Камаз 44108 тягач В наличии!
Тягач КАМАЗ 44108-6030-24
евро3, новый, дв.КАМАЗ 740.55-300л.с., КПП ZF9, ТНВД ЯЗДА, 6х6, нагрузка на седло 12т, бак 210+350л, МКБ, МОБ
 
карта сервера
«ООО Старт Импэкс» продажа грузовых автомобилей камаз по выгодным ценам
+7 (8552) 31-97-24
+7 (904) 6654712
8 800 1005894
звонок бесплатный

Наши сотрудники:
Виталий
+7 (8552) 31-97-24

[email protected]

 

Екатерина - специалист по продаже а/м КАМАЗ
+7 (904) 6654712

[email protected]

 

Фото техники

20 тонный, 20 кубовый самосвал КАМАЗ 6520-029 в наличии
15-тонный строительный самосвал КАМАЗ 65115 на стоянке. Техника в наличии
Традиционно КАМАЗ побеждает в дакаре

тел.8 800 100 58 94

Техника в наличии

тягач КАМАЗ-44108
Тягач КАМАЗ 44108-6030-24
2014г, 6х6, Евро3, дв.КАМАЗ 300 л.с., КПП ZF9, бак 210л+350л, МКБ,МОБ,рестайлинг.
цена 2 220 000 руб.,
 
КАМАЗ-4308
КАМАЗ 4308-6063-28(R4)
4х2,дв. Cummins ISB6.7e4 245л.с. (Е-4),КПП ZF6S1000, V кузова=39,7куб.м., спальное место, бак 210л, шк-пет,МКБ, ТНВД BOSCH, система нейтрализ. ОГ(AdBlue), тент, каркас, рестайлинг, внутр. размеры платформы 6112х2470х730 мм
цена 1 950 000 руб.,
КАМАЗ-6520
Самосвал КАМАЗ 6520-057
2014г, 6х4,Евро3, дв.КАМАЗ 320 л.с., КПП ZF16, ТНВД ЯЗДА, бак 350л, г/п 20 тонн, V кузова =20 куб.м.,МКБ,МОБ, со спальным местом.
цена 2 700 000 руб.,
 
КАМАЗ-6522
Самосвал 6522-027
2014, 6х6, дв.КАМАЗ 740.51,320 л.с., КПП ZF16,бак 350л, г/п 19 тонн,V кузова 12куб.м.,МКБ,МОБ,задняя разгрузка,обогрев платформы.
цена 3 190 000 руб.,

СУПЕР ЦЕНА

на АВТОМОБИЛИ КАМАЗ
43118-010-10 (дв.740.30-260 л.с.) 2 220 000
43118-6033-24 (дв.740.55-300 л.с.) 2 300 000
65117-029 (дв.740.30-260 л.с.) 2 200 000
65117-6010-62 (дв.740.62-280 л.с.) 2 350 000
44108 (дв.740.30-260 л.с.) 2 160 000
44108-6030-24 (дв.740.55,рест.) 2 200 000
65116-010-62 (дв.740.62-280 л.с.) 1 880 000
6460 (дв.740.50-360 л.с.) 2 180 000
45143-011-15 (дв.740.13-260л.с) 2 180 000
65115 (дв.740.62-280 л.с.,рест.) 2 190 000
65115 (дв.740.62-280 л.с.,3-х стор) 2 295 000
6520 (дв.740.51-320 л.с.) 2 610 000
6520 (дв.740.51-320 л.с.,сп.место) 2 700 000
6522-027 (дв.740.51-320 л.с.,6х6) 3 190 000


Перегон грузовых автомобилей
Перегон грузовых автомобилей
подробнее про услугу перегона можно прочесть здесь.


Самосвал Форд Нужны самосвалы? Обратите внимание на Ford-65513-02.

КАМАЗы в лизинг

ООО «Старт Импэкс» имеет возможность поставки грузовой автотехники КАМАЗ, а так же спецтехники на шасси КАМАЗ в лизинг. Продажа грузовой техники по лизинговым схемам имеет определенные выгоды для покупателя грузовика. Рассрочка платежа, а так же то обстоятельство, что грузовики до полной выплаты лизинговых платежей находятся на балансе лизингодателя, и соответственно покупатель автомобиля не платит налогов на имущество. Мы готовы предложить любые модели бортовых автомобилей, тягачей и самосвалов по самым выгодным лизинговым схемам.

Контактная информация.

г. Набережные Челны, Промкомзона-2, Автодорога №3, база «Партнер плюс».

тел/факс (8552) 388373.
Схема проезда



Система охлаждения двигателя внутреннего сгорания. Система охлаждения двс


как устроена и нужно ли ее промывать? — журнал За рулем

11 декабря 2017 года

Выясняем, какие могут быть характерные неисправности у системы охлаждения двигателя и как их избежать.

Воздушка или водянка

Система охлаждения двигателя внутреннего сгорания предназначена для отвода излишнего тепла от деталей и узлов двигателя. На самом деле эта система вредна для вашего кармана. Приблизительно треть теплоты, полученной от сгорания драгоценного топлива, приходится рассеивать в окружающей среде. Но таково устройство современного ДВС. Идеальным был бы двигатель, который может работать без отвода теплоты в окружающую среду, а всю ее превращать в полезную работу. Но материалы, используемые в современном двигателестроении, таких температур не выдержат. Поэтому по крайней мере две основные, базовые детали двигателя — блок цилиндров и головку блока — приходится дополнительно охлаждать. На заре автомобилестроения появились и долго конкурировали две системы охлаждения: жидкостная и воздушная. Но воздушная система охлаждения постепенно сдавала свои позиции и сейчас применяется, в основном, на очень небольших двигателях мототранспорта и генераторных установках малой мощности. Поэтому рассмотрим подробнее систему жидкостного охлаждения.

Устройство системы охлаждения

Система охлаждения современного автомобильного двигателя включает в себя рубашку охлаждения двигателя, насос охлаждающей жидкости, термостат, соединительные шланги и радиатор с вентилятором. К системе охлаждения подсоединен теплообменник отопителя. У некоторых двигателей охлаждающая жидкость используется еще и для обогрева дроссельного узла. Также у моторов с системой наддува встречается подача охлаждающей жидкости в жидкостно-воздушные интеркулеры или в сам турбокомпрессор для снижения его температуры.

Работает система охлаждения довольно просто. После запуска холодного двигателя охлаждающая жидкость начинает с помощью насоса циркулировать по малому кругу. Она проходит по рубашке охлаждения блока и головки цилиндров двигателя и возвращается в насос через байпасные (обходные) патрубки. Параллельно (на подавляющем большинстве современных автомобилей) жидкость постоянно циркулирует через теплообменник отопителя. Как только температура достигнет заданной величины, обычно около 80–90 ˚С, начинает открываться термостат. Его основной клапан направляет поток в радиатор, где жидкость охлаждается встречным потоком воздуха. Если обдува воздухом недостаточно, то вступает в работу вентилятор системы охлаждения, в большинстве случаев имеющий электропривод. Движение жидкости во всех остальных узлах системы охлаждения продолжается. Зачастую исключением является байпасный канал, но он закрывается не на всех автомобилях.

Схемы систем охлаждения в последние годы стали очень похожи одна на другую. Но осталось два принципиальных различия. Первое — это расположение термостата до и после радиатора (по ходу движения жидкости). Второе различие — это использование циркуляционного расширительного бачка под давлением, либо бачка без давления, являющегося простым резервным объемом.

На примере трех схем систем охлаждения покажем разницу между этими вариантами.

www.zr.ru

Система охлаждения двигателя внутреннего сгорания — WiKi

Существует три типа систем охлаждения двигателей внутреннего сгорания: воздушная, жидкостная и гибридная.

  Термические двигатели для А. требуют охлаждения цилиндров. Только для слабых, велосипедных газолиновых двигателей достаточно воздушного охлаждения при помощи рубцов, прилитых к поверхности цилиндра; для более сильных необходима циркуляция воды с помощью насоса между двойными стенками цилиндров, охлаждаемой в особом трубчатом приборе, помещаемом впереди А. и обдуваемом струей встречного воздуха.  

Воздушное охлаждение

  6-цилиндровый двигатель с естественным охлаждением на мотоцикле (Honda CBX1000, 105лс)  Авиамодельный двигатель O.S. (1,7см3).  Pratt and Whitney R-4360 - 28-цилиндровый авиационный двигатель с естественным воздушным охлаждением (3500лс).

Воздушное охлаждение может быть естественным и принудительным. Естественное воздушное охлаждение является самым простым видом охлаждения. Тепло от двигателя с такой системой охлаждения передаётся в окружающую среду через развитое оребрение на внешней поверхности цилиндров. Недостаток системы заключается в том, что она из-за низкой теплоёмкости воздуха не позволяет равномерно отводить от двигателя большое количество тепла и, соответственно, создавать компактные мощные силовые установки. Неравномерность обдува требует дополнительных мер для исключения локальных перегревов - более развитого оребрения в аэродинамической тени, обращения более нагретых выпускных каналов вперёд по потоку, а холодных впускных - назад и т.п. Естественное воздушное охлаждение распространено на двигателях лёгкой высокоподвижной техники: мотоциклы, мопеды, авиа- и автомодели. С систематическим ростом форсировки моторов мотоциклов на наиболее совершенных моделях воздушное охлаждение уступает место жидкостному. По причине малой массы естественное воздушное охлаждение широко применялось и на поршневых авиационных двигателях, где близкие к цилиндрическим и имевшие малую окружную скорость комли лопастей винта практически не работали как вентилятор, но скорость набегающего на самолёт потока была сама по себе очень высока.

  Универсальный "стационарный" двигатель воздушного охлаждения, установленный на газонокосилке.

Стационарные или плотно закапотированные двигатели оснащают системой принудительного воздушного охлаждения. В них с помощью вентилятора создаётся поток воздуха, который обдувает рёбра охлаждения. Вентилятор и оребрённые поверхности, как правило, закрыты направляющим кожухом. Достоинства такого двигателя аналогичны двигателям с естественным охлаждением: простота конструкции, малый вес, отсутствие охлаждающей жидкости. Однако такие двигатели отличаются повышенным шумом при работе, большими габаритами. Кроме того, при проектировании таких двигателей возникают проблемы с охлаждением отдельных элементов конструкции двигателя из-за неравномерного обдува. На легковых автомобилях, производимых в Европе, воздушное охлаждение широко применялось в 1950-х — 1970-х годах. В основном это небольшие машины типа Volkswagen Kafer, Fiat 500, Citroën 2CV; особняком стоит представительская Tatra 613. В СССР самым известным автомобилем с воздушным охлаждением был «Запорожец». Выпускались грузовые автомобили с дизелями воздушного охлаждения (например грузовики под маркой «Татра» с момента начала выпуска и до начала 2010 годов оснащались исключительно такими двигателями). Двигатели с воздушным охлаждением имеют многие трактора (иногда - тяжёлые, например Т-330; чаще - малые, от обычных пропашных до мини-тракторов мелких частных хозяйств), для которых характерны установившиеся режимы работы двигателя и специфические требования к простоте обслуживания. В настоящее время (2015-е) принудительное воздушное охлаждение применяется на большинстве скутеров, моторизованном инструменте (бензопилы, газонокосилки и пр.), двигателях малогабаритных генераторных установок, на мотоблоках и прочих самоходных и стационарных малых сельскохозяйственных и коммунальных машинах. Для последних очень распространены унифицированные ряды простых одно-двухцилиндровых двигателей воздушного охлаждения, одинаковые у различных производителей (Briggs & Strattonruen, Honda, Subaru, китайские), в виде компактного законченного блока с креплением на горизонтальную плоскость.

Жидкостное охлаждение

  Жидкостное охлаждение морских судов открытого типа

Системы охлаждения классифицируются в соответствии со способом использования теплоносителя в системе.

Замкнутые — в таких системах жидкость-теплоноситель циркулирует по герметичному контуру, нагреваясь от источника тепла (нагревателя) и остывая в охлаждающем контуре (охладителе). В зависимости от устройства системы, теплоноситель может закипать или полностью испаряться, вновь конденсируясь в охладителе. Незамкнутые — в незамкнутых(проточных) системах теплоноситель подается извне, нагревается у источника тепла и направляется во внешнюю среду. В этом случае она играет роль охладителя, предоставляя необходимые объем теплоносителя нужной температуры на входе и принимая нагретый на выходе. Открытые — системы, в которых нагреватель помещен в некоторый объем теплоносителя, а тот заключен в охладителе, если таковой предусмотрен конструкцией. Например, открытая система с маслом в качестве теплоносителя используются для охлаждения мощных электротрансформаторов.

К «чисто жидкостным» системам охлаждения можно отнести лишь открытые системы охлаждения речных и морских судов, где для охлаждения используется забортная вода. В некоторых стационарных двигателях начала XX века мог отсутствовать радиатор, вместо этого имелся расширительный бак большого объёма — отчасти тепло рассеивалось за счёт испарения воды, отчасти — через стенки бака, а отчасти за счёт большого объёма воды, который не успевал достаточно прогреться за время работы двигателя.

Замкнутая система (Гибридный тип)

Тип сочетает вышеуказанные системы: тепло от цилиндров отводится жидкостью, после чего она, на удалении от теплонагруженной части двигателя, охлаждается в радиаторах воздухом. Внутренние и наружные части цилиндров испытывают различный нагрев и обычно выполняются из отдельных частей:

  • внутренняя — рабочая втулка или гильза цилиндра
  • наружная — рубашка (у двигателей воздушного охлаждения рубашка имеет рёбра для эффективного отвода тепла)

Пространство между ними называется зарубашечным, в двигателе с водяным охлаждением тут циркулирует охлаждающая жидкость.

Система охлаждения состоит из рубашки охлаждения блока цилиндров, головки блока цилиндров, одного или нескольких радиаторов, вентилятора принудительного охлаждения радиатора, жидкостного насоса, термостата, расширительного бачка, соединительных патрубков и датчика температуры. Этот тип используется на всех современных автомобилях. Охлаждающая жидкость прокачивается насосом через рубашку охлаждения двигателя, забирая от неё тепло, а затем охлаждается сама в радиаторе. В этой системе существует два круга циркуляции жидкости — большой и малый. Большой круг составляют рубашка охлаждения двигателя, водяной насос, радиаторы (в том числе — отопителя салона), термостат. В малый круг входит рубашка охлаждения двигателя, водяной насос, термостат (иногда радиатор отопителя салона входит именно в малый круг). Регулировка количества жидкости между кругами циркуляции жидкости осуществляется термостатом. Малый круг охлаждения предназначен для быстрого введения двигателя в эффективный тепловой режим. При этом охлаждающая жидкость фактически не охлаждается, так как не проходит через радиатор. Как только она нагреется до оптимальной температуры, термостат открывается, и охлаждающая жидкость начинает циркулировать также и через радиатор, где непосредственно и охлаждается набегающим потоком воздуха (а в случае длительной стоянки - принудительно вентилятором). При этом, чем сильнее нагревается охлаждающая жидкость, тем сильнее открывается термостат, и тем сильнее жидкость охлаждается в радиаторе. Это и есть принцип поддержания оптимальной температуры двигателя 85-90 °C.

Очень опасным явлением является перегрев двигателя (кипение двигателя)[источник не указан 167 дней]. При этом охлаждающая жидкость в прямом смысле вскипает в рубашке охлаждения, что очень часто приводит к серьёзным последствиям и дорогостоящему ремонту. Для предупреждения перегрева двигателя логично применять жидкости с высокой температурой кипения, однако проще всего оказалось держать всю систему под некоторым избыточным давлением (около 1,1 атм), при котором повышается температура кипения охлаждающей жидкости (около 110 °C и 120 °C для воды и антифриза соответственно). Кроме того, при превышении температуры охлаждающей жидкости более 105 °C, включается принудительный обдув радиатора вентилятором.

Основные части жидкостной системы охлаждения

В жидкостных системах охлаждения поршневых двигателей наземного и воздушного транспорта, а также стационарных установок охлаждающая жидкость циркулирует по замкнутому контуру, а тепло рассеивается в окружающую среду с помощью обдуваемого воздухом радиатора.

Основные части жидкостной системы охлаждения:

  • Рубашка охлаждения (1) представляет собой полость, огибающую части двигателя, требующие охлаждения. Циркулирующая по рубашке охлаждения жидкость отбирает у них тепло и переносит его к радиатору.
  • Насос охлаждающей жидкости, или помпа (5) — обеспечивает циркуляцию жидкости по контуру охлаждения. В некоторых двигателях, например мини-тракторов, может применяться термосифонная система охлаждения — то есть система с естественной циркуляцией охлаждающей жидкости, в которой этот насос отсутствует. Может приводиться в движение либо через ременную передачу от вала двигателя, либо от отдельного электродвигателя.
  • Термостат (2) — предназначен для поддержания рабочей температуры двигателя. Термостат перенаправляет охлаждающую жидкость по малому кругу — в обход радиатора, если температура не достигла рабочей.
  • Радиатор (3) имеет развитую поверхность, обдуваемую снаружи набегающим потоком воздуха. Радиатор изготавливается из материалов, хорошо проводящих тепло, чаще всего из алюминия (радиатор для охлаждения масла чаще всего делают из меди).
  • Вентилятор (4) создаёт дополнительный поток воздуха для обдува радиатора, в том числе во время остановок и при движении на малой скорости. Может приводиться ременной передачей от вала двигателя, но в современных автомобилях, за исключением крупных грузовиков, он работает от электродвигателя.
  • Расширительный бак содержит запас охлаждающей жидкости. С атмосферой расширительный бак сообщается через клапан, поддерживающий избыточное давление охлаждающей жидкости при работе, что позволяет двигателю работать при большей температуре, не допуская кипения охлаждающей жидкости, которое может привести к повреждению двигателя. Автомобили начала-середины XX века часто не имели расширительных бачков. В них запас охлаждающей жидкости находился в верхнем бачке радиатора. Это было вполне допустимо, так как в основном в системе охлаждения использовалась вода, и её расширение при нагреве было небольшим. С распространением антифризов на основе этиленгликоля использование расширительного бака стало обязательным. Полупрозрачный бак, расположенный в доступном месте в верхней точке системы, облегчает также контроль уровня жидкости.

В поршневой авиации также применяются двигатели, в которых цилиндры охлаждаются непосредственно набегающим воздухом, а головки цилиндров — с использованием жидкостной системы охлаждения. Такое решение позволяет снизить массу двигателя и одновременно более эффективно охлаждать головки цилиндров, которые являются наиболее теплонагруженными частями двигателя.

Охлаждение масла

В дополнение к основной системе охлаждения в двигателях большой мощности (на грузовиках и тепловозах), а также на двигателях с воздушным охлаждением применяется охлаждение масла. Охлаждение масла необходимо также потому, что оно поступает к па́рам трения — самым чувствительным к перегреву местам двигателя. Масло может охлаждаться охлаждающей жидкостью, либо окружающим воздухом от отдельного радиатора.

Испарительная система охлаждения

Также существует подвид системы охлаждения, называемый испарительной системой охлаждения. Главное отличие её от обычных водяных или этиленгликолевых — доведение температуры охлаждающей жидкости (воды) выше точки кипения, в результате чего при испарении от теплонагруженных деталей отводится большое количество тепла. Пар конденсируется в жидкость в радиаторе и цикл повторяется. Подобные системы использовались в авиастроении в 30-х годах XX века.[1] Кроме того в Китае по состоянию на 2014 год продолжают выпускаться дизели мощностью от 8 до 24 л.с. с испарительным охлаждением, предназначенные для мотоблоков и минитракторов.

ru-wiki.org

Система охлаждения двигателя.

  Система охлаждения двигателя.Система охлаждения двигателя предназначена как все понимают для защиты двигателя от перегревов, которые пагубно влияют на его здоровье, а также для поддержания постоянной оптимальной рабочей температуры охлаждающей жидкости. Оптимальной рабочей температурой принято считать диапазон 75-90 градусов по цельсию, так как именно в пределах этих температурных значений достигаются оптимальные тепловые зазоры между основными трущимися деталями двигателя.

Начнем с того, что упомянем о том, что системы охлаждения двигателей тоже бывают разными, я имею ввиду различия по принципу работы и устройству, а так же целесообразности применения каждой из этих систем в той или иной отрасли автомобилестроения. Речь идет о воздушном и жидкостном способах охлаждения моторов.  Самым простым типом охлаждения двигателя является конечно же воздушный. Возьмем в качестве примера двигатель трактора Т-40. Что мы там увидим, да ничего сверхъестественного, все до безобразия просто: отдельный блок с мощным вентилятором, приводимым в движение ременной передачей от шкива коленвала с помощью специально выстроенного пути, во время работы направляет мощный поток воздуха на ребристые гильзы двигателя, ребристыми они сделаны как раз для лучшей теплоотдачи. Так же на пути того же воздушного потока установлен масляный радиатор для охлаждения масла. Такой способ называется принудительным воздушным, но как и везде тут есть свои недостатки: охлаждение лишь направленным потоком воздуха не может обеспечить постоянную температуру и она будет скакать то вверх то вниз, что не очень хорошо. Поэтому чтобы избежать клина двигателя при кратковременных перегревах на двигателях с принудительным воздушным охлаждением при конструировании были предусмотрены увеличенные тепловые зазоры между поршнем и гильзой, а также увеличенные тепловые зазоры поршневых колец.

Схема устройства воздушной системы охлаждения двигателя.

  Еще в качестве примера двигатели с воздушным охлаждением в большом количестве применяются на мотоциклах, думаю многие смотря на мотоциклетный мотор вряд ли задумывались о системе его охлаждения. Там также применяется как принудительное воздушное охлаждение так и свободное. То есть двигатель ничем не охлаждается а тупо отдает свое тепло в атмосферу, а при движении охлаждается лишь встречным потоком воздуха. Представьте себе попасть на моторе с таким двиглом в пробку, его придется постоянно глушить чтобы он остыл, потом завести проехать пять метров и снова глушить чтоб не грелся во время ожидания. Большинство мотоциклетных моторов, как оппозитных так и простых, выполнены во многом из алюминия, во первых потому что он легкий, а во вторых обладает хорошей теплоотдачей. Сейчас же на современные мото-моторы инженеры стараются устанавливать именно жидкостную систему охлаждения, так как она более стабильна и менее подвержена риску перегрева. К слову, то что сейчас устанавливают на гоночные мотоциклы в качестве двигателя, вполне можно было бы установить в какой нибудь жигулятор, вместо родного мотора.

  Теперь рассмотрим жидкостную систему охлаждения двигателя на самом простом примере. Итак, основные составляющие жидкостной системы охлаждения:

  • Радиатор - основной резервуар ОЖ системы охлаждения.
  • Рубашка системы охлаждения двигателя - полости в блоке и ГБЦ двигателя, которые заполнены охлаждающей жидкостью.
  • Термостат - небольшая деталька, необходимая для регулирования постоянной рабочей температуры двигателя.
  • Помпа - или насос системы водяного охлаждения, необходима для обеспечения циркуляции ОЖ между радиатором и водяной рубашкой.
  • Датчик температуры ОЖ - и так понятно.
  • Система патрубков и шлангов - необходима для соединения радиатора и водяной рубашки блока двигателя.
  • Расширительный бачок - нужен для устранения потерь ОЖ при её расширении или закипании.

  А сейчас попробуем понять как это всё работает. Основная часть охлаждающей жидкости находится в радиаторе, водяной рубашке и системе патрубков. Вся система охлаждения выстроена как замкнутый круг с помощью каналов в блоке и ГБЦ и соединено это все с радиатором. Водяная помпа, установленная на определенном отрезке круга охлаждения обеспечивает циркуляцию жидкости при работе двигателя. Помпа приводится в движение от коленвала, ременным или шестеренчатым приводом, и скорость вращения вала помпы напрямую зависит от оборотов коленвала двигателя. То есть, чем больше обороты двигателя, тем больше он нуждается в охлаждении, следовательно и помпа вращается быстрее, прогоняя и остужая большие объёмы охлаждающей жидкости нежели при спокойной работе двигателя.

Схема устройства системы охлаждения двигателя.  Жидкостная система охлаждения разделена на малый круг охлаждения и полный цикл. Нужно это для обеспечения более быстрого прогрева двигателя и поддержания рабочей температуры двигателя в холодные времена года. Малый круг обеспечивает охлаждение двигателя минуя радиатор. Достигается это благодаря использованию термостата, помогает быстрее прогреть двигатель. После того как двигатель прогрет, термостат открывается и охлаждение происходит уже по полному циклу, то есть охлаждающая жидкость уже проходит через радиатор.

  Профилактика и ремонт системы охлаждения двигателя. Здесь в принципе ничего сложного нет, нужно следить чтобы нигде ни чего не протекало и не мокрело, также следите за уровнем ОЖ в радиаторе и за её цветом. Допустим у вас залит красный антифриз, если вы вдруг заметили что он уже не красный а допустим оранжевый, это верный признак того, что он нуждается в замене. Помните что тосол и антифриз тоже не вечные, и нуждаются в замене хотя бы раз в два года. Но будьте внимательны, последнее время на ремонт попадают моторы, система охлаждения которых как будто работала на кислоте, алюминиевые детали сожраны изнутри, на чугуне огромные раковины, было несколько случаев когда в негодность приходил блок, я уверен что все это благодаря самопальному тосолу и антифризу, раньше, когда двигатели охлаждались обычной водой такого не было.

yamotorist.ru

Система охлаждения в двигателях

Строительные машины и оборудование, справочник

Категория:

   Эксплуатация экскаваторов

Система охлаждения в двигателях

Система охлаждения в двигателях внутреннего сгорания предназначена для отвода тепла от узлов и деталей, нагреваемых горячими газами. Средняя температура газов внутри цилиндров обычно составляет 800—900°. При плохом охлаждении двигатель может быстро выйти из строя в результате перегрева цилиндров, поршней и клапанов. Особую опасность представляют выгорание смазки и заклинивание поршней в цилиндрах вследствие большого изменения их размеров.

Охлаждение двигателя не должно быть и чрезмерным, так как теряется полезное тепло и топливо плохо испаряется, трудно воспламеняется, медленно горит, вследствие чего мощность двигателя значительно снижается.

Применяют два способа охлаждения двигателей: жидкостное и воздушное. При жидкостном охлаждении тепло от стенок цилиндра передается жидкости (раствору или воде), которая отдает его воз-духу, а при воздушном охлаждении тепло от стенок цилиндра передается непосредственно воздуху.

Жидкостный способ охлаждения заключается в следующем. Жидкость, заполняющая рубашку блок-картера и головки цилиндров, омывает стенки цилиндров и камер сгорания и отнимает от них тепло. Нагретая жидкость поступает в специальный охладитель (радиатор), где отдает тепло воздуху, а после охлаждения в радиаторе вновь поступает в рубашку блок-картера. Таким образом, в системе охлаждения непрерывно циркулирует жидкость, температура которой при работающем двигателе должна быть в пределах 80—90°.

Рис. 108. Жидкостные системы охлаждения:а — термосифонная, б — принудительная; 1 — сердцевина радиатора, 2 — вентилятор, 3 — шторка, 4 — верхний бак радиатора, 5 — крышка заливной горловины, 6 — пароотводная трубка, 7 — верхний патрубок, 8 — рубашка головки цилиндров, 9 — рубашка блок-карте-ра, 10 — нижний патрубок, 11 — нижний бак радиатора, 12 — пробка сливного отверстия, 13 — паровоздушный клапан, 14 — термостат, 15 — термометр, 16 — водораспределительная труба, 17 — центробежный насос, 18 — водоотводная трубка

В зависимости от способа циркуляции различают две системы охлаждения: термосифонную и принудительную.

Втермосифонной системе охлаждения (рцс. 108, а) циркуляция осуществляется вследствие разности удельного веса холодной и горячей жидкости. При нагревании в рубашке двигателя плотность жидкости уменьшается и она по патрубку поднимается в верхний бак радиатора. В сердцевине радиатора жидкость охлаждается, плотность ее повышается и по патрубку она поступает в рубашку, вытесняя жидкость с меньшей плотностью.

Для повышения интенсивности охлаждения позади радиатора установлен вентилятор.

Преимущества термосифонной системы охлаждения следующие: простота устройства; незначительная интенсивность циркуляции жидкости при пуске и прогреве двигателя; саморегулирование интенсивности охлаждения в зависимости от нагрузки двигателя (при повышении нагрузки увеличивается нагрев жидкости, следовательно, ускоряется ее циркуляция).

Недостатком этой системы является медленная циркуляция воды, что вызывает необходимость увеличения емкости системь и веса двигателя. Недостаточная интенсивность циркуляции повышает испарение жидкости из системы, требует частой проверки уровня жидкости и пополнения системы.

В принудительной системе охлаждения (рис. 108, б) циркуляция создается насосом, который нагнетает жидкость в рубашку блок-картера цилиндров, откуда нагретая жидкость вытесняется в радиатор. После охлаждения в радиаторе она снова поступает к насосу. Разность температур нагретой и охлажденной жидкости не превышает 5—10°.

Интенсивность циркуляции жидкости и воздушного потока, создаваемого вентилятором, зависит главным образом от числа оборотов двигателя. Чтобы при понижении температуры окружающего воздуха и уменьшении нагрузки двигатель не переохлаждался, применяют различные устройства, регулирующие тепловой режим двигателя: термостаты, шторки и жалюзи радиатора.

Нагретые части камер сгорания и цилиндров усиленно охлаждают за счет подачи жидкости в водораспределительную труб, проходящую вдоль верхней части блока. В трубе сделаны отверстия для подачи жидкости в первую очередь к наиболее горячим частям блока цилиндров. Для этой же цели в головках цилиндров дизеля Д-108 установлены водораспределительные насадки-отражатели.

Если система охлаждения разобщается с атмосферой специальным паровоздушным клапаном, то ее называют закрытой. Такая система работает при давлении несколько выше атмосферного, и температура кипения жидкости в ней соответственно повышается. Поэтому в закрытой системе охлаждения испарение жидкости, а значит, и расход ее уменьшаются. Закрытая система охлаждения применяется на дизелях Д-108 и Д-48.

В воздушной системе охлаждения тепло от деталей двигателя отводят, обдувая их воздухом. Для увеличения поверхности охлаждения цилиндры и головки цилиндров двигателя делают с ребрами. В этих двигателях применяют принудительный обдув деталей воздухом вентилятором. От вентилятора воздушный поток поступает к охлаждаемым поверхностям через кожух (дефлектор), который направляет воздушный поток так, чтобы равномерно охлаждать нагретые детали.

Воздушная система охлаждения двигателя по сравнению с принудительной системой жидкостного охлаждения надежнее, проще и дешевле. Вес и габариты двигателя меньше.

К недостаткам воздушной системы охлаждения относятся неравномерное охлаждение деталей двигателя; потеря значительной части мощности (до 10%) на привод вентилятора; сравнительно высокая температура воздуха, идущего от двигателя.

Жидкостная система охлаждения включает радиатор, паровоздушные клапаны, термостат, водяной насос, вентилятор, термометр и трубы.

Радиатор (рис. 109) жидкостной системы служит для охлаждения нагретой жидкости путем отдачи тепла через стенки трубок окружающему воздуху. Он состоит из верхнего бака нижнего бака, сердцевины и деталей крепления. Сердцевины радиатора могут быть трубчатые или пластинчатые. На большинстве дизелей применяют трубчатые сердцевины, которые состоят из нескольких рядов вертикальных овальных (плоских) или круглых латунных трубок.

Рис. 109. Радиатор:а — общий вид, б —трубчатая сердцевина, в — пластинчатая сердцевина: 1 — верхний бак, 2 — крышка, 3 — сердцевина, 4 — краник, 5, 7 — патрубки, 6 — нижний бак, в —трубки, 9 — пластины

Для увеличения поверхности охлаждения трубок и повышения их жесткости на трубки надеты и припаяны к ним тонкие латунные пластины. У некоторых дизелей концы трубок у сердцевин немного выступают над крайними пластинами, так называемыми трубными досками, которые сделаны из более толстого, чем пластины листового металла.

Верхний и нижний баки крепят при помощи болтов к трубным доскам. В дизеле Д-108 сердцевину вместе с баками устанавливают на раму радиатора.

Интенсивность обдува регулируют при помощи шторки (дизели Д-20 и Д-108) или жалюзи (дизель Д-48).

Паровоздушный клапан (рис. 110) служит для отвода паров жидкости при закипании ее в радиаторе и для соединения радиатора с атмосферой при появлении в нем разряжения. У дизеля Д-108 паровоздушный клапан помещен в отдельном корпусе, который привернут к фланцу верхнего бака радиатора. У остальных двигателей он установлен в корпусе крышки горловины радиатора.

Паровой клапак дизеля Д-108, прижимаемый пружиной , открывается при повышении давления в радиаторе свыше 1,2— 1,3 кГ/см2. При этом пары выходят по трубке через отверстие.

Воздушный клапан, также находящийся под воздействием пружины, открывается при понижении давления в радиаторе ниже 0, 96—0,99 кГ/см2. Воздух через отверстие и трубку покупает из атмосферы в радиатор, давление в котором выравнивается до нормального.

Рис. 110. Паровоздушные клапаны:а — воздушный клапан дизеля Д-108, б — паровоздушный клапан дизеля Д-48; 1 — пружина парового клапана, 2 — отверстие для наружной паровоздушной трубки, 3 — воздушный клапан, 4 — внутренняя паровоздушная трубка, 5 — паровой клапан, 6 — фланец верхнего бака радиатора, 7 — верхний бак, 8 — корпус, 9— пароотводная трубка, 10 — паровой клапан, 11 — пружина парового клапана, 12 — запорная пружина, 13 — корпус крышки, 14 — горловина радиатора, 15, 16 — резиновые прокладки. 17 — пружина воздушного клапана, 18 — седло воздушного клапанц

Принцип работы паровоздушного клапана дизеля Д-48 одинаков с описанным.

Термостат служит для ускорения прогрева жидкости при запуске двигателя и автоматического поддержания ее температуры з определенных пределах.

На дизеле Д-108 установлено два одноклапанных термостата (рис. 111), а на дизеле Д-48 — по одному термостату с двумя клапанами.

Пружинная коробка припаяна к донышку обоймы и к крышке, к которой прикреплен стержень клапана. Отверстие служит для выхода воздуха из системы охлаждения при заполнении ее жидкостью. Внутреннее пространство коробки через отверстие в стержне клапана заполняют смесью из этилового спирта и дистиллированной воды. Отверстие в стержне закрывают пробкой. Действие термостата основано на свойстве спирта при повышении температуры переходить в насыщенные пары и изменять давление.

Если температура жидкости в системе охлаждения ниже 70°, то клапан закрыт. Жидкость при этом не циркулирует через радиатор и быстро нагревается в рубашке блока и головке. С повышением температуры от 70 до 85° давление паров внутри коробки возрастает, коробка растягивается и клапан 5 постепенно открывается. Через образовавшуюся щель между тарелкой клапана и седлом фланца жидкость поступает в радиатор, где и охлаждается. При понижении температуры охлаждающей жидкости действие повторяется в обратном порядке.

Насосы центробежного типа с относительно высокой производительностью при небольших габаритах устанавливают в системах с принудительным охлаждением.

Центробежный насос (рис. 112) состоит из корпуса , крыльчатки, закрепленной на валу, и уплотнительного устройства. Вал получает вращение от дизеля.

Жидкость по патрубку поступает внутрь корпуса , к центру крыльчатки. При вращении крыльчатки жидкость отбрасывается Центробежной силой к стенкам корпуса, откуда вытесняется в водяную рубашку двигателя через отводящий патрубок, расположенный касательно к корпусу.

У насоса двигателя Д-108 корпус крепят болтами к кронштейну, который вместе с фланцем прикреплен к кожуху распределительных шестерен. В корпусе вращается пятило-пастная чугунная крыльчатка, укрепленная на валу. В крыльчатке сделано пять разгрузочных отверстий, уменьшающих давление жидкости в полости перед втулкой. К фланцу корпуса насоса присоединяют трубу, подводящую жидкость из радиатора; к фланцу — перепускную трубу, подводящую жидкость из корпуса термостатов; к фланцу — трубу, отводящую, жидкость из насоса.

Рис. 111. Термостат дизеля Д-108:1 — пружинная коробка, 2 — обойма, 3 — фланец, 4 — стержень, 5 — клапан, 6 — отверстие

Вал вращается на, двух бронзовых втулках. Втулку смазывают маслом, поступающим через отверстие во фланце, а втулку — графитовой набивкой, заложенной в канавки на внутренней поверхности втулки. Чтобы предотвратить вытекание масла в зазор между валиком и втулкой, во фланце установлен самоподжимной сальник.

На переднем конце валика укреплена приводная шестерня насоса. Она приводится во вращение от большой промежуточной распределительной шестерни. Чтобы жидкость не подтекала, на конец кронштейна навернута гайка с набивкой. Набивка представляет собой три витка асбестового шнура, пропитанного смесью масла и графита. Подтягивая гайку сальника, можно плотно прижимать набивку к валику.

Производительность насоса при температуре выходящей жидкости 90° и при 1050 об/мин коленчатого вала двигателя равна 12 800 л/ч.

Водяной насос дизеля Д-48 объединен в один агрегат с вентилятором (рис. 113).

Рис. 112. Водяной насос двигателя Д-108:а — схема работы центробежного насоса, б — насос в разрезе, в — детали насоса; 1 — корпус, 2 — крыльчатка, 3 — вал, 4— подводящий патрубок, 5 — отводящий патрубок. 6 — шестерня привода, 7 — передняя втулка, 8 — упорный диск, 9 — фланец кронштейна, 10 — самоподвижной сальник, 11 — сальниковая набивка, 12 — гайка сальника, 13 — задняя втулка, 14 — кронштейн, 15, 17, 18 — фланцы корпуса, 16 — отверстие во фланце кронштейна

Зал насоса вращается в гпех бронзовых втулках запрессованных в корпус насоса. Задняя втулка на одном конце имеет буртик, который входит в прорезь корпуса На другом конце втулки сделана резьба, на которую навертывают гайку сальника.

На задний конец вала насажена крыльчатка, закрепленная на нем коническим штифтом. На переднем конце вала установлен поводок, закрепленный на валу штифтом. Вал насоса приводится во вращение от этого поводка. Он входит в литой паз с внутренней стороны крышки шкива вентилятора, а зазор между крыльчаткой и корпусом насоса должен быть в пределах 0,4—1 мм. Если зазор больше 1 мм, то под крышку надо установить дополнительную прокладку, а если меньше 0,4 мм, то снять одну прокладку.

Крышка прикреплена к шкиву винтами с потайными головками. С крышкой соединена болтами крыльчатка вентилятора.

Рис. 113. Водяной насос и вентилятор дизеля Д-48:1 — крыльчатка вентилятора, 2 — винт, 3 — болт, 4 — поводок вала насоса, 5 — штифт, б — гайка корпуса, 7 — распорная втулка, 8, 22 — шарикоподшипники, 9 — крышка шкива, 10 — пробка, 11 — шкив вентилятора, 12 — втулка, 13 — уплотнение, 14 — задняя опорная втулка, 15 — крыльчатка насоса, 16 — вал насоса, 17 — прокладка, 18 — корпус насоса, 19 — гайка сальника, 20 — сальник, 21 — патрубок, 23 — ремень вентилятора

Шкив вентилятора установлен на двух шарикоподшипниках, расположенных на цилиндрическом конце корпуса насоса и зажатых гайкой и распорной втулкой. Шкив вращается от шкива коленчатого вала через клиновидный ремень. Шарикоподшипники и передние бронзовые втулки вала насоса смазывают дизельным маслом, заливаемым через отверстие в шкиве, закрытое пробкой.

Вода (или другая жидкость) попадает в насос через патрубок, прикрепленный к корпусу двумя болтами. По каналу‘в корпусе вода поступает к крыльчатке насоса. Лопасти вращающейся крыльчатки увлекают за собой воду и под действием центробежной силы выбрасывают ее наружу. Через прямоугольное отверстие в стенке блока цилиндров вода поступает в продольный канал. В верхней части водяной насос резиновым патрубком соединен с корпусом термостата.

Система охлаждения дизеля Д-48 показана на рис. 114. В зависимости от этапа работы дизеля и температуры охлаждающей воды (или другой жидкости) ее циркуляция в системе охлаждения происходит различными путями.

В период работы пускового двигателя, до начала вращения коленчатого вала дизеля, происходит термосифонная циркуляция воды. Вода, нагреваемая в рубашке пускового двигателя, поднимается в головку и оттуда по трубопроводу поступает к боковой коробке верхней половины корпуса термостата.

Далее по обходному каналу вода протекает в нижнюю половину корпуса термостата и затем в головку блоков цилиндров дизеля. Отсюда вода опять попадает в рубашку пускового двигателя.

Рис. 114. Система охлаждения дизеля Д-48:1 — отводящий трубопровод пускового двигателя, 2 — рубашка охлаждения пускового двигателя, 3 — сливной кран блока цилиндров, 4 — рубашка охлаждения блока цилиндров, 5 — водяной насос, 6 — водоподводящий патрубок к водяному насосу, 7 — сливной кран радиатора, 5 — приводной ремень вентилятора, 9 —перепускной патрубок, 10 — вентилятор, 11 — жалюзи радиатора, 12 — радиатор, 13 — крышка заливной горловины с паровоздушным клапаном, 14 — пароотводная трубка, 15 — термостату 16 — термометр, 17 — рубашка охлаждения головки блока

Проходя через головку цилиндров, вода отдает тепло ее схенкам, облегчая этим пуск дизеля.

При прокручивании пусковым двигателем коленчатого вала дизеля, а также во время его работы, когда температура воды ниже 70°, она циркулирует по всей системе, исключая радиатор.

Насос нагнетает воду в продольный канал блока цилиндров и затем в рубашки цилиндров и головки дизеля. Из головки часть воды поступает в рубашку пускового двигателя и оттуда по трубопроводу в верхнюю половину термостата. Другая часть воды из головки цилиндров дизеля попадает в нижнюю половину термостата. В нижней половине термостата оба потока воды соединяются и, омывая пружинную коробку, поступают к клапанам термостата.

При температуре ниже 70° основной клапан термостата закрыт, а вода через открытые вспомогательным клапаном боковые окна по обходному каналу снова подается к насосу. Такая циркуляция ускоряет прогрев дизеля.

Когда температура воды в системе превышает 70°, основной клапан начинает открываться и вода будет поступать как к насосу, так и к радиатору.

При установившемся тепловом режиме дизеля, когда температура воды поднимется выше 83°, основной клапан термостата открывается полностью и весь поток горячей воды направляется в верхний бак радиатора. Опускаясь по трубкам радиатора из верхнего бака в нижний, вода охлаждается. Вентилятор, отсасывая нагретый воздух от радиатора, способствует более интенсивному охлаждению воды.

Для отвода паров воды при ее закипании в радиаторе смонтированы паровой клапан, изготовленный заодно с заливной горловиной, и пароотводная трубка.

Температуру воды контролируют по дистанционному термометру, датчик которого установлен в патрубке верхнего бака радиатора. Воду сливают из системы через краны.

Система охлаждения дизеля Д-108 в основном такая же, как и система охлаждения дизеля Д-48.

В системе охлаждения дизеля У2Д6 (рис. 115) вместо термостатов предусмотрены краны. Открывая кран и закрывая кран, из системы выключают радиатор. Вода, нагнетаемая насосом, Циркулирует внутри двигателя и по перепускной трубе, на которой Установлен кран.

Рис. 115. Система охлаждения дизеля У2Д6:1, 2 — краны, 3 — радиатор, 4 — водяной насос

Читать далее: Система смазки двигателя экскаватора

Категория: - Эксплуатация экскаваторов

Главная → Справочник → Статьи → Форум

stroy-technics.ru

Система охлаждения двигателей: общие сведения

Система охлаждения двигателя представляет собой комплекс устройств, предназначенный для принудительного регулируемого отвода тепла от деталей двигателя и передачи в окружающую среду.

Обязательный нормированный отвод тепла от поршневых двига­телей обусловлен необходимостью поддержания определенного тем­пературного состояния их деталей при различных режимах и усло­виях работы. Известно, что в процессе сгорания рабочей смеси температура в цилиндрах двигателя повышается до 1700—2500°С, и хотя к концу процесса (такта) выпуска она резко снижается но все-таки остается достаточно высокой и составляет около 700÷900°С. В результате этого детали двигателя сильно нагреваются и не успевают охладиться за время впуска в цилиндры относительно холодного свежего заряда. Неизбежное при этом рассеивание тепла в окружающую среду и отвод тепла в смазочное масло не обеспечи­вают понижения температуры деталей до желаемого уровня. А пере­грев любого двигателя в лучшем случае приводит к снижению весо­вого наполнения цилиндров и сопровождается понижением мощностных и экономических показателей. В карбюраторных двигате­лях это влечет за собой повышение требований к октановому числу топлива.

Переохлаждение двигателя тоже нежелательно, поскольку рез­ко увеличивается при этом износ цилиндров и поршневых колец, заметно повышается и вязкость масла, вследствие чего возрастают механические потери в двигателе и ухудшается его экономичность. Поэтому возникает необходимость в регулируемом принудительном отводе тепла.

Принудительный отвод тепла осуществляют с помощью жид­кости или воздуха, в связи с чем различают двигатели жидкостного и воздушного охлаждения.

При использовании жидкого теплоносителя тепло отводится нагревом проточной жидкости; жидкостью, циркулирующей в замк­нутой системе, и путем испарения охлаждающей жидкости.

В проточных системах охлаждения жидкость после нагрева вбрасывается из системы наружу. Поэтому такие системы применяются только в случаях, когда охлаждение осуществляется водой естественных водоемов. Проточные системы отличаются большой простотой, но эффективность их зависит от качества воды и ее температуры в водоеме, изменяющейся по временам года. Проточные системы широко применяют в навесных лодочных и в некоторых судовых и стационарных двигателях.

Испарительные системы охлаждения обеспечивают отвод тепла засчет испарения жидкости, омывающей горячие детали двигателя, иконденсации ее паровв холодильнике системы. Испарительные системы отличаются высокой эффективностью, имеют относительно небольшую емкость, но в силу своих специфических особенностей применяются только в стационарных двигателях.

В автомобильных двигателях применяются циркуляционные жидкостные системы и воздушные системы охлаждения.

В циркуляционных системах жидкостного охлаждения тепло от горячих стенок цилиндров и их головок передается в охлаждаю­щую жидкость, которая, циркулируя в системе, переносит тепло в специальный теплообменник-радиатор, откуда оно частично рассеивается в окружающую среду (рис. 1).

Рис. 1 – Схема жидкостных систем охлаждения:

а) термосифонная система; б) с принудительной циркуляцией жидкости; в) смешанная, или комбинированная система

В системе воздушного охлаждения (рис. 2, а) теплоотвод от стенок камеры сгорания и цилиндров осуществляется непосредственно потоком воздуха без промежуточного агента, каковым служит жидкость в системе жидкостного охлаждения.

Рис. 2 - Схема воздушной системы охлаждения:

а)  автомобильного  двигателя;   б)   мотоциклетного  двигателя

К основным преимуществам жидкостной системы охлаждения относятся: меньшая средняя температура деталей, благодаря чему улучшается весовое наполнение цилиндров, а в карбюраторных двигателях снижаются еще и требования к октановому числу топ­лива; меньший шум при работе двигателя, так как стенки цилиндров окружены рубашкой охлаждения; уменьшение длины двигателя за счет применения блочной конструкции; более легкий пуск дви­гателя в условиях низких температур и простота использования горячей жидкости для отопления кабины или кузова автомобиля, атакже для подогрева горючей смеси.

Недостатки жидкостных систем: возможность подтекания жид­кости, опасность замерзания системы в зимнее время при исполь­зовании для охлаждения воды и большая вероятность переохлажде­ния двигателя.

Преимущества воздушного охлаждения следующие: уменьшение времени прогрева двигателя; стабильность теплоотвода от стенок камеры сгорания и цилиндра; большая надежность системы вслед­ствие отсутствия подтекания и других неполадок, вызываемых наличием в системе жидкости; меньшая вероятность переохлажде­ния цилиндров; более удобная эксплуатация двигателя в зонах, удаленных от источников воды.

Недостатками систем воздушного охлаждения можно считать: увеличение габаритов двигателя; повышенный шум его работы; усложнение производства и необходимость применения более каче­ственных материалов для деталей; повышенные требования к смазочным маслам и топливу.

Большинство автомобильных двигателей снабжаются жидкост­ными системами охлаждения. Воздушное охлаждение широко используется для двигателей мотоциклетного типа (рис. 2, б) и находит ограниченное применение в автомобильных двига­телях.

Практикой установлено, что независимо от способа охлаждения двигателя для поддержания его нормального теплового состояния в окружающую среду дожно рассеиваться до 35% тепла от тепла, получаемого в результате сжигания топлива в цилиндрах, причем в карбюраторных двигателях доля отводимого тепла всегда состав­ляет большую величину, чем в дизелях.

 

 

Источник: Райков И.Я., Рытвинский Г.Н. Двигатели внутреннего сгорания, 1971 г.

Newer news items:

Older news items:

azbukadvs.ru

СУДОРЕМОНТ ОТ А ДО Я.: Система охлаждения ДВС.

Система охлаждения предназначена для отвода тепла от деталей двигателя, подверженных нагреву горячими газами и для поддержания допустимых температур, определяемых жаропрочностью материалов, термостабильностью масла и оптимальными условиями протекания рабочего процесса. В зависимости от конструкции ДВС количество тепла, отводимого в охлаждающую жидкость, составляет 15—35 % тепла, выделяемого при сгорании топлива в цилиндрах. В качестве охлаждающей жидкости используется пресная и забортная вода, масло и дизельное топливо. Для судовых ДВС используются проточная и замкнутая системы охлаждения. При проточной системе охлаждение двигателя осуществляется забортной водой, прокачиваемой насосом. Система забортной воды включает следующие основные элементы: кингстонные ящики с кингстонами, фильтры, насосы, трубопроводы, арматуру и приборы управления, сигнализации и контроля. Согласно Правилам Регистра СССР система должна иметь один днищевой и один—два бортовых кингстона. Система забортной воды может иметь два насоса, один из которых является резервным одновременно для пресной и забортной воды. Аварийное охлаждение двигателей может обеспечиваться от насосов холодильной установки или пожарной системы судна. Проточная система охлаждения проста по конструкции, требует небольшого количества насосов, но двигатель охлаждается относительно холодной забортной водой (не более 50—55 С). Выше температуру поддерживать нельзя, так как уже при 45 С начинается интенсивное отложение солей на поверхности охлаждения. Кроме того, все полости системы, в которых протекает охлаждающая забортная вода, сильно загрязняются шламом. Отложения солей и шлама значительно ухудшают теплопередачу и нарушают нормальное охлаждение двигателя. Омываемые поверхности подвергаются значительной коррозии. Современные судовые ДВС имеют, как правило, замкнутую (двухконтурную) систему охлаждения, при которой в двигателе циркулирует пресная забортная вода, охлаждаемая в специальных водяных холодильниках. Водяные холодильники прокачиваются забортной водой. Одним из основных преимуществ этой системы является возможность поддержания охлаждаемых полостей в более чистом состоянии, так как система заполнена пресной или специально очищенной водой. Это в свою очередь позволяет легко поддерживать наивыгоднейшую температуру охлаждающей воды в зависимости от режима работы двигателя. Температура пресной воды, выходящей из двигателя, поддерживается следующая: для тихоходных ДВС 65—70 С, для быстроходных — 80—90 С. Замкнутая система охлаждения является более сложной, чем проточная и требует повышенного расхода энергии на работу насосов. Для защиты поверхностей втулок и блоков со стороны охлаждения от коррозионно-кавитационного разрушения и образования накипи применяют антикоррозионные эмульсионные масла ВНИИНП—117/119, «Шелл Дромус ойл В» и другие. Эти масла имеют практически одинаковые физико-химические свойства и методику применения. Они нетоксичны и хранятся в металлической таре при температуре не ниже минус 30 С. Антикоррозионные масла образуют с пресной водой стойкую непрозрачную эмульсию молочного цвета. Стойкость эмульсии зависит и от жесткости воды. Тонкая пленка антикоррозионного масла, покрывая поверхность охлаждения ДВС, предохраняет ее от коррозии, кавитационного разрушения и отложения накипи. Для сохранения этой пленки на поверхности охлаждения двигателя необходимо постоянно поддерживать рабочую концентрацию масла в охлаждающей воде около 0,5 % и применять воду определенного качества. Антикоррозионные эмульсионные масла широко применяются в системах охлаждения ДВС, применяемых на промысловых судах. Методы обработки охлаждающей пресной воды приводятся в инструкциях по эксплуатации двигателей. В системах охлаждения используются центробежные насосы с электроприводом. Иногда встречаются поршневые насосы, которые приводятся в действие от самого ДВС. Насосы охлаждения создают давление 0,1—0,3 МПа. Охлаждение современных среднеоборотных ДВС осуществляется в основном при помощи навешенных центробежных насосов забортной и пресной воды. Принципиальная схема замкнутой системы охлаждения двигателя приведена на рисунке: Замкнутый внутренний контур служит для охлаждения двигателя, а проточный внешний — для охлаждения холодильников пресной воды и масла. Циркуляция воды по замкнутому контуру осуществляется при помощи центробежного насоса 8, подающего воду в нагнетательный трубопровод 10, из которого по отдельным патрубкам она подводится к нижней части блока двигателя для охлаждения каждого цилиндра. Из верхней части блока по переливным патрубкам вода поступает в крышки цилиндров, а из них по отводящему трубопроводу направляется в водяной холодильник 4 и далее во всасывающий трубопровод насоса 8. В системе охлаждения ДВС имеется терморегулятор 3 с термобаллоном 2, который автоматически поддерживает необходимую температуру воды за счет перепуска части ее мимо водяного холодильника 4. Первоначальное заполнение водой внутреннего контура производится через расширительный бак 1. Туда же направляется паровоздушная смесь из отводящего трубопровода двигателя. Подача воды во внешний контур осуществляется автономным центробежным электронасосом 7, который забирает воду из кингстона через спаренный сетчатый фильтр 9 с запорными клапанами и подает ее последовательно к масляному 5 и водяному 4 холодильникам. Из водяного холодильника вода сливается за борт. Перед масляным холодильником установлен терморегулятор 6, который в зависимости от температуры масла регулирует количество воды, проходящее через холодильник.Температура и давление воды в системе охлаждения контролируется приборами местного и дистанционного контроля и системой аварийно-предупредительной сигнализации.

sudoremont.blogspot.com

Система охлаждения двигателя

Система охлаждения двигателя служит для отвода тепла от дета­лей, испытывающих действие высоких температур при сгорании топлива в цилиндре или трении.

Без отвода тепла чрезмерно перегретые детали могут быстро выйти из строя. Количество тепла, которое необходимо отводить, определяется путем испытания двигателей различных типов. Можно принять, что удельный съем тепла должен быть:

для тихоходных дизелей в пределах ……………….… 400—600 ккал/л. с. ч.

для быстроходных дизелей...................................... 200—300 ккал/л. с. ч.

По способу отвода тепла системы охлаждения подразделяются на испарительные, воздушные и жидкостные. В испарительной системе охлаждения отвод тепла происходит в результате испарения жидкости, омывающей нагретые детали. При воздушном охлаждении на наружной поверхности цилиндров и крышек расположены ребра, которые охлаждаются потоком воздуха, создаваемым при помощи вентилятора. Для стационарных двигателей преимущественное рас­пространение получило жидкостное охлаждение. Теплоносителем в этом случае чаще всего служит вода. Однако для охлаждения порш­ней часто применяют масло или объединяют систему охлаждения поршней с системой смазки.

Системы водоохлаждения подразделяются на проточные и замк­нутые.

Схема проточного охлаждения

На фиг. 141 представлена схема проточного охлаждения. Вода, забираемая водяным насосом 4 из водоема 1, направляется в напор­ный бак 6, откуда самотеком в нижнюю часть зарубашечного про­странства цилиндров. Затем охлаждающая вода перетекает во внут­реннюю полость цилиндровых крышек, после чего направляется к выхлопному трубопроводу и отводится в слив.

В тех случаях, когда подача охлаждающей воды в двигатель осуществляется непосредственно насосом (напорный бак отсут­ствует), необходимо предусмотреть резервный насос на случай выхода из строя работающего. Так как использованная в двигателе вода выбрасывается, проточное охлаждение требует наличия источника недорогой воды. Во избежание отложения накипи в проточных системах температура охлаждающей воды по выходе из двигателя обычно ограничивается 40 — 50° С. При этом перепад температур вхо­дящей в двигатель и выходящей из него воды желательно б.рать не выше 15 — 20° С. Увеличение этого перепада приводит к неравно­мерности температур охлаждаемых деталей двигателя, а следова­тельно, к увеличению температурных напряжений. Для поддержания нужного перепада температур прибегают к частичному перепуску через вентиль 3 теплой воды во всасывающую магистраль.

Одним из существенных недостатков проточной системы является повышенное загрязнение полостей водяных рубашек цилиндров механическими примесями.

Замкнутая система охлаждения является более современной. В такой системе охлаждающая жидкость многократно возвращается в двигатель, предварительно охладившись в теплообменнике.

Различают термосифонный и насосный способ побуждения к дви­жению охлаждающей жидкости в замкнутой системе.

Термосифонный метод циркуляции жидкости основан на разности плотностей жидкости в полостях, где она нагревается, охлаждая детали, и в теплообменнике, где жидкость охлаждается.

Термосифонная система применима только для ненапряженных двигателей малой мощности, так как в ней слишком малы скорости циркуляции жидкости.

При насосном способе циркуляция охлаждающей жидко­сти производится специальным насосом.

Теплообменники, в зависимости от типа, охлаждаются проточ­ной водой или воздухом. В качестве теплообменников применяются: градирни башенного типа, открытые градирни капельного или брыз­гального типа брызгальные бассейны, естественные водоемы и тепло­обменники трубчатого типа. Последние часто применяются при нали­чии слишком жесткой воды, которую в этом случае используют для охлаждения более мягкой воды, циркулирующей в системе охлаж­дения двигателя.

Схема замкнутой системы охлаждения

На фиг. 142 представлена схема такой замкнутой системы охлаж­дения. Предварительно умягченная вода из напорного бака 2 направ­ляется в двигатели 3. Нагретая вода сливается в бак умягченной воды 6, откуда насосом 7 прогоняется через трубчатый теплообмен­ник 10, где, охладившись, вода вновь направляется в напорный бак 2. Более жесткая вода, омывая трубчатый теплообменник 10 и нагре­ваясь, направляется насосом 8 в градирню 14, где вновь охлаждается. Убыль умягченной воды восполняется из водоумягчителя 5.

При наличии умягченной воды температура воды по выходе из двигателя составляет обычно 75—85° С.

Количество циркулирующей жидкости определяют по формуле

Примерное количество воды, проходящее через систему охлаж­дения, составляет:

для проточной системы охлаждения 25—30 кг!э. л. с. ч.;

для замкнутой системы охлаждения 50—100 кг!э. л. с. ч.

Для замкнутой системы охлаждения, где теплообменником является радиатор, в котором охлаждающая жидкость охлаждается воздухом, количество циркулирующей воды доходит до 80 — 180 кг/э. л. с. ч.

При подсчете мощности, потребляемой насосом, его расчетную производительность Gрасч берут на 15—20% больше, чем Gв. Эта мощность исчисляется по формуле

здесь Нм — необходимый напор, зависящий от сопротивления системы;

?г —гидравлический к. п. д. насоса;

?м —механический к. п. д. насоса.

Необходимый напор Н обычно находится в пределах 5—15 м вод. ст.

Механический к.п.д. ?м можно при ориентировочных расчетах принимать равным единице.

Режим охлаждения в современных установках регулируется по показаниям приборов или автоматически действующими клапа­нами — термостатами, которые поддерживают постоянную темпе­ратуру охлаждающей жидкости, выходящей из двигателя.

vdvizhke.ru


© 2007—2018
423800, Набережные Челны , база Партнер Плюс, тел. 8 800 100-58-94 (звонок бесплатный)