах привело к разделению на равновесную и не равновесную ЭДС аккумулятора.На равновесную ЭДС аккумулятора влияет содержание и концентрация ионов активных веществ в электролите, а так же химические и физические свойства активных веществ. Главную роль в величине ЭДС играет плотность электролита и практически не влияет на неё температура. Зависимость ЭДС от плотности можно выразить формулой:
«Если Вы заметили ошибку в тексте, пожалуйста выделите это место мышкой и нажмите CТRL+ENTER»
admin 25/07/2011"Если статья была Вам полезна, поделитесь ссылкой на неё в соцсетях"
avtolektron.ru
Можно ли по ЭДС точно судить о степени заряженности аккумулятора?
Электродвижущей силой (ЭДС) аккумулятора называется разность его электродных потенциалов, измеренная при разомкнутой внешней цепи:
Е = φ+ – φ–
где φ+ и φ– – соответственно потенциалы положительного и отрицательного электродов при разомкнутой внешней цепи.
ЭДС батареи, состоящей из n последовательно соединённых аккумуляторов:
Еб = n · Е
В свою очередь, электродный потенциал при разомкнутой цепи в общем случае состоит из равновесного электродного потенциала, характеризующего равновесное (стационарное) состояние электрода (при отсутствии переходных процессов в электрохимической системе), и потенциала поляризации.
Этот потенциал в общем случае определяется как разность между потенциалом электрода при разряде или заряде и его потенциалом в равновесном состоянии в отсутствии тока. Однако следует отметить, что состояние аккумулятора сразу после выключения зарядного или разрядного тока не является равновесным вследствие различия концентрации электролита в порах электродов и межэлектродном пространстве. Поэтому электродная поляризация сохраняется в аккумуляторе довольно длительное время и после отключения зарядного или разрядного тока и характеризует в этом случае отклонение электродного потенциала от равновесного значения за счёт переходного процесса, то есть в основном вследствие диффузионного выравнивания концентрации электролита в аккумуляторе от момента размыкания внешней цепи до установления равновесного стационарного состояния в аккумуляторе.
Химическая активность реагентов, собранных в электрохимическую систему аккумулятора, и, следовательно, изменение ЭДС аккумулятора весьма незначительно зависит от температуры. При изменении температуры от –30°С до+50°С (в рабочем диапазоне для АКБ) электродвижущая сила каждого аккумулятора в батарее изменяется всего на 0,04 В и при эксплуатации аккумуляторов им можно пренебречь.
С повышением плотности электролита ЭДС повышается. При температуре +18°С и плотности 1,28 г/см3 аккумулятор (имеется в виду одна банка) обладает ЭДС равной2,12 В. Аккумуляторная батарея из шести элементов обладает ЭДС равной 12,72 В(6 ? 2,12 В = 12,72 В).
По ЭДС нельзя точно судить о степени заряженности аккумулятора. ЭДС разряженного аккумулятора с большей плотностью электролита будет выше, чем ЭДС заряженного аккумулятора, но имеющего меньшую плотность электролита. Величина ЭДС исправного аккумулятора зависит от плотности электролита (степени его заряженности) и изменяется от 1,92 до 2,15 В.
При эксплуатации аккумуляторных батарей путём измерения ЭДС можно обнаружить серьёзную неисправность аккумуляторной батареи (замыкание пластин в одной или нескольких банках, обрыв соединительных проводников между банками и тому подобное).
ЭДС измеряют высокоомным вольтметром (внутреннее сопротивление вольтметране менее 300 Ом/В). В ходе выполнения измерений вольтметр присоединяют к выводам аккумулятора или батареи. При этом через аккумулятор (батарею) не должен протекать зарядный или разрядный ток!
*** Электродвижущая сила (ЭДС) – скалярная физическая величина, характеризующая работу сторонних сил, то есть любых сил неэлектрического происхождения, действующих в квазистационарных цепях постоянного или переменного тока. ЭДС так же, как и напряжение, в Международной системе единиц (СИ) измеряется в вольтах.orbyta.ru
Если замкнуть внешнюю цепь заряженного аккумулятора, появится электрический ток. При этом происходят следующие реакции:
у отрицательной пластины
у положительной пластины
где е — заряд электрона, равный
На каждые две молекулы расходуемой кислоты образуются четыре молекулы воды, но в то же время расходуются две молекулы воды. Поэтому в итоге имеет место образование только двух молекул воды. Складывая уравнения (27.1) и (27.2), получаем реакцию разряда в окончательном виде:
Уравнения (27.1) - (27.3) следует читать слева направо.
При разряде аккумулятора на пластинах обеих полярностей образуется сульфат свинца. Серная кислота расходуется как у положительных, так и у отрицательных пластин, при этом у положительных пластин расход кислоты больше, чем у отрицательных. У положительных пластин образуются две молекулы воды. Концентрация электролита при разряде аккумулятора снижается, при этом в большей мере она снижается у положительных пластин.
Если изменить направление тока через аккумулятор, то направление химической реакции изменится на обратное. Начнется процесс заряда аккумулятора. Реакции заряда у отрицательной и положительной пластин могут быть представлены уравнениями (27.1) и (27.2), а суммарная реакция — уравнением (27.3). Эти уравнения следует теперь читать справа налево. При заряде сульфат свинца у положительной пластины восстанавливается в перекись свинца, у отрицательной пластины — в металлический свинец. При этом образуется серная кислота и концентрация электролита повышается.
Электродвижущая сила и напряжение аккумулятора зависят от множества факторов, из которых важнейшими являются содержание кислоты в электролите, температура, ток и ею направление, степень заряженности. Связь между электродвижущей силой, напряжением и током может быть запи-
сана следующим образом:
при разряде
где Е0 - обратимая ЭДС; Eп - ЭДС поляризации; R — внутреннее сопротивление аккумулятора.
Обратимая ЭДС — это ЭДС идеального аккумулятора, в котором устранены все виды потерь. В таком аккумуляторе энергия, полученная при заряде, полностью возвращается при разряде. Обратимая ЭДС зависит только от содержания кислоты в электролите и температуры. Она может быть определена аналитически, исходя из теплоты образования реагирующих веществ.
Реальный аккумулятор находится в условиях, близких к идеальным, если ток ничтожно мал и продолжительность его прохождения также мала. Такие условия можно создать, если уравновесить напряжение аккумулятора некоторым внешним напряжением (эталоном напряжения) с помощью чувствительного потенциометра. Напряжение, измеренное таким образом, называется напряжением при разомкнутой цепи. Оно близко к обратимой ЭДС. В табл. 27.1 приведены значения этого напряжения, соответствующие плотности электролита от 1,100 до 1,300 (отнесены к температуре 15°С) и температуре от 5 до 30 °С.
Как видно из -таблицы, при плотности электролита 1,200, обычной для стационарных аккумуляторов, и температуре 25 °С напряжение аккумулятора при разомкнутой цепи равно 2,046 В. В процессе разряда плотность электролита несколько снижается. Соответствующее снижение напряжения при разомкнутой цепи составляет всего несколько сотых долей вольта. Изменение напряжения при разомкнутой цепи, вызванное изменением температуры, ничтожно мало и представляет скорее теоретический интерес.
Если через аккумулятор проходит некоторый ток в направлении заряда или разряда, напряжение аккумулятора изменяется вследствие внутреннего падения напряжения и изменения ЭДС, вызванного побочными химическими и физическими процессами у электродов и в электролите. Изменение ЭДС аккумулятора, вызванное указанными необратимыми процессами, называется поляризацией. Основными причинами поляризации в аккумуляторе являются изменение концентрации электролита в порах активной массы пластин по отношению к концентрации его в остальном объеме и вызываемое этим изменение концентрации ионов свинца. При разряде кислота расходуется, при заряде образуется. Реакция происходит в порах активной массы пластин, и приток или удаление молекул и ионов кислоты происходит через диффузию. Последняя может иметь место только при наличии некоторой разности концентраций электролита в области электродов и в остальном объеме, которая устанавливается в соответствии с током и температурой, определяющей вязкость электролита. Изменение концентрации электролита в порах активной массы вызывает изменение концентрации ионов свинца и ЭДС. При разряде вследствие понижения концентрации электролита в порах ЭДС уменьшается, а при заряде вследствие повышения концентрации электролита ЭДС повышается.
Электродвижущая сила поляризации направлена всегда навстречу току. Она зависит от пористости пластин, тока и
температуры. Сумма обратимой ЭДС и ЭДС поляризации, т. е. Е0 ± Еп, представляет собой ЭДС аккумулятора под током или динамическую ЭДС. При разряде она меньше обратимой ЭДС, а при заряде — больше. Напряжение аккумулятора под током отличается от динамической ЭДС только на значение внутреннего падения напряжения, которое относительно мало. Следовательно, напряжение аккумулятора под током также зависит от тока и температуры. Влияние последней на напряжение аккумулятора при разряде и заряде значительно больше, чем при разомкнутой цепи.
Если разомкнуть цепь аккумулятора при разряде, напряжение его медленно увеличится до напряжения при разомкнутой цепи вследствие продолжающейся диффузии электролита. Если разомкнуть цепь аккумулятора при заряде, напряжение его медленно уменьшится до напряжения при разомкнутой цепи.
Неравенство концентраций электролита в области электродов и в остальном объеме отличает работу реального аккумулятора от идеального. При заряде аккумулятор работает так, как если бы он содержал очень разбавленный электролит, а при заряде — очень концентрированный. Разбавленный электролит все время смешивается с более концентрированным, при этом некоторое количество энергии выделяется в виде тепла, которое при условии равенства концентраций могло бы быть использовано. В результате энергия, отданная аккумулятором при разряде, меньше энергии, полученной при заряде. Потеря энергии происходит вследствие несовершенства химического процесса. Этот вид потерь является основным в аккумуляторе.
Внутреннее сопротивление аккумулятора. Внутреннее сопротивление слагается из сопротивлений каркаса пластин, активной массы, сепараторов и электролита. Последнее составляет большую часть внутреннего сопротивления. Сопротивление аккумулятора увеличивается при разряде и уменьшается при заряде, что является следствием изменения концентрации раствора и содержания суль-
фата в активной массе. Сопротивление аккумулятора невелико и заметно лишь при большом разрядном токе, когда внутреннее падение напряжения достигает одной или двух десятых долей вольта.
Саморазряд аккумулятора. Саморазрядом называется непрерывная потеря химической энергии, запасенной в аккумуляторе, вследствие побочных реакций на пластинах обеих полярностей, вызванных случайными вредными примесями в использованных материалах или примесями, внесенными в электролит в процессе эксплуатации. Наибольшее практическое значение имеет саморазряд, вызванный присутствием в электролите различных соединений металлов, более электроположительных, чем свинец, например меди, сурьмы и др. Металлы выделяются на отрицательных пластинах и образуют со свинцом пластин множество короткозамкнутых элементов. В результате реакции образуются свинцовый сульфат и водород, который выделяется на металле загрязнения. Саморазряд может быть обнаружен по легкому выделению газа у отрицательных пластин.
На положительных пластинах саморазряд происходит также вследствие обычной реакции между свинцом основы, перекисью свинца и электролитом, в результате которой образуется сульфат свинца.
Саморазряд аккумулятора происходит всегда: как при разомкнутой цепи, так и при разряде и заряде. Он зависит от температуры и плотности электролита (рис. 27.2), причем с повышением температуры и плотности электролита саморазряд увеличивается (потеря заряда при температуре 25 °С и плотности электролита 1,28 принята за 100%). Потеря емкости новой батареи вследствие саморазряда составляет около 0,3% в сутки. С возрастом батареи саморазряд увеличивается.
Ненормальная сульфатация пластин. Свинцовый сульфат образуется на пластинах обеих полярностей при каждом разряде, что видно из уравнения реакции разряда. Этот сульфат имеет
тонкое кристаллическое строение и зарядным током легко восстанавливается в металлический свинец и перекись свинца на пластинах соответствующей полярности. Поэтому сульфатация в этом смысле - нормальное явление, составляющее неотъемлемую часть работы аккумулятора. Ненормальная сульфатация возникает, если аккумуляторы подвергаются чрезмерному разряду, систематически недозаряжаются или остаются в разряженном состоянии и бездействии в течение длительного времени, а также если они работают с чрезмерно высокой плотностью электролита и при высокой температуре. В этих условиях тонкий кристаллический сульфат становится более плотным, кристаллы растут, сильно расширяя активную массу, и трудно восстанавливаются при заряде вследствие большого сопротивления. Если батарея находится в бездействии, образованию сульфата способствуют колебания температуры. При повышении температура мелкие кристаллы сульфата растворяются, а при последующем ее понижении сульфат медленно выкристаллизовывается и кристаллы растут. В результате колебаний температуры крупные кристаллы образуются за счет мелких.
У сульфатированных пластин поры закупорены сульфатом, активный материал выдавливается из решеток и пластины часто коробятся. Поверхность сульфатированных пластин становится жесткой, шероховатой, и при растирании
материала пластин между пальцами ощущается как бы песок. Темно-корич-невые положительные пластины стано-вятся светлее, и на поверхности высту-пают белые пятна сульфата. Отрицательные пластины становятся твердыми, желовато-серыми. Емкость сульфатиро-шнного аккумулятора понижается.
Начинающаяся сульфатация может быть устранена длительным зарядом лалым током. При сильной сульфатации необходимы особые меры для приведе-гая пластин в нормальное состояние.
studfiles.net
Давайте рассмотрим основные параметры аккумулятора, которые понадобяться нам при его эксплуатации.
1. Электродвижущая сила (ЭДС) аккумуляторной батареи — напряжение между выводами аккумуляторной батареи при разомкнутой внешней цепи (и, конечно-же, при отсутствии каких-либо утечек). В «полевых» условиях (в гараже) ЭДС можно измерить любым тестером, перед этим сняв одну из клемм («+» или «-») с аккумулятора.
ЭДС аккумулятора зависит от плотности и от температуры электролита и совершенно не зависит от размеров и формы электродов, а также от количества электролита и активных масс. Изменение ЭДС аккумулятора от температуры весьма мало и при эксплуатации им можно пренебречь. С повышением плотности электролита ЭДС повышается. При температуре плюс 18°С и плотности d = 1,28 г/см3 аккумулятор (имеется в виду одна банка) обладает ЭДС равной 2,12 В (АКБ — 6 х 2,12 В = 12,72 В). Зависимость ЭДС от плотности электролита при изменении плотности в пределах 1,05÷1,3 г/см3 выражается эмпирической формулой
Е=0,84+d, где
Е — ЭДС аккумулятора, В;
d — плотность электролита при температуре плюс 18°С, г/см3.
По ЭДС нельзя точно судить о степени разряженности аккумулятора. ЭДС разряженного аккумулятора с большей плотностью электролита будет выше, чем ЭДС заряженного аккумулятора, но имеющего меньшую плотность электролита.
Путём измерения ЭДС можно только быстро обнаружить серьезную неисправность аккумуляторной батареи (замыкание пластин в одной или нескольких банках, обрыв соединительных проводников между банками и тому подобное).
2. Внутреннее сопротивление аккумулятора представляет собой сумму сопротивлений выводных зажимов, межэлементных соединений, пластин, электролита, сепараторов и сопротивления, возникающего в местах соприкосновения электродов с электролитом. Чем больше емкость аккумулятора (число пластин), тем меньше его внутреннее сопротивление. С понижением температуры и по мере разряда аккумулятора его внутреннее сопротивление растет. Напряжение аккумулятора отличается от его ЭДС на величину падения напряжения на внутреннем сопротивлении аккумулятора.
При заряде U3 = Е + I х RВН,
а при разряде UР = Е — I х RВН, где
I — ток, протекающий через аккумулятор, A;
RВН — внутреннее сопротивление аккумулятора, Ом;
Е — ЭДС аккумулятора, В.
Изменение напряжения на аккумуляторной батарее при ее заряде и разряде показано на Рис. 1.
Рис.1. Изменение напряжения аккумуляторной батареи при её заряде и разряде.
1 — начало газовыделения, 2 — заряд, 3 — разряд.
Напряжение автомобильного генератора, от которого производится заряд батареи, составляет 14,0÷14,5 В. На автомобиле батарея, даже в лучшем случае, при полностью благоприятных условиях, остается недозаряженной на 10÷20%. Виной всему — работа автомобильного генератора.
Достаточное для зарядки напряжение генератор начинает выдавать при 2000 об/мин и более. Обороты холостого хода 800÷900 об/мин. Стиль езды в городе: разгон (длительность меньше минуты), торможение, остановка (светофор, пробка — длительность от 1 минуты до ** часов). Заряд идёт только во время разгона и движения на довольно высоких оборотах. В остальное время идёт интенсивный разряд АКБ (фары, прочие потребители электроэнергии, сигнализация — круглосуточно).
Ситуация улучшается при движении за городом, но не критическим образом. Длительность поездок не так велика (полный заряд батареи — 12÷15 часов).
В точке 1 — 14,5 В начинается газовыделение (электролиз воды на кислород и водород), увеличивается расход воды. Другой неприятный эффект при электролизе — увеличивается коррозия пластин, поэтому не следует допускать длительного превышения напряжения 14,5 В на клеммах АКБ.
Напряжение автомобильного генератора (14,0÷14,5 В) выбрано из компромиссных условий — обеспечение более-менее нормальной зарядки батареи при уменьшении газообразования (снижается расход воды, понижается пожароопасность, уменьшается скорость разрушения пластин).
Из вышесказанного можно сделать вывод, что батарею нужно периодически, хотя бы раз в месяц, полностью дозаряжать внешним зарядным устройством для уменьшения сульфатации пластин и увеличения срока службы.
Напряжение аккумуляторной батареи при ее разряде стартерным током (IР = 2÷5 С20) зависит от силы разрядного тока и температуры электролита. На Рис.2 показаны вольт-амперные характеристики аккумуляторной батареи 6СТ-90 при различной температуре электролита. Если разрядный ток будет постоянным (например, IР = 3 С20, линия 1), то напряжение батареи при разряде будет тем меньше, чем ниже ее температура. Для сохранения постоянства напряжения при разряде (линия 2) необходимо с понижением температуры батареи снижать силу разрядного тока.
Рис.2. Вольт-амперные характеристики АКБ 6СТ-90 при различной температуре электролита.
3. Емкостью аккумулятора ( С ) называется количество электричества, которое аккумулятор отдает при разряде до наименьшего допустимого напряжения. Ёмкость аккумулятора выражается в Ампер-часах (А•ч). Чем больше сила разрядного тока, тем ниже напряжение, до которого может разряжаться аккумулятор, например при определении номинальной емкости аккумуляторной батареи разряд ведется током I = 0,05С20 до напряжения 10,5 В, температура электролита должна быть в интервале +(18÷27)°С, а время разряда 20 ч. Считается, что конец срока службы батареи наступает, когда ее емкость составляет 40% от С20.
Емкость батареи в стартерных режимах определяется при температуре +25°С и разрядном токе ЗС20. В этом случае время разряда до напряжения 6 В (один вольт на аккумулятор) должно быть не менее 3 мин.
При разряде батареи током ЗС20 (температура электролита -18°С) напряжение батареи через 30 с после начала разряда должно быть 8,4 В (9,0 В для необслуживаемых батарей), а после 150 с не ниже 6 В. Этот ток иногда называют током холодной прокрутки или пусковым током, он может отличаться от ЗС20 Этот ток указывается на корпусе батареи рядом с ее емкостью.
Если разряд происходит при постоянной силе тока, то емкость аккумуляторной батареи определяется по формуле
С = I х t где,
I — ток разряда, A;
t — время разряда, ч.
Емкость аккумуляторной батареи зависит от ее конструкции, числа пластин, их толщины, материала сепаратора, пористости активного материала, конструкции решетки пластин и других факторов. В эксплуатации емкость батареи зависит от силы разрядного тока, температуры, режима разряда (прерывистый или непрерывный), степени заряженности и изношенности аккумуляторной батареи. При увеличении разрядного тока и степени разряженности, а также с понижением температуры емкость аккумуляторной батареи уменьшается. При низких температурах падение емкости аккумуляторной батареи с повышением разрядных токов происходит особенно интенсивно. При температуре −20°С остается около 50% от емкости батареи при температуре +20°С.
Наиболее полно состояние аккумуляторной батареи показывает как раз её ёмкость. Для определения реальной емкости достаточно полностью заряженную исправную батарею поставить на разряд током I = 0,05 С20 (например, для батареи с ёмкостью 55 Ач, I = 0,05 х 55 = 2,75 А). Разряд следует продолжать до достижения величины напряжения на батарее 10,5 В. Время разряда должно составить не менее 20 часов.
В качестве нагрузки при определении ёмкости удобно использовать автомобильные лампы накаливания. Например, чтобы обеспечить разрядный ток 2,75 А, при котором потребляемая мощность составит Р = I x U = 2,75 А x 12,6 В = 34,65 Вт, достаточно соединить параллельно лампу на 21 Вт и лампу на 15 Вт. Рабочее напряжение ламп накаливания для нашего случая должно быть 12 В. Конечно, точность установки тока подобным образом — «плюс-минус лапоть», но для приблизительного определения состояния аккумуляторной батареи вполне достаточно, а так-же дёшево и доступно.
При проверке таким образом новых батарей, время разряда может оказаться меньше 20 часов. Это обусловлено тем, что номинальную ёмкость они набирают после 3÷5 полных циклов заряд-разряд.
Ёмкость АКБ можно оценить также с помощью нагрузочной вилки. Нагрузочная вилка состоит из двух контактных ножек, рукоятки, переключаемого нагрузочного сопротивления и вольтметра. Один из возможных вариантов показан на Рис.3.
Рис.3. Вариант нагрузочной вилки.
Для проверки современных батарей, у которых доступны только выходные клеммы, надо использовать 12-ти вольтовые нагрузочные вилки. Нагрузочное сопротивление выбирается таким, чтобы обеспечить нагрузку аккумулятора током I = ЗС20 (например, при ёмкости батареи 55 Ач, нагрузочное сопротивление должно потреблять ток I = ЗС20 = 3 х 55 = 165 А). Нагрузочная вилка подсоединяется параллельно выходным контактам полностью заряженной батареи, замечается время, в течение которого выходное напряжение снизится от 12,6 В до 6 В. Это время у новой, исправной и полностью заряженной батареи должно быть не менее трёх минут при температуре электролита +25°С.
4. Саморазряд аккумулятора. Саморазрядом называют снижение емкости аккумуляторов при разомкнутой внешней цепи, то есть при бездействии. Это явление вызвано окислительно-восстановительными процессами, самопроизвольно протекающими как на отрицательном, так и на положительном электродах.
Саморазряду особенно подвержен отрицательный электрод вследствие самопроизвольного растворения свинца (отрицательной активной массы) в растворе серной кислоты.
Саморазряд отрицательного электрода сопровождается выделением газообразного водорода. Скорость самопроизвольного растворения свинца существенно возрастает с повышением концентрации электролита. Повышение плотности электролита с 1,27 до 1,32 г/см3 приводит к росту скорости саморазряда отрицательного электрода на 40 %.
Саморазряд может возникать также, когда аккумулятор снаружи загрязнен или залит электролитом, водой или другими жидкостями, которые создают возможность разряда через электропроводную пленку, находящуюся между полюсными выводами аккумулятора или его перемычками.
Саморазряд батарей в значительной мере зависит от температуры электролита. С понижением температуры саморазряд уменьшается. При температуре ниже 0°С у новых батарей он практически прекращается. Поэтому хранение батарей рекомендуется в заряженном состоянии при низких температурах (до −30°С). Всё это показано на Рис.4.
Рис.4. Зависимость саморазряда АКБ от температуры.
В процессе эксплуатации саморазряд не остается постоянным и резко усиливается к концу срока службы.
Для снижения саморазряда необходимо использовать возможно более чистые материалы для производства аккумуляторов, использовать только чистую серную кислоту и дистиллированную воду для приготовления электролита, как при производстве, так и при эксплуатации.
Обычно степень саморазряда выражают в процентах потери емкости за установленный период времени. Саморазряд аккумуляторов считается нормальным, если он не превышает 1% в сутки, или 30% емкости батареи в месяц.
5. Срок хранения новых батарей. В настоящее время автомобильные батареи выпускаются заводом-изготовителем только в сухозаряженном состоянии. Срок хранения батарей без эксплуатации весьма ограничен и не превышает 2 лет (гарантийный срок хранения 1 год).
6. Срок службы автомобильных свинцово-кислотных аккумуляторных батарей — не менее 4-х лет при соблюдении установленных заводом условий эксплуатации. Из моей практики шесть батарей прослужили по четыре года, а одна, самая стойкая, — целых восемь лет.
akkumulyator.reglinez.org
roadmachine.ru
Cтраница 1
Электродвижущая сила батареи, состоящей из двух параллельных групп по три последовательно соединенных аккумулятора в каждой группе, равна 4 5 в, ток в цепи 1 5 а, напряжение 4 2 в. [1]
Электродвижущая сила батареи равна 1 8 В. [2]
Электродвижущая сила батареи, состоящей из трех одинаковых последовательно соединенных аккумуляторов, равна 4 2 В. Напряжение батареи при замыкании ее на внешнее сопротивление 20 Ом равно 4 В. [3]
Электродвижущая сила батареи, состоящей из трех одинаковых последовательно соединенных аккумуляторов, равна 4 2 в. Напряжение батареи при замыкании ее на внешнее сопротивление 20 ом равно 4 в. [4]
Электродвижущая сила батареи из трех параллельно соединенных аккумуляторов равна 1 5 в, внешнее сопротивление 2 8 ом, ток в цепи равен 0 5 а. [5]
Ом - м; U - электродвижущая сила батареи, В; / - сила тока, А; К - постоянный коэффициент прибора. [7]
Поэтому такое покрытие обязательно должно уменьшать электродвижущую силу батареи. [8]
При параллельном соединении ( см. рис. 14) электродвижущая сила батареи остается приблизительно равной электродвижущей силе одного элемента, но емкость батареи увеличивается в п раз. [9]
Итак, при последовательном включении п одинаковых источников тока электродвижущая сила образующейся батареи в п раз превышает электродвижущую силу отдельного источника тока, однако в этом случае складываются не только электродвижущие силы, но также и внутренние сопротивления источников тока. Такое включение является выгодным, когда внешнее сопротивление цепи весьма велико в сравнении с внутренним сопротивлением. [10]
Практическая единица электродвижущей силы называется вольтом и мало отличается от электродвижущей силы батареи Даниэля. [11]
Заметим, что начальный заряд конденсатора и, следовательно, напряжение на нем создаются электродвижущей силой батареи. С другой стороны, начальное отклонение тела создается приложенной извне силой. Таким образом, сила, действующая на механическую колебательную систему, играет роль, аналогичную электродвижущей силе, действующей на электрическую колебательную систему. [12]
Заметим, что начальный заряд конденсатора и, следовательно, напряжение на нем создается электродвижущей силой батареи. С другой стороны, начальное отклонение тела создается извне приложенной силой. Таким образом, сила, действующая на механическую колебательную систему, играет роль, аналогичную электродвижущей силе, действующей на электрическую колебательную систему. [13]
Заметим, что начальный заряд конденсатора и, следовательно, напряжение на нем создаются электродвижущей силой батареи. С другой стороны, начальное отклонение тела создается приложенной извне силон. Таким образом, сила, действующая на механическую колебательную систему, играет роль, аналогичную электродвижущей силе, действующей на электрическую колебательную систему. [14]
Заметим, что начальный заряд конденсатора и, следовательно, напряжение на нем создается электродвижущей силой батареи. С другой стороны, начальное отклонение тела создается извне приложенной силой. Таким образом, сила, действующая на механическую колебательную систему, играет роль, аналогичную электродвижущей силе, действующей на электрическую колебательную систему. [15]
Страницы: 1 2
www.ngpedia.ru
Здесь – ЭДС, – работа сторонних сил, – величина заряда.
Единица измерения напряжения – В (вольт).
ЭДС – скалярная величина. В замкнутом контуре ЭДС равна работе сил по перемещению аналогичного заряда по всему контуру. При этом ток в контуре и внутри источника тока будут течь в противоположных направлениях. Внешняя работа, которая создаёт ЭДС, должна быть не электрического происхождения (сила Лоренца, электромагнитная индукция, центробежная сила, сила, возникающая в ходе химических реакций). Эта работа нужна для преодоления сил отталкивания носителей тока внутри источника.
Если в цепи идёт ток, то ЭДС равна сумме падений напряжений во всей цепи.
Понравился сайт? Расскажи друзьям! | |||
ru.solverbook.com