|
||||
|
Екатерина - специалист по продаже а/м КАМАЗ
43118-010-10 (дв.740.30-260 л.с.) | 2 220 000 |
43118-6033-24 (дв.740.55-300 л.с.) | 2 300 000 |
65117-029 (дв.740.30-260 л.с.) | 2 200 000 |
65117-6010-62 (дв.740.62-280 л.с.) | 2 350 000 |
44108 (дв.740.30-260 л.с.) | 2 160 000 |
44108-6030-24 (дв.740.55,рест.) | 2 200 000 |
65116-010-62 (дв.740.62-280 л.с.) | 1 880 000 |
6460 (дв.740.50-360 л.с.) | 2 180 000 |
45143-011-15 (дв.740.13-260л.с) | 2 180 000 |
65115 (дв.740.62-280 л.с.,рест.) | 2 190 000 |
65115 (дв.740.62-280 л.с.,3-х стор) | 2 295 000 |
6520 (дв.740.51-320 л.с.) | 2 610 000 |
6520 (дв.740.51-320 л.с.,сп.место) | 2 700 000 |
6522-027 (дв.740.51-320 л.с.,6х6) | 3 190 000 |
Нужны самосвалы? Обратите внимание на Ford-65513-02. |
Контактная информация.
г. Набережные Челны, Промкомзона-2, Автодорога №3, база «Партнер плюс».
тел/факс (8552) 388373.
Схема проезда
AGPAccelerated Graphics Port | |
Слот AGP (фиолетовый) и два слота PCI (белые) | |
Год открытия: | 1996 |
Разработчик: | Intel |
Что эта шина заменила: | PCI |
Что заменило эту шину: | PCI Express (2004) |
Ширина в битах: | 32 |
Кол-во устройств: | 1 устройство на слот. |
Частота, МГц | 66 МГц (AGP 1.0) |
Тип: | Параллельная |
Эта шина поддерживает горячее подключение? | нет |
Эта шина внешняя? | нет |
AGP (от англ. Accelerated Graphics Port, ускоренный графический порт) — разработанная в 1996 году компанией Intel, специализированная 32-битная системная шина для видеокарты. Появилась одновременно с чипсетами для процессора Intel Pentium MMX чипсет MVP3, MVP5 c Super Socket 7. Основной задачей разработчиков было увеличение производительности и уменьшение стоимости видеокарты, за счёт уменьшения количества встроенной видеопамяти. По замыслу Intel, большие объёмы видеопамяти для AGP-карт были бы не нужны, поскольку технология предусматривала высокоскоростной доступ к общей памяти. Её отличия от предшественницы, шины PCI:
Первая версия (спецификация AGP 1.0) AGP 1x используется редко, поскольку не обеспечивает необходимой скорости работы с памятью в режиме DME.
Сразу же при проектировании была добавлена возможность посылать 2 блока данных за один такт — это AGP 2x.
В 1998 году вышла вторая версия (спецификация AGP 2.0) — AGP 4x, которая могла пересылать уже 4 блока за один такт и обладала пропускной способностью около 1 ГБ/с. Уровень напряжения вместо обычных 3,3 В был понижен до 1,5 В.
Шина AGP 8x (спецификация AGP 3.0) передаёт уже 8 блоков за один такт, таким образом, пропускная способность шины достигает 2 ГБ/с. Также в стандарте была заложена возможность использования двух видеокарт (аналогично ATI CrossFire, Nvidia SLI), однако эта возможность не была использована производителями. Современные видеокарты требуют большой мощности, более 40 Вт, которую шина AGP дать не может, так появилась спецификация AGP Pro с дополнительными разъёмами питания.
Передача данных из основной памяти в видеопамять карты осуществляется в два этапа, сначала передаётся 64-битный адрес, откуда данные нужно считать, затем идут сами данные. Шина AGP предусматривает два варианта передачи:
На данный момент материнские платы со слотами AGP практически не выпускаются; стандарт AGP был повсеместно вытеснен на рынке более быстрым и универсальным PCI Express. Последние массовые материнские платы с AGP производились примерно в 2004—2005 годах для процессора Pentium 4 Prescott и чипсетов поколения Intel 8xx.
Видеокарты стандарта AGP выпускаются в малом количестве и стоят дороже аналогичных PCI-E карт (из-за использования «микросхемы-переходника» PCI-E → AGP).
Последними серийно выпускаемыми видеокартами для шины AGP стали GeForce 7950GT (nVidia) и Radeon HD4670 (AMD).
dic.academic.ru
Компьютерные технологии развиваются настолько быстро, что владельцы компьютеров не успевают закончить полную модернизацию своего компьютера, как производители выпускают очередное новшество, и кажется, что процесс модернизации не закончится никогда. Так произошло, когда на материнских платах появился AGP-разъем. Какова история его появления и почему так быстро он ушел в небытие?
AGP-разъем - это специализированный разъем для подключения видеокарты к материнской плате и, соответственно, он устанавливается на этой плате. На английском языке аббревиатура AGP расшифровывается как Accelerated Graphics Port, или "быстрый графический порт". Почему его так назвали и как он появился?
До 1996 года графическим интерфейсом, используемым производителями видеокарт, был PCI. Но скорость обмена информацией по этой графической шине была достаточно мала. А требования, которые постепенно возникали у разработчиков программного обеспечения, не могли быть удовлетворены с помощью этого интерфейса, не говоря уже о разработках на будущие периоды. Поэтому компания Intel разрабатывает AGP-разъем и устанавливает его на материнскую плату, параллельно с этим разрабатывается и видеокарта с таким же интерфейсом. И двадцать лет назад появляется новый комплект материнской платы и соответствующей ей видеокарты.
Если говорить о преимуществах, которые приобрели компьютеры, обладающие AGP-разъемом, то следует заметить, что пропускная способность этой шины была увеличена сразу в два раза. За счет чего это удалось сделать? В первую очередь за счет повышения частоты обмена по этому интерфейсу. AGP-разъем позволил увеличить скорость обмена информацией до 66 мГц. Это позволило создавать более мощные видеокарты, программисты стали разрабатывать соответствующие приложения под этот интерфейс. И как раз в это время появляются новые программные продукты, в том числе и игровые. Эти преимущества заставили владельцев компьютеров заняться модернизацией собственного оборудования. Но для это приходилось производить замену не только материнской платы, процессора, но и видеокарты.
Именно в это время для тех, кто не мог позволить себе полную модернизацию компьютера, разрабатывается переходник с AGP (PCI-разъем внедрен будет позже), что дало возможность сэкономить на какое-то время средства на замену хотя бы видеокарты. Конечно, со временем так или иначе приходилось делать полную замену оборудования компьютера. Пример такого переходника приведен на фото.
Интерфейс AGP существовал вплоть до 2004 года. За эти восемь лет разработчики значительно модернизировали этот интерфейс, увеличивая его производительность. Если говорить о разрядности этой шины, то во всех своих вариантах она 32-разрядная. Компьютеры имеющие 64-битную шину, появились немного позже. Поэтому разработчикам приходилось использовать 32-битный интерфейс и искать другие возможности повышать производительность видеокарт и самого AGP-интерфейса. Какой был найден выход?
Разработчики решили проблему с помощью пакетной передачи данных. Так, первая карта AGP-1 за один такт передавала один пакет информации. Но этого оказалось мало, практически сразу была разработана AGP-2, которая передавала два пакета за такт. При этом скорость передачи данных увеличилась в два раза. Спустя два года разработчики выпускают уже AGP-4, и скорость увеличивается по сравнению с картой-предшественницей еще в два раза.
При этом производительность или пропускная способность интерфейса AGP-4 составляла один гигабит в секунду. Но и этого оказалось также мало. Еще через несколько лет в продаже появляются видеокарты AGP-8, которые оперировали восемью блоками информации за такт и пропускным каналом интерфейса в два гигабита за секунду.
Но при этом появилась проблема передачи мощности через AGP-разъем. Слот AGP-8 не мог обеспечить хороший контакт при передаче большой мощности по питанию видеокарты. И разработчики специально для мощных игровых карт разрабатывают слот AGP Pro. Это была последняя модификация этого интерфейса.
Как бы там ни было, но со временем стало ясно, что компьютерам нужен новый интерфейс, который мог бы заменить AGP-разъем. Материнской плате требовался новый слот, который мог бы иметь еще большую пропускную способность, с одной стороны, и обеспечить все возрастающую потребляемую мощность - с другой. И начиная с 2004 года на смену AGP-слоту приходит PCI Express.
Преимуществом этого слота явилась возможность работы с 64-битными шинами, что значительно повышало возможности компьютера по работе с графикой. В это время начинают поступать на рынок мониторы больших размеров. А для того чтобы качественно отображать на мониторе такое изображение, необходимо было работать с большими разрешениями. Кроме того, производители видеоигр постоянно разрабатывают продукцию, требующую еще больших системных требований к видеосистеме компьютера. В этом случае разъем AGP, фото которого видно на материнской плате, безнадежно уходит в прошлое. Но, все ли так плохо для этого интерфейса?
Можно ли сказать, что на сегодняшний день эра AGP безвозвратно ушла? Наверное, наступят в скором времени такие дни, когда ни материнской платы с таким разъемом, ни видеокарты такого плана найти будет невозможно. Разве что в специализированных музеях или на компьютерной барахолке. Но на сегодняшний день этот интерфейс весьма активно применяется. Да, уже оборудование с ним достаточно давно не выпускается, и совсем скоро иссякнут последние запасы его на складах. А те экземпляры оборудования, которые находятся в компьютерах, постепенно придут в негодность. И вот тогда люди начнут забывать об AGP-слотах. Но до этого еще далеко.
Как уже писалось выше, компьютеры с AGP-интерфейсом невозможно использовать в тех машинах, которые работают с графическими, видео- и игровыми приложениями. Но количество компьютеров, работающих с такими приложениями в общей массе компьютеров, не так и велико. Самый большой сектор занимают компьютеры, которые работают с офисными приложениями, и скорость видеопотока для них не так уж и важна.
Кроме того, достаточно много компьютеров, которые имеют AGP-слот, работают и по сей день. А так как надежность этих машин достаточно велика, то многие компании не спешат отказываться от них в своих офисах. И похоже, такая ситуация будет продолжаться не один год. Конечно, рано или поздно AGP-слот будет вытеснен более новым и современным, но для этого понадобится определенное время.
Разработчики компьютерной техники предполагали, что замена AGP-слота на PCI Express пойдет быстрыми темпами. Но этого не произошло, на последнем этапе своего развития AGP-видеокарты были настолько хороши, что многие пользователи не спешат от них отказываться и по сей день.
С другой стороны, такая модернизация требовала достаточно много средств, а значит, сдерживала многих пользователей. Учитывая это, производители материнских плат пошли на компромисс. Они решили на материнской плате установить одновременно два видеослота AGP и PCI Express. Правда, пользоваться одновременно обоими слотами было невозможно, и пользователь мог выбрать тот слот, видеокарта на который у него имелась.
У многих пользователей возникает вопрос о том, какие устройства можно подсоединить к разъему AGP, так как зачастую в компьютерных системах, описанных выше, он освобождается и не используется. Но стоит помнить, что этот интерфейс был специально разработан под управление видеокартой. Возможно ли применить его для других целей? В принципе, это возможно, но для этого необходимо переделать управление этим интерфейсом, и вряд ли эффективность такого управления повысится. Существуют другие интерфейсы, которые предназначены для решения разнообразных задач, поэтому лучше воспользоваться одним из них.
fb.ru
При смене одной только видеокарты обязательно нужно учитывать, что новые модели могут просто не подходить к вашей материнской плате, так как существует не просто несколько разных типов слотов расширения, но несколько их версий (применительно к AGP, и в скором времени — к PCI Express). Если вы не уверены в своих знаниях по этой теме, внимательно ознакомьтесь с разделом.
Как мы уже отметили выше, видеокарта вставляется в специальный разъем расширения на системной плате компьютера, через этот слот видеочип обменивается информацией с центральным процессором системы. На системных платах чаще всего есть слоты расширения одного-двух (реже трёх) разных типов, отличающихся пропускной способностью, параметрами электропитания и другими характеристиками, и не все из них подходят для установки видеокарт. Очень важно знать имеющиеся в системе разъемы и покупать только ту видеокарту, которая им соответствует. Разные разъемы расширения несовместимы физически и логически, и видеокарта, предназначенная для одного типа, в другой не вставится и работать не будет.
Мы не будем касаться ISA и VESA Local Bus слотов расширения и соответствующих им видеокарт, так как они безнадежно устарели, и не каждый специалист ныне знает о них что-то большее, чем их названия и то, что они когда-то существовали. Обойдем вниманием и слоты PCI, так как игровых видеокарт для них давно уж нет.
Современные графические процессоры используют один из двух типов интерфейса: AGP или PCI Express. Эти интерфейсы отличаются друг от друга в основном пропускной способностью, предоставляемыми возможностями для питания видеокарты, а также другими менее важными характеристиками. Теоретически, чем выше пропускная способность интерфейса, тем лучше. Но практически, разница в пропускной способности даже в несколько раз не слишком сильно влияет на производительность, и пропускная способность интерфейса крайне редко является узким местом, ограничивающим производительность.
Лишь очень малая часть современных системных плат не имеет слотов AGP или PCI Express, единственной возможностью расширения для них является интерфейс PCI, видеокарты для которого весьма редки и попросту не подходят для домашнего компьютера. Рассмотрим два современных интерфейса подробнее, именно эти слоты вам нужно искать на своих системных платах. Смотрите фотографии и сравнивайте.
AGP (Accelerated Graphics Port или Advanced Graphics Port) — это высокоскоростной интерфейс, основанный на спецификации PCI, но созданный специально для соединения видеокарт и системных плат. Шина AGP лучше подходит для видеоадаптеров по сравнению с PCI (не Express!) потому, что она предоставляет прямую связь между центральным процессором и видеочипом, а также некоторые другие возможности, увеличивающие производительность в некоторых случаях, например, GART — возможность чтения текстур напрямую из оперативной памяти, без их копирования в видеопамять; более высокую тактовую частоту, упрощенные протоколы передачи данных и др.
В отличие от универсальной шины PCI, AGP используется только для видеокарт. Интерфейс имеет несколько версий, последняя из них — AGP 8x с пропускной способностью 2.1 Гб/с, что в 8 раз больше начального стандарта AGP с параметрами 32-бит и 66 МГц. Новых системных плат с AGP уже не выпускают, они окончательно уступили рынок решениям с интерфейсом PCI Express, но AGP до сих пор имеет широкое распространение и дает достаточную пропускную способность даже для новых видеочипов.
Спецификации AGP появились в 1997 году, тогда Intel выпустил первую версию описания, включающую две скорости: 1x и 2x. Во второй версии (2.0) появился AGP 4x, а в 3.0 — 8x. Рассмотрим все варианты подробнее:AGP 1x — это 32-битный канал, работающий на частоте 66 МГц, с пропускной способностью 266 Мбайт/с, что в два раза выше полосы PCI (133 Мбайт/с, 33 МГц и 32-бит).AGP 2x — 32-битный канал, работающий с удвоенной пропускной способностью 533 Мбайт/с на той же частоте 66 МГц за счет передачи данных по двум фронтам, аналогично DDR памяти (только для направления "к видеокарте").AGP 4x — такой же 32-битный канал, работающий на 66 МГц, но в результате дальнейших ухищрений была достигнута учетверенная "эффективная" частота 266 МГц, с максимальной пропускной способностью более 1 ГБ/с.AGP 8x — дополнительные изменения в этой модификации позволили получить пропускную способность уже до 2.1 ГБ/с.
Видеокарты с интерфейсом AGP и соответствующие слоты на системных платах совместимы в определенных пределах. Видеокарты, рассчитанные на 1.5 В, не работают в 3.3 В слотах, и наоборот. Но существуют универсальные разъемы, которые поддерживают оба типа плат. Некоторые новые видеокарты из последних AGP серий, такие как NVIDIA GeForce 6 серии и ATI X800, имеют специальные ключи, не позволяющие установить их в старые системные платы без поддержки 1.5 В, а последние AGP карты с поддержкой 3.3 В — это NVIDIA GeForce FX 5x00 и часть из ATI RADEON 9x00, кроме основанных на R360.
При апгрейде старой AGP системы обязательно нужно учитывать возможную несовместимость разных версий слотов AGP. Бывает, что никаких проблем не возникает, но перед модернизацией видеосистемы стоит ознакомиться со статьей:
Краткая выжимка из этой статьи: новые видеокарты в старые системные платы можно пробовать вставлять без особого риска, в крайнем случае, система просто не заработает, в отличие от попытки установки старых видеокарт на новую материнскую плату, что может иметь печальные последствия. Для установки новых видеоплат на устаревшую системную, имеющую разъема AGP 1.0, нужно, чтобы новая видеокарта имела универсальный разъем AGP 1.0/2.0:
Но если новая видеокарта имеет разъем AGP 2.0, то заставить ее работать на старой системе не получится.
AGP 3.0 видеокарты имеют такой же разъем, как показан выше, и их можно устанавливать на материнские платы со слотом AGP 2.0. Существуют и видеокарты AGP 3.0 с универсальным разъемом, которые можно устанавливать в том числе и на системную плату с портом AGP 1.0.
Несмотря на то, что версии AGP действительно сильно отличаются друг от друга по теоретическим показателям, таким, как пропускная способность, более старый и медленный интерфейс тормозить работу видеокарты будет не сильно, разница в производительности в играх при режимах AGP 4x и AGP 8x составляет лишь несколько процентов, а то и еще меньше:
NVIDIA GeForce4 Ti 4200 with AGP8x (NV28) и GeForce4 MX 440 with AGP8x (NV18)
Посмотрите — теоретическая разница в пропускной способности отличается в два раза, но практические результаты тестов показывают отсутствие значительного преимущества AGP 8x решений по сравнению с AGP 4x вариантами.
Нужно отметить, что в переходный период смены слотов AGP на PCI Express выходили системные платы с гибридными решениями, предоставляющими так называемые слоты AGP Express. Эти слоты зачастую размещались совместно с PCI Express x16 слотом, но они не являются полноценными AGP слотами и работают на скорости обычных PCI слотов, что дает очень низкую скорость, позволяющую разве что переждать время перехода на полноценное PCI Express решение.
Про подобный продукт можно прочитать в статье:Тестирование AGP-Express в исполнении ECS
Вообще же, видеокарты, рассчитанные на морально и физически устаревший слот AGP, в наших статьях не рассматриваются, поэтому мы ограничимся лишь написанным выше текстом и ссылкой на последние тесты AGP видеокарт на iXBT.com.
Последние из Могикан на базе AGP: GeForce 7800 GS, RADEON X1600 PRO, X1300
PCI Express (PCIe или PCI-E, не путать с PCI-X), ранее известная как Arapaho или 3GIO, отличается от PCI и AGP тем, что это последовательный, а не параллельный интерфейс, что позволило уменьшить число контактов и увеличить пропускную способность. PCIe — это лишь один из примеров перехода от параллельных шин к последовательным, вот другие примеры этого движения: HyperTransport, Serial ATA, USB и FireWire. Важное преимущество PCI Express в том, что он позволяет складывать несколько одиночных линий в один канал для увеличения пропускной способности. Многоканальность последовательного дизайна увеличивает гибкость, медленным устройствам можно выделять меньшее количество линий с малым числом контактов, а быстрым — большее.
Интерфейс PCIe пропускает данные на скорости 250 Мбайт/с на одну линию, что почти вдвое превышает возможности обычных слотов PCI. Максимально поддерживаемое слотами PCI Express количество линий — 32, что дает пропускную способность 8 ГБ/с. А PCIe слот с восемью рабочими линиями примерно сопоставим по этому параметру с быстрейшей из версий AGP —. Что еще больше впечатляет при учете возможности одновременной передачи в обоих направлениях на высокой скорости. Наиболее распространенные слоты PCI Express x1 дают пропускную способность одной линии (250 Мбайт/с) в каждом направлении, а PCI Express x16, который применяется для видеокарт, и в котором сочетается 16 линий, обеспечивает пропускную способность до 4 ГБ/с в каждом направлении.
Несмотря на то, что соединение между двумя PCIe устройствами иногда собирается из нескольких линий, все устройства поддерживают одиночную линию, как минимум, но опционально могут работать с большим их количеством. Физически, карты расширения PCIe входят и работают нормально в любых слотах с равным или большим количеством линий, так, PCI Express x1 карта будет спокойно работать в x4 и x16 разъемах. Также, слот физически большего размера может работать с логически меньшим количеством линий (например, на вид обычный x16 разъем, но разведены лишь 8 линий). В любом из приведенных вариантов, PCIe сам выберет максимально возможный режим, и будет нормально работать.
Чаще всего для видеоадаптеров используются разъемы x16, но есть платы и с x1 разъемами. А большая часть системных плат с двумя слотами PCI Express x16, работает в режиме x8 для создания SLI и CrossFire систем. Физически другие варианты слотов, такие как x4, для видеокарт не используются. Напоминаю, что всё это относится только к физическому уровню, попадаются и системные платы с физическими PCI-E x16 разъемами, но в реальности с разведенными 8, 4 или даже 1 каналами. И любые видеокарты, рассчитанные на 16 каналов, работать в таких слотах будут, но с меньшей производительностью. Кстати, на фотографии выше показаны слоты x16, x4 и x1, а для сравнения оставлен и PCI (снизу).
Хотя разница в играх получается не такой уж и большой. Вот, например, обзор двух системных плат на нашем сайте, в котором исследуется разница в скорости трехмерных игр на двух системных платах, пара тестовых видеокарт в которых работает в режимах 8 каналов и 1 канала соответственно:http://www.ixbt.com/mainboard/foxconn/foxconn-mcp61vm2ma-rs2h-mcp61sm2ma-ers2h.shtml
Интересующее нас сравнение — в конце статьи, обратите внимание на две последние таблицы. Как видите, разница при средних настройках весьма небольшая, но в тяжелых режимах начинает увеличиваться, причем, большая разница отмечена в случае менее мощной видеоплаты. Примите это к сведению.
PCI Express отличается не только пропускной способностью, но и новыми возможностями по энергопотреблению. Эта необходимость возникла потому, что по слоту AGP 8x (версия 3.0) можно передать не более 40 с небольшим ватт суммарно, чего уже не хватало видеокартам последних поколений, рассчитанных для AGP, на которых устанавливали по одному или двух стандартным четырехконтактным разъемам питания (NVIDIA GeForce 6800 Ultra). По разъему PCI Express можно передавать до 75 Вт, а дополнительные 75 Вт получают по стандартному шестиконтактному разъему питания (см. последний раздел этой части). В последнее время появились видеокарты с двумя такими разъемами, что в сумме дает до 225 Вт.
Не так давно, группой PCI-SIG, которая занимается разработкой соответствующих стандартов, были представлены основные спецификации PCI Express 2.0. Вторая версия PCIe вдвое увеличивает стандартную пропускную способность, с 2.5 Гб/с до 5 Гб/с, так что разъем x16 позволяет передавать данные на скорости до 8 ГБ/с в каждом направлении. При этом PCIe 2.0 совместим с PCIe 1.1, старые карты расширения будут нормально работать в новых системных платах, появление которых ожидается уже в 2007 году.
Спецификация PCIe 2.0 поддерживает как 2.5 Гб/с, так и 5 Гб/с скорости передачи, это сделано для обеспечения обратной совместимости с существующими PCIe 1.0 и 1.1 решениями. Обратная совместимость PCI Express 2.0 позволяет использовать прошлые решения с 2.5 Гб/с в 5.0 Гб/с слотах, которые просто будут работать на меньшей скорости. А устройство, разработанное по спецификациям версии 2.0, может поддерживать 2.5 Гб/с и/или 5 Гб/с скорости.
Основное нововведение в PCI Express 2.0 — это удвоенная до 5 Гб/с скорость, но это не единственное изменение, есть и другие нововведения для увеличения гибкости, новые механизмы для программного управления скоростью соединений и т.п. Нас больше всего интересуют изменения, связанные с электропитанием устройств, так как требования видеокарт к питанию неуклонно растут. В PCI-SIG разработали новую спецификацию для обеспечения увеличивающегося энергопотребления графических карт, она расширяет текущие возможности энергоснабжения до 225/300 Вт на видеокарту. Для поддержки этой спецификации используется новый 2x4-штырьковый разъем питания, предназначенный для обеспечения питанием будущие модели видеокарт.
И уже в этом году, группа PCI-SIG, занимающаяся официальной стандартизацией решений PCI Express, объявила о принятии спецификации PCI Express External Cabling 1.0, описывающих стандарт передачи данных по внешнему интерфейсу PCI Express 1.1. Эта версия позволяет передавать данные со скоростью 2.5 Гб/с, а следующая должна увеличить пропускную способность до 5 Гб/с. В рамках стандарта представлены четыре внешних разъема: PCI Express x1, x4, x8 и x16. Старшие разъемы оснащены специальным язычком, облегчающим подключение.
Внешний вариант интерфейса PCI Express может использоваться не только для подключения внешних видеокарт, но и для внешних накопителей и других плат расширения. Максимальная рекомендованная длина кабеля при этом равна 10 метров, но её можно увеличить при помощи соединения кабелей через повторитель.
Чем это может быть полезно для видеокарт? Например, это точно может облегчить жизнь любителей ноутбуков, при работе от батарей будет использоваться маломощное встроенное видеоядро, а при подключении к настольному монитору — мощная внешняя видеокарта. Значительно облегчится апгрейд подобных видеокарт, не нужно будет вскрывать корпус ПК. Производители смогут делать совершенно новые системы охлаждения, не ограниченные особенностями карт расширения, да и с питанием должно быть меньше проблем — скорее всего, будут использоваться внешние блоки питания, рассчитанные специально на определенную видеокарту, их можно в один внешний корпус с видеокартой встроить, используя одну систему охлаждения. Должна облегчиться сборка систем на нескольких видеокартах (SLI/CrossFire). В общем, с учетом постоянного роста популярности мобильных решений, такие внешние PCI Express должны завоевать определенную популярность.
В статье мы не трогаем устаревшие интерфейсы, их характеристики действительно сильно влияли на производительность даже в старые времена. Затем производители перешли на производство видеокарт, рассчитанных на интерфейс AGP (Accelerated Graphics Port), но его первой спецификации оказалось недостаточно, AGP 1.0 в некоторых случаях мог ограничивать производительность. Поэтому в дальнейшем стандарт модифицировали, версии 2.0 (AGP 4x) и 3.0 (AGP 8x) уже достигли высоких значений пропускной способности, выше которых скорость просто не росла.
Абсолютное большинство современных видеоплат рассчитано на интерфейс PCI Express, поэтому при выборе видеокарты мы предлагаем серьезно рассматривать только его, все данные о AGP приведены для справки. Хотя производители видеокарт по своей инициативе делают карты среднего уровня для интерфейса AGP (ATI RADEON X1950 PRO, NVIDIA GeForce 7800 GS и 7600 GT) до сих пор, но все они используют специальный мост для трансляции вызовов PCI Express в AGP, а новых видеочипов с поддержкой AGP давно не существует.
Итак, новые платы используют интерфейс PCI Express x16, объединяющий скорость 16 линий PCI Express, что дает пропускную способность до 4 ГБ/с в каждом направлении, это примерно в два раза больше, по сравнению с той же характеристикой AGP 8x. Важное отличие состоит в том, что PCI Express работает с такой скоростью в каждом из направлений, поэтому в некоторых случаях PCI Express может дать преимущества по сравнению с AGP. Но чаще всего пропускной способности стандарта AGP 8x достаточно, и разницы с соответствующими картами для PCI Express просто нет, разные версии видеокарт работают примерно с одной скоростью, что на AGP, что на PCI Express. Например, RADEON 9600 XT и RADEON X600 XT, для AGP и PCI Express, соответственно.
Другое дело, что будущего у AGP давно нет, и этот интерфейс следует рассматривать только с точки зрения апгрейда, все новые системные платы поддерживают только PCI Express, наиболее производительные видеокарты с интерфейсом AGP не выпускаются, а те, что есть, труднее найти в продаже. Если речь о покупке новой платы или одновременной смене системной и видеоплаты, то просто необходимо покупать карты с интерфейсом PCI Express, он будет наиболее распространен еще несколько лет, а его следующая версия будет совместима с нынешней.
Tags: AGP , слот AGP , PCI , PCI Express , слот PCI Express , слоты расширения , слоты видео карт , видеокарты с разъемом pci express , agp 8x видеокарты , agp видеокарта , DVI , dvi разъем , pci expresswww.malbred.com
[singlepic id=366 float=left]
Автогидроподъемник, автовышка – механизмы, востребованные во многих отраслях народного хозяйства.
Они необходимы там, где предстоят работы на высоте – будь то ремонт ЛЕП или линий связей, обслуживание рекламных носителей (щитов), ремонт зданий и различных инженерных сооружений, реставрация и многое другое.
Удивительно, но автомобили с подъемниками используют даже в ивент-отрасли.
Рассмотрим, какими бывают автовышки, кто их производит и как выбирать для бизнеса технику для высотных работ.
Содержание:
[singlepic id=365 float=right]
Различают три составляющие части любой автовышки:
— высотная часть – стрела с люлькой на конце, на которой размещаются люди и грузы;
— гидравлическая часть – механизм, который поднимает, опускает и фиксирует в нужном положении стрелу.
Автогидроподъемники относят к свободностоящим грузоподъемным машинам. Их устойчивость достигается за счет увеличения опорного контура, для чего используются выносные опоры. Потеря устойчивости происходит только в результате нарушения правил эксплуатации автогидроподъемника.
Существует классификация автогидроподъемников в зависимости от высоты, на которую они способны подняться:
Различают их и в зависимости от устройства автогидроподъемника:
Коленчатые подъемники, или локтевые, считаются самыми доступными. Принцип работы автогидроподъемников состоит в том, что секции стрелы складываются и раскладываются относительно друг друга и опорно-поворотного основания.
Довольно частые повреждения воздушных линий электропередач, обусловили разработку приборов управления, обеспечивающих надежность обеспечения потребителей электрической энергией.
Реклоузеры – это автономные интеллектуальные устройства, не требующие обслуживания, обладающие специальными конструктивными и функциональными особенностями и являющееся основой для распределительных сетей.
Конструкции и технические характеристики реклоузеров можно изучить в этой статье.
Независимо от положения колен в пространстве, рабочая платформа стабилизируется в горизонтальной плоскости. Подъемник неудобен тем, что ему нужно много места, как со стороны ведения работ, так и с противоположной.
Коленчатые автовышки не могут использоваться для выполнения работ под проводами, контактными сетями, перетяжками и т.д., поскольку на малых высотах точка соединения второго и третьего локтей может быть выше уровня корзины.
Достоинство же коленчатых автогидроподъемников АГП в том, что благодаря наличию третьего «колена» работать можно за препятствием, перекинув через него стрелу. Неоспоримым плюсом данного типа АГП является их надежность.
Телескопические автогидроподъемники – более сложные. Их стрела состоит их двух или трех секций. В сложенном состоянии они размещаются одна в другой и напоминают складную антенну. Раздвижной механизм предполагает наличие гидроцилиндров или тросово-цепного привода (автогидроподъемник телескопический Socage на шасси Hyundai).
[tip]Считается, что цилиндровая система надежнее тросовой, и соответственно техническое обслуживание автогидроподъемника такого типа более простое и менее затратное.[/tip]
Телескопические вышки более удобны по сравнению с коленчатыми, поскольку могут работать в ограниченном пространстве и на разных высотах. Их используют для обслуживания линий электропередач, установки реклоузеров, связи, объектов наружной рекламы, освещения и др.
Вертикальные, или мачтовые АГП представляют собой вертикальную мачту, вдоль которой передвигается площадка. Они бывают фасадными, шахтными и имеют самую высокую грузоподъемность.
Комбинированные автовышки, как автогидроподъемник PALFINGER P 200 A, или автогидроподъемник комбинированный телескопический с гуськом Socage DAJ332 являются гибридом локтевых и телескопических механизмов. Их стрела состоит из нескольких складных секций, а последняя — телескопическая. При этом складная часть стрелы меньше, чем у коленчатых АГП (например, автогидроподемник на базе Газель) или другого авто.
Автовышки являются разновидностью автогидроподъемников, обеспечивающие подъем и перемещение людей, а так же в качестве вспомогательных средства механизации погрузочно-разгрузочных и монтажных работ.
Смарт автовышка Retech Glift LS 1656 является безусловным лидером по техническим характеристикам среди спецтехники (автовышек) в своем классе. Изучить ее выдающиеся характеристики можно тут.
Благодаря этому машина используется в более стесненных условиях. Люлька может помещаться как под положительным, так и под отрицательным углом, в том числе и ниже уровня платформы.
Существуют автогидроподъемники, которые относятся к разряду складской техники и выполняют несколько другие задачи, например, штабелер самоходный — LemaZowell SR-1555T.
Рынок автогидроподъемников на сегодняшний день представлен в основном техникой российского производства – ее доля составляет около 90 %. Одно из самых известных предприятий – ОАО «Пожтехника» (г. Торжок). Оно специализируется на выпуске коленчатых автовышек и всех видов подъемников рабочей высоты до 50 м.
Еще около 30 видов автовышек производит Казанский электромеханический завод (КЭМЗ). Еще одним популярным производителем автогидроподъемников является предприятие «Чайка-Сервис», их подъемные устройства с высотой до 75 метров пользуются особой популярностью.
Как уже говорилось выше, российские производители в состоянии удовлетворить существующий спрос на эту спецтехнику. Поэтому импортные автоподъемники в России представлены достаточно скудно. В числе наиболее известных, АГП от PALFINGER (автогидроподъемник PK 30002-K): Так же на рынке присутствуют такие зарубежные компании как:
Автовышка DHS 250 AP имеет стрелу коленчатого типа, с максимальной высотой подъема в 23,5 метра и способна производить практически весь спектр работ на высоте: установку рекламных панелей, монтаж электрооборудования, объемные работы различного характера.
Благодаря своим конструктивным возможностям о которых подробно изложено тут, крюковой погрузчик Чайка сервис 4784П способен работать с кузовами различных типов и может применяться^ в коммунальном и сельском хозяйстве, в строительстве и производстве и на многих других работах.
Принимая решение, покупать автогидроподъемник, отталкиваться нужно от конкретных технических характеристик машины.
Высота подъема – один из основных параметров при эксплуатации автогидроподъемников. Так, предприятия энергетической отрасли приобретают, в зависимости от потребностей, вышки с высотой подъема от 12 до 35 метров, нефтегазовой сферы – 28-35 м, строительные организации – 12-28 м.
[tip]Для предприятий другой специализации (занимающихся обслуживанием рекламных носителей) бывает достаточно механизмов высотой до 18 м.[/tip]
Вылет стрелы – еще один определяющий параметр, представляющий собой расстояние между осями подъемника и люльки.
Шасси – немаловажный пункт в технической характеристике автогидроподъемника. Не имеет смысла покупать вышку большей высоты и грузоподъемности «про запас» — например, автомобильный подьемник АГП 40-8, если предстоит обслуживание рекламных щитов.
Дело в том, что от высоты зависит конфигурация и габариты шасси. Чем большая высота подъема – тем большие габариты грузовика. Это значительно удорожает стоимость вышки, ее обслуживание, увеличивает расходы на топливо. Чтобы убедиться в справедливости утверждения, достаточно сравнить расходы топлива для автогидроподъемников ЗИЛ и ГАЗ (автогидроподъемник телескопический на шасси ГАЗ).
Конструкция люльки, будь то автогидроподъемник Р240 А или любой другой, кажется простой, но существуют ряд определенных особенностей. Она может иметь дополнительную электроизоляцию, если автовышка используется для проведения работ по монтажу и ремонту электроустановок, линий электропередач в с напряжением до 1000 В.
[tip]По желанию заказчика на автовышки некоторые производители устанавливают люльки из диэлектрического пластика. Из этого же материала изготавливают последнюю секцию стрелы. В таком случае работа на автогидроподъемнике по ремонту электроустановок проводится без их отключения от источника энергии.[/tip]
Чтобы обеспечить больший комфорт и безопасность, люльки оснащают собственным оборотным механизмом, радиосвязью, сигнальными огнями. Кроме того, люльки бывают складными. Это позволяет уменьшить высоту автомобиля, что дает свободу передвижения.
Нельзя упускать из виду и безопасность. Лучше выбирать модель с автоматической блокировкой. На таких машинах, если установка автогидроподъемника выполнена с нарушений требований — то есть, она не стоит на опорах, гидроцилиндры не включатся. А если опоры находятся не на максимальном расстоянии, то вышка не сможет работать на наибольших высотах.
Автовышки применяются в различных сферах жизни и значительно упрощают выполнение различных задач.
[note]Работа на автогидроподъемнике при этом намного безопаснее, чем, например, промышленный альпинизм, или любой другой способ, призванный выполнять те же функции.[/note]
sttexpo.com
В последнее время в конференциях появилось огромное количество вопросов по стандарту AGP, и, в частности, по совместимости видеокарт и материнских плат, поддерживающих разные версии этого стандарта. Эта статья представляет собой попытку рассказать об этом интерфейсе, и дать ответ на интересующие многих вопросы, в частности, о совместимости старых материнских плат с новыми видеокартами.
Итак, магистральный интерфейс AGP. Называть его шиной не совсем верно на несколько слотов расширения он не был рассчитан изначально, и, хотя в спецификации AGP 3.0 есть упоминание о возможности подобных конфигураций, в железе ничего подобного так и не появилось. Этот интерфейс был разработан фирмой Intel для подключения видеокарт. При его внедрении строились грандиозные планы предполагался почти полный отказ от локальной видеопамяти, и использование вместо нее системной. Первым шагом в этом направлении стала видеокарта Intel 740 на ней устанавливался относительно небольшой объем памяти, использовавшийся под буфер кадра и Z-буфер, а все текстуры хранились только в системной памяти. Но путь оказался тупиковым относительно медленная системная память не смогла соперничать с широкими и быстрыми шинами памяти видеокарт отказ от модулей расширения позволил реализовать 128- и 256-битный доступ, а существенно более мягкие требования к отказоустойчивости отдельных ячеек памяти позволили поднять частоту даже на тех же самых микросхемах. Все дело в том, что изменение содержимого одной-единственной ячейки видеопамяти на картинку сильно повлиять не способно изменившую цвет на одном-единственном кадре точку заметить практически невозможно, тогда как в случае системной памяти такой сбой будет иметь куда более печальные последствия. Причем повысить частоты при таких требованиях к отказоустойчивости можно очень сильно на стоявшей у меня одно время карте RADEON VE от PowerMagic были установлены микросхемы Hynix HY5DU281622AT-K. Как несложно понять из маркировки, эти микросхемы DDR SDRAM предназначались для использования в качестве системной памяти с максимальной частотой 133MHz (266 MHz DDR). В качестве видеопамяти же они работали на номинальной частоте 166MHz (333MHz DDR), более того, не давали заметных артефактов при разгоне до частоты 210MHz (420MHz DDR). Так что текстуры соврменные карты хранят в собственной памяти, используя возможности AGP только в случае ее нехватки, а Intel 740 так и остался единственным в своем роде ускорителем, став позже основой встроенного в многие чипсеты от Intel графического ядра I752 в этом применении его особенности пришлись как раз кстати.
За основу интерфейса AGP 1.0 была взята шина PCI 2.1, а точнее, ее вариант PCI 32/66 32х разрядная шина с частотой работы 66MHz. В стандарте AGP 3.0 предусмотрено расширение разрядности до 64х бит при сохранении обратной совместимости, но пока такие конфигурации не реализованы. Электрически (но не по слоту и разводке) AGP 1.0 остался обратно совместим с PCI, но получил и кое-какие расширения:
Этот вариант AGP довольно быстро стал общим стандартом, VIA, SIS и ALi выпустили собственные чипсеты с поддержкой AGP.
Довольно быстро развитие системной памяти привело к тому, что ее пропускная способность превысила пропускную способность AGP 1.0 даже в режиме 2x. Естественно, был разработан новый стандарт AGP 2.0. И вот тут-то чудеса и начались... Кроме мелких усовершенствованиях режима Bus Master, оставшегося от PCI, было одно-единственное, но глобальное изменение спецификации - для реализации передач QDR (4 передачи за такт) сигнальные уровни интерфейса были снижены до 1.5V вместо 3.3V в AGP 1.0. Из-за того, что при таких частотах емкость проводников начинает играть уже существенное значение, понижение уровня логической «1» способно уменьшить потребление выходных каскадов и повысить быстродействие и стабильность. Вопреки распостраненным заблуждениям, напряжение линий, по которым подается питание для чипа и памяти (или их стабилизаторов) не изменилось все 3 линии, VDD 3.3, VDD 5 и VDD 12 так и остались в разъеме. С 3.3V до 1.5V изменилось только VDDQ напряжение питания для выходных каскадов чипа. Мало кто знает, но подобное решение уходит корнями еще в спецификацию PCI изначально эта шина имела уровень логической «1» 5.0V, а в спецификации PCI 2.1 для реализации частоты 66MHz было предусмотрено его снижение до 3.3V. Проблем не возникло, во-первых, потому, что варианты PCI 32/66 и 64/66 широкого распостранения до сих пор не получили, присутствуя только в серверных решениях, а во-вторых, из-за того, что сигнальные уровни шины однозначно задаются ключами слота PCI:
Сверху 66MHz слот, снизу 33MHz.
Для совместимости с AGP 1.0 новых материнских плат и видеокарт были предприняты следующие действия:
Карта и разъем AGP 1.0. Сигнальные уровни 3.3V.
Карта и разъем AGP 1.0/2.0 (Универсальные). Сигнальные уровни настраиваются, 3.3V или 1.5V.
Карта и разъем AGP 2.0. Сигнальные уровни 1.5V.
AGP Pro не отдельный стандарт, а просто обратно совместимый слот с дополнительными цепями питания.
Соответственно, несовместимую карту в материнскую плату воткнуть не получится. К сожалению, иногда конфигурация ключей карты или слота не соответствует действительности (см. ниже).Если же карта или материнская плата поддерживают несколько сигнальных уровней, то
Пока чипсеты поддерживали режимы AGP 1.0, все было прекрасно. Но после выпуска Intel'ом чипсетов серии 845xx, не поддерживавших сигнальные уровни 3.3V, выяснилось, что не все так гладко, как казалось…
Первой, и грубейшей ошибкой производителей была установка на эти платы универсальных слотов, вместо требуемых спецификацией слотов с ключем «1.5V Only». Казалось бы ничего страшного, VDDQ-то все равно 1.5V, карта стандарта 1.0 просто не запустится, но, как выяснилось, карты стандарта 1.0 даже при VDDQ 1.5V все равно выдавали 3.3V на входы чипсета, рассчитанные на 1.5V. Естественно, несчастный северный мост не переносил такого издевательства, и горел напрочь, после чего плату можно было смело выкидывать оборудование для пайки BGA и запасные мосты были в наличии у очень немногих фирм. К счастью, урок из этого извлекли достаточно быстро, и ключи на слотах появились. Но проблемы не исчезли. Как выяснилось, некоторые карты, не смотря на то, что имели универсальный разъем, с AGP 4x были или совместимы частично, или несовместимы вообще. В лучшем случае карты просто не запускались или работали нестабильно, в худшем тупо врубали трехвольтовые уровни, естественно, с последующим летальным исходом для северного моста. Встречались также, например, карты, на которых сигнальные уровни задавались джампером. Естественно, по умолчанию он стоял в положении «3.3V». К счастью, сигнал TYPEDET# на таких картах, как правило, выдает корректную информацию, так что некоторые производители, например, ASUStek, сделали на этом принципе схему защиты при высоком уровне TYPEDET# плата не стартует. Понять, какие карты можно ставить на эти чипсеты, а какие нет можно из приведенной ниже таблицы. Для установки на эти чипсеты (а также на все последующие с поддержкой AGP 8x) карта должна поддерживать AGP 2.0:
Таблица поддержки стандартов AGP для видеокарт:
Производитель | Чип | AGP 1.0 | AGP 2.0 | AGP 3.0 |
ATI | Rage II | - | - | |
ATI | Rage PRO | + | - | - |
ATI | Rage 128 | + | - | - |
ATI | Rage 128 PRO | + | - | |
ATI | RADEON (7200) | + | + | - |
ATI | RADEON VE (7000) | + | + | - |
ATI | RADEON 7500 | + | + | - |
ATI | RADEON 8500 | + | + | - |
ATI | RADEON 9000/PRO | + | + | - |
ATI | RADEON 9200/PRO | + | + | + |
ATI | RADEON 9500/PRO | + | + | + |
ATI | RADEON 9600/PRO | + | + | |
ATI | RADEON 9700/PRO | + | + | + |
ATI | RADEON 9800/PRO | + | + | + |
NVIDIA | Riva 128/ZX | + | - | - |
NVIDIA | TNT | + | - | - |
NVIDIA | TNT 2 | + | - | |
NVIDIA | GeForce | + | + | - |
NVIDIA | GeForce 2/MX | + | + | - |
NVIDIA | GeForce 3 | + | + | - |
NVIDIA | GeForce 4 MX | + | + | - |
NVIDIA | GeForce 4 MX 8x | + | + | + |
NVIDIA | GeForce 4 Ti | + | + | - |
NVIDIA | GeForce 4 Ti 8x | + | + | + |
NVIDIA | GeForce FX 5200/Ultra | + | + | + |
NVIDIA | GeForce FX 5600/Ultra | + | + | + |
NVIDIA | GeForce FX 5800/Ultra | + | + | + |
NVIDIA | GeForce FX 5900/Ultra | + | + | + |
Matrox | Millenium II | + | - | - |
Matrox | G100 | + | - | - |
Matrox | G200 | + | - | - |
Matrox | G400 | + | - | |
Matrox | G450 | + | + | - |
Matrox | G550 | + | + | - |
Matrox | Parhelia | + | + | |
Intel | 740 | + | - | - |
S3 | Virge | - | - | |
S3 | Trio 3D | + | - | - |
S3 | Savage 4 | + | + | - |
S3 | Savage 2000 | + | + | - |
3DFX | Voodoo Banshee | - | - | |
3DFX | Voodoo 3 | - | - | |
3DFX | VSA-based cards | + | + | - |
#9 | Revolution 3D | - | - | |
#9 | Revolution IV | + | - | - |
SIS | 315 | + | + | - |
SIS | Xabre | + | + | |
PowerVR | Kyro | + | + | - |
PowerVR | Kyro II/SE | + | + | - |
Итак, и AGP 2.0 настала пора уйти в отставку его пропускной способности опять перестало хватать. В новом стандарте 3.0 уровень логической «1» в очередной раз был изменен уменьшен до 0.8V для режима 8x. Опорная частота интерфейса так и не изменилась, просто был введен режим ODR передача по линиям AD и SBA с частотой, в 8 раз превышающей опорную. Естественно, добавили две новых линии GC_AGP8X_DET# и MB_AGP8X_DET# соответственно, определяющие поддержку AGP 3.0 у видеокарты и материнской платы. Разъем остался тем же самым AGP 4X/1.5V Only (ох, зря, не наступили бы они опять на те же грабли при отказе от поддержки 1.5V сигнальных уровней), защита обеспечивается линией GC_AGP8X_DET# при ее высоком уровне материнская плата с поддержкой только AGP 8x стартовать не должна. И, естественно, чудеса с сигнальными уровнями продолжились… По стандарту от Intel, и карта, и материнская плата при наличии поддержки AGP 8x поддерживать режимы с уровнями 3.3V не должна (это совсем не означает отсутствия поддержки режима 1x! Еще в стандарте AGP 2.0 были определены режимы 1x/1.5V и 2x/1.5V). На практике же, хотя материнские платы действительно эту рекомендацию выполняют, с видеокартами все далеко не так. Почти все современные видеокарты с поддержкой AGP 8x имеют и поддержку материнских плат стандарта AGP 1.0 (единственное исключение RADEON 9600). Другое дело, что совместимость по сигнальным уровням необходимое, а не достаточное условие работоспособности. Например, старые блоки питания чего-нибудь типа RADEON 9700 просто, как правило, не выдерживают. Но примеры работающих конфигураций есть, так что при желании любую карту, даже RADEON 9800 PRO, можно поставить на Intel 440BX, например. Но имеет ли смысл?
Таблица поддержки стандартов AGP для чипсетов:Производитель | Чипсет | AGP 1.0 | AGP 2.0 | AGP 3.0 |
Intel | 440LX (1) | + | - | - |
Intel | 440BX (1) | + | - | - |
Intel | 815xx | + | + | - |
Intel | 820 | + | + | - |
Intel | 845xx | - | + | - |
Intel | 850x | - | + | - |
Intel | 865x | - | + | + |
Intel | 875x | - | + | + |
Intel | 7205 | - | + | + |
VIA | VP3/MVP3 (2) | + | - | - |
VIA | 691(Apollo PRO) | + | - | - |
VIA | 693x(Apollo PRO +/133) | + | - | - |
VIA | 694x(Apollo PRO 133A/133T) (3) | + | + | - |
VIA | Apollo 266x | + | + | - |
VIA | KT133x | + | + | - |
VIA | KT266x | + | + | - |
VIA | KT333 | + | + | - |
VIA | KT333CF | - | + | - |
VIA | KT400x | + | + | + |
VIA | KT600 | + | + | + |
VIA | P4X266x | + | + | - |
VIA | P4X400 | - | + | + |
AMD | 750 | + | - | - |
AMD | 760 | + | + | - |
ALI | Aladdin V (4) | + | - | - |
ALI | Aladdin Pro II | + | - | - |
ALI | Aladdin Pro 5T | + | + | - |
ALI | M1649 | + | + | - |
ALI | MAGiK 1 | + | + | - |
ALI | ALADDiN-P4 (M1671) | + | + | - |
SIS | 635 | + | + | - |
SIS | 735 | + | + | - |
SIS | 745 | + | + | - |
SIS | 746/FX | - | + | + |
SIS | 645/DX | + | + | - |
SIS | 648 | - | + | + |
SIS | 650 | + | + | - |
SIS | 655 | - | + | + |
NVIDIA | Nforce | - | + | - |
NVIDIA | Nforce II | - | + | + |
ATI | A3 | + | + | - |
ATI | A4 | + | + | - |
ATI | IGP9100 | - | + | + |
(1) Это самые первые чипсеты с поддержкой AGP. Возможность стабильной работы новых карт целиком и полностью зависит от конкрентых материнских плат. Естественно, что от ACORP многого ждать не стоит, тогда как на ASUSTEK, например, можно запустить и RADEON 9700…
(2) Первый чипсет с AGP не от Intel. Как ни странно, серьезных аппаратных проблем не имел (не считая конкретные реализации AGP на некоторых материнских платах, но это уже не вина VIA). Крайне рекомендуется обновить BIOS перед установкой новых карт.
(3) У ранних плат, возможно, для стабильной работы режима 4x потребуется вручную подобрать AGP Driving Value.
(4) Поскольку матерных выражений редактор не одобряет, я ничего не буду говорить про реализацию AGP у этого чипсета и материнских плат на нем. Типы работающих видеокарт узнаются только подбором…
Ну и, до кучи:
Таблица всех режимов AGP:
Режим | Уровень лог. «1» | AGP 1.0 | AGP 1.0/2.0 | AGP 2.0 | AGP 2.0/3.0 | AGP 3.0 |
1x | 3.3V | + | + | + | - | - |
1x | 1.5V | - | + | + | + | - |
2x | 3.3V | + | + | + | - | - |
2x | 1.5V | - | + | + | + | - |
4x | 1.5V | - | + | + | + | - |
8x | 0.8V | - | - | - | + | + |
Как видно из этой таблицы, в AGP 2.0 и 3.0 от режимов 1x и 2x не отказались, а просто перевели их на сигнальные уровни 1.5V. Так что не удивляйтесь, увидев вариант «1x» в настройках режима AGP на новых платах.
В этом разделе собрано большинство проблем, которые могут возникнуть при установке новых видеокарт на старые материнские платы:
• Недостаточная мощность блока питания.Проблема: Мощность блока питания недостаточна.Симптомы: Уход напряжений питания из допустимых пределов. Запуск системы только после нажатия reset. Высокий уровень помех по питанию, и, как следствие, произвольные сбои в работе (трудноопределимо).Решение: Заменить БП.
• На материнской плате установлен стабилизатор на линии VDD3.3 (Сразу предупреждая возможные вопросы на большинстве плат питающие напряжения на AGP подаются непосредственно с разъема питания системной платы. То, что в BIOS'е названо VAGP всего-навсего VDDQ, и повышать его не стоит).Проблема: Из-за маломощного стабилизатора на линии VDD3.3 видеокарте не хватает питания.Решение: Для AT платы установка более мощного стабилизатора (трудновыполнимо). Для ATX платы запитка видеокарты непосредственно от БП, как правило, отключением стабилизатора и напаиванием проводника от разъема питания. На некоторых материнских платах стабилизатор отключается джамперами.
• Неверный уровень VREFGC.Проблема: Наряжение VREFGC, подающееся картой стандарта 2.0 на контакты A66 и B66 закорачивается на землю платой стандарта 1.0. В стандарте 1.0 эти контакты зарезервированы. Зачем зарезервированные контакты понадобилось заземлять тайна, сокрытая в мраке ночи. Так сделано, например, на Chaintech 6BTMСимптомы: Система не стартует.Решение: Изолировать два последних контакта в слоте.
• Маломощный стабилизатор VDDQ.Проблема: Неустойчивость передач по шине из-за маломощного стабилизатора VDDQ. В особо запущенных случаях использование общего стабилизатора VDDQ для AGP и оперативной памяти. Для информации: по стандарту AGP максимальный разрешенный ток линии VDDQ 8 ампер.Симптомы: Нестабильность системы, особенно в 3D-играх. Для общего стабилизатора VDDQ AGP и памяти нестабильность проявляется при установке нескольких модулей памяти или модулей с большим количеством микросхем совместно с новой картой.Решение: Установить более мощный стабилизатор. Для второго случая развязать VDDQ памяти и AGP. И то, и другое трудновыполнимо, проще заменить плату.
• Высокая частота AGPПроблема: На чипсете Intel 440BX при использовании процессоров с шиной 133MHz частота AGP составляет 89MHz вместо стандартных 66.Симптомы: Нестабильность системы, особенно в 3D играх. Иногда система вообще не стартует.Решение: Установить режим 1x. При отсутствии положительного результата СНИЗИТЬ напряжения VDDQ и VREF, но не более чем на 5% от номинала (до 3.135V и 1.5675V минимум). Учтите, что VREF=VDDQ/2, причем допустимое отклонение не более 2%. Это особенно критично для плат ABIT и ASUStek, у которых VDDQ (и, соответственно, VREF) может быть завышено по умолчанию, что стабильности в данном случае совсем не прибавляет… Часто задают вопрос а что же карта с поддержкой 4x или 8x какие-то 89MHz переварить не способна? Ответ прост во-первых, в штатном режиме работы частота всех линий, кроме AD и SBA, так и осталась 66MHz, даже в стандарте 3.0. Во-вторых хотя линии на AD и SBA в режиме 4x и выше работают с частотой, превышающей 89MHz (или 178 для режима 2x), но работают-то они при других сигнальных уровнях…
www.ixbt.com
AGP — Accelerated Graphics Port Слот AGP (фиолетовый) и два слота PCI (белые) Год открытия: 1996 Разработчик: Intel … Википедия
Шина данных — Шина данных шина, предназначенная для передачи информации. В компьютерной технике принято различать выводы устройств по назначению: одни для передачи информации (например, в виде сигналов низкого или высокого уровня), другие для сообщения… … Википедия
Шина управления — компьютерная шина, по которой передаются сигналы, определяющие характер обмена информацией по магистрали. Сигналы управления определяют, какую операцию (считывание или запись информации из памяти) нужно производить, синхронизируют обмен… … Википедия
Шина адреса — Шина адреса компьютерная шина, используемая центральным процессором или устройствами, способными инициировать сеансы DMA, для указания физического адреса слова ОЗУ (или начала блока слов), к которому устройство может обратиться для… … Википедия
Шина расширения — Шина расширения компьютерная шина, которая используется на системной карте компьютеров или промышленных контроллеров, для добавления устройств (плат) в компьютер. Есть несколько видов: Персональные компьютеры ISA 8 и 16 разрядная,… … Википедия
Шина (компьютер) — Разъёмы шины PCI Express (сверху вниз: x4, x16, x1 и x16). Ниже обычный 32 битный разъем шины PCI. У этого термина существуют и другие значения, см. Шина. Компьютерная шина (от … Википедия
Шина (компьютеры) — Разъёмы шины PCI Express (сверху вниз: x4, x16, x1 и x16), по сравнению с обычным 32 битным разъемом шины Компьютерная шина (от англ. computer bus, bidirectional universal switch двунаправленный универсальный коммутатор) в архитектуре компьютера… … Википедия
AGP (accelerated graphics port) — Расширенная шина для подключения графических карт. В современных компьютерах различаются следующие варианты этой шины: AGP 4X и AGP 8X. В ближайшее время ей на смену придет шина PCI Express 16x … Глоссарий терминов бытовой и компьютерной техники Samsung
AGP (accelerated graphics port) — Расширенная шина для подключения графических карт. В современных компьютерах различаются следующие варианты этой шины: AGP 4X и AGP 8X. В ближайшее время ей на смену придет шина PCI Express 16x … Глоссарий терминов бытовой и компьютерной техники Samsung
Шина PCI Express — На фотографии 4 слота PCI Express: x4, x16, x1, опять x16, внизу стандартный 32 разрядный слот PCI, на материнской плате DFI LanParty nForce4 SLI DR PCI Express или PCIe или PCI E, (также известная как 3GIO for 3rd Generation I/O; не путать с PCI … Википедия
dic.academic.ru
Автовышка – это специальный вид техники, который представляет собой телескопическую стрелу со специальной корзиной для размещения рабочих и грузов, установленную на колесный автомобиль. Базовое шасси для автовышки АГП 22 – ГАЗ 33096, надежное и неприхотливое в работе, простое в управлении транспортное средство. Колесная база стандартная — 2 моста, (задний ведущий), что позволяет свободно перемещаться по дорогам с твердым покрытием.
Грузовое транспортное средство обеспечивает доставку бригады работников и часть оборудования к месту выполнения работ. Установленный на спец автомобиль подъемный механизм обеспечивает доставку высотников непосредственно к объекту, месту производства работ. Примененные для автовышки АГП 22 технические характеристики и конструктивные особенности, а также использование современного итальянского оборудования обеспечивает возможность подъема монтажников и инструментов на расстояние в 22 метра над уровнем земли.
Автовышка АГП 22 предназначена для выполнения следующих видов работ по секторам применения:
Техника нашла применение в строительном секторе экономики, сфере ЖКХ, электроэнергетике и т.п. Позволяет выполнять широкий спектр работ повышенной сложности с гарантией безопасности для жизни и здоровья специалистов (монтажников, ремонтников и пр.). Предусмотрена возможность безопасной работы и обеспечена защита от поражения электрическим током при обслуживании линий электропередач, приборов и устройств в электросети, находящихся под напряжением до 1000 В включительно.
Конструкция стрелы секционная телескопическая, коробчатой формы. Такое решение обеспечивает возможность использования автовышки АГП 22 в труднодоступных местах и позволяет выполнять работы на ограниченном пространстве. Люлька, в которой размещаются рабочие и инструменты, изготовлена из облегченного алюминиевого сплава, характеризуется повышенной прочностью и надежностью. Габаритные размеры 140 см / 70 см / 110 см. Предусмотрена возможность безопасного поворота люльки как по часовой стрелке, так и против нее, в общей сложности охватывая сектор в 120 градусов, что позволяет максимально удобно располагать работников перед ремонтируемым объектом. Разрешенная грузоподъемность – 250-300 кг, конструкция эргономичная, обеспечивает свободное размещение 2 монтажников с необходимыми инструментом. Платформа, на которой установлена выдвижная стрела, может поворачиваться в обе стороны на 180°, таким образом обеспечивая полное круговое вращение.
Рассмотрим основные ТТХ:
Привод управления | гидравлический |
Рабочая высота подъема полезного груза, м | 22 |
Максимальный вылет стрелы, м | 10 |
Максимальная грузоподъемность, кг | 300 |
Время развертывания на макс. высоту, мин | 2 |
Давление в гидросистеме, кг/см2 | 100 |
Скорость движения по маршруту, км/ч | до 60 |
В целях обеспечения безопасности и эффективности работы оборудования, установленного на автовышке АГП 22, конструкторами предусмотрена синхронность и последовательность операций. В экстренных случаях для максимально быстрого спуска установлен дополнительный насос. Все электрические кабели размещены во внутренних полостях стрелы и надежно защищены от возможных повреждений. Люлька укомплектована электрической розеткой, на которое подается напряжение 220 В. Такое простое конструктивное решение понравилось всем пользователям, так как обеспечивает подключение ручных переносных электроинструментов.
В целом, предусмотренные для автовышки АГП 22 технические характеристики, инновационные решения и конструктивные особенности позволяют выполнять работы повышенной сложности на высоте с обеспечением максимальной безопасности для рабочего персонала.
Основу управления автовышкой составляет специальная электронно-гидравлическая система. Это означает, что подает команды и управляет всем процессом перемещения стрелы и люльки электроника, а гидравлика выступает в роли средства для наиболее эффективного и максимально точного выполнения команд и операций.
Прежде чем приступать к работе, необходимо установить грузовое шасси на ровной площадке и зафиксировать его положение с помощью специальных выдвижных опор – аутригеров. Они обеспечивают дополнительную устойчивость транспортного средства на грунте и позволяют поддерживать платформу в неизменно горизонтальном положении. Только после этого разрешается приступать к развертыванию установки. Работу гидравлики обеспечивает дизельный двигатель самого транспортного средства.
Для удобства и повышения эффективности работы оператора предусмотрена возможность управления устройством как с земли (с помощью выносного пульта дистанционного управления), или из самой люльки через закрепленный в ней пульт ДУ. Такое решение позволяет максимально точно и безопасно приблизиться к объекту выполнения работ, что по достоинству оценено специалистами разных служб, использующих данное оборудование. Оба пульта имеют специальные аварийные кнопки для безопасной блокировки гидросистемы. Кроме того, имеется дополнительная возможность запускать или глушить двигатель прямо высоты, используя дополнительную кнопку. Это удобно в том случае, если водитель является одним из работников, а рабочий процесс требует длительного нахождения в статическом положении. При этом обеспечивается существенная экономия топлива и моторесурса без снижения уровня безопасности работников.
allspetstekhnika.ru