Камаз 44108 тягач В наличии!
Тягач КАМАЗ 44108-6030-24
евро3, новый, дв.КАМАЗ 740.55-300л.с., КПП ZF9, ТНВД ЯЗДА, 6х6, нагрузка на седло 12т, бак 210+350л, МКБ, МОБ
 
карта сервера
«ООО Старт Импэкс» продажа грузовых автомобилей камаз по выгодным ценам
+7 (8552) 31-97-24
+7 (904) 6654712
8 800 1005894
звонок бесплатный

Наши сотрудники:
Виталий
+7 (8552) 31-97-24

[email protected]

 

Екатерина - специалист по продаже а/м КАМАЗ
+7 (904) 6654712

[email protected]

 

Фото техники

20 тонный, 20 кубовый самосвал КАМАЗ 6520-029 в наличии
15-тонный строительный самосвал КАМАЗ 65115 на стоянке. Техника в наличии
Традиционно КАМАЗ побеждает в дакаре

тел.8 800 100 58 94

Техника в наличии

тягач КАМАЗ-44108
Тягач КАМАЗ 44108-6030-24
2014г, 6х6, Евро3, дв.КАМАЗ 300 л.с., КПП ZF9, бак 210л+350л, МКБ,МОБ,рестайлинг.
цена 2 220 000 руб.,
 
КАМАЗ-4308
КАМАЗ 4308-6063-28(R4)
4х2,дв. Cummins ISB6.7e4 245л.с. (Е-4),КПП ZF6S1000, V кузова=39,7куб.м., спальное место, бак 210л, шк-пет,МКБ, ТНВД BOSCH, система нейтрализ. ОГ(AdBlue), тент, каркас, рестайлинг, внутр. размеры платформы 6112х2470х730 мм
цена 1 950 000 руб.,
КАМАЗ-6520
Самосвал КАМАЗ 6520-057
2014г, 6х4,Евро3, дв.КАМАЗ 320 л.с., КПП ZF16, ТНВД ЯЗДА, бак 350л, г/п 20 тонн, V кузова =20 куб.м.,МКБ,МОБ, со спальным местом.
цена 2 700 000 руб.,
 
КАМАЗ-6522
Самосвал 6522-027
2014, 6х6, дв.КАМАЗ 740.51,320 л.с., КПП ZF16,бак 350л, г/п 19 тонн,V кузова 12куб.м.,МКБ,МОБ,задняя разгрузка,обогрев платформы.
цена 3 190 000 руб.,

СУПЕР ЦЕНА

на АВТОМОБИЛИ КАМАЗ
43118-010-10 (дв.740.30-260 л.с.) 2 220 000
43118-6033-24 (дв.740.55-300 л.с.) 2 300 000
65117-029 (дв.740.30-260 л.с.) 2 200 000
65117-6010-62 (дв.740.62-280 л.с.) 2 350 000
44108 (дв.740.30-260 л.с.) 2 160 000
44108-6030-24 (дв.740.55,рест.) 2 200 000
65116-010-62 (дв.740.62-280 л.с.) 1 880 000
6460 (дв.740.50-360 л.с.) 2 180 000
45143-011-15 (дв.740.13-260л.с) 2 180 000
65115 (дв.740.62-280 л.с.,рест.) 2 190 000
65115 (дв.740.62-280 л.с.,3-х стор) 2 295 000
6520 (дв.740.51-320 л.с.) 2 610 000
6520 (дв.740.51-320 л.с.,сп.место) 2 700 000
6522-027 (дв.740.51-320 л.с.,6х6) 3 190 000


Перегон грузовых автомобилей
Перегон грузовых автомобилей
подробнее про услугу перегона можно прочесть здесь.


Самосвал Форд Нужны самосвалы? Обратите внимание на Ford-65513-02.

КАМАЗы в лизинг

ООО «Старт Импэкс» имеет возможность поставки грузовой автотехники КАМАЗ, а так же спецтехники на шасси КАМАЗ в лизинг. Продажа грузовой техники по лизинговым схемам имеет определенные выгоды для покупателя грузовика. Рассрочка платежа, а так же то обстоятельство, что грузовики до полной выплаты лизинговых платежей находятся на балансе лизингодателя, и соответственно покупатель автомобиля не платит налогов на имущество. Мы готовы предложить любые модели бортовых автомобилей, тягачей и самосвалов по самым выгодным лизинговым схемам.

Контактная информация.

г. Набережные Челны, Промкомзона-2, Автодорога №3, база «Партнер плюс».

тел/факс (8552) 388373.
Схема проезда



ТЕПЛОПРОВОДНОСТЬ. ПРИМЕРЫ ТЕПЛОПРОВОДНОСТИ В ПРИРОДЕ, БЫТУ, ТЕХНИКЕ. Теплопередача примеры


Примеры теплопередачи в природе, в быту

Тепловая энергия является термином, который мы используем для описания уровня активности молекул в объекте. Повышенная возбужденность, так или иначе, связана с увеличением температуры, в то время как в холодных объектах атомы перемещаются намного медленней.

примеры теплопередачи

Примеры теплопередачи можно встретить повсюду - в природе, технике и повседневной жизни.

Примеры передачи тепловой энергии

Самым большим примером передачи тепла является солнце, которое согревает планету Земля и все, что на ней находится. В повседневной жизни можно встретить массу подобных вариантов, только в гораздо менее глобальном смысле. Итак, какие же примеры теплопередачи можно наблюдать в быту?

Вот некоторые из них:

  • Газовая или электрическая плита и, например, сковорода для жарки яиц.
  • Автомобильные виды топлива, такие как бензин, являются источниками тепловой энергии для двигателя.
  • Включенный тостер превращает кусок хлеба в тост. Это связано с лучистой тепловой энергией тоста, который вытягивает влагу из хлеба и делает его хрустящим.
  • Горячая чашка дымящегося какао согревает руки.
  • Любое пламя, начиная от спичечного пламени и заканчивая массивными лесными пожарами.
  • Когда лед помещают в стакан с водой, тепловая энергия из воды его плавит, то есть сама вода является источником энергии.примеры теплопередачи в природе
  • Система радиатора или отопления в доме обеспечивает тепло в течение долгих и холодных зимних месяцев.
  • Обычные печи являются источниками конвекции, в результате чего помещенный в них пищевой продукт нагревается, и запускается процесс приготовления.
  • Примеры теплопередачи можно наблюдать и в своем собственном теле, взяв в руку кусочек льда.
  • Тепловая энергия есть даже внутри у кошки, которая может согреть колени хозяина.

Тепло - это движение

Тепловые потоки находятся в постоянном движении. Основными способами их передачи можно назвать конвенцию, излучение и проводимость. Давайте рассмотрим эти понятия более подробно.

Что такое проводимость?

Возможно, многие не раз замечали, что в одном и том же помещении ощущения от прикосновения с полом могут быть совершенно разные. Приятно и тепло ходить по ковру, но если зайти в ванную комнату босыми ногами, ощутимая прохлада сразу дает чувство бодрости. Только не в том случае, где есть подогрев полов.

примеры теплопередачи в быту

Так почему же плиточная поверхность мерзнет? Это все из-за теплопроводности. Это один из трех типов передачи тепла. Всякий раз, когда два объекта различных температур находятся в контакте друг с другом, тепловая энергия будет проходить между ними. Примеры теплопередачи в этом случае можно привести следующие: держась за металлическую пластину, другой конец которой будет помещен над пламенем свечи, со временем можно почувствовать жжение и боль, а в момент прикосновения к железной ручке кастрюли с кипящей водой можно получить ожог.

Факторы проводимости

Хорошая или плохая проводимость зависит от нескольких факторов:

  • Вид и качество материала, из которого сделаны предметы.
  • Площадь поверхности двух объектов, находящихся в контакте.
  • Разница температур между двумя объектами.
  • Толщина и размер предметов.

примеры теплопередачи в природе быту технике

В форме уравнения это выглядит следующим образом: скорость передачи тепла к объекту равна теплопроводности материала, из которого изготовлен объект, умноженной на площадь поверхности в контакте, умноженной на разность температур между двумя объектами и деленной на толщину материала. Все просто.

Примеры проводимости

Прямая передача тепла от одного объекта к другому называются проводимостью, а вещества, которые хорошо проводят тепло, называются проводниками. Некоторые материалы и вещества плохо справляются с этой задачей, их называют изоляторами. К ним относят древесину, пластмассу, стекловолокно и даже воздух. Как известно, изоляторы фактически не останавливают поток тепла, а просто его замедляют в той или иной степени.

Конвекция

Такой вид теплопередачи, как конвекция, происходит во всех жидкостях и газах. Можно встретить такие примеры теплопередачи в природе и в быту. Когда жидкость нагревается, молекулы в нижней части набирают энергию и начинают двигаться быстрее, что приводит к уменьшению плотности. Теплые молекулы текучей среды начинают двигаться вверх, в то время как охладитель (более плотная жидкость) начинает тонуть. После того как прохладные молекулы достигают дна, они опять получают свою долю энергии и снова стремятся к вершине. Цикл продолжается до тех пор, пока существует источник тепла в нижней части.

примеры теплопередачи в технике

Примеры теплопередачи в природе можно привести следующие: при помощи специального оборудованной горелки теплый воздух, наполняя пространство воздушного шара, может поднять всю конструкцию на достаточно большую высоту, все дело в том, что теплый воздух легче холодного.

Излучение

Когда вы сидите перед костром, вас согревает исходящее от него тепло. То же самое происходит, если поднести ладонь к горящей лампочке, не дотрагиваясь до нее. Вы тоже почувствуете тепло. Самые крупные примеры теплопередачи в быту и природе возглавляет солнечная энергия. Каждый день тепло солнца проходит через 146 млн. км пустого пространства вплоть до самой Земли. Это движущая сила для всех форм и систем жизни, которые существуют на нашей планете сегодня. Без этого способа передачи мы были бы в большой беде, и мир был бы совсем не тот, каким мы его знаем.

примеры теплопередачи в природе и технике ветры

Излучение - это передача тепла с помощью электромагнитных волн, будь то радиоволны, инфракрасные, рентгеновские лучи или даже видимый свет. Все объекты излучают и поглощают лучистую энергию, включая самого человека, однако не все предметы и вещества справляются с этой задачей одинаково хорошо. Примеры теплопередачи в быту можно рассмотреть при помощи обычной антенны. Как правило, то, что хорошо излучает, также хорошо и поглощает. Что касается Земли, то она принимает энергию от солнца, а затем отдает ее обратно в космос. Эта энергия излучения называется земной радиацией, и это то, что делает возможной саму жизнь на планете.

Примеры теплопередачи в природе, быту, технике

Передача энергии, в частности тепловой, является фундаментальной областью исследования для всех инженеров. Излучение делает Землю пригодной для обитания и дает возобновляемую солнечную энергию. Конвекция является основой механики, отвечает за потоки воздуха в зданиях и воздухообмен в домах. Проводимость позволяет нагревать кастрюлю, всего лишь поставив ее на огонь.

Многочисленные примеры теплопередачи в технике и природе очевидны и встречаются повсюду в нашем мире. Практически все из них играют большую роль, особенно в области машиностроения. Например, при проектировании системы вентиляции здания инженеры высчитывают теплоотдачу здания в его окрестностях, а также внутреннюю передачу тепла. Кроме того, они выбирают материалы, которые сводят к минимуму или максимизируют передачу тепла через отдельные компоненты для оптимизации эффективности.

Испарение

Когда атомы или молекулы жидкости (например, воды) подвергаются воздействию значительного объема газа, они имеют тенденцию самопроизвольно войти в газообразное состояние или испариться. Это происходит потому, что молекулы постоянно движутся в разных направлениях при случайных скоростях и сталкиваются друг с другом. В ходе этих процессов некоторые из них получают кинетическую энергию, достаточную для того, чтобы отталкиваться от источника нагревания.

примеры теплопередачи в природе и технике картинки

Однако не все молекулы успевают испариться и стать водяным паром. Все зависит от температуры. Так, вода в стакане будет испаряться медленнее, чем в нагреваемой на плите кастрюле. Кипение воды значительно увеличивает энергию молекул, что, в свою очередь, ускоряет процесс испарения.

Основные понятия

  • Проводимость - это передача тепла через вещество при непосредственном контакте атомов или молекул.
  • Конвекция - это передача тепла за счет циркуляции газа (например, воздуха) или жидкости (например, воды).
  • Излучение - это разница между поглощенным и отраженным количеством тепла. Эта способность сильно зависит от цвета, черные объекты поглощают больше тепла, чем светлые.
  • Испарение - это процесс, при котором атомы или молекулы в жидком состоянии получают достаточно энергии, чтобы стать газом или паром.
  • Парниковые газы - это газы, которые задерживают тепло солнца в атмосфере Земли, производя парниковый эффект. Выделяют две основные категории - это водяной пар и углекислый газ.
  • Возобновляемые источники энергии - это безграничные ресурсы, которые быстро и естественно пополняются. Сюда можно отнести следующие примеры теплопередачи в природе и технике: ветры и энергию солнца.
  • Теплопроводность - это скорость, с которой материал передает тепловую энергию через себя.
  • Тепловое равновесие - это состояние, в котором все части системы находятся в одинаковом температурном режиме.

примеры теплопередачи

Применение на практике

Многочисленные примеры теплопередачи в природе и технике (картинки выше) указывают на то, что эти процессы должны быть хорошо изучены и служили во благо. Инженеры применяют свои знания о принципах передачи тепла, исследуют новые технологии, которые связаны с использованием возобновляемых ресурсов и являются менее разрушительными для окружающей среды. Ключевым моментом является понимание того, что перенос энергии открывает бесконечные возможности для инженерных решений и не только.

fb.ru

Термодинамика и теплопередача. Способы теплопередачи и расчет. Теплопередача

Сегодня мы попытаемся найти ответ на вопрос “Теплопередача - это?..”. В статье рассмотрим, что представляет собой процесс, какие его виды существуют в природе, а также узнаем, какова связь между теплопередачей и термодинамикой.

Определение

теплопередача это

Теплопередача - это физический процесс, суть которого заключается в передаче тепловой энергии. Обмен происходит между двумя телами или их системой. При этом обязательным условием будет передача тепла от более нагретых тел к менее нагретым.

Особенности процесса

Теплопередача - это тот самый вид явления, который может происходить и при прямом контакте, и при наличии разделяющих перегородок. В первом случае все ясно, во втором же в качестве преград могут быть использованы тела, материалы, среды. Теплопередача будет происходить в случаях, если система, состоящая из двух или более тел, не находится в состоянии теплового равновесия. То есть, один из объектов имеет большую или меньшую температуру по сравнению с другим. Вот тогда происходит передача тепловой энергии. Логично предположить, что она завершится тогда, когда система придет в состояние термодинамического, или теплового равновесия. Процесс происходит самопроизвольно, о чем нам может рассказать второе начало термодинамики.

Виды

Теплопередача - это процесс, который можно разделить на три способа. Они будут иметь основную природу, поскольку внутри них можно выделить настоящие подкатегории, имеющие свои характерные особенности наравне с общими закономерностями. На сегодняшний день принято выделять три вида теплопередачи. Это теплопроводность, конвекция и излучение. Начнем с первой, пожалуй.

расчет теплопередачи

Так называется свойство того или иного материального тела совершать перенос энергии. При этом она переносится от более нагретой части к той, что холоднее. В основе этого явления лежит принцип хаотичного движения молекул. Это так называемое броуновское движение. Чем больше температура тела, тем активнее в нем двигаются молекулы, поскольку они обладают большей кинетической энергией. В процессе теплопроводности участвуют электроны, молекулы, атомы. Осуществляется она в телах, разные части которых имеют неодинаковую температуру.

Если вещество способно проводить тепло, мы можем говорить о наличии количественной характеристики. В данном случае ее роль играет коэффициент теплопроводности. Эта характеристика показывает, какое количество теплоты пройдет через единичные показатели длины и площади за единицу времени. При этом температура тела изменится ровно на 1 К.

Ранее считалось, что обмен теплом в различных телах (в том числе и теплопередача ограждающих конструкций) связана с тем, что от одной части тела к другой перетекает так называемый теплород. Однако признаков его действительного существования никто так и не нашел, а когда молекулярно-кинетическая теория развилась до определенного уровня, про теплород все и думать забыли, поскольку гипотеза оказалось несостоятельной.

Конвекция. Теплопередача воды

термодинамика и теплопередача

Под этим способом обмена тепловой энергией понимается передача при помощи внутренних потоков. Давайте представим себе чайник с водой. Как известно, более нагретые воздушные потоки поднимаются наверх. А холодные, более тяжелые, опускаются вниз. Так почему же с водой все должно быть иначе? С ней все абсолютно так же. И вот в процессе такого цикла все слои воды, сколько бы их ни было, нагреются до наступления состояния теплового равновесия. В определенных условиях, конечно.

Излучение

теплопередача воды

Этот способ заключается в принципе электромагнитного излучения. Оно возникает благодаря внутренней энергии. Сильно вдаваться в теорию теплового излучения не станем, просто отметим, что причина здесь заключается в устройстве заряженных частиц, атомов и молекул.

Простые задачи на теплопроводность

Сейчас поговорим о том, как на практике выглядит расчет теплопередачи. Давайте решим простенькую задачу, связанную с количество теплоты. Допустим, что у нас есть масса воды, равная половине килограмма. Начальная температура воды – 0 градусов по Цельсию, конечная – 100. Найдем количество теплоты, затраченное нами для нагревания этой массы вещества.

Для этого нам потребуется формула Q = cm(t2-t1), где Q – количество теплоты, c – удельная теплоемкость воды, m – масса вещества, t1 – начальная, t2 – конечная температура. Для воды значение c носит табличный характер. Удельная теплоемкость будет равна 4200 Дж/кг*Ц. Теперь подставляем эти значения в формулу. Получим, что количество теплоты будет равно 210000 Дж, или 210 кДж.

Первое начало термодинамики

способы теплопередачи

Термодинамика и теплопередача связаны между собой некоторыми законами. В их основе - знание о том, что изменения внутренней энергии внутри системы можно достичь при помощи двух способов. Первый - совершение механической работы. Второй – сообщение определенного количества теплоты. На этом принципе базируется, кстати, первый закон термодинамики. Вот его формулировка: если системе было сообщено некоторое количество теплоты, оно будет потрачено на совершение работы над внешними телами или на приращение ее внутренней энергии. Математическая запись: dQ = dU + dA.

Плюсы или минусы?

Абсолютно все величины, которые входят в математическую запись первого закона термодинамики, могут быть записаны как со знаком “плюс”, так и со знаком “минус”. Причем выбор их будет диктоваться условиями процесса. Допустим, что система получает некоторое количество теплоты. В таком случае тела в ней нагреваются. Следовательно, происходит расширение газа, а значит, совершается работа. В итоге величины будут положительными. Если же количество теплоты отнимают, газ охлаждается, над ним совершается работа. Величины примут обратные значения.

Альтернативная формулировка первого закона термодинамики

 теплопередача ограждающих конструкций

Предположим, что у нас есть некий периодически действующий двигатель. В нем рабочее тело (или же система) совершают круговой процесс. Его принято называть циклом. В итоге система вернется к первоначальному состоянию. Логично было бы предположить, что в таком случае изменение внутренней энергии будет равным нулю. Получается, что количество теплоты станет равно совершенной работе. Эти положения позволяют сформулировать первый закон термодинамики уже по-другому.

Из него мы можем понять, что в природе не может существовать вечный двигатель первого рода. То есть, устройство, которое совершает работу в большем количестве по сравнению с полученной извне энергией. При этом действия должны совершаться периодически.

Первое начало термодинамики для изопроцессов

Рассмотрим для начала изохорический процесс. При нем объем остается постоянным. А значит, изменение объема будет равно нулю. Следовательно, работа так же будет равна нулю. Выкинем это слагаемое из первого начала термодинамики, после чего получим формулу dQ = dU. Значит, при изохорическом процессе все тепло, подведенное к системе, уходит на увеличение внутренней энергии газа или смеси.

Теперь поговорим об изобарическом процессе. Постоянной величиной в нем остается давление. При этом внутренняя энергия будет изменяться параллельно совершению работы. Вот первоначальная формула: dQ = dU + pdV. Мы можем легко вычислить совершаемую работу. Она будет равна выражению uR(T2-T1). Кстати, это есть физический смысл универсальной газовой постоянной. При наличии одного моля газа и разнице температур, составляющей один Кельвин, универсальная газовая постоянная будет равна работе, совершаемой при изобарическом процессе.

fb.ru

Что такое теплопередача? Теплопередача в природе и технике

Поговорим о том, что такое теплопередача. Под данным термином понимают процесс переноса энергии в веществе. Он отличается сложным механизмом, описывается уравнением теплопроводности.

Разновидности теплообмена

Как подразделяется теплопередача? Теплопроводность, конвекция, излучение – три способа передачи энергии, существующие в природе.

Каждый из них имеет свои отличительные характеристики, особенности, варианты применения в технике.

что такое теплопередача

Теплопроводность

Под количеством теплоты понимают сумму кинетической энергии молекул. Они при столкновении способны передавать часть своего тепла холодным частицам. Теплопроводность максимально проявляется в твердых телах, менее характерна для жидкостей, абсолютно не свойственна для газообразных веществ.

В качестве примера, подтверждающего способность твердых тел передавать тепло от одного участка к другому, рассмотрим следующий эксперимент.

Если на стальной проволоке закрепить металлические кнопки, затем поднести конец проволоки к горящей спиртовке, постепенно кнопки от нее начнут отпадать. При нагревании молекулы начинают двигаться с большей скоростью, чаще сталкиваются между собой. Именно эти частицы отдают свою энергию и тепло более холодным областям. Если в жидкостях и газах не обеспечивается достаточно быстрого оттока тепла, это приводит к резкому увеличению градиента температуры в горячей области.

теплопередача в природе и технике

Тепловое излучение

Отвечая на вопрос о том, какой вид теплопередачи сопровождается переносом энергии, необходимо отметить именно этот способ. Лучистый перенос предполагает передачу энергии путем электромагнитного излучения. Данный вариант наблюдается при температуре от 4000К, описывается уравнением теплопроводности. Коэффициент поглощения зависит от химического состава, температуры, плотности определенного газа.

Теплопередача воздуха имеет определенный предел, при увеличении потока энергии происходит рост градиента температуры, рост коэффициента поглощения. После того, как значение градиента температуры превысит адиабатический градиент, возникнет конвекция.

Что такое теплопередача? Это физический процесс передачи энергии от горячего предмета к холодному при их непосредственном контакте или через перегородку, которая разделяет материалы.

Если тела одной системы обладают разной температурой, в таком случае процесс передачи энергии происходит до тех пор, пока между ними не установится термодинамическое равновесие.

использование теплопередачи

Особенности теплопередачи

Что такое теплопередача? В чем особенности данного явления? Его невозможно остановить полностью, можно только уменьшить скорость его протекания? Используется ли теплопередача в природе и технике? Именно теплообмен сопровождает и характеризует многие природные явления: эволюция планет и звезд, метеорологические процессы на поверхности нашей планеты. К примеру, совместно с обменом массой, процесс передачи тепла позволяет анализировать испарительное охлаждение, сушку, диффузию. Он осуществляется между двумя носителями тепловой энергии через твердую стенку, выступающую в роли границы раздела тел.

Теплопередача в природе и технике - это способ характеристики состояния отдельного тела, анализа свойств термодинамической системы.

какой вид теплопередачи сопровождается переносом

Закон Фурье

Его именуют законом теплопроводности, поскольку он связывает полную мощность потерь тепла, перепад температур с площадью сечения параллелепипеда, его длиной, а также с коэффициентом теплопроводности. К примеру, для вакуума данный показатель практически равен нулю. Причина подобного явления заключается в минимальной концентрации материальных частиц в вакууме, которые могут переносить тепло. Несмотря на подобную особенность, в вакууме существует вариант передачи энергии путем излучения. Применение теплопередачи рассмотрим на основе термоса. Стенки его делают двойными для того, чтобы увеличить процесс отражения. Между ними откачивают воздух, снижая при этом потери тепла.

теплопередача теплопроводность

Конвекция

Отвечая на вопрос о том, что такое теплопередача, рассмотрим процесс переноса тепла в жидкостях либо в газах путем самопроизвольного либо вынужденного перемешивания. В случае принудительной конвекции перемещение вещества вызвано воздействием внешних сил: лопастей вентилятора, насоса. Применяется подобный вариант в тех ситуациях, когда естественная конвекция не является эффективной.

Естественный процесс наблюдается в тех случаях, когда при неравномерном нагревании происходит нагревание нижних слоев вещества. Уменьшается их плотность, они поднимаются вверх. Верхние слои, напротив, охлаждаются, тяжелеют, опускаются вниз. Далее процесс неоднократно повторяется, а при перемешивании наблюдается самоорганизация в структуру вихрей, из конвекционных ячеек формируется правильная решетка.

Благодаря естественной конвекции образуются облака, выпадают атмосферные осадки, осуществляется движение тектонических плит. Именно путем конвекции на Солнце формируются гранулы.

Правильное использование теплопередачи гарантирует минимальную потерю тепла, максимальное потребление.

теплопередача воздуха

Суть конвекции

Для объяснения конвекции можно использовать закон Архимеда, а также теплового расширения твердых тел и жидкостей. По мере повышения температуры происходит увеличение объема жидкости, уменьшение плотности. Под воздействием силы Архимеда вверх стремится более легкая (нагретая) жидкость, а холодные (плотные) слои попадают вниз, постепенно прогреваются.

В случае прогрева жидкости сверху теплая жидкость остается в исходном положении, поэтому не наблюдается конвекции. Именно так происходит круговорот жидкости, который сопровождается переносом энергии от прогретых участков к холодным местам. В газах конвекция происходит по аналогичному механизму.

С термодинамической точки зрения конвекцию рассматривают как вариант передачи тепла, при котором перенос внутренней энергии идет отдельными потоками веществ, нагретых неравномерно. Подобное явление встречается в природе и в быту. К примеру, отопительные радиаторы устанавливают на минимальной высоте от пола, вблизи подоконника.

Холодный воздух прогревается батареей, затем постепенно поднимается вверх, где он смешивается с холодными воздушными массами, опускаемыми от окна. Конвекция приводит к установлению в помещении равномерной температуры.

Среди распространенных примеров атмосферной конвекции приведем ветры: муссоны, бризы. Воздух, который нагревается над одними фрагментами Земли, охлаждается над другими, в результате чего происходит его циркуляция, осуществляется перенос влаги и энергии.

Особенности естественной конвекции

На нее влияет сразу несколько факторов. К примеру, воздействует на скорость естественной конвекции суточное движение Земли, морские течения, рельеф поверхности. Именно конвекция является основой выхода из кратеров вулкана и труб дыма, образования гор, парения различных птиц.

применение теплопередачи

В заключение

Тепловое излучение является электромагнитным процессом со сплошным спектром, который испускается веществом, возникает благодаря внутренней энергии. Для того чтобы провести расчеты теплового излучения, в физике используют модель черного тела. Описывают тепловое излучение с помощью закона Стефана-Больцмана. Мощность излучения такого тела находится в прямо пропорциональной зависимости от площади поверхности и температуры тела, взятой в четвертой степени.

Теплопроводность возможна в любых телах, которые имеют неоднородное распределение температур. Суть явления заключается в изменении кинетической энергии молекул и атомов, определяющей температуру тела. В некоторых случаях теплопроводность считают количественной способностью определенного вещества проводить тепло.

Масштабные процессы обмена тепловой энергией не ограничиваются нагреванием поверхности земли солнечным излучением.

Серьезные конвекционные потоки в земной атмосфере характеризуются изменениями на всей планете погодных условий. При перепадах температур в атмосфере между полярными и экваториальными областями возникают конвекционные потоки: струйные течения, пассаты, холодные и теплые фронты.

Перенос тепла от земного ядра к поверхности вызывает извержения вулканов, возникновение гейзеров. Во многих регионах применяют геотермальную энергию для получения электрической энергии, обогрева жилых и промышленных помещений.

Именно теплота становится обязательным участником многих производственных технологий. Например, обработка и выплавка металлов, изготовление продуктов питания, переработка нефти, работа двигателей - все это осуществляется только при наличии тепловой энергии.

fb.ru

Виды теплообмена: коэффициент теплопередачи

Любое материальное тело обладает такой характеристикой как теплота, которая может увеличиваться и уменьшаться. Теплота не является материальной субстанцией: как часть внутренней энергии вещества она возникает вследствие движения и взаимодействия молекул. Поскольку теплота различных веществ может отличаться, происходит процесс передачи тепла от более нагретой субстанции к веществу с меньшим количеством теплоты. Этот процесс носит название теплопередача. Основные виды теплообмена и механизмы их действия мы рассмотрим в этой статье.

Определение теплопередачи

Теплообмен, или процесс переноса температуры, может происходить как внутри материи, так и от одного вещества к другому. При этом интенсивность теплообмена во многом зависит от физических свойств материи, температуры веществ (если в теплообмене участвуют несколько субстанций) и законов физики. Теплопередача – это процесс, который всегда протекает в одностороннем порядке. Главный принцип теплообмена заключается в том, что наиболее нагретое тело всегда отдаёт тепло объекту с меньшей температурой. Например, при глажке одежды горячий утюг отдаёт тепло брюкам, а не наоборот. Теплопередача - явление, зависимое от временного показателя, характеризующее необратимое распространение тепла в пространстве.

Механизмы теплопередачи

Механизмы теплового взаимодействия веществ могут приобретать разные формы. Известны три вида теплообмена в природе:

  1. Теплопроводность – механизм межмолекулярной передачи тепла из одного участка тела в другой или в иной объект. Свойство основывается на неоднородности температуры в рассматриваемых субстанциях.
  2. Конвекция – теплообмен между текучими средами (жидкая, воздушная).
  3. Лучевое воздействие – передача тепла от нагретых и нагреваемых за счёт своей энергии тел (источников) в виде электромагнитных волн с постоянным спектром.

Рассмотрим перечисленные виды теплообмена более подробно.

Теплопроводность

Чаще всего теплопроводность наблюдается в твёрдых телах. Если под воздействием каких-либо факторов у одного и того же вещества появляются участки с разными температурами, то тепловая энергия из более нагретого участка перейдёт к холодному. Подобное явление в некоторых случаях можно наблюдать даже визуально. Например, если взять металлический стержень, скажем, иголку, и нагреть его на огне, то через какое-то время увидим, как тепловая энергия передаётся по иголке, образуя на определённом участке свечение. При этом в месте, где температура выше, свечение ярче и, наоборот, где t ниже, оно темнее. Теплопроводность может наблюдаться также между двумя телами (кружкой горячего чая и рукой)

виды теплообмена

Интенсивность передачи теплового потока зависит от многих факторов, соотношение которых выявил французский математик Фурье. К этим факторам относится в первую очередь градиент температуры (соотношение разности температур на концах стержня к расстоянию от одного конца к другому), площадь сечения тела, а также коэффициент теплопроводности (у всех веществ он разный, но самый высокий наблюдается у металлов). Самый значительный коэффициент теплопроводности наблюдается у меди и алюминия. Неудивительно что именно эти два металла чаще используются в изготовлении электропроводов. Следуя закону Фурье, величину теплового потока можно увеличить или уменьшить, изменив один из этих параметров.

Конвекционные виды теплообмена

Конвекция, свойственная в основном для газов и жидкостей, имеет два компонента: межмолекулярную теплопроводность и движение (распространение) среды. Механизм действия конвекции происходит следующим образом: при повышении температуры текучей субстанции её молекулы начинают более активное движение и при отсутствии пространственных ограничений объём вещества увеличивается. Следствием данного процесса будет уменьшение плотности субстанции и её движение вверх. Яркий пример конвекции – это движение нагретого радиатором воздуха от батареи к потолку.

основные виды теплообмена

Различают свободные и вынужденные конвективные виды теплообмена. Теплопередача и движение массы при свободном типе происходит за счёт неоднородности субстанции, то есть горячая жидкость поднимается над холодной естественным образом без оказания влияния внешних сил (например, обогрев комнаты посредством центрального отопления). При вынужденной конвекции движение массы происходит под действием внешних сил, например, помешивание чая ложкой.

виды процессов теплообмена

Лучистый теплообмен

Лучистая или радиационная теплопередача может происходить без контакта с другим объектом или субстанцией, поэтому возможна даже в безвоздушном пространстве (вакууме). Радиационный теплообмен присущ всем телам в большей или меньшей степени и проявляется в виде электромагнитных волн с непрерывным спектром. Яркий тому пример – солнечные лучи. Механизм действия выглядит следующим образом: тело непрерывно излучает определённое количество теплоты в окружающее его пространство. Когда эта энергия попадает на другой объект или субстанцию, часть её поглощается, вторая часть проходит насквозь, а третья отражается в окружающую среду. Любой объект может как излучать тепло, так и поглощать, при этом тёмные вещества способны поглощать больше тепла, чем светлые.

три вида теплообмена

Комбинированные механизмы теплопередачи

В природе виды процессов теплообмена редко встречаются по отдельности. Гораздо чаще их можно наблюдать в совокупности. В термодинамике эти сочетания даже имеют названия, скажем, теплопроводность + конвекция – это конвективный теплообмен, а теплопроводность + тепловое излучение называют радиационно-кондуктивной теплопередачей. Кроме этого, выделяют такие комбинированные виды теплообмена, как:

  • Теплоотдача - движение тепловой энергии между газом или жидкостью и твёрдым веществом.
  • Теплопередача – передача t от одной материи к другой через механическое препятствие.
  • Конвективно-лучистый теплообмен образуется при совмещении конвекции и теплового излучения.

Виды теплообмена в природе (примеры)

Теплообмен в природе играет огромную роль и не ограничивается нагреванием земного шара солнечными лучами. Обширные конвекционные потоки, такие как передвижение воздушных масс, во многом определяют погоду на всей нашей планете.

виды теплообмена теплопередача

Теплопроводность ядра Земли приводит к появлению гейзеров и извержению вулканических пород. Это лишь малая часть примеров теплообмена в глобальных масштабах. В совокупности они образуют виды конвективного теплообмена и радиационно-кондуктивные типы теплопередачи необходимые для поддержания жизни на нашей планете.

Использование теплообмена в антропологической деятельности

Тепло – это важная составляющая почти всех производственных процессов. Сложно сказать, какой вид теплообмена человеком используется больше всего в народном хозяйстве. Наверное, все три одновременно. Благодаря процессам теплопередачи происходит выплавка металлов, производство огромного количества товаров, начиная с предметов повседневного использования и заканчивая космическими судами.

виды конвективного теплообмена

Крайне важное значение для цивилизации имеют тепловые агрегаты, способные преобразовывать тепловую энергию в полезную силу. Среди них можно назвать бензиновые, дизельные, компрессорные, турбинные установки. Для своей работы они используют различные виды теплообмена.

fb.ru

Примеры теплообмена в природе и технике

1. Ветры. Все ветры в атмосфере представляют собой конвекционные потоки огромного масштаба. Конвекцией, например, объясняются бризы — ночные и дневные ветры, возникающие на берегах морей и больших озер.

В летние дни суша прогревается солнцем быстрее, чем вода, поэтому и воздух над сушей нагревается больше, чем над водой. При этом воздух над сушей расширяется, после чего его давление становится меньше давления более холодного воздуха над морем. В результате, как в сообщающихся сосудах, холодный воздух по низу с моря (где давление больше) перемещается к берегу (где давление меньше) — дует ветер. Это и есть дневной (или морской) бриз.

Ночью вода охлаждается медленнее, чем суша, и над сушей воздух становится более холодным, чем над водой. Теперь более высокое давление оказывается над сушей, и потому воздух начинает перемещаться от берега к морю. Это ночной (или береговой) бриз.

2. Тяга. Мы знаем, что без притока свежего воздуха горение топлива невозможно. Если в топку или печь не будет поступать воздух, то горение прекратится. Для поддержания горения часто используют естественный приток воздуха — тягу. При этом над местом горения топлива устанавливают трубу. Нагреваясь, воздух расширяется, и давление в топке и трубе становится меньше давления наружного воздуха. Вследствие разницы давлений холодный воздух устремляется извне в топку, а теплый поднимается вверх по трубе. Это и есть тяга.

С увеличением высоты трубы тяга усиливается, так как, чем выше труба, сооруженная над топкой, тем больше разница давлений наружного воздуха и воздуха в трубе.

3. Водяное отопление. Жители стран, расположенных в умеренных и холодных поясах Земли, вынуждены обогревать свои жилища в холодную погоду. В жилых помещениях наиболее благо приятной для человека считается температура 18—20 °С. Для поддержания такой температуры во многих домах применяют водяное отопление.

Нагревание воды в системах центрального отопления происходит за пределами отапливаемого помещения (в котельных или теплоэлектроцентралях — ТЭЦ). От нагревателя горячая вода по трубопроводам поступает в здания. Здесь (рис. 71) она по главному стояку 1 поднимается вверх, а оттуда — по трубам в отопительные приборы (радиаторы 2). По мере охлаждения в них вода возвращается вниз и снова поступает к нагревателю. Так осуществляется непрерывная циркуляция воды по всей системе. В небольших зданиях эта циркуляция возникает благодаря естественной конвекции, а в больших городских домах она происходит за счет действия специальных насосов (искусственная или принудительная конвекция).Отопление в доме

Для предотвращения разрушения отопительной системы (в результате увеличения давления при расширении нагреваемой жидкости) главный стояк 1 снабжают расширительным баком 3.

4. Термос. Теплопередача от более нагретого тела к более холодному приводит к выравниванию их температур. Поэтому, например, горячий чайник, снятый с плиты, при соприкосновении с окружающим воздухом через некоторое время остывает. Чтобы помешать телу остывать (или нагреваться), нужно предотвратить возможный теплообмен, причем во всех его трех проявлениях (при конвекции, теплопроводности и излучении). Это достигается путем помещения тела в специальный сосуд — сосуд Дьюара, который был изобретен в 1892 г. английским ученым Джеймсом Дьюаром.

Термос и его устройствоСосуды Дьюара вначале применялись лишь для хранения легкоиспаряюшихся сжиженных газов (например, жидкого гелия). Впоследствии их стали применять и в бытовых целях — для сохранения при неизменной температуре помещаемых в них пищевых продуктов. Такие сосуды Дьюара стали называть термосами (рис. 72).

Устройство термоса, предназначенного для хранения жидкостей, показано на рисунке 73. Он состоит из стеклянного сосуда 4 с двойными стенками. Внутренняя поверхность этих стенок покрыта блестящим металлическим слоем, а из пространства между стенками выкачан воздух. Чтобы защитить стеклянный корпус термоса от повреждений, его помещают в картонный или металлический футляр 3. Сосуд закупоривают пробкой 2, а сверху футляра навинчивают колпачок 1.

Термос устроен таким образом, что теплообмен его содержимого с окружающей средой сведен до минимума. Отсутствие воздуха между его стенками препятствует переносу энергии путем конвекции и теплопроводности, а блестящий слой па внутренней поверхности термоса препятствует передаче энергии излучением.

1. Почему дневной бриз дует с моря в сторону берега, а ночной бриз — с берега в сторону моря? 2. В результате чего возникает тяга? 3. Как устроена система водяного отопления? 4. Расскажите об устройстве термоса. За счет чего в нем удается уменьшить теплообмен? Почему пища в термосе все-таки охлаждается?

phscs.ru

ТЕПЛОПРОВОДНОСТЬ. ПРИМЕРЫ ТЕПЛОПРОВОДНОСТИ В ПРИРОДЕ, БЫТУ, ТЕХНИКЕ

БИЛЕТ №1

ТЕПЛОВОЕ ДВИЖЕНИЕ. ТЕМПЕРАТУРА. ТЕРМОМЕТРЫ. ТЕМПЕРАТУРНЫЕ ШКАЛЫ.

Тепловые явления – явления, связанные с изменением температуры тел.

Тепловое движение – хаотическое движение частиц, из которых состоят тела.

Интенсивность теплового движения очень высока. Например, при комнатной температуре средняя скорость молекул – несколько сотен метров в секунду (скорость пули).

Температура – физическая величина, определяющая направление теплопередачи: при теплопередаче внутренняя энергия всегда переходит от тела с большей температурой к телу с меньшей температурой.

Тела с одинаковой температурой находятся в состоянии теплового равновесия.

Температуру измеряют с помощью термометров. Часто используют жидкостные термометры, действие которых основано на том, что жидкость при нагревании расширяется. Измеряют температуру в градусах.

В шкале Цельсия за 0° принята температура плавления льда. Градусы Цельсия обозначают °С.

В шкале Фаренгейта за 0° принята температура плавления льда, а за 100° температура кипения воды при атмосферном давлении. Градусы Фаренгейта обозначают °F.

В шкале Кельвина за 0° принята температура абсолютного нуля (состояние, соответствующее минимальной теоретически возможной внутренней энергии тела). Градусы Кельвина обозначают K.

0°С = 32°F = 273 К

 

БИЛЕТ №2

ВНУТРЕННЯЯ ЭНЕРГИЯ И СПОСОБЫ ЕЕ ИЗМЕРЕНИЯ. ОБЪЯСНЕНИЕ ВНУТРЕННЕЙ ЭНЕРГИИ НА ОСНОВЕ УЧЕНИЯ О МОЛЕКУЛЯРНОМ СТРОЕНИИ ВЕЩЕСТВА.

Энергия характеризует способность тела или системы взаимодействующих тел совершить работу.Частицы, из которых состоят тела, движутся и взаимодействуют друг с другом. Поэтому они обладают и кинетической, и потенциальной энергией.Внутренняя энергия тела – сумма кинетической энергии хаотического движения и потенциальной энергии взаимодействия частиц, из которых состоит тело. U – внутренняя энергияВнутренняя энергия тела изменяется при его нагревании или охлаждении, изменении агрегатного состояния и при химических реакциях.

Внутренняя энергия

Кинетическая энергия движущихся молекул Потенциальная энергия взаимодействия молекул

Внутренняя энергия зависит от

t тела агрегатного состояния тела m тела m1 < m2U1 < U2

Способы изменения внутренней энергии

Совершение работы Теплопередача трение, деформация передача тепла от более нагретоготела к менее нагретому без совершенияработыЕ – энергия (Дж)Еп = mgh (А - работа)Ек = U = Еп + Ек

 

 

БИЛЕТ №3

ТЕПЛОПРОВОДНОСТЬ. ПРИМЕРЫ ТЕПЛОПРОВОДНОСТИ В ПРИРОДЕ, БЫТУ, ТЕХНИКЕ.

Теплопроводность – вид теплопередачи, обусловленный передачей энергии от одного тела к другому в результате теплового движения и взаимодействия молекул.Передача энергии посредством теплопередачи может происходить и между частями одного тела.При теплопроводности происходит передача энергии, но не происходит переноса вещества.Теплопроводностью называют также способность вещества проводить тепло. Высокой теплопроводностью обладают все металлы. Намного хуже проводят тепло: вода, кирпич и стекло. Вакуум тепло не проводит.Особенно мала теплопроводность газов. Дело в том, что в газах молекулы находятся далеко друг от друга, а теплопроводность обусловлена взаимодействием молекул между собой.

Примеры:

1. Птицы зимой сидят нахохлившись. Перья задерживают воздух, а он обладает плохой теплопроводностью.

2. Ручки чайников, сковородок и т.д. из пластмассы, т.к. она плохо нагревается; корпус посуда из металла – он лучше проводит тепло и еда быстрее нагревается.

3. Пористые вещества (пенопласт, ткани, паралон и т.д.) – хорошая теплоизоляция, т.к. воздух обладает плохой теплопроводностью.

 

 

БИЛЕТ №4

megaobuchalka.ru

Примеры теплопередачи в природе и технике

Слайд 1

«Примеры теплопередачи в природе и технике» Выполнил Иванов Виталий 8 " з "

Слайд 2

Введение

Слайд 3

Основные понятия Процесс изменения внутренней энергии без совершения работы над телом или самим телом называется теплопередачей. Перенос энергии от более нагретых участков тела к менее нагретым в результате теплового движения и взаимодействия частиц называется теплопроводностью. При конвекции энергия переносится самими струями газа или жидкости. Излучение — процесс передачи теплоты путем лучеиспускания. Передача энергии излучением отличается от других видов теплопередачи тем, что она может осуществляться в полном вакууме.

Слайд 4

Основные понятия

Слайд 5

Примеры теплопередачи в природе и технике

Слайд 6

Ветры Все ветры в атмосфере представляют собой конвекционные потоки огромного масштаба.

Слайд 7

Ветры Конвекцией объясняются, например, ветры бризы, возникающие на берегах морей. В летние дни суша прогревается солнцем быстрее, чем вода, поэтому и воздух над сушей нагревается больше, чем над водой, его плотность уменьшается и давление становится меньше давления более холодного воздуха над морем. В результате, как в сообщающихся сосудах, холодный воздух по низу с моря перемещается к берегу — дует ветер. Это и есть дневной бриз. Ночью вода охлаждается медленнее, чем суша, и над сушей воздух становится более холодным, чем над водой. Образуется ночной бриз -- движение холодного воздуха от суши к морю.

Слайд 8

Тяга Мы знаем, что без притока свежего воздуха горение топлива невозможно.

Слайд 9

Тяга Если в топку, в печь, в трубу самовара не будет поступать воздух, то горение топлива прекратится. Обычно используют естественный приток воздуха - тягу. Для создания тяги над топкой, например в котельных установках фабрик, заводов, электростанций, устанавливают трубу. При горении топлива воздух в ней нагревается. Значит, давление воздуха, находящегося в топке и трубе, становится меньше давления наружного воздуха. Вследствие разницы давлений холодный воздух поступает в топку, а теплый поднимается вверх — образуется тяга.

Слайд 10

Тяга Чем выше труба, сооруженная над топкой, тем больше разница давлений наружного воздуха и воздуха в трубе. Поэтому тяга усиливается при увеличении высоты трубы.

Слайд 11

Отопление и охлаждение жилых помещений Жители стран, расположенных в умеренных и холодных поясах Земли, вынуждены обогревать свое жилище.

Слайд 12

Отопление и охлаждение жилых помещений В странах, расположенных в тропических и субтропических поясах, температура воздуха даже в январе достигает + 20 и + 30 С . Здесь применяют устройства, охлаждающие воздух в помещениях. И нагревание, и охлаждение воздуха в помещениях основано на конвекции.

Слайд 13

Отопление и охлаждение жилых помещений Охлаждающие устройства целесообразно располагать наверху, ближе к потолку, чтобы осуществлялась естественная конвекция. Ведь холодный воздух имеет плотность большую, чем теплый, и поэтому будет опускаться.

Слайд 14

Отопление и охлаждение жилых помещений Обогревательные приборы располагают внизу. Во многих современных больших домах устраивают водяное отопление. Циркуляция воды в нем и прогревание воздуха в помещении происходят за счет конвекции.

Слайд 15

Отопление и охлаждение жилых помещений Если установка для обогревания здания находится в нем самом, то в подвальном этаже устанавливают котел, в котором нагревают воду. По вертикальной трубе, отходящей от котла, горячая вода поднимается в бак, который обычно помещают на чердаке дома. От бака проводят систему распределительных труб, по которым вода проходит в радиаторы, устанавливаемые на всех этажах, она отдает им свое тепло и возвращается в котел, где снова подогревается. Так происходит естественная циркуляция воды - конвекция.

Слайд 16

Отопление и охлаждение жилых помещений В больших зданиях используются более сложные установки. Горячая вода подается сразу в несколько зданий из котла, установленного в специальном помещении. Воду гонят в. здания при помощи насосов, т. е. создают искусственную конвекцию.

Слайд 17

Теплопередача и растительный мир Температура нижнего слоя воздуха и поверхностного слоя почвы имеет большое значение для развития растений.

Слайд 18

Теплопередача и растительный мир В прилегающем к Земле слое воздуха и верхнем слое почвы происходят изменения температуры. Днем почва поглощает энергию и нагревается, ночью, наоборот, охлаждается. На ее нагревание и охлаждение влияет присутствие растительности. Так, темная, вспаханная почва сильнее нагревается излучением, но быстрее и охлаждается, чем почва, покрытая растительностью.

Слайд 19

Теплопередача и растительный мир На теплообмен между почвой и воздухом влияет также погода. В ясные, безоблачные ночи почва сильно охлаждается - излучение от почвы беспрепятственно уходит в пространство. В такие ночи ранней весной возможны заморозки на почве. Если же погода облачная, то облака закрывают Землю и играют роль своеобразных экранов, защищающих почву от потери энергии путем излучения.

Слайд 20

Теплопередача и растительный мир Одним из средств повышения температуры участка почвы и припочвенного воздуха служат теплицы, которые позволяют полнее использовать излучение Солнца. Участок почвы покрывают стеклянными рамами или прозрачными пленками.

Слайд 21

Теплопередача и растительный мир Стекло хорошо пропускает видимое солнечное излучение, которое, попадая на темную почву, нагревает ее, но хуже пропускает невидимое излучение, испускаемое нагретой поверхностью Земли. Кроме того, стекло (или пленка) препятствует движению теплого воздуха вверх, т. е. осуществлению конвекции. Таким образом, стекла теплиц действуют как «ловушка» энергии. Внутри теплиц температура выше, чем на незащищенном грунте, примерно на 10 °С.

Слайд 22

Термос Теплопередача от более нагретого тела к более холодному приводит к выравниванию их температур.

Слайд 23

Термос Поэтому если в комнату внести, например, горячий чайник, то он остынет. Часть его внутренней энергии перейдет к окружающим телам. Чтобы помешать телу остывать или нагреваться, нужно уменьшить теплопередачу. При этом стремятся сделать так, чтобы энергия не передавалась ни одним из трех видов теплопередачи: конвекцией, теплопроводностью и излучением.

Слайд 24

Термос Чтобы сохранить горячей воду, пищу или предохранить лед или мороженое от таяния, пользуются термосом.

Слайд 25

Термос Он состоит из стеклянного сосуда с двойными стенками. Внутренняя поверхность стенок покрыта блестящим металлическим слоем, а из пространства между стенками сосуда выкачан воздух. Лишенное воздуха пространство между стенками не проводит тепло, блестящий слой, вследствие отражения, препятствует передаче энергии излучением. Чтобы защитить стекло от повреждений, термос помещают в картонный или металлический футляр. Сосуд закупоривают пробкой, а сверху футляра навинчивают колпачок.

Слайд 26

Спасибо за внимание!

nsportal.ru


© 2007—2018
423800, Набережные Челны , база Партнер Плюс, тел. 8 800 100-58-94 (звонок бесплатный)