Камаз 44108 тягач В наличии!
Тягач КАМАЗ 44108-6030-24
евро3, новый, дв.КАМАЗ 740.55-300л.с., КПП ZF9, ТНВД ЯЗДА, 6х6, нагрузка на седло 12т, бак 210+350л, МКБ, МОБ
 
карта сервера
«ООО Старт Импэкс» продажа грузовых автомобилей камаз по выгодным ценам
+7 (8552) 31-97-24
+7 (904) 6654712
8 800 1005894
звонок бесплатный

Наши сотрудники:
Виталий
+7 (8552) 31-97-24

[email protected]

 

Екатерина - специалист по продаже а/м КАМАЗ
+7 (904) 6654712

[email protected]

 

Фото техники

20 тонный, 20 кубовый самосвал КАМАЗ 6520-029 в наличии
15-тонный строительный самосвал КАМАЗ 65115 на стоянке. Техника в наличии
Традиционно КАМАЗ побеждает в дакаре

тел.8 800 100 58 94

Техника в наличии

тягач КАМАЗ-44108
Тягач КАМАЗ 44108-6030-24
2014г, 6х6, Евро3, дв.КАМАЗ 300 л.с., КПП ZF9, бак 210л+350л, МКБ,МОБ,рестайлинг.
цена 2 220 000 руб.,
 
КАМАЗ-4308
КАМАЗ 4308-6063-28(R4)
4х2,дв. Cummins ISB6.7e4 245л.с. (Е-4),КПП ZF6S1000, V кузова=39,7куб.м., спальное место, бак 210л, шк-пет,МКБ, ТНВД BOSCH, система нейтрализ. ОГ(AdBlue), тент, каркас, рестайлинг, внутр. размеры платформы 6112х2470х730 мм
цена 1 950 000 руб.,
КАМАЗ-6520
Самосвал КАМАЗ 6520-057
2014г, 6х4,Евро3, дв.КАМАЗ 320 л.с., КПП ZF16, ТНВД ЯЗДА, бак 350л, г/п 20 тонн, V кузова =20 куб.м.,МКБ,МОБ, со спальным местом.
цена 2 700 000 руб.,
 
КАМАЗ-6522
Самосвал 6522-027
2014, 6х6, дв.КАМАЗ 740.51,320 л.с., КПП ZF16,бак 350л, г/п 19 тонн,V кузова 12куб.м.,МКБ,МОБ,задняя разгрузка,обогрев платформы.
цена 3 190 000 руб.,

СУПЕР ЦЕНА

на АВТОМОБИЛИ КАМАЗ
43118-010-10 (дв.740.30-260 л.с.) 2 220 000
43118-6033-24 (дв.740.55-300 л.с.) 2 300 000
65117-029 (дв.740.30-260 л.с.) 2 200 000
65117-6010-62 (дв.740.62-280 л.с.) 2 350 000
44108 (дв.740.30-260 л.с.) 2 160 000
44108-6030-24 (дв.740.55,рест.) 2 200 000
65116-010-62 (дв.740.62-280 л.с.) 1 880 000
6460 (дв.740.50-360 л.с.) 2 180 000
45143-011-15 (дв.740.13-260л.с) 2 180 000
65115 (дв.740.62-280 л.с.,рест.) 2 190 000
65115 (дв.740.62-280 л.с.,3-х стор) 2 295 000
6520 (дв.740.51-320 л.с.) 2 610 000
6520 (дв.740.51-320 л.с.,сп.место) 2 700 000
6522-027 (дв.740.51-320 л.с.,6х6) 3 190 000


Перегон грузовых автомобилей
Перегон грузовых автомобилей
подробнее про услугу перегона можно прочесть здесь.


Самосвал Форд Нужны самосвалы? Обратите внимание на Ford-65513-02.

КАМАЗы в лизинг

ООО «Старт Импэкс» имеет возможность поставки грузовой автотехники КАМАЗ, а так же спецтехники на шасси КАМАЗ в лизинг. Продажа грузовой техники по лизинговым схемам имеет определенные выгоды для покупателя грузовика. Рассрочка платежа, а так же то обстоятельство, что грузовики до полной выплаты лизинговых платежей находятся на балансе лизингодателя, и соответственно покупатель автомобиля не платит налогов на имущество. Мы готовы предложить любые модели бортовых автомобилей, тягачей и самосвалов по самым выгодным лизинговым схемам.

Контактная информация.

г. Набережные Челны, Промкомзона-2, Автодорога №3, база «Партнер плюс».

тел/факс (8552) 388373.
Схема проезда



Большая Энциклопедия Нефти и Газа. Трансмиссия механическая


Электрическая и электромеханическая трансмиссии.

Бесступенчатые трансмиссии

Электрические и электромеханические трансмиссии



В электрической трансмиссии механическая энергия двигателя преобразуется в генераторе в электрическую энергию, и затем снова преобразуется в механическую в тяговых электродвигателях.

Очевидно, что двойное преобразование энергии из одного вида в другой связано с определенными потерями, однако, эти потери зачастую ниже потерь в механической трансмиссии, а кроме того, применение электрической трансмиссии имеет ряд существенных достоинств.

В первую очередь – это, конечно же, провода. Безусловно, электрическую проводку для подвода энергии к электродвигателю, установленному в колесе автомобиля, подвести значительно проще, чем от силовой установки к ведущему колесу посредством различного рода механических передач. Во-вторых, электрические двигатели имеют приближенную к идеальной характеристику изменения крутящего момента в зависимости от частоты вращения вала (якоря). При увеличении частоты вращения крутящий момент на валу уменьшается, а при уменьшении частоты вращения – крутящий момент увеличивается, при этом произведение частоты вращения вала на крутящий момент в каждый момент времени остается постоянным (в идеале), равным мощности двигателя.

Исходя из приведенных выше доводов, становится очевидным, что электродвигатель является почти идеальной автоматической трансмиссией, самостоятельно подстраивающей величину крутящего момента на колесах автомобиля в зависимости от условий движения – возросла нагрузка, скорость снизилась – крутящий момент автоматически вырос.

Однако широко применять электродвигатели в качестве силовой установки современных автомобилей пока не удается, поскольку нет возможности запасаться электроэнергией в достаточном количестве впрок. Привязав автомобиль проводами к какому-нибудь источнику электрической энергии, мы лишим его автономности, а значит, и название «автомобиль» для такого транспортного средства потеряет смысл. Современные аккумуляторные батареи тоже не способны обеспечить электромобиль достаточным запасом энергии для передвижения.

Многократное преобразование: тепловая энергия топлива – механическая энергия ДВС – электрическая энергия генератора – механическая энергия трансмиссии – электрическая энергия тягового электродвигателя – механическая энергия движителя (колеса) сопряжено со значительными потерями энергии и снижением КПД. Кроме того, чтобы обеспечить движение автомобиля с электрической силовой установкой в широком интервале тяговых усилий без применения дополнительной механической трансмиссии, необходим очень мощный, дорогой и тяжелый электрический двигатель, который сведет на нет все достоинства электропривода с экономической точки зрения.

Тем не менее, электрическая трансмиссия в совокупности с механической нашла применение на современных грузовых автомобилях повышенной грузоподъемности.

Основными элементами электрической трансмиссии (рис. 1, а) являются генератор 2, приводимый в действие двигателем внутреннего сгорания 1, и электрические двигатели 3, расположенные непосредственно в ведущих колесах автомобиля. Достоинством данного вида трансмиссии является то, что генератор и тяговые электродвигатели могут устанавливаться в любом месте, диктуемом компоновкой автомобиля, при этом связь между ними поддерживается с помощью электрических проводов, которые можно проложить как угодно и где угодно, без ущерба внутреннему объему автомобиля.



Тем не менее, в таком упрощенном виде электрическая трансмиссия применяется редко. Чаще для увеличения крутящего момента в трансмиссию вводятся элементы механической трансмиссии. В таких случаях применяется один тяговый двигатель, а мощность к ведущим колесам передается посредством механических элементов – карданных передач и ведущих мостов (рис. 1, б).

При установке тяговых электродвигателей непосредственно в колесах автомобиля используют планетарные зубчатые редукторы с передаточным числом от 15 до 20. Колесо с электродвигателем и колесным редуктором называется электромотор-колесо.

Электромотор-колесо (рис. 2) является наиболее сложным элементом электромеханической трансмиссии, состоящим из следующих элементов: тягового электродвигателя 4, планетарного редуктора 1, ступицы 2 колеса с подшипниковыми узлами, фрикционного тормозного механизма 3, шины с ободом. К конструкции электромотор-колесо могут также относиться отдельные узлы подвески, механизм переключения передач (при двухступенчатом редукторе) и некоторые другие элементы.

Электромеханические передачи нашли применение на автомобилях-самосвалах большой грузоподъемности. В частности, все самосвалы марки «БелАЗ» грузоподъемностью свыше 75 тонн оснащаются электромеханическими трансмиссиями. В зарубежном автомобилестроении электромеханические трансмиссии также применяют на самосвалах большой грузоподъемности и на многозвенных автопоездах высокой проходимости. Перспективным считается применение электромеханических трансмиссий на многоприводных автомобилях высокой проходимости и автобусах большой вместимости.

***

Гидрообъемная трансмиссия



k-a-t.ru

Назначение, типы и конструктивные особенности трансмиссий автомобилей

 

содержание   .. 29  30  31  32  33  34  35  36  37  38  39  40  ..

 

 

27. Назначение, типы и конструктивные особенности трансмиссий автомобилей

 

27.1. Назначение и классификация

 

            Трансмиссией называется силовая передача, осуществляющая связь двигателя с ведущими колесами автомобиля. Трансмиссия служит для передачи от двигателя к ведущим колесам мощности и крутящего момента, необходимых для движения автомобиля.

            Крутящий момент Мк (рис. 3.1), подведенный от двигателя к ведущим колесам, стремится сдвинуть их относительно поверхности дороги в сторону, противоположную движению автомобиля. Вследствие этого из-за противодействия дороги на ведущих колесах возникает тяговая сила Рт, которая направлена в сторону движения и является движущей силой автомобиля.

            Тяговая сила Рт вызывает возникновение на ведущем мосту толкающей силы Рх,

Рис. 3.1. Движущие силы автомобиля

В зависимости от того, какие колеса автомобиля являются ведущими (передние, задние или те и другие), мощность и крутящий момент могут подводиться только к передним, задним или передним и задним колесам одновременно. В этом случае автомо­биль является соответственно переднеприводным, заднеприводным и полноприводным. На автомобилях применяются трансмиссии различных типов (рис. 3.2). Наибольшее распространение на автомобилях получили механические ступенчатые трансмиссии и гидромеханические трансмиссии. Другие типы трансмиссий на автомобилях имеют ограниченное применение.

Рис. 3.2. Классификация трансмиссий

            Конструкция трансмиссии зависит от типа автомобиля, его назначения и взаимного расположения двигателя и ведущих колес. Трансмиссия оказывают значительное влияние на эксплуатационные свойства автомобиля. Так, при ухудшении технического состояния механизмов трансмиссии: сцепления, главной передаче и дифференциала повышается сопротивление движению автомобиля и ухудшаются тягово-скоростные свойства, проходимость, топливная экономичность и экологичность автомобиля. В трансмиссию входят, Рис. 3.3:

Рис. 106. Схема трансмиссии автомобиля:

I — сцепление;   2 — коробка   передач;    з — карданная   передача;    4 — главная   передача;  5 — дифференциал;  6 — полуось

            

 

 

27.2. Механические ступенчатые и гидрообъемная трансмиссии.

 

            В механических ступенчатых трансмиссиях передаваемый от двигателя к ведущим коле­сам крутящий момент изменяется ступенчато в соответствии с передаточным числом трансмиссии (рис. 3.3, а), которое равно произведению передаточных чисел шестеренных (зубчатых) механизмов трансмиссии.

На автомобиле с колесной формулой 4x2, передним расположением двигателя и задними ведущими колесами (рис. 3.4, α ÷ в) в трансмиссию входят сцепление 2, коробка передач 3, карданная передача 4, главная передача 6, дифференциал 7 и полуоси 8. Крутящий момент от двигателя 1 через сцепление 2 передается к коробке передач 3, где изменяется в соответствии с включенной передачей. От коробки передач крутящий момент через карданную передачу 4 подводится к главной передаче 6 ведущего моста 5, в которой увеличивается, и далее через дифференциал 7 и полуоси 8 — к задним ведущим колесам.

Механические трансмиссии легковых автомобилей с колесной формулой 4x2 могут иметь и другое расположение двигателя, сцепления и коробки передач у ведущего моста — задние ведущие колеса и двигатель 1 сзади (рис. 3.4, б) или передние ведущие колеса и двигатель 1 спереди (рис. 3.4, в).

Рис. 3.4. Схемы механических трансмиссий автомобилей с различными

колесными формулами: α, б, в – 4x2 1- двигатель; 2 -сцепление; 3— коробка передач; 4— карданная передача; 5 — ведущий мост; 6 —главная передача; 7 — дифференциал; 8 — полуоси; 9 — карданный шарнир;10 — раздаточная коробка;

                                     11 — межосевой дифференциал

Трансмиссии (Рис.3.4.а) переднее расположение двигателя обеспечивает равномерное распределение нагрузки между передними и задними колесами и возможность размещения сидений между ними в зоне меньших колебаний кузова. Недостатком является необходимость применения сравнительно длинной карданной передачи с промежуточной опорой.

             Трансмиссии (Рис.3.4.б) заднее расположение двигателя и трансмиссии обеспечивает лучшие обзорность и размещение сидений в кузове между мостами автомобиля, лучшую изоляцию салона от шума двигателя и отработавших газов. Однако ухудшаются управляемость, устойчивость автомобиля и безопасность водителя и переднего пассажира при наездах и столкновениях.

            Трансмиссии (Рис.3.4.б,в) не имеют карданной передачи между коробкой передач и ведущим мостом и включают в себя сцепление 2, коробку передач 3, главную передачу, дифференциал и привод ведущих колес, который осуществляется не полуосями, а карданными передачами. При этом в приводе к ведущим управляемым колесам применяются карданные шарниры 9 равных угловых скоростей. Такие трансмиссии улучшает управляемость и устойчивость автомобиля, но при движении на скользких подъемах дороги возможно пробуксовывание ведущих колес вследствие уменьшения на них нагрузки.

            Механическая трансмиссия автомобиля с колесной формулой 4x4 с передним расположением двигателя 1 (рис. 3.4, г) кроме сцепления 2, коробки передач 3, карданной передачи 4 и заднего ведущего моста 5 дополнительно включает в себя передний ведущий управляемый мост и раздаточную коробку 10, соединенную с этим мостом и коробкой передач 3 карданными передачами.

Рис. 3.4. Схемы механических трансмиссий автомобилей с   различными колесными формулами г - 4x4: 1- двигатель; 2 -сцепление; 3— коробка передач; 4— карданная передача; 5 — ведущий мост; 6 —главная передача; 7 — дифференциал; 8 — полуоси; 9 — карданныйшарнир;10 — раздаточная коробка;

                                     11 — межосевой дифференциал

            Крутящий момент от раздаточной коробки подводится к переднему и заднему ведущим мостам. В раздаточной коробке имеется устройство для включения привода переднего ведущего моста или межосевой дифференциал, распределяющий крутящий момент между ведущими мостами автомобиля. Передний ведущий мост имеет главную передачу, дифференциал и привод колес в виде карданных передач с шарнирами 9 равных угловых скоростей, обеспечивающих подведение крутящего момента к передним ведущим управляемым колесам.

            У автомобилей с колесной формулой 6x4 (рис. 3.4, д) крутящий момент к среднему (промежуточному) и заднему ведущим мостам может подводиться одним общим валом. В этом случае главная передача среднего моста имеет проходной ведущий вал. У автомобиля с колесной формулой 6x6 (рис. 3.4, е) крутящий момент к среднему и заднему ведущим мостам может подводиться и раздельно — двумя валами. В раздаточной коробке этих автомобилей имеется специальное устройство для включения привода переднего моста или межосевой дифференциал 11 распределяющий крутящий момент между ведущими мостами.

Рис. 3.4. д,е Схемы механических трансмиссий автомобилей с  различны колесными формулами д,– 6x4; е–6x6: 1- двигатель; 2 -сцепление; 3— коробка передач; 4— карданная передача; 5 — ведущий мост; 6 —главная передача; 7 — дифференциал; 8 — полуоси; 9 — карданный шарнир;10 — раздаточная коробка; 11 — межосевой дифференциал

            Автомобили с колесной формулой 8*8 (рис. 3.4, ж) обычно имеют потележечное расположение ведущих мостов, при котором сближены ведущие мосты — первый со вторым и третий с четвертым. При этом первые два моста являются управляемыми.

Рис. 3.4. Схемы механических трансмиссий автомобилей с  различными 

                                  колесными формулами ж - 8x8:

При установке двух двигателей 1 трансмиссия таких автомобилей имеет два сцепления 2, две коробки передач 3 и две раздаточные коробки 10 с межосевыми дифференциалами 11. При этом автомобиль может двигаться при одном работающем двигателе. По сравнению с другими типами трансмиссий механические трансмиссии проще по конструкции, имеют меньшую массу, более экономичны, надежнее в работе и имеют высокий КПД, равный 0,8...0,95.

            Недостатком их является разрыв потока мощности при переключении передач, что снижает тягово-скоростные свойства и ухудшает проходимость автомобиля. Кроме того, правильность выбора передачи и момента переключения передач зависит от квалификации водителя, а частые переключения передач в условиях города приводят к сильной утомляемости водителя.

            Гидрообъемная трансмиссия. Этот вид трансмиссии представляет собой бесступенчатую передачу автомобиля.

            В гидрообъемной трансмиссии (рис. 3.5 над осью симметрии) двигатель 1 внутреннего сгорания приводит в действие гидронасос 2, соединенный трубопроводами с гидромоторами 3, валы которых связаны с ведущими колесами автомобиля.

 

 

Рис. 3.5. Схемы гидрообъемной (над осью симметрии) и   электрической (под осью симметрии) трансмиссий: 1– двигатель; 2 — гидронасос; 3 — гидромотор; 

                                   4—  электродвигатель; 5 — генератор

При работе двигателя гидродинамический напор жидкости, создаваемый гидронасосом в гидромоторах ведущих колес, преобразуется в механическую работу. Ведущие колеса с гидромоторами, установленными в них, называются гидромотор-колесами. На рис. 3.6 представлена простейшая схема устройства и работы гидрообъемной передачи, в которой используется гидростатический напор жидкости. При вращении коленчатого вала двигателя через кривошип 2 и шатун 3 производится перемещение поршня 4 гидронасоса.

            Жидкость из гидронасоса через трубопровод 9 подается в цилиндр гидродвигателя, поршень 8 которого перемещает через шатун 7кривошип 5 и приводит во вращение ведущее колесо 6.

Рис. 3.6. Схема гидрообъемной передачи: 1 — двигатель; 2, 5 — кривошипы;

                       3, 7 — шатуны; 4, 8 — поршни; 6 —колесо; 9 — трубопровод

В действительности гидрообъемные передачи, применяемые на автомобилях, гораздо сложнее, чем представленная на рис. 3.6. Так, они включают в себя роторные гидронасосы плунжерного типа, колесные гидродвигатели, магистрали высокого и низкого давления, редукционные клапаны, охладитель, дренажную и подпитывающую системы (резервуар, фильтр, охладитель, насос, редукционный и предохранительный клапаны).

Достоинством гидрообъемной трансмиссии является бесступенчатое автоматическое изменение ее передаточного числа и передаваемого крутящего момента, что обеспечивает плавное трогание автомобиля с места, облегчает и упрощает управление автомобилем и снижает утомляемость водителя и, следовательно, повышает безопасность движения. Благодаря гидрообъемной трансмиссии повышается проходимость автомобиля вследствие непрерывного потока мощности и плавного изменения крутящего момента. По сравнению с механической гидрообъемная трансмиссия имеет большие габаритные размеры и массу, меньшие КПД, долговечность и более высокую стоимость. Гидрообъемная трансмиссия сложна в изготовлении и требует надежных уплотнений.

            Электрическая трансмиссия. Такая трансмиссия представляет собой бесступенчатую передачу, в которой крутящий момент изменяется плавно, без участия водителя, в зависимости от сопротивления дороги и частоты вращения коленчатого вала двигателя. В электрической трансмиссии (см. рис. 3.5 под осью симметрии) двигатель 1 внутреннего сгорания приводит в действие генератор 5. Ток от генератора поступает к электродвигателям 4 ведущих колес автомобиля.

            Ведущее колесо с установленным внутри электродвигателем 1 (рис. 3.7) называется электромотор-колесом. Крутящий момент от электродвигателя к колесу передается через колесный редуктор 2. При применении быстроходных электродвигателей в ведущих колесах используются понижающие зубчатые передачи.

Рис. 3.7. Электромотор-колесо: 1 — электродвигатель; 2 — редуктор

Достоинством электрической трансмиссии является бесступенча­тое автоматическое изменение ее передаточного числа. Это обеспечивает плавное трогание автомобиля с места, упрощает и облегчает управление автомобилем и снижает утомляемость водителя, в результа­те повышается безопасность движения. Кроме того, повышается проходимость автомобиля вследствие непрерывного потока мощности и плавного изменения крутящего момента. Повышается также долговечность двигателя из-за уменьшения динамических нагру­зок и отсутствия жесткой связи между двигателем и ведущими колесами. Однако КПД электрической трансмиссии не превыша­ет 0,75, что ухудшает тягово-скоростные свойства автомобиля. Кроме того, расход топлива по сравнению с механической транс­миссией повышается на 10... 20 %.             Электрическая трансмиссия так­же имеет большую массу и высокую стоимость.

 

 

27.3. Гидромеханическая, электромеханическая трансмиссии.

 

            Гидромеханическая трансмиссия. Такая комбинированная трансмиссия состоит из механизмов механической и гидравли­ческой трансмиссий. В гидромеханической трансмиссии передаточное число и крутящий момент изменяются ступенчато и плавно (см. рис. 3.3, в).

Рис. 3.8. Схема гидромеханической трансмиссии: 1 — двигатель; 2 — гидромеханическая коробка передач; 3 — карданная передача; 4 — главная передача;

                                         5 — дифференциал; 6 — полуоси

В гидромеханическую трансмиссию (рис. 3.8) входят гидроме­ханическая коробка передач 2, включающая гидротрансформатор и механическую коробку передач, карданная передача 3, главная передача 4, дифференциал 5 и полуоси 6.

            Гидротрансформатор устанавливают вместо сцепления, и в нем передача крутящего момента от двигателя 1 к трансмиссии происходит за счет гидродинамического (скоростного) напора жидкости. Гидротрансформатор плавно автоматически изменяет крутящий момент в зависимости от нагрузки. При этом крутящий момент от гидротрансформатора передается к механической коробке передач, в которой передачи включаются с помощью фрикционных механизмов. Применение гидротрансформатора обеспечивает плавное трогание автомобиля с места, уменьшает число переключений передач, почти в 2 раза повышает дол­говечность двигателя и механизмов трансмиссии. Снижается также вероятность остановки двигателя при резком увеличении нагрузки.

            Недостатком гидромеханической трансмиссии являются более низкий КПД, что ухудшает тягово-скоростные свойства и топливную экономичность автомобиля, более сложная конструкция и большая масса, а также высокая стоимость в производстве, которая составляет около 10 % стоимости автомобиля.

            Электромеханическая трансмиссия. Такая комбинированная трансмиссия состоит из элементов механической и электрической трансмиссий. На рис. 3.9 показана схема электромеханической трансмиссии автобуса большой вместимости.

Рис. 3.9. Схема электромеханической трансмиссии: 1 — электродвигатель;

   2 — карданная передача; 3 — ведущий мост; 4 — двигатель; 5 — генератор

Двигатель 4 внутреннего сгорания расположен в задней части автобуса и приводит в действие гене­ратор 5. Ток, вырабатываемый генератором, подводится к элект­родвигателю 1. Крутящий момент от электродвигателя через карданную передачу 2 подводится к ведущему мосту 3 и далее через главную передачу, дифференциал и полуоси к ведущим колесам автобуса. Сцепление и коробка передач в трансмиссии отсутствуют, так как при возрастании сопротивления дороги уменьшается частота вращения электродвигателя и автоматически увеличивается крутящий момент, подводимый к ведущим колесам автобуса.

Отсутствие педали сцепления и рычагов переключения коробки передач существенно облегчает работу водителя автобуса, который в условиях города работает с частыми остановками. Кроме того, электромеханическая трансмиссия повышает проходимость и безопасность движения. Недостатками электромеханической трансмиссии по сравнению с механической являются меньший КПД, не превышающий 0,85, что ухудшает тягово-скоростные свойства и топливную экономичность (расход топлива увеличива­ется на 15...20%), а также большие габаритные размеры и масса.

            Трансмиссии автопоездов. Автопоезда, состоящие из автомобиля-тягача и прицепов или полуприцепов, могут иметь трансмиссии различного типа в зависимости от назначения автопоезда. Так, на автопоездах, предназначенных для работы по дорогам с твердым покрытием, трансмиссию имеет только автомобиль-тягач. На автопоездах, рассчитанных на работу в условиях бездорожья, для повышения их проходимости прицепы и полуприцепы обычно оборудуются ведущими мостами.

            Мощность и крутящий момент к этим мостам могут подводиться от двигателя автомобиля-тягача через механическую, гидравлическую или электрическую трансмиссию. Для привода дополнительного оборудования автопоезда (лебедки, насоса подъема грузового кузова и др.) в трансмиссии имеется коробка отбора мощности, которая присоединяется к коробке передач.

 

 

 

 

 

 

 

содержание   .. 29  30  31  32  33  34  35  36  37  38  39  40  ..

 

zinref.ru

Механическая коробка передач: принцип работы для чайников

Автоликбез19 апреля 2017

Чтобы сдвинуть автомобиль с места и разогнать его, нужно мощность двигателя (крутящий момент) преобразовать и передать на ведущие колеса. Но как это реализовать, когда мотор уже работает на холостом ходу и его коленчатый вал вращается, а машина стоит на месте? Задачу способен решить простейший трансмиссионный агрегат из ныне существующих – механическая коробка передач (МКПП).

Рычаг МКПП Помимо нее, в современных авто используются автоматические и вариативные виды трансмиссии, но это более сложные и дорогие устройства.

Зачем нужна МКПП?

Первая причина ясна – надо как-то подключить вращающийся вал двигателя к приводам колес, чтобы тронуться с места. Есть и вторая: силовой агрегат развивает рабочую мощность (иначе – максимальный крутящий момент) при достижении определенного числа оборотов коленчатого вала. Для большинства бензиновых двигателей этот порог составляет 3000 об/мин, для дизельных – 2000 об/мин.

Пока число оборотов коленчатого вала не достигнет нижнего порога, мотор не сможет развить нужную мощность и создать усилие, достаточное для движения.

Для чайников, то бишь, новичков, желающих разобраться в работе автомобильных узлов, предлагается такое пояснение:

  1. Во время работы на месте (холостой ход) количество оборотов коленвала составляет 800-900 об/мин. Чтобы начать движение, развиваемой мощности недостаточно и нужно поднять ее за счет нажатия на газ и повышения оборотов до 2-3 тыс. в минуту. В этот момент и нужно подключить привод колес, что выполняется с помощью коробки передач.
  2. Без МКПП разгон автомобиля выйдет плавным и невероятно долгим, а если попадется подъем, то машина не разгонится никогда. Причина та же – нехватка мощности. Для повышения динамики нужен преобразователь усилия, способный замедлить вращение, но увеличить крутящий момент.
  3. Для разворота и парковки машине нужен задний ход, его также обеспечивает механическая коробка передач.

R - задняя передача на МКППЕсли между колесным приводом и коленчатым валом поставить зубчатую передачу с шестеренками разного размера, то колеса станут вращаться медленнее. Но при этом на каждом колесе возрастет усилие (на жаргоне – тяга) и разгон автомобиля ускорится. А плавное подключение вращающихся элементов обеспечит другой узел МКПП – сцепление.

Работа сцепления

Понять принцип работы узла сцепления поможет такой пример: представьте вращающийся металлический стержень с диском на конце, символизирующий коленвал с маховиком. Если к плоскости диска подвести другой диск, то после соприкосновения он тоже станет крутиться. Так в общих чертах и действует автомобильное сцепление, только второй диск насажен на вал, идущий дальше, к шестеренчатой передаче.

Система действует за счет силы трения, поэтому соприкасающиеся поверхности имеют специальное антифрикционное покрытие. Диск сцепления в механической трансмиссии двигается рычагом в виде вилки. Механически рычаг не связан с педалью сцепления, он перемещается гидроцилиндром. Нажатие на педаль сжимает жидкость в этом цилиндре, поршень выдвигается и перемещает рычаг.

Устройство сцепленияАлгоритм работы сцепления при движении с места следующий:

  1. На холостом ходу коленвал и первичный вал МКПП крутятся, поскольку диски находятся в зацеплении.
  2. Нажатием на педаль водитель отодвигает диск и вал трансмиссии останавливается. Теперь его можно подключить к шестеренчатой передаче путем выбора первой скорости.
  3. Нажав на газ, водитель добивается повышения оборотов и медленно отпускает педаль сцепления. Диски снова входят в зацепление и машина трогается с места.

Разрывать механическую связь с помощью сцепления нужно и дальше, при переходе на другую скорость. Чтобы разобраться в данном процессе, нужно понять, как работает сама коробка скоростей.

Работа механической коробки

Агрегат состоит из таких основных элементов:

  • корпус с масляным картером;
  • три вала с шестеренками – первичный, вторичный и промежуточный;
  • устройства синхронизации;
  • рукоять переключения с вилочными приводами перемещения шестерен.

С помощью рукоятки водитель меняет пары шестерен, входящие в зацепление с приводами от двигателя и колес. Шестерни подобраны таким образом, чтобы обеспечить нужный крутящий момент на колесном приводе при разных режимах движения. На первых ступенях выходного вала задействованы шестеренки большего диаметра, чтобы главная передача вращалась медленнее, но с большим усилием. На III, IV и V скорости размер шестерен уменьшается и в итоге при движении на высокой скорости число оборотов привода и коленвала совпадает.

Схема работы МКППЗубья шестерней выполнены под углом с целью снижения шума трансмиссии. Чтобы при вхождении в зацепление на ходу зубья не переломались и не возникло удара, синхронизатор уравнивает скорости вращения соседних шестеренок. Это происходит в момент, когда водитель выжимает сцепление и переводит рукоять на другую позицию.

Механическая КПП является наиболее простой и надежной трансмиссией, устанавливаемой на автомобили с различной грузоподъемностью. Чем она отличается от автоматической и вариативной, – так это низкой стоимостью при высокой ремонтопригодности, а это влияет и на общую цену авто. Неудобство одно: водителю нужно постоянно манипулировать педалями акселератора и сцепления, чтобы своевременно переключаться на другую скорость при изменении режима движения.

autochainik.ru

Механическая трансмиссия - Большая Энциклопедия Нефти и Газа, статья, страница 2

Механическая трансмиссия

Cтраница 2

Механические трансмиссии автомобилей 4x2 могут быть выполнены и по другим схемам. Например, на автомобиле ЗАЗ-968 Запорожец двигатель, сцепление, коробка передач, главная передача объединены в один блок и расположены в задней части кузова. Привод от дифференциала на ведущие колеса осуществлен на этом автомобиле валами с карданными шарнирами. В такой трансмиссии отсутствует карданная передача между коробкой передач и главной передачей. Некоторые легковые автомобили имеют переднее расположение двигателя и передние ведущие колеса.  [16]

Механическая трансмиссия большегрузного автомобиля, состоящая из фрикционного сцепления и шестеренчатой коробки передач, мало отличается от трансмиссии автомобилей общего назначения. При использовании механической трансмиссии двигатель не всегда работает на наиболее выгодных режимах. При движении в сложных карьерных условиях требуется частое переключение передач, что является сложным, трудоемким и небезопасным процессом.  [17]

Для механической трансмиссии минимальное число скоростей в каждом диапазоне должно быть не менее трех.  [19]

Помимо механических трансмиссий в полноприводных автомобилях, хотя и весьма ограничено, используют гидромеханические, электрические и гидрообъемные трансмиссии.  [20]

В механической трансмиссии муфта сцепления имеет гидроусилитель, унифицированный с гидроусилителем тормозов.  [21]

Элементы механической трансмиссии автомобиля от вторичного вала коробки передач до полуосей нагружены различными крутящими моментами в зависимости от включенной передачи в коробке.  [23]

Для механических трансмиссий грузовиков, автобусов и тяжелой техники, в которых производители требуют применения масел класса API GL-5.  [24]

Схема механической трансмиссии трехосных грузовых автомобилей КамАЗ представлена на рис. 16.1, г. На этих автомобилях средний 10 и задний 5 мосты являются ведущими. Крутящий момент к ним передается одним карданным валом 4, а в главной передаче среднего моста предусмотрен межосевой дифференциал и проходной вал, передающий крутящий момент на карданный вал / / привода заднего моста.  [26]

В механических трансмиссиях обычно используют сцепления фрикционного типа: одно - и двухдисковые. Однодисковые сцепления устанавливают на автомобилях малой и средней грузоподъемности, двухдисковые - на автомобилях повышенной грузоподъемности. Поскольку конструкции сцеплений хорошо известны, описание их не приводится. Надежная работа и плавность включения сцепления во многом зависят от равномерности сжатия ведущих 1 и ведомых 2 дисков по всей площади их соприкосновения. Если давление по всей площади соприкосновения одинаковое, то износ будет более равномерным, а момент трения больше при тех же размерах сцепления. Кроме того, при одной центральной пружине устанавливают несколько упругих рычагов веерообразным способом для передачи усилия сжатия на периферию нажимного диска ( на автомобилях МАЗ и КрАЗ) или используют диафрагменные пружины, выполняющие одновременно функции и нажимной центральной пружины, и элементов, распределяющих давление равномерно по периметру диска. Сцепления с диафрагменным упругим элементом более просты по конструкции, надежны и имеют меньшую мас су. Поэтому они получают все большее распространение.  [27]

В механических трансмиссиях буровых установок применяют вту-почно-роликовне многорядннн цнпи с шагом от 25 4 до 63 5 мм и числом рядов в однои цнпи до восьми, С помощью этих цвпвй можно осуществлять движении ова скольжения и передавать значишпьннв мощности при больших мешеитровых расстояниях вапов.  [28]

Муфта сцепления механической трансмиссии скрепера Д-357 П аналогична рассмотренной выше тракторной муфте. Конструктивным отличием коробки передач этой трансмиссии является переключение скоростей с помощью муфт с синхронизаторами ( рис. 24), принцип работы которых заключается в следующем.  [29]

Страницы:      1    2    3    4    5

www.ngpedia.ru


© 2007—2018
423800, Набережные Челны , база Партнер Плюс, тел. 8 800 100-58-94 (звонок бесплатный)