Камаз 44108 тягач В наличии!
Тягач КАМАЗ 44108-6030-24
евро3, новый, дв.КАМАЗ 740.55-300л.с., КПП ZF9, ТНВД ЯЗДА, 6х6, нагрузка на седло 12т, бак 210+350л, МКБ, МОБ
 
карта сервера
«ООО Старт Импэкс» продажа грузовых автомобилей камаз по выгодным ценам
+7 (8552) 31-97-24
+7 (904) 6654712
8 800 1005894
звонок бесплатный

Наши сотрудники:
Виталий
+7 (8552) 31-97-24

[email protected]

 

Екатерина - специалист по продаже а/м КАМАЗ
+7 (904) 6654712

[email protected]

 

Фото техники

20 тонный, 20 кубовый самосвал КАМАЗ 6520-029 в наличии
15-тонный строительный самосвал КАМАЗ 65115 на стоянке. Техника в наличии
Традиционно КАМАЗ побеждает в дакаре

тел.8 800 100 58 94

Техника в наличии

тягач КАМАЗ-44108
Тягач КАМАЗ 44108-6030-24
2014г, 6х6, Евро3, дв.КАМАЗ 300 л.с., КПП ZF9, бак 210л+350л, МКБ,МОБ,рестайлинг.
цена 2 220 000 руб.,
 
КАМАЗ-4308
КАМАЗ 4308-6063-28(R4)
4х2,дв. Cummins ISB6.7e4 245л.с. (Е-4),КПП ZF6S1000, V кузова=39,7куб.м., спальное место, бак 210л, шк-пет,МКБ, ТНВД BOSCH, система нейтрализ. ОГ(AdBlue), тент, каркас, рестайлинг, внутр. размеры платформы 6112х2470х730 мм
цена 1 950 000 руб.,
КАМАЗ-6520
Самосвал КАМАЗ 6520-057
2014г, 6х4,Евро3, дв.КАМАЗ 320 л.с., КПП ZF16, ТНВД ЯЗДА, бак 350л, г/п 20 тонн, V кузова =20 куб.м.,МКБ,МОБ, со спальным местом.
цена 2 700 000 руб.,
 
КАМАЗ-6522
Самосвал 6522-027
2014, 6х6, дв.КАМАЗ 740.51,320 л.с., КПП ZF16,бак 350л, г/п 19 тонн,V кузова 12куб.м.,МКБ,МОБ,задняя разгрузка,обогрев платформы.
цена 3 190 000 руб.,

СУПЕР ЦЕНА

на АВТОМОБИЛИ КАМАЗ
43118-010-10 (дв.740.30-260 л.с.) 2 220 000
43118-6033-24 (дв.740.55-300 л.с.) 2 300 000
65117-029 (дв.740.30-260 л.с.) 2 200 000
65117-6010-62 (дв.740.62-280 л.с.) 2 350 000
44108 (дв.740.30-260 л.с.) 2 160 000
44108-6030-24 (дв.740.55,рест.) 2 200 000
65116-010-62 (дв.740.62-280 л.с.) 1 880 000
6460 (дв.740.50-360 л.с.) 2 180 000
45143-011-15 (дв.740.13-260л.с) 2 180 000
65115 (дв.740.62-280 л.с.,рест.) 2 190 000
65115 (дв.740.62-280 л.с.,3-х стор) 2 295 000
6520 (дв.740.51-320 л.с.) 2 610 000
6520 (дв.740.51-320 л.с.,сп.место) 2 700 000
6522-027 (дв.740.51-320 л.с.,6х6) 3 190 000


Перегон грузовых автомобилей
Перегон грузовых автомобилей
подробнее про услугу перегона можно прочесть здесь.


Самосвал Форд Нужны самосвалы? Обратите внимание на Ford-65513-02.

КАМАЗы в лизинг

ООО «Старт Импэкс» имеет возможность поставки грузовой автотехники КАМАЗ, а так же спецтехники на шасси КАМАЗ в лизинг. Продажа грузовой техники по лизинговым схемам имеет определенные выгоды для покупателя грузовика. Рассрочка платежа, а так же то обстоятельство, что грузовики до полной выплаты лизинговых платежей находятся на балансе лизингодателя, и соответственно покупатель автомобиля не платит налогов на имущество. Мы готовы предложить любые модели бортовых автомобилей, тягачей и самосвалов по самым выгодным лизинговым схемам.

Контактная информация.

г. Набережные Челны, Промкомзона-2, Автодорога №3, база «Партнер плюс».

тел/факс (8552) 388373.
Схема проезда



21. Устройство трехфазного асинхронного двигателя с фазным ротором. Электродвигатели с фазным ротором


Электродвигатель с фазным ротором принцип работы

схема асинхронного двигателя с фазным ротором

Большие пусковые токи двигателей создают скачки напряжения в электросети. Возможность избежать этого переключением асинхронного двигателя со звезды на треугольник я описывал. Есть еще способ снижения пускового тока — асинхронный двигатель с фазным ротором. Преимущества такого способа весьма ощутимы:

  1. пусковой момент почти не снижается;
  2. довольно плавная регулировка скорости вращения ротора;
  3. возможность торможения противотоком (изменение вращения ротора в противоположную сторону — реверс) без последствий для статора;
  4. возможность динамического торможения (об этом читайте ниже).

Из минусов я бы назвал громоздкость электрооборудования и повышенная сложность обслуживания. Схема асинхронного двигателя с фазным ротором значительно сложнее схемы асинхронного двигателя с короткозамкнутым ротором.Асинхронный двигатель с фазным ротором широко применяется в грузоподъемной технике (мостовые, козловые, башенные краны).Обмотки фазного ротора соединены в звезду, и через токосъемные кольца с графитовыми или медно-графитовыми щетками к обмоткам подключаются сопротивления номиналом ниже 1 Ом (десятые и сотые доли). Так как в фазном роторе наводится ток, превосходящий статорный, сопротивления очень большого сечения. Сделанные из нихрома, они собираются секциями в ящике, размером больше самого двигателя. Подключается от 3 до 5 ступеней разгона двигателя.При пуске работает вся батарея сопротивлений. Постепенно закорачивая части сопротивлений силовыми контактами пускателей, командоконтроллеров или контакторов, повышают скорость вращения ротора. В схемах асинхронного двигателя с фазным ротором я преднамеренно исключил многие элементы управления, чтобы не отвлекали от описания работы фазного ротора и сопротивлений.Электродвигатель с фазным ротором принцип работы

На легких мостовых кранах сопротивления переключаются непосредственно силовыми контактами командоконтроллера (Рис.1). Сначала включаются в работу все сопротивления, двигатель работает на малой скорости, затем закорачивается верхняя часть сопротивлений, и поэтапно выводится из работы вся батарея, обеспечивая максимальную скорость вращения ротора. Крановщик может включить самую высокую скорость, мгновенно проходя все ступени разгона.На башенном кране такая вольность чревата. Плавность разгона там регулирует реле времени .Помню, на башенном кране сгорела катушка реле, а начальство требует срочно разгрузить машины на стройке. Пришлось идти на преступление — закорачивать контакты реле времени. Жуткое зрелище, скажу вам, когда под тяжелым грузом дергало и раскачивало башню крана!Электродвигатель с фазным ротором принцип работы
Разберем примерную схему асинхронного двигателя с фазным ротором (Рис.2). Не обращая внимания на статорные цепи, вкратце разберем работу фазного ротора.В нейтральном положении контроллера включено реле времени РУ1, остальные катушки обесточены.На первой ступени пуска контактом контроллера включается контактор подъема или спуска (КМП или КМС), ротор вращается на минимальных оборотах при полном сопротивлении. Замыкается цепь реле РУ2. С задержкой времени включается нормально разомкнутый контакт РУ2, обеспечивая цепь включения контактора КУ1.На второй ступени пуска следующим контактом контроллера включается контактор КУ1, контакты которого выводят часть сопротивлений из работы. Скорость вращения увеличивается. В это время вспомогательный контакт включенного контактора КУ1 разрывает цепь реле времени РУ1. Нормально замкнутый контакт реле РУ1 возвращается с задержкой в исходное положение — цепь катушки КУ2 готова к работе.Третья ступень контроллера включает контактор КУ2, и выходит из работы еще одна часть сопротивлений. Вспомогательный контакт КУ2 отключает катушку реле времени РУ2, нормально разомкнутый контакт РУ2 без помощи контроллера с задержкой включает катушку контактора КУ3. Все сопротивления закорочены, двигатель работает на максимальных оборотах.Режим динамического торможения асинхронного двигателя основан на совместной работе фазного ротора, блока сопротивлений и трехфазного выпрямителя. Разберем саму суть динамического торможения с самовозбуждением. Если разбираться основательно во всех схемах режима, понадобится целая заумная статья, что для начинающего электрика будет сложновато.Торможение асинхронного двигателя с фазным ротором можно осуществить подачей на статор постоянного тока. Если постоянный ток получить через выпрямитель из питающей линии и подать на статор, получится динамическое торможение с подпиткой. Режим с самовозбуждением не использует внешнюю подпитку.Известно, что при снятии напряжения со статора в «железе» остается остаточное магнитное поле. Это явление и используется в нашей простенькой схеме (Рис.3).Электродвигатель с фазным ротором принцип работы
Ротор, вращаясь в остаточном магнитном поле, вырабатывает трехфазный переменный ток, который выпрямляется трехфазным диодным мостом. Полученное таким образом постоянное напряжение через контакты контактора КД подается на обмотки статора.Динамическое торможение эффективно применяется на башенных кранах в режиме опускания груза. Двигатель в этом режиме расторможен, и груз раскручивает лебедку. Ротор вырабатывает переменный ток, который, выпрямляясь диодным мостом, притормаживает двигатель. Если груз ускоряется, ток увеличивается, создавая большее торможение. Груз приостанавливается, ток уменьшается, торможение ослабевает. Получается что-то вроде отрицательной обратной связи (знаете электронику?). Плавность посадки груза самого высокого уровня. Единственное, что плохо, — груз должен быть не легким. Легкий груз может не разогнать лебедку.

Добавить комментарий Отменить ответ

Асинхронные электродвигатели с фазным ротором

В настоящее время, на долю асинхронных двигателей приходится не менее 80% всех электродвигателей, выпускаемых промышленностью. К ним относятся и трехфазные асинхронные двигатели.

Трехфазные асинхронные электродвигатели широко используются в устройствах автоматики и телемеханики, бытовых и медицинских приборах, устройствах звукозаписи и т.п.

Достоинства асинхронных электродвигателей

Широкое распространение трехфазных асинхронных двигателей объясняется простотой их конструкции, надежностью в работе, хорошими эксплуатационными свойствами, невысокой стоимостью и простотой в обслуживании.

Устройство асинхронных электродвигателей с фазным ротором

Электродвигатель с фазным ротором принцип работыОсновными частями любого асинхронного двигателя является неподвижная часть – статор и вращающая часть, называемая ротором.

Статор трехфазного асинхронного двигателя состоит из шихтованного магнитопровода, запрессованного в литую станину. На внутренней поверхности магнитопровода имеются пазы для укладки проводников обмотки. Эти проводники являются сторонами многовитковых мягких катушек, образующих три фазы обмотки статора. Геометрические оси катушек сдвинуты в пространстве друг относительно друга на 120 градусов.

Фазы обмотки можно соединить по схеме »звезда» или «треугольник» в зависимости от напряжения сети. Например, если в паспорте двигателя указаны напряжения 220/380 В, то при напряжении сети 380 В фазы соединяют «звездой». Если же напряжение сети 220 В, то обмотки соединяют в «треугольник». В обоих случаях фазное напряжение двигателя равно 220 В.

Ротор трехфазного асинхронного двигателя представляет собой цилиндр, набранный из штампованных листов электротехнической стали и насаженный на вал. В зависимости от типа обмотки роторы трехфазных асинхронных двигателей делятся на короткозамкнутые и фазные.

Электродвигатель с фазным ротором принцип работы

В асинхронных электродвигателях большей мощности и специальных машинах малой мощности для улучшения пусковых и регулировочных свойств применяются фазные роторы. В этих случаях на роторе укладывается трехфазная обмотка с геометрическими осями фазных катушек (1), сдвинутыми в пространстве друг относительно друга на 120 градусов.

Фазы обмотки соединяются звездой и концы их присоединяются к трем контактным кольцам (3), насаженным на вал (2) и электрически изолированным как от вала, так и друг от друга. С помощью щеток (4), находящихся в скользящем контакте с кольцами (3), имеется возможность включать в цепи фазных обмоток регулировочные реостаты (5).

Электродвигатель с фазным ротором принцип работы

Асинхронный двигатель с фазным ротором имеет лучшие пусковые и регулировочные свойства, однако ему присущи большие масса, размеры и стоимость, чем асинхронному двигателю с короткозамкнутым ротором.

Принцип работы асинхронных электродвигателей

Принцип работы асинхронной машины основан на использовании вращающегося магнитного поля. При подключении к сети трехфазной обмотки статора создается вращающееся магнитное поле. угловая скорость которого определяется частотой сети f и числом пар полюсов обмотки p, т. е. ω1=2πf/p

Пересекая проводники обмотки статора и ротора, это поле индуктирует в обмотках ЭДС (согласно закону электромагнитной индукции). При замкнутой обмотке ротора ее ЭДС наводит в цепи ротора ток. В результате взаимодействия тока с результирующим малнитным полем создается электромагнитный момент. Если этот момент превышает момент сопротивления на валу двигателя, вал начинает вращаться и приводить в движение рабочий механизм. Обычно угловая скорость ротора ω2 не равна угловой скорости магнитного поля ω1, называемой синхронной. Отсюда и название двигателя асинхронный, т. е. несинхронный.

Работа асинхронной машины характеризуется скольжением s, которое представляет собой относительную разность угловых скоростей поля ω1 и ротора ω2: s=(ω1-ω2)/ω1

Электродвигатель с фазным ротором принцип работы

Значение и знак скольжения, зависящие от угловой скорости ротора относительно магнитного поля, определяют режим работы асинхронной машины. Так, в режиме идеального холостого хода ротор и магнитное поле вращаются с одинаковой частотой в одном направлении, скольжение s=0, ротор неподвижен относительно вращающегося магнитного пол, ЭДС в его обмотке не индуктируется, ток ротора и электромагнитный момент машины равны нулю. При пуске ротор в первый момент времени неподвижен: ω2=0, s=1. В общем случае скольжение в двигательном режиме изменяется от s=1 при пуске до s=0 в режиме идеального холостого хода.

При вращении ротора со скоростью ω2>ω1 в направлении вращения магнитного поля скольжение становится отрицательным. Машина переходит в генераторный режим и развивает тормозной момент. При вращении ротора в направлении, противоположном направлению вращения магнитного поли (s>1), асинхронная машина переходит в режим противовключения и также развивает тормозной момент. Таким образом, в зависимости от скольжения различают двигательный (s=1÷0), генераторный (s=0÷-∞) режимы и режим противовключення (s=1÷+∞). Режимы генераторный и противовключения используют для торможения асинхронных двигателей.

Статьи и схемы

Полезное для электрика

[ВИДЕО] Асинхронный двигатель: принцип работы, характеристики

Принцип работы любого асинхронного двигателя основан на физическом взаимодействии магнитного поля, возникающего в статоре, с током, который это же поле наводит в обмотке ротора. Электрическое напряжение прикладывается к обмотке статора, которая выполнена как три группы катушек. Под действием напряжения в обмотке возникает переменный трехфазный ток, который и наводит вращающееся магнитное поле. При пересечении замкнутой обмотки ротора, это поле, в соответствии с законом об электромагнитной индукции, создает в ней ток. Взаимодействие вращающегося магнитного поля (статор) и тока (ротор) создает вращающий электромагнитный момент, который и приводит ротор в движение. Благодаря совокупности моментов, создаваемых отдельными проводниками, возникает результирующий момент, электромагнитная пара сил, заставляющая вращаться ротор в направлении, в котором движется электромагнитное поле в статоре. Ротор и магнитное поле при этом вращаются с различными скоростями, т.е. асинхронно (отсюда и основное название двигателей). У асинхронных двигателей скорость, с которой будет вращаться ротор, всегда будет меньше скорости, с которой вращается магнитное поле в статоре.

С момента начала вращения ротор может выполнить механическую работу – с помощью подсоединенного вала приводить в движение технологическую машину (насос, вентилятор, транспортер и т.д.).

Принцип работы асинхронного двигателя показан на видео.

Асинхронный двигатель с фазным ротором необходим в приводах, которые сразу требуют большого пускового момента – лифты, краны, мельницы и т.д. В таких механизмах необходимее уже при запуске двигателя получить максимальный момент, но при этом ограничив значение пускового тока.

Основные элементы асинхронного двигателя – ротор и статор, разделяемые воздушным зазором. Активные части двигателя – магнитопровод и обмотки, остальные составляющие – конструктивные, призванные обеспечить необходимую жесткость, прочность, возможность вращения и его стабильность, охлаждение и т.д.

Cтатор – неподвижная часть, на внутренней стороне сердечника которого размещаются обмотки. Обмотка статора — это трехфазная (для общего случая — многофазная) обмотка, в которой проводники равномерно распределяются по окружности статора и уложены пофазно в пазах, соблюдая угловое расстояние равное 120 эл.град. Статорные фазы обмотки соединены стандартно – «звезда» или «треугольник» — и подключены к трехфазной сети электротока. В процессе вращения (изменения) магнитного потока в обмотках возбуждения, происходит перемагничивание магнитопровода статора, поэтому он изготовлен шихтованным (набирается из пластин) из особой электротехнической стали – таким способом удается минимизировать магнитные потери.

Рис. 1. Схема асинхронного двигателя

На асинхронный двигатель с фазным ротором установлен ротор, на котором размещают три, как и на статоре, фазные обмотки, соединяемые между собой по схеме «звезда» («треугольник» встречается очень редко). К медным кольцам (их количество равно количеству обмоток), которые закреплены на валу рота и полностью изолированы как сердечника ротора, так и между собой, присоединены концы фазных обмоток. Благодаря этому соединению асинхронный двигатель с фазным ротором имеет и другое название – двигатель с контактными кольцами.

Асинхронные двигатели с фазным ротором: особенности пуска

Асинхронные двигатели сегодня – это доля в 80% от всего количества разнообразных электродвигателей, выпускаемых мировой промышленностью. Все это – благодаря простоте конструкции, в эксплуатации и обслуживании, низкой себестоимости и высокой надежности. Но есть один существенный недостаток – из сети асинхронные двигатели потребляют реактивную составляющую мощности. Поэтому их предельная мощность напрямую зависит от мощности системы энергоснабжения. Кроме того, такой электропривод имеет значения пускового тока, которые в втрое больше рабочих. При малой мощности системы энергоснабжения, это может вызвать значительное падение напряжение в сети и отключение других приборов. Асинхронные двигатели с фазным ротором, благодаря введению в цепь ротора пусковых реостатов, могут запускаться с небольшим пусковым током.

Рис. 2. Асинхронные двигатели

Резисторы, стоящие в цепи ротора, помогают ограничить ток не только в течении запуска, но так же и при торможении, реверсе и при снижении скорости. По мере того, как двигатель набирает скорость – разгоняется, чтобы поддерживать необходимое ускорение, резисторы выводятся. При окончании разгона и выхода на паспортную частоту, все резисторы шунтируются, двигатель переходит на работу со своей естественной механической характеристикой.

Рассмотрим пример запуска асинхронного двигателя с фазным ротором.

Рис. 3. Схема запуска асинхронного двигателя с фазным ротором

Используя схему асинхронного двигателя (рис. ) рассмотрим запуск в две ступени который проводится с использованием релейно-контакторной аппаратуры. Одновременно напряжение подается как на силовые цепи, так и на управляющие – замыкается выключатель QF.

При подаче напряжения реле времени (обозначены КТ1 и КТ2) в цепи управления срабатывают, размыкая свои контакты. После нажатия кнопки запуска (SB1) срабатывает контактор КМ3 и запускается двигатель с резисторами, которые введены в цепь ротора – в этот момент на контакторах КМ1 и КМ2 питания нет. При подключении контактора КМЗ, из-за потери питания, в цепи контактора КМ1 реле КТ1 замыкает контакт через интервал времени, заданный задержкой времени в реле КТ1. По истечению времени (двигатель разгоняется, ток ротора начинает падать) происходит включение контактора КМ1 – происходит шунтирование первой пусковой ступени резисторов. Ток снова возрастает. но по мере разгона его значение начинает уменьшаться. Одновременно с этим в цепи происходит размыкание реле КТ2, оно теряет питание и с выставленной выдержкой происходит замыкание контакта в цепи контактора КМ2. Происходит шунтирование второй ступени резисторов, включенных в цепь ротора. Двигатель работает в штатном режиме.

Благодаря ограничению пускового тока, асинхронный двигатель с фазовым ротором можно устанавливать в слабых сетях.

Порядок подключения асинхронного двигателя приведен на видео.

Асинхронные двигатели с фазным ротором:плюсы и минусы

Как уже указывалось выше, если сравнивать его с двигателем с короткозамкнутым ротором, имеет два основных преимущества:

  • возможность запуска двигателя с уже подключенной к валу значительной нагрузкой – двигатель с самого начала создает большой вращающий момент
  • ограничение по току включения позволяет устанавливать асинхронные двигатели с фазовым ротором в маломощных сетях.

Кроме того, следует отметить и другие достоинства:

  • возможность работы с большой перегрузкой
  • малые колебания скорости вращения – при разных нагрузках скорость вращения остается приблизительно одинаковой
  • возможность установки автоматики – пусковых приспособлений

Отметим и недостатки:

  • введение резисторов в цепь ротора усложняет и удорожает двигатель
  • большие габариты
  • меньший, чем у короткозамкнутых двигателей, показатель КПД и cos φ
  • при недогрузках значение cos φ имеет минимальные значения

На практике асинхронные двигатели с фазным ротором оптимально подходят для случаев, когда нет необходимости в широкой и плавной регулировке скорости и требуется очень большая (особенно на первоначальном этапе) мощность двигателя.

Для правильного подключения асинхронного двигателя важно правильно определить начала и концы фазных обмоток. Как это сделать – подробно рассмотрено на видео.

Источники: http://electriku.ru/rotor, http://electricalschool.info/main/osnovy/259-asinkhronnye-jelektrodvigateli-s-faznym.html, http://44kw.com/blogs/school/2296-video-asinkhronnyi-dvigatel-printsip-raboty-kharakteristiki

electricremont.ru

Электродвигатель с фазным ротором - Всё о электрике в доме

Асинхронные электродвигатели с фазным ротором

В настоящее время, на долю асинхронных двигателей приходится не менее 80% всех электродвигателей, выпускаемых промышленностью. К ним относятся и трехфазные асинхронные двигатели.

Трехфазные асинхронные электродвигатели широко используются в устройствах автоматики и телемеханики, бытовых и медицинских приборах, устройствах звукозаписи и т.п.

Достоинства асинхронных электродвигателей

Широкое распространение трехфазных асинхронных двигателей объясняется простотой их конструкции, надежностью в работе, хорошими эксплуатационными свойствами, невысокой стоимостью и простотой в обслуживании.

Устройство асинхронных электродвигателей с фазным ротором

Электродвигатель с фазным роторомОсновными частями любого асинхронного двигателя является неподвижная часть – статор и вращающая часть, называемая ротором.

Статор трехфазного асинхронного двигателя состоит из шихтованного магнитопровода, запрессованного в литую станину. На внутренней поверхности магнитопровода имеются пазы для укладки проводников обмотки. Эти проводники являются сторонами многовитковых мягких катушек, образующих три фазы обмотки статора. Геометрические оси катушек сдвинуты в пространстве друг относительно друга на 120 градусов.

Фазы обмотки можно соединить по схеме »звезда» или «треугольник» в зависимости от напряжения сети. Например, если в паспорте двигателя указаны напряжения 220/380 В, то при напряжении сети 380 В фазы соединяют «звездой». Если же напряжение сети 220 В, то обмотки соединяют в «треугольник». В обоих случаях фазное напряжение двигателя равно 220 В.

Ротор трехфазного асинхронного двигателя представляет собой цилиндр, набранный из штампованных листов электротехнической стали и насаженный на вал. В зависимости от типа обмотки роторы трехфазных асинхронных двигателей делятся на короткозамкнутые и фазные.

Электродвигатель с фазным ротором

В асинхронных электродвигателях большей мощности и специальных машинах малой мощности для улучшения пусковых и регулировочных свойств применяются фазные роторы. В этих случаях на роторе укладывается трехфазная обмотка с геометрическими осями фазных катушек (1), сдвинутыми в пространстве друг относительно друга на 120 градусов.

Фазы обмотки соединяются звездой и концы их присоединяются к трем контактным кольцам (3), насаженным на вал (2) и электрически изолированным как от вала, так и друг от друга. С помощью щеток (4), находящихся в скользящем контакте с кольцами (3), имеется возможность включать в цепи фазных обмоток регулировочные реостаты (5).

Электродвигатель с фазным ротором

Асинхронный двигатель с фазным ротором имеет лучшие пусковые и регулировочные свойства, однако ему присущи большие масса, размеры и стоимость, чем асинхронному двигателю с короткозамкнутым ротором.

Принцип работы асинхронных электродвигателей

Принцип работы асинхронной машины основан на использовании вращающегося магнитного поля. При подключении к сети трехфазной обмотки статора создается вращающееся магнитное поле. угловая скорость которого определяется частотой сети f и числом пар полюсов обмотки p, т. е. ω1=2πf/p

Пересекая проводники обмотки статора и ротора, это поле индуктирует в обмотках ЭДС (согласно закону электромагнитной индукции). При замкнутой обмотке ротора ее ЭДС наводит в цепи ротора ток. В результате взаимодействия тока с результирующим малнитным полем создается электромагнитный момент. Если этот момент превышает момент сопротивления на валу двигателя, вал начинает вращаться и приводить в движение рабочий механизм. Обычно угловая скорость ротора ω2 не равна угловой скорости магнитного поля ω1, называемой синхронной. Отсюда и название двигателя асинхронный, т. е. несинхронный.

Работа асинхронной машины характеризуется скольжением s, которое представляет собой относительную разность угловых скоростей поля ω1 и ротора ω2: s=(ω1-ω2)/ω1

Электродвигатель с фазным ротором

Значение и знак скольжения, зависящие от угловой скорости ротора относительно магнитного поля, определяют режим работы асинхронной машины. Так, в режиме идеального холостого хода ротор и магнитное поле вращаются с одинаковой частотой в одном направлении, скольжение s=0, ротор неподвижен относительно вращающегося магнитного пол, ЭДС в его обмотке не индуктируется, ток ротора и электромагнитный момент машины равны нулю. При пуске ротор в первый момент времени неподвижен: ω2=0, s=1. В общем случае скольжение в двигательном режиме изменяется от s=1 при пуске до s=0 в режиме идеального холостого хода.

При вращении ротора со скоростью ω2>ω1 в направлении вращения магнитного поля скольжение становится отрицательным. Машина переходит в генераторный режим и развивает тормозной момент. При вращении ротора в направлении, противоположном направлению вращения магнитного поли (s>1), асинхронная машина переходит в режим противовключения и также развивает тормозной момент. Таким образом, в зависимости от скольжения различают двигательный (s=1÷0), генераторный (s=0÷-∞) режимы и режим противовключення (s=1÷+∞). Режимы генераторный и противовключения используют для торможения асинхронных двигателей.

Статьи и схемы

Полезное для электрика

Асинхронный двигатель с фазным ротором

Надёжность электродвигателя это одно из важнейших качеств его. Обычно она связана с простотой конструкции. Чем проще конструкция, тем надёжнее движок. Эта зависимость подтверждается асинхронными электродвигателями. Они получили самое широкое распространение из всех электродвигателей именно по причине простоты устройства и надёжности. В них реализован самый простой способ получения крутящего момента на валу движка. Максимум магнитного поля статора перемещается вокруг вала, вызывая его ответную реакцию.

Причины появления фазного ротора в асинхронном двигателе

Реакция ротора вызвана током, который возникает в нём. Ведь по своей сути статор является первичной обмоткой трансформатора. А ротор – его вторичная обмотка. При неподвижном роторе величина тока в нём максимальна. Это объясняется тем, что скорость перемещения максимума магнитного поля статора относительно вала получается максимальной. Такой режим асинхронного движка аналогичен включению трансформатора с вторичной обмоткой замкнутой накоротко.

А поскольку обмотки взаимосвязаны магнитопроводом, который в асинхронном двигателе разделён на железо вращающейся части его и сердечник статора, в обмотке статора тоже получается максимум величины тока. Если мощность электросети недостаточна для того, чтобы при пуске асинхронных движков поддержать напряжение в пределах необходимого значения, применяются меры по уменьшению пускового тока этих двигателей. Это делается либо при помощи специальных схем, которые позволяют регулировать токи в обмотках статора, либо использованием асинхронных движков специальной конструкции – с фазным ротором.

Как устроен фазный ротор?

Фазный ротор содержит обмотки в виде катушек с витками. Эти катушки соединены по схеме «звезда». Конец каждой обмотки соединён с ответствующим кольцом. При подаче напряжения на статор на каждом кольце появляется напряжение. В скользящем контакте с кольцом находится щётка, которая даёт возможность подключения внешних элементов. Эти элементы являются частью схемы управления. Она получается более простой, по сравнению с теми схемами, которыми движок управляется со стороны статора. Чаще всего схема управления содержит набор резисторов.

Они подключаются по мере разгона вала. Хотя такой способ управления пуском асинхронного двигателя не самый экономичный, он наиболее часто применяется на практике в силу своей простоты и минимума коммутационных помех. Ограничение тока ротора это не только возможность плавного запуска двигателя, но и ограничение скорости вращения вала. Но тогда более рациональным решением будет использование индуктивностей вместо резисторов. Иллюстрации, показывающие особенности конструкции асинхронного движка с фазным ротором показаны далее.

При автоматическом управлении лучше всего применять реле или полупроводниковые коммутаторы, которые параллельно стартовому резистору подключают новые резисторы, постепенно уменьшая их суммарное сопротивление до нуля с шунтированием всех резисторов последним коммутатором или контактами реле. Для наиболее плавного пуска необходимо использовать реостат 1, который на схеме слева включён в электрической цепи ротора и своими ползунками 5 соединён с кольцами 2 через клеммы щёток 3. Движок начинает работать после замыкания контактов рубильника 4. При этом ползунки реостата должны быть установлены в положение «Пуск».

В этом положении сопротивлении реостата максимально. Вал движка начинает вращаться. Перемещение ползунка будет приводить к разгону вала до максимальной скорости, которая появится при нулевом значении сопротивлении реостата. Однако есть ещё одно следствие такой регулировки двигателя с фазным ротором. Меняется связь крутящего момента и скольжения. Этот эффект показан на графике ниже. При определённой величине сопротивления в цепи ротора максимум крутящего момента смещается в сторону более высоких оборотов движка, как на кривой 2. Кривая 1 соответствует нулевому значению сопротивления в цепи фазного ротора.

При нулевом сопротивлении кольца, по сути, замкнуты накоротко. Щётки и кольца из-за трения изнашиваются. А поскольку после завершения разгона вала этот узел фактически не используется его целесообразно исключить из процесса работы. По этой причине в асинхронных двигателях с фазным ротором предусмотрен специальный механизм. Он отодвигает щётки от колец и одновременно замыкает последние накоротко. В результате кольца и щётки работают намного дольше по сравнению с тем вариантом, который предусматривает их непрерывный контакт.

Простота и надёжность асинхронных двигателей основана на конструкции ротора. Но именно это обстоятельство и создаёт проблемы с их эксплуатацией. Большие пусковые токи в некоторых случаях неприемлемы настолько, что оправдывается более сложная и дорогостоящая намоточная конструкция ротора с кольцами и щётками. Тогда и применяются асинхронные двигатели с фазным ротором. Но более сложная конструкция и цена их в сравнении с асинхронными двигателями с короткозамкнутым ротором оправдывается также и тем, что они позволяют получить величину крутящего момента в рабочем режиме при меньших габаритах и массе. Поэтому эти особенности делают асинхронные двигатели с фазным ротором в ряде случаев наиболее предпочтительными.

схема асинхронного двигателя с фазным ротором

Большие пусковые токи двигателей создают скачки напряжения в электросети. Возможность избежать этого переключением асинхронного двигателя со звезды на треугольник я описывал. Есть еще способ снижения пускового тока — асинхронный двигатель с фазным ротором. Преимущества такого способа весьма ощутимы:

  1. пусковой момент почти не снижается;
  2. довольно плавная регулировка скорости вращения ротора;
  3. возможность торможения противотоком (изменение вращения ротора в противоположную сторону — реверс) без последствий для статора;
  4. возможность динамического торможения (об этом читайте ниже).

Из минусов я бы назвал громоздкость электрооборудования и повышенная сложность обслуживания. Схема асинхронного двигателя с фазным ротором значительно сложнее схемы асинхронного двигателя с короткозамкнутым ротором.Асинхронный двигатель с фазным ротором широко применяется в грузоподъемной технике (мостовые, козловые, башенные краны).Обмотки фазного ротора соединены в звезду, и через токосъемные кольца с графитовыми или медно-графитовыми щетками к обмоткам подключаются сопротивления номиналом ниже 1 Ом (десятые и сотые доли). Так как в фазном роторе наводится ток, превосходящий статорный, сопротивления очень большого сечения. Сделанные из нихрома, они собираются секциями в ящике, размером больше самого двигателя. Подключается от 3 до 5 ступеней разгона двигателя.При пуске работает вся батарея сопротивлений. Постепенно закорачивая части сопротивлений силовыми контактами пускателей, командоконтроллеров или контакторов, повышают скорость вращения ротора. В схемах асинхронного двигателя с фазным ротором я преднамеренно исключил многие элементы управления, чтобы не отвлекали от описания работы фазного ротора и сопротивлений.Электродвигатель с фазным роторомНа легких мостовых кранах сопротивления переключаются непосредственно силовыми контактами командоконтроллера (Рис.1). Сначала включаются в работу все сопротивления, двигатель работает на малой скорости, затем закорачивается верхняя часть сопротивлений, и поэтапно выводится из работы вся батарея, обеспечивая максимальную скорость вращения ротора. Крановщик может включить самую высокую скорость, мгновенно проходя все ступени разгона.На башенном кране такая вольность чревата. Плавность разгона там регулирует реле времени .Помню, на башенном кране сгорела катушка реле, а начальство требует срочно разгрузить машины на стройке. Пришлось идти на преступление — закорачивать контакты реле времени. Жуткое зрелище, скажу вам, когда под тяжелым грузом дергало и раскачивало башню крана!Электродвигатель с фазным роторомРазберем примерную схему асинхронного двигателя с фазным ротором (Рис.2). Не обращая внимания на статорные цепи, вкратце разберем работу фазного ротора.В нейтральном положении контроллера включено реле времени РУ1, остальные катушки обесточены.На первой ступени пуска контактом контроллера включается контактор подъема или спуска (КМП или КМС), ротор вращается на минимальных оборотах при полном сопротивлении. Замыкается цепь реле РУ2. С задержкой времени включается нормально разомкнутый контакт РУ2, обеспечивая цепь включения контактора КУ1.На второй ступени пуска следующим контактом контроллера включается контактор КУ1, контакты которого выводят часть сопротивлений из работы. Скорость вращения увеличивается. В это время вспомогательный контакт включенного контактора КУ1 разрывает цепь реле времени РУ1. Нормально замкнутый контакт реле РУ1 возвращается с задержкой в исходное положение — цепь катушки КУ2 готова к работе.Третья ступень контроллера включает контактор КУ2, и выходит из работы еще одна часть сопротивлений. Вспомогательный контакт КУ2 отключает катушку реле времени РУ2, нормально разомкнутый контакт РУ2 без помощи контроллера с задержкой включает катушку контактора КУ3. Все сопротивления закорочены, двигатель работает на максимальных оборотах.Режим динамического торможения асинхронного двигателя основан на совместной работе фазного ротора, блока сопротивлений и трехфазного выпрямителя. Разберем саму суть динамического торможения с самовозбуждением. Если разбираться основательно во всех схемах режима, понадобится целая заумная статья, что для начинающего электрика будет сложновато.Торможение асинхронного двигателя с фазным ротором можно осуществить подачей на статор постоянного тока. Если постоянный ток получить через выпрямитель из питающей линии и подать на статор, получится динамическое торможение с подпиткой. Режим с самовозбуждением не использует внешнюю подпитку.Известно, что при снятии напряжения со статора в «железе» остается остаточное магнитное поле. Это явление и используется в нашей простенькой схеме (Рис.3).Электродвигатель с фазным роторомРотор, вращаясь в остаточном магнитном поле, вырабатывает трехфазный переменный ток, который выпрямляется трехфазным диодным мостом. Полученное таким образом постоянное напряжение через контакты контактора КД подается на обмотки статора.Динамическое торможение эффективно применяется на башенных кранах в режиме опускания груза. Двигатель в этом режиме расторможен, и груз раскручивает лебедку. Ротор вырабатывает переменный ток, который, выпрямляясь диодным мостом, притормаживает двигатель. Если груз ускоряется, ток увеличивается, создавая большее торможение. Груз приостанавливается, ток уменьшается, торможение ослабевает. Получается что-то вроде отрицательной обратной связи (знаете электронику?). Плавность посадки груза самого высокого уровня. Единственное, что плохо, — груз должен быть не легким. Легкий груз может не разогнать лебедку.

Добавить комментарий Отменить ответ

Источники: http://electricalschool.info/main/osnovy/259-asinkhronnye-jelektrodvigateli-s-faznym.html, http://podvi.ru/elektrodvigatel/asinxronnyj-dvigatel-s-faznym-rotorom.html, http://electriku.ru/rotor

electricremont.ru

Двигатель с фазным ротором - Всё о электрике в доме

/ АД с фазным ротором

Устройство АД ФР.

Основными частями любого асинхронного двигателя является неподвижная часть – статор и вращающая часть, называемая ротором.

Статор трехфазного асинхронного двигателя состоит из шихтованного магнитопровода, запрессованного в литую станину. На внутренней поверхности магнитопровода имеются пазы для укладки проводников обмотки. Эти проводники являются сторонами многовитковых мягких катушек, образующих три фазы обмотки статора. Геометрические оси катушек сдвинуты в пространстве друг относительно друга на 120 градусов. Фазы обмотки можно соединить по схеме »звезда» или «треугольник» в зависимости от напряжения сети. Например, если в паспорте двигателя указаны напряжения 220/380 В, то при напряжении сети 380 В фазы соединяют «звездой». Если же напряжение сети 220 В, то обмотки соединяют в «треугольник». В обоих случаях фазное напряжение двигателя равно 220 В.

Ротор трехфазного асинхронного двигателя представляет собой цилиндр, набранный из штампованных листов электротехнической стали и насаженный на вал. В зависимости от типа обмотки роторы трехфазных асинхронных двигателей делятся на короткозамкнутые и фазные .

В асинхронных электродвигателях большей мощности и специальных машинах малой мощности для улучшения пусковых и регулировочных свойств применяются фазные роторы. В этих случаях на роторе укладывается трехфазная обмотка с геометрическими осями фазных катушек (1), сдвинутыми в пространстве друг относительно друга на 120 градусов. Фазы обмотки соединяются звездой и концы их присоединяются к трем контактным кольцам (3), насаженным на вал (2) и электрически изолированным как от вала, так и друг от друга.

С помощью щеток (4), находящихся в скользящем контакте с кольцами (3), имеется возможность включать в цепи фазных обмоток регулировочные реостаты (5). Асинхронный двигатель с фазным ротором имеет лучшие пусковые и регулировочные свойства, однако ему присущи большие масса, размеры и стоимость, чем асинхронному двигателю с короткозамкнутым ротором.

Принцип работы асинхронных электродвигателей.

Принцип работы асинхронной машины основан на использовании вращающегося магнитного поля. При подключении к сети трехфазной обмотки статора создается вращающееся магнитное поле, угловая скорость которого определяется частотой сети f и числом пар полюсов обмотки p, т. е. ω1=2πf/p

Пересекая проводники обмотки статора и ротора, это поле индуктирует в обмотках ЭДС (согласно закону электромагнитной индукции). При замкнутой обмотке ротора ее ЭДС наводит в цепи ротора ток. В результате взаимодействия тока с результирующим малнитным полем создается электромагнитный момент. Если этот момент превышает момент сопротивления на валу двигателя, вал начинает вращаться и приводить в движение рабочий механизм. Обычно угловая скорость ротора ω2 не равна угловой скорости магнитного поля ω1, называемой синхронной. Отсюда и название двигателя асинхронный, т. е. несинхронный.

Работа асинхронной машины характеризуется скольжением s, которое представляет собой относительную разность угловых скоростей поля ω1 и ротора ω2: s=(ω1-ω2)/ω1

Значение и знак скольжения, зависящие от угловой скорости ротора относительно магнитного поля, определяют режим работы асинхронной машины. Так, в режиме идеального холостого хода ротор и магнитное поле вращаются с одинаковой частотой в одном направлении, скольжение s=0, ротор неподвижен относительно вращающегося магнитного пол, ЭДС в его обмотке не индуктируется, ток ротора и электромагнитный момент машины равны нулю. При пуске ротор в первый момент времени неподвижен: ω2=0, s=1. В общем случае скольжение в двигательном режиме изменяется от s=1 при пуске до s=0 в режиме идеального холостого хода.

При вращении ротора со скоростью ω2>ω1 в направлении вращения магнитного поля скольжение становится отрицательным. Машина переходит в генераторный режим и развивает тормозной момент. При вращении ротора в направлении, противоположном направлению вращения магнитного поли (s>1), асинхронная машина переходит в режим противовключения и также развивает тормозной момент. Таким образом, в зависимости от скольжения различают двигательный (s=1÷0), генераторный (s=0÷-∞) режимы и режим противовключення (s=1÷+∞). Режимы генераторный и противовключения используют для торможения асинхронных двигателей.

Устройство, принцип работы и схема подключения асинхронного двигателя с фазным ротором

Асинхронный двигатель с фазным ротором имеет очень обширную область обслуживания. АД (асинхронный двигатель) чаще применяется в управлении двигателями большой мощности. Обслуживание и управление приводов мельниц, станков, насосов, кранов, дымососа, дробилок. Асинхронный двигатель с массивным ротором даёт возможность подключения множества технических механизмов.

  • Характеристика асинхронного двигателя
  • Схема подключения
  • Устройство двигателя
  • Принцип работы
  • Расчёт числа повторений
  • Реостатный пуск
  • Ремонт и характеристики неисправностей

Характеристика асинхронного двигателя

  • Запуск двигателя с нагрузкой, подключение к валу благодаря созданию большого момента вращения. Это обеспечивает обслуживание асинхронных двигателей с фазовым элементом любой мощности.
  • Возможность постоянной скорости вращения большой или маленькой нагрузки
  • Регулирование автоматического пуска.
  • Работа даже при перегрузке тока напряжения.
  • Простота использования.
  • Невысокая стоимость.
  • Надёжность применения.
  • Использование резисторов увеличивается стоимость, а работа двигателя усложняется;
  • Большие размеры;
  • Значение КПД меньше, чем короткозамкнутых роторов;
  • Трудное управление скоростью вращения;
  • Регулярный капитальный ремонт .

Схема подключения

При подключении к току начинают работать реле времени. Контакты размыкаются. При нажатии тумблера происходит пуск.

Двигатель с фазным ротором

Чтобы подключить АД нужно правильно обозначить концы и начала обмоток фазы.

Устройство двигателя

Главными постоянными являются статор и ротор. Статор представляет собой цилиндр, состав –листы электротехнической стали, в цилиндр уложена трёхфазная обмотка. Она состоит из обмоточной проволоки. Которые соединены между собой в виде звезды или треугольника в зависимости от напряжения.

Двигатель с фазным ротором

Ротор – основная вращающаяся часть двигателей. Он в зависимости от расположения может быть внешним, внутренним. Данный элемент состоит из стальных листов. Пазы сердечника наполнены алюминием, который имеет стержни, содержащие торцевые кольца. Они могут быть латунными или стальными, каждое из них изолировано слоем лака. Между трёхфазным статором и ротором образуется зазор. Регулирование размер зазора от 0,30 –0,34 мм в устройствах с небольшим напряжением, 1,0–1,6 мм в устройствах с большим постоянным электрическим напряжением. Конструкция имеет название «беличья клетка». Для мощных двигателей используется медь в сердечнике. Контактор начинает действие, двигатель заводится.

Существует добавочный резистор в цепи обмотки вращающей части машины, крепится с помощью металлографитных щеток. Щетки обычно используются две, расположены на щеткодержателе. В приводах кранах и центрифугах для регулирования роботы применяется конический подвижный ротор. Асинхронные двигатели с фазным ротором незаменимы при технических требованиях мощного пускового момента. Это могут быть такие механизмы, как кран, мельница, лифт.

Двигатель с фазным ротором

Схема переключения электрической цепи со звезды на треугольник

Принцип работы

В основе АД лежит вращение поля магнитов. В область обмотки трёхфазного статора поступает ток, а в фазах возникает поток магнитов, изменяемый в зависимости от скорости и частоты постоянной электрической мощности. При статорном вращении возникает электродвижущая сила.

В роторную обмотку подходит напряжение, которое совместно с постоянным магнитным потоком статора образует пуск. Он стремится направить ротор по магнитному вращению статора и при достижении превышения момента торможения, приводит к скольжению. Оно выражает отношение между частотами статорного силового поля магнитов и скоростью роторного вращения.

Двигатель с фазным ротором

Чертеж режима кз

При балансе между моментами электромагнита и торможения, перемена значений остановится. Особенность эксплуатации АД – сольватация кругового движения силового поля статора и им наводящих токов в роторе. Момент вращения возникает лишь при разнице частот круговых движений магнитных полей.

Машины различают синхронные, асинхронные. Разница механизмов в их обмотке. Она образует магнитное поле.

Неподвижность ротора и замыкание обмотки приводит к короткому замыканию (кз).

Наши читатели рекомендуют!

Для экономии на платежах за электроэнергию наши читатели советуют «Экономитель энергии Electricity Saving Box». Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

Расчёт числа повторений

Возьмём m1 – процесс повторения постоянного поля магнитов и ротора. Система фазы переменного тока образуют вращение поля магнитов.

Данные расчета считаются по формуле:

f1 – частота электричества$

p – количество полюсных пар каждой обмотки статора.

m2 – процесс повторения вращения ротора. Имея различное количество одновременных повторений, данная скорость частоты будет асинхронной. Определение расчёта частоты проводится по соотношению между данными:

Асинхронный электродвигатель работает только при асинхронной частоте.

При одновременном вращении статора и ротора, расчет скольжения будет равняться нулю.

Двухроторный АД используется для привода разных механизмов. Различие двухроторного двигателя заключается присутствием в конструкции двух роторов. Второй ротор выполняет функцию вспомогательную, может вращаться с другой скоростью. Вспомогательный ротор представляет собой внутренний хомут для замыкания постоянного потока магнитов, охлаждения электродвигателя. Недостаток двухмоторного асинхронного двигателя в низком КПД от использования ферромагнитного вспомогательного ротора.

В ходе исследования двухроторных машин достигаются близкие данные скоростик желаемым, когда вспомогательный ротор имеет максимальные вентиляционные зазоры. Полый ротор установлен на ступице, его вал расположен внутри цилиндра. При вращении вспомогательного ротора вентиляция работает по принципу центробежного вентилятора. Для увеличения пускового момента и большей электрической нагрузки полый ротор должен регулироваться, перемещаясь вдоль вала, с установленным штифтом, конец чего входит в паз ступицы ротора.

Данные для расчета:

Двигатель с фазным ротором

Реостатный пуск

Часто для включения двигателя безмощных пусковых моментов оказывают нужное действие реостаты. Схема реостатного способа:

Двигатель с фазным ротором

Главной характеристикой метода является присоединение двигателя при пуске к реостатам. Реостаты разрываются (на чертеже К1), на них идет частично электрический ток. Что дает возможность уменьшить пусковые токи. Пусковой момент тоже снижается. Преимущество реостатного способа заключается в снижении нагрузки на механическую часть и нехватку напряжения.

Ремонт и характеристики неисправностей

Причиной ремонта могут служить внешние и внутренние причины.

Внешние причины ремонта:

  • обрыв провода или нарушение соединений с электрическим током;
  • сгорание предохранителей;
  • понижение или повышения напряжения;
  • перегруженность АД;
  • неравномерная вентиляция в зазоре.

Внутренняя поломка может возникнуть по механическим и электрическим причинам.

Механические причины ремонта:

  • неправильное регулирование зазора подшипников;
  • повреждение вала ротора;
  • расшатывание щеткодержателей;
  • возникновение глубоких выработок;
  • истощение креплений и трещины.

Электрические причины ремонта:

  • замыкания витков;
  • поломка провода в обмотках;
  • пробивание изоляции;
  • пробой пайки проводов.

Данные причины – это далеко не полный список поломок.

Асинхронный двигатель – незаменимый и важный механизм, применяемый для обслуживания быта и различных отраслей промышленности. Для практического действия АД с фазным ротором необходимо знать техническую характеристику управления, использовать его по назначению и регулярно проводить ремонт при технических осмотрах. Тогда асинхронный двигатель станет практически вечной эксплуатации.

Асинхронные электродвигатели с фазным ротором

В настоящее время, на долю асинхронных двигателей приходится не менее 80% всех электродвигателей, выпускаемых промышленностью. К ним относятся и трехфазные асинхронные двигатели.

Трехфазные асинхронные электродвигатели широко используются в устройствах автоматики и телемеханики, бытовых и медицинских приборах, устройствах звукозаписи и т.п.

Достоинства асинхронных электродвигателей

Широкое распространение трехфазных асинхронных двигателей объясняется простотой их конструкции, надежностью в работе, хорошими эксплуатационными свойствами, невысокой стоимостью и простотой в обслуживании.

Устройство асинхронных электродвигателей с фазным ротором

Двигатель с фазным роторомОсновными частями любого асинхронного двигателя является неподвижная часть – статор и вращающая часть, называемая ротором.

Статор трехфазного асинхронного двигателя состоит из шихтованного магнитопровода, запрессованного в литую станину. На внутренней поверхности магнитопровода имеются пазы для укладки проводников обмотки. Эти проводники являются сторонами многовитковых мягких катушек, образующих три фазы обмотки статора. Геометрические оси катушек сдвинуты в пространстве друг относительно друга на 120 градусов.

Фазы обмотки можно соединить по схеме »звезда» или «треугольник» в зависимости от напряжения сети. Например, если в паспорте двигателя указаны напряжения 220/380 В, то при напряжении сети 380 В фазы соединяют «звездой». Если же напряжение сети 220 В, то обмотки соединяют в «треугольник». В обоих случаях фазное напряжение двигателя равно 220 В.

Ротор трехфазного асинхронного двигателя представляет собой цилиндр, набранный из штампованных листов электротехнической стали и насаженный на вал. В зависимости от типа обмотки роторы трехфазных асинхронных двигателей делятся на короткозамкнутые и фазные.

Двигатель с фазным ротором

В асинхронных электродвигателях большей мощности и специальных машинах малой мощности для улучшения пусковых и регулировочных свойств применяются фазные роторы. В этих случаях на роторе укладывается трехфазная обмотка с геометрическими осями фазных катушек (1), сдвинутыми в пространстве друг относительно друга на 120 градусов.

Фазы обмотки соединяются звездой и концы их присоединяются к трем контактным кольцам (3), насаженным на вал (2) и электрически изолированным как от вала, так и друг от друга. С помощью щеток (4), находящихся в скользящем контакте с кольцами (3), имеется возможность включать в цепи фазных обмоток регулировочные реостаты (5).

Двигатель с фазным ротором

Асинхронный двигатель с фазным ротором имеет лучшие пусковые и регулировочные свойства, однако ему присущи большие масса, размеры и стоимость, чем асинхронному двигателю с короткозамкнутым ротором.

Принцип работы асинхронных электродвигателей

Принцип работы асинхронной машины основан на использовании вращающегося магнитного поля. При подключении к сети трехфазной обмотки статора создается вращающееся магнитное поле. угловая скорость которого определяется частотой сети f и числом пар полюсов обмотки p, т. е. ω1=2πf/p

Пересекая проводники обмотки статора и ротора, это поле индуктирует в обмотках ЭДС (согласно закону электромагнитной индукции). При замкнутой обмотке ротора ее ЭДС наводит в цепи ротора ток. В результате взаимодействия тока с результирующим малнитным полем создается электромагнитный момент. Если этот момент превышает момент сопротивления на валу двигателя, вал начинает вращаться и приводить в движение рабочий механизм. Обычно угловая скорость ротора ω2 не равна угловой скорости магнитного поля ω1, называемой синхронной. Отсюда и название двигателя асинхронный, т. е. несинхронный.

Работа асинхронной машины характеризуется скольжением s, которое представляет собой относительную разность угловых скоростей поля ω1 и ротора ω2: s=(ω1-ω2)/ω1

Двигатель с фазным ротором

Значение и знак скольжения, зависящие от угловой скорости ротора относительно магнитного поля, определяют режим работы асинхронной машины. Так, в режиме идеального холостого хода ротор и магнитное поле вращаются с одинаковой частотой в одном направлении, скольжение s=0, ротор неподвижен относительно вращающегося магнитного пол, ЭДС в его обмотке не индуктируется, ток ротора и электромагнитный момент машины равны нулю. При пуске ротор в первый момент времени неподвижен: ω2=0, s=1. В общем случае скольжение в двигательном режиме изменяется от s=1 при пуске до s=0 в режиме идеального холостого хода.

При вращении ротора со скоростью ω2>ω1 в направлении вращения магнитного поля скольжение становится отрицательным. Машина переходит в генераторный режим и развивает тормозной момент. При вращении ротора в направлении, противоположном направлению вращения магнитного поли (s>1), асинхронная машина переходит в режим противовключения и также развивает тормозной момент. Таким образом, в зависимости от скольжения различают двигательный (s=1÷0), генераторный (s=0÷-∞) режимы и режим противовключення (s=1÷+∞). Режимы генераторный и противовключения используют для торможения асинхронных двигателей.

Статьи и схемы

Полезное для электрика

Источники: http://www.studfiles.ru/preview/5789280/, http://electricvdele.ru/elektrooborudovanie/elektrodvigateli/asinhronnyj-dvigatel-s-faznym-rotorom.html, http://electricalschool.info/main/osnovy/259-asinkhronnye-jelektrodvigateli-s-faznym.html

electricremont.ru

Крановые электродвигатели с фазным и короткозамкнутым ротором

Для работы подъемных механизмом необходимо использование специального редуктора. Предлагаем рассмотреть, как работают асинхронные крановые электродвигатели с фазным ротором для частотного регулирования, их обмоточные данные и технические характеристики.

Особенности двигателей

Все тяговые электродвигатели ГОСТ 18374 делятся на две группы:

  • работающие с фазным ротором;
  • работающие с короткозамкнутым ротором.

Обе эти группы имеют высокий КПД, но у них несколько разный принцип работы. Данные моторы используются во всех видах кранов: тельферах, талях, башенных, козловых и портальных установках. Главным преимуществом работы обоих типов является то, что помимо динамического способа работы, когда определенное количество времени поднимается груз  с некоторым весом, они могут работать статично, когда груз некоторое время висит на кране неподвижно. Рассмотрим подробнее их принцип работы.

Общий вид фазного двигателяОбщий вид фазного двигателяФото – Общий вид фазного двигателя

У данных устройств есть щеткодержатели для крановых электродвигателей, которые применяются для обеспечения лучшего контакта коллектора и контактного кольца. У них очень простая конструкция: щеточный механизм, держатель, также они оснащены встроенным механизмом нажатия, который служит не только ля их запуска, но и предотвращения движения в случае ЧП на производстве. Благодаря такой конструкции, щеткодержатель является гарантом безопасности при эксплуатации электрического асинхронного кранового двигателя, а также своеобразным тормозом.

Замена кранового двигателя

Основные технические характеристики

Обмоточные данныеОбмоточные данныеФото – Обмоточные данные

Двигатели с фазным ротором

Стандартные габариты и основные размеры мощностей двигателей:

Короткозамкнутые двигателиКороткозамкнутые двигателиФото – Короткозамкнутые двигатели

Роторный мотор – это асинхронный двигатель, где ротор обмотки соединен через контактные кольца для внешнего сопротивления с рабочей и передаточной частью. Регулировка сопротивления позволяет контролировать частоты вращения крутящего момента двигателя. Роторный движок может быть запущен при помощи низкого пускового тока, а также путем использования высокого сопротивления в цепи ротора; при разгоне двигателя, сопротивление может быть уменьшено.

По сравнению с короткозамкнутым ротором, фазный двигатель роторного типа имеет больше витков обмотки; наведенное напряжение увеличивается, и имеющееся ниже, чем для короткозамкнутого ротора. При запуске типичного ротора используются 3 полюса, связанные с контактными кольцами. Каждый полюс соединен последовательно с переменной мощностью резистора. Во время запуска резисторов  можно снизить напряженность поля статора. Как результат, пусковой ток сокращается. Еще одним важным преимуществом по сравнению с короткозамкнутым ротором является высокий стартовый крутящий момент.

Управление торможением фазного двигателяУправление торможением фазного двигателяФото – Управление торможением фазного двигателя

Фазный роторный двигатель (сибэлектромотор), может быть использован в нескольких формах регулируемой скоростью вращения диска. Определенные типы вариаторов могут восстановить частоту скольжения и мощность от цепи ротора и питать  его обратно в сеть, позволяя охватывать широкий диапазон скоростей с высокой энергетической эффективностью. Двойное питание электрических машин использует контактные кольца для внешнего питания в цепи ротора, что позволяет увеличить диапазон регулирования скорости вращения. Но сейчас такие механизмы редко используются, в основном они заменены на асинхронные двигатели с частотно-регулируемым приводом.

Конструкция фазного кранового электродвигателяКонструкция фазного кранового электродвигателяФото – Конструкция фазного кранового электродвигателя

Короткозамкнутые роторы

Электродвигатели с короткозамкнутым ротором – это асинхронные крановые двигатели, которые состоят из стального цилиндра с алюминиевыми или медными жилами, внедренными в их поверхность и вращающейся части – ротора.

Эта модель двигателя представляет собой цилиндр, закрепленный на валу. Внутренне он содержит продольные проводящие бары (обычно изготавливается из алюминия или меди), установленные в пазы и присоединенные с обоих концов путем замыкания кольца, образующих каркасообразную форму. Название происходит от схожести между кольцами обмотки и баров с короткозамкнутым ротором.

Твердый сердечник ротора состоит из соединений легированной стали. Ротор имеет меньшее количество слотов, чем статор и не может быть кратен числу его пазов, для того чтобы предотвращать магнитные блокировки зубов ротора и статора первоначальный крутящий момент.

Описание принципа работы короткозамкнутого ротора: поля обмотки статора асинхронного электродвигателя переменного тока настраиваются на вращающееся магнитное поле через ротор. Благодаря движению, устройство начинает индуцировать ток и передавать его в обмотку и на бары. В свою очередь эти продольные токи в проводниках взаимодействуют с магнитным полем для производства моторной силы, выступая на касательный ортогональный ротор, в результате чего крутящий момент проворачивает вал. Также ротор вращается от магнитного поля, но на более низкой скорости. Разница в скорости называется скольжением и увеличивается с ростом нагрузки.

Схема работы изображена ниже:

Схема работы короткозамкнутых приводовСхема работы короткозамкнутых приводовФото – Схема работы короткозамкнутых приводов

Проводники часто слегка наклонены по длине ротора, что снижает шум и сглаживает колебания крутящего момента, это может привести к увеличению скорости из-за взаимодействия с полюсными наконечниками статора. Количество баров на короткозамкнутом роторе определяет, в какой степени индуцированные токи возвращаются на обмотки статора и, следовательно, ток через них. Конструкция также может работать в качестве реверсивного механизма.

Железный якорь используется для того, чтобы проводить магнитное поле через проводники ротора. Дело в том, что МП ротора взаимодействует с МП якоря, и несмотря на то, что конструкция аналогичная трансформатору, это является причиной снижения и потери энергии. Якорь сделан из тонких пластин, разделенных лаковой изоляцией, чтобы уменьшить вихревые токи, циркулирующие в нем. Материал отличается низким уровнем выбросов углекислого газа, высоким кремния. Основа из чистого железа значительно снижает потери на вихревые токи, низкая коэрцитивная сила уменьшает малые потери на гистерезис.

Эта базовая конструкция используется как для однофазных, так и для трехфазных двигателей в широком диапазоне размеров. Роторы для трехфазных двигателей будут иметь вариации в глубину и форму баров. Как правило, бруски с большей толщиной могут иметь хороший крутящий момент и являются более эффективными в борьбе со скольжением, поскольку они представляют меньшую устойчивость к ЭМП.

Конструкция трехфазного двигателяКонструкция трехфазного двигателяФото – Конструкция трехфазного двигателя

Трехфазные двигатели с короткозамкнутым ротором широко используются для:

  1.  Крановых механизмов;
  2. Тяговых машин;
  3. Комбайнов;
  4. Грузовых автомобилей и кораблей.

Говоря про варианты установки двигателей, они бывают вертикально-фланцевые, горизонтальные, горизонтально-фланцевые.

Марки двигателей и обзор цен

На данный момент, в России и Украине осуществляется производство таких крановых электродвигателей:

Фазных – MTF, MTKF, MTM, MTН, MEZ FRENSTAT, KMR, DMTF, (завод Leroy Somer), WASI, FLSLB, SMH;

Короткозамкнутых – Sew-Eurodrive, двигатели от Bularia, Siemens, VEM, HORS, МТВ, МТИ, МТК, МТКМ, МТКН, МТМ, МТН, МТФ;

Для некоторых видов крановых механизмов (к примеру, металлургические подъемники), используются серии АИР (двухскоростные двигатели постоянного тока).

Купить крановые электродвигатели можно в любом городе СНГ, цена товара напрямую зависит от его мощности, фирмы-производителя и города, де он покупается. Возможен наличный и безналичный расчет. Из открытых источников мы собрали прайс-лист, предлагаем с ним ознакомиться (цены приблизительные, при покупке кранового электродвигателя обязательно просмотрите дополнительно каталог производителя, возможны изменения цен):

Город Стоимость, рубли Город Стоимость, рубли
Москва 50 000 Минск 43 000
Киев 50 000 Владивосток 46 000
Воронеж 43 000 Омск 40 000
Новосибирск 46 000 Владимир 40 000
Вологда 40 000 Томск 46 000
Тула 40 000 Уфа 40 000
Екатеринбург 43 000 Казань 40 000
Астана 46 000 Волгоград 40 000

Все производители дают на свои приборы гарантию – 5 лет (минимум – год, т.к. мощность более 10 кВт). Продажа осуществляется в специализированных центрах, магазинах. Мы не советуем приобретать данные устройства из рук либо на стихийных рынках. Следите за тем, чтобы двигатели были работоспособные и полностью исправные, обязательно должны быть соблюдены условия хранения (влажность ниже 40 %, температура от +3 до +20 градусов), иначе возможно окисление внутренних контактов.

www.asutpp.ru

Асинхронные двигатели с фазным ротором и схемы управления

резисторы.Рис. 6.14.

Схема управления пуском и динамическим торможением асинхронного двигателя

Постоянный ток протекает по всем обмоткам статора или по части их, создает постоянное во времени магнитное поле. В обмотках вращающегося по инерции ротора будет наводиться ЭДС и потечет ток, который создаст свое неподвижное в пространстве магнитное поле. Взаимодействие тока ротора с результирующим магнитным полем АД приведет к появлению тормозного момента и остановке ротора.

Преобразуемая при этом механическая энергия движущихся частей в электрическую рассеивается в виде тепла.

Пуск двигателя осуществляется нажатием кнопки SB1 (см. рис. 6.14).

После чего срабатывает линейный контактор КМ, подключающий обмотки статора к трехфазному источнику питания. Замыкающий блок-контактКМ в цепи реле времени КТ вызовет его срабатывание. В результате чего контакты этого реле замкнутся в цепи контактора торможения КМ1, но этот контактор не сработает, так как перед этим произойдет размыканиеблок-контактаКМ.

Нажатием кнопки SB3 производится остановка АД. Катушка линейного контактора теряет питание и контакты КМ в цепи обмоток статора размыкаются, отключая двигатель от сети переменного тока.

Одновременно с этим замыкается размыкающий блок-контактКМ в цепи катушки контактора торможения КМ1; последний включается и подает в обмотки статора постоянный ток от выпрямителя V через резистор RT и замыкающий блок контакт КМ1. АД переходит в режим динамического торможения.

С потерей питания катушки КМ, также размыкается замыкающий блок-контактКМ в цепи реле времени КТ. Это реле, потеряв питание, начинает отсчет выдержки времени. Через промежуток времени, соответствующий останову двигателя, реле КТ размыкает свои контакты в цепи катушки контактора КМ1.

уст.I

Обмотка статора отключается от источника постоянного тока и схема переходит в свое первоначальное состояние.

Задержкой срабатывания реле КТ и величиной регулируемого резистора Rт устанавливают время динамического торможения.

Схема управления реверсивным асинхронным двигателем с фазным ротором. Частоту вращения ротора асинхронного электродвигателя с фазным ротором можно регулировать, изменяя величину сопротивления в роторной цепи (см. подразд. 5.2).

Управлять такими электродвигателями возможно с помощью силовых и магнитных контроллеров (рис. 6.15). В настоящее время в подъемнотранспортных механизмах используются магнитные контроллеры, относящиеся к аппаратам дистанционного управления.

Рис. 6. 15. Схема управления трехфазным асинхронным двигателем с фазным

ротором: а) силовая схема; б) схема управления

В первом положении командоконтроллера “Вперед” замыкается контакт S1.1, подавая питание на катушку. Контактор КМ1 подключает обмотки статора двигателя и тормозной электромагнит YB1 к сети. В цепь ротора электродвигателя при этом включено полное сопротивление пускорегулирующего реостата, и двигатель разгоняется по характеристике I (см. рис. 5.4) до установившейся частоты вращения n при заданном моменте сопротивления Мс.

Во втором положении замыкается контакт S1.3 командоконтроллера и включается контактор КМ3, который закорачивает часть сопротивлений

реостата. Двигатель переходит на работу по характеристике II, разгоняется до частоты вращения nуст.II.

В третьем положении контроллера включается контактор КМ4, который закорачивает выводы обмотки ротора, и двигатель работает на естественной характеристике III с частотой вращения nуст.III.

Для выключения двигателя необходимо контроллер перевести в нулевое положение. Вращение “Назад” осуществляется постановкой рукоятки магнитного контроллера на позицию 1 “Назад”, при этом включается контактор КМ2. Происходит смена чередования фаз в обмотках статора и начинается обратное вращение ротора при полном включенном пускорегулирующем резисторе роторной цепи. Дальнейший процесс управления аналогичен описанному выше.

Особенностью работы двигателей подъемно-грузовыхлебедок является спуск груза. В этом случае груз не только преодолевает силы трения, но и стремится ускорить вращение двигателя в направлении спуска. Скорость двигателя очень быстро достигает синхронной, после чего двигатель начинает работать как генератор под действием силы тяжести груза, т.е., тормозя механизм. Если сопротивление в цепи ротора двигателя полностью закороченно, то скорость опускания груза на5–10% больше синхронной частоты вращения. Увеличение роторного сопротивления приводит к увеличению скорости спуска (а не к уменьшению, как это бывает при подъеме).

Схема автоматического пуска и торможения противовключением асинхронного двигателя с фазным ротором. Пуск двигателя совершается нажатием кнопки SB1 (вперед) или SB2 (назад), тем самым подается питание на катушку контактора КМ1 (или КМ2). Рассмотрим работу схемы при срабатывании контактора КМ1 (рис. 6.16).

Обмотки статора подключаются к сети, включается блокировочное реле РБ. Катушка РП не притягивает свой якорь из-замалой ЭДС ротора и размыкающий контакт РП замкнут. Затем замыкающим контактом РБ собирается цепь катушки контактора КП, шунтирующего своими контактами ступень сопротивлений Rn в цепи ротора.

Рис. 6.16.

Схема торможения противовключением асинхронного двигателя с фазным ротором: а) силовая схема; б) схема управления

С помощью механического маятникового реле времени РВ, пристраиваемого к контактору КП, осуществляется выдержка времени, необходимая для некоторого разгона двигателя, после чего включается контактор КУ, шунтирующий сопротивления Rg в цепи ротора, и двигатель выводится на естественную характеристику.

Таким образом, пуск двигателя совершается в одну ступень с резистором в роторе Rg. Ступень резистора Rn служит для ограничения тока при торможении.

Если требуется реверсирование двигателя, то необходимо нажать на кнопку противоположного направления вращения (в нашем примере на кнопку SB2), не воздействуя на кнопку SB3 (стоп). При этом отключаются контакторы КМ1 и КП. Последний – из-заразмыкания контакторов КМ1 и РБ. Как только замкнется размыкающий контакт КМ1 в цепи катушки контактора КМ2, он включится, и двигатель переведется в режим торможения противовключением.

В приведенной на рис. 6.16 схеме реализуется управление торможением в функции угловой скорости (по величине ЭДС ротора, которая пропорциональна скольжению). Реле напряжения РП через выпрямитель V подключается к выводам обмотки ротора. Реле настраивается с помощью резистора Rр так, что при начале торможения, когда направления вращений магнитного поля статора и ротора противоположны (S=2), оно срабатывает, а при угловой скорости, близкой к нулю (S=1), когда напряжение на его катушке снижается почти вдвое, реле отпускает свой якорь. При пуске в обратную сторону реле РП не срабатывает, так как ЭДС ротора становится еще меньше, достигая нулевого значения при S=0.

После включения контактора КМ2, когда произойдет реверсирование магнитного поля статора, срабатывает реле РП и своим размыкающим

контактором разорвет цепь катушки контактора КП, что обеспечит на период торможения введение всех резисторов в цепь ротора (Rg и Rn). Блокировочное реле РБ служит для создания временного разрыва в цепи катушки контактора КП, оно отключается одновременно с контактором КМ1, а включается только после замыкания контактов контактора КМ2. Когда контакты РБ сомкнутся, уже успеет сработать реле РП.

По окончании процесса торможения контакт РП закроется и контактор КП зашунтирует ступень сопротивления Rn. Затем произойдёт изменение направления вращения ротора, то есть пуск в противоположном направлении (назад).

Если остановку двигателя производить кнопкой SB3, то обмотки статора отключатся от сети, но электрического торможения не произойдет, двигатель остановится под действием статического момента сопротивления на валу.

Схема пуска асинхронного двигателя с фазным ротором в функции времени. Упрощенная принципиальная схема пуска асинхронного двигателя с фазным ротором в функции времени [8] представлена на рис. 6.17. Пуск двигателя по этой схеме осуществляется в две пусковые ступени, при этом для большей надежности цепи управления подключены к сети постоянного тока.

Рис. 6.17. Упрощенная

принципиальная схема пуска асинхронного двигателя с фазным ротором в функции времени: а) силовая схема; б) схема управления

При подключении цепей управления к источнику напряжения сразу включаются реле РУ1 и РУ2 через размыкающие блок-контактыКМ и КУ1. Реле без выдержки времени отключают катушки контакторов КУ1 и КУ2 от источника питания. Затем после нажатия кнопки SB1 и включения контактора КМ статор двигателя подключается к сети, а роторная цепь его замкнута на полностью включенные резисторы R1 и R2, так как силовые контакты контакторов КУ1 и КУ2 разомкнуты; начинается пуск АД.

Размыкающий контакт КМ в цепи катушки реле времени РУ размыкается, оно обесточивается, начинает отсчитывать выдержку времени при пуске на первой пусковой ступени. После выдержки времени реле РУ1 своим контактом замыкает цепь питания катушки контактора КУ1. Этот контактор зашунтирует пусковой резистор R1 своими силовыми контактами и снимает питание с реле времени РУ2 вспомогательным контактом КУ1. Реле РУ2 начинает отсчитывать выдержку времени, по окончании которой размыкающий контакт РУ2 замыкается, подключая к источнику питания катушку КУ2, в результате чего зашунтируется вторая ступень пускового сопротивления R2 и АД будет выведен на естественную характеристику.

Схема пуска асинхронного двигателя с фазным ротором в функции тока. Схема, приведенная на рис. 6.18, обеспечивает пуск асинхронного двигателя с фазным ротором в одну ступень в функции тока и динамическое торможение в функции скорости и включает оборудование:

•электромагнитные контакторы КМ1, КМ2, КМ3;

•реле тока КА;

•реле контроля скорости SR;

•реле напряжения KV;

•понижающий трансформатор Т;

•выпрямитель VD;

•предохранители FA1, FA2;

•тепловые реле КК1, КК2.

Реле контроля скорости SR размыкает свои контакты в цепи катушки электромагнитного тормоза КМ3, когда частота вращения уменьшается до значения, близкого к нулю, а замыкает, когда начнется разгон АД.

После включения автоматического выключателя нажимается кнопка пуска SB1. По известной схеме включается контактор КМ1, через силовые контакты которого статор АД подключается к сети. Бросок тока в цепи ротора, когда еще не замкнуты контакты КМ2, вызовет включение реле тока КА, последнее разорвет свои контакты в цепи катушки КM2. Таким образом, разбег начинается с пусковым сопротивлением R2g в цепи ротора.

Рис. 6.18. Схема пуска АД в

одну ступень в функции тока и динамического торможения в функции скорости

Вспомогательные контакты КМ1 замыкают цепь катушки промежуточного реле напряжения KV, шунтируют кнопку SB1, размыкают цепь контактора торможения КМ3. Несмотря на то, что реле KV включается, это не приводит к включению контактора КМ2, так как до этого в цепи разомкнулся контакт реле КА.

Трогание с места и вращение ротора вызывает замыкание контакта реле скорости SR в цепи тормозного контактора КМ3, но и этот контактор не сработает, так как до этого разомкнулся контакт КМ1. По мере разгона двигателя ток в цепи ротора уменьшается, и реле тока КА выключается, замыкая цепь контактора КМ2. Этот контактор зашунтирует резисторы R2g в цепи ротора, АД выйдет на естественную характеристику.

Для перевода в тормозной режим нажимается кнопка SB3. Контактор КМ1 теряет питание и отключается статор АД от сети, но включается тормозной контактор КМ3. Контактор КМ3 замыкает цепь питания катушек обмотки статора постоянным током от выпрямителя VD, подключенного к трансформатору Т. Тем самым осуществляется перевод АД в режим динамического торможения.

Одновременно с этим потеряет питание аппарат KV, а следовательно и КМ2, что приведет к вводу в цепь ротора резистора R2g. Двигатель начинает тормозить.

При скорости двигателя, близкой к нулю, реле контроля скорости SR размыкает свой контакт в цепи катушки контактора КМ3. Он отключается и прекращает торможение АД. Схема приходит в исходное положение и готова к последующей работе.

Принцип действия схемы не изменяется, если катушка реле тока включается в фазу статора, а не ротора при одноступенчатом разгоне двигателя.

Схема панели управления асинхронным двигателем типа ПДУ 6220.

Панель типа ПДУ 6220 входит в состав нормализованной серии панелей управления АД с фазным и короткозамкнутым роторами и обеспечивает пуск в две ступени и динамическое торможение в функции времени (рис. 6.19).

Рис. 6.19. Схема панели

управления асинхронного двигателя типа ПДУ 6220

При подаче на схему напряжений постоянного тока 220 В и переменного 380 В тока (замыкание рубильников Q1, Q2 и автомата QF) происходит включение реле времени КТ1, чем двигатель подготавливается к пуску с полным пусковым резистором в цепи ротора.

Одновременно с этим, если рукоятка командоконтроллера находится в нулевой (средней) позиции и максимально-токовыерелеFA1–FA3не включены, включается реле защиты KV от понижения питающего напряжения и готовит схему к работе замыканием своегоблок-контактораKV.

Пуск двигателя осуществляется по любой из двух искусственных характеристик или по естественной характеристике, для чего рукоятка SA должна устанавливаться соответственно в положение 1,2 или 3. При переводе рукоятки в любое из указанных положений SA включается линейный контактор КМ2, подключающий АД к сети, контактор управления тормозом КМ5, подключающий к сети катушку YA электромагнитного тормоза,

который при этом растормаживает двигатель, и реле времени KT3, управляющее процессором динамического торможения.

Перевод контроллера SA в положение 2 или 3 позволяет включить контакторы ускорения КМ3 и КМ4, скорость двигателя увеличивается.

Торможение АД происходит за счет перевода рукоятки SA в нулевое положение. Тогда отключаются контакторы КМ2 и КМ5, а включается контактор динамического торможения КМ1, который подключает АД к источнику постоянного тока. В результате этого будет идти интенсивный процесс комбинированного (механического и динамического) торможения АД, который закончится после отсчета реле своей выдержки времени, соответствующей времени торможения.

Схема управления тиристорным приводом переменного тока. Схема управления тиристорным приводом переменного трехфазного тока содержит тиристорный преобразователь, который включается в цепь статорных обмоток двигателя и осуществляет фазовое регулирование подводимого к двигателю напряжения (рис. 6.20).

Последовательно со статорными обмотками двигателя встречнопараллельно через быстродействующие предохранители FU включены три пары тиристоров преобразователя U. Регулированием угла открывания тиристоров с помощью системы управления СУ изменяется напряжение, подводимое к двигателю, а следовательно, и его момент.

Рис. 6.20. Схема управления асинхронного двигателя с тиристорным

преобразователем: QF – автоматический выключатель; В – датчик тока; U – тиристорный преобразователь; FU – предохранитель; KK – командоконтроллер; СУ-

система управления тиристорным преобразователем; BR – тахогенератор; КМ – электромагнитные контакторы

В результате получается ряд мягких механических характеристик, обеспечивающих плавный пуск и разгон механизма. При использовании обратной связи по частоте вращения, осуществляемой с помощью тахогенератора BR, жесткость механических характеристик увеличивается, что позволяет получить устойчивые промежуточные и низкую посадочную скорости.

Схемой предусмотрен контактный реверс двигателя контакторами КМ2 и КМ3. Переключение контакторов происходит при отсутствии тока в главной цепи под контролем датчика тока В. Бестоковая коммутация значительно повышает износостойкость аппаратуры.

С помощью тиристоров преобразователя может быть получено и регулируемое динамическое торможение, а также торможение противовключением. Управление углом открывания тиристоров может осуществляться ступенчато командоконтроллером КК, или плавно другим аппаратом, например, сельсином.

6.5. Крановые защитные панели

Крановые защитные панели применяют при контроллерном управлении двигателями крана. Конструкция защитной панели представляет собой металлический шкаф с установленной в нем аппаратурой. Шкаф закрыт дверью с замком. Второй замок заблокирован с главным рубильником, то есть дверь панели не откроется, пока не будет выключен рубильник, обесточивающий электрооборудование. Размещаются защитные панели обычно в кабине крана. На защитной панели установлена электроаппаратура, осуществляющая следующую защиту:

•максимальную от токов короткого замыкания и значительных (свыше 250 %) перегрузок крановых электродвигателей;

•нулевую, исключающую самозапуск двигателей после перерыва в электроснабжении;

•концевую, обеспечивающую автоматическое отключение электроприводов при переходе механизмами крана предельно допустимых положений.

Панели допускают подключение от трех до шести двигателей (рис. 6.21). В зависимости от числа защищаемых двигателей и соотношения их мощностей панели комплектуются соответствующим количеством блок-релемаксимального тока, которые при срабатывании воздействуют на один, общий для группы издвух-четырехреле, контакт. Этим уменьшается число

studfiles.net

21. Устройство трехфазного асинхронного двигателя с фазным ротором.

Недостатком асинхронного двигателя с короткозамкнутым ротором является большой пусковой ток, который превыша­ет номинальный ток в 5-7 раз.

Желая улучшить пусковые характеристики асинхронно­го двигателя, М. О. Доливо-Добровольский разработал двига­тель с фазным ротором.

Асинхронный двигатель с фазным ротором имеет обыч­ный для асинхронных двигателей статор с трехфазной сете­вой обмоткой, но на поверхности ротора также находится трехфазная обмотка. Три фазные обмотки ротора соединя­ются на самом роторе звездой, а свободные их концы соеди­няются с тремя изолированными друг от друга контактными кольцами, укрепленными на валу машины и изолированны­ми от него (рис. 8.6). Поэтому асинхронный двигатель с фаз­ным ротором называют также асинхронным двигателем с контактными кольцами.

Контактные кольца соприкасаются со щетками, установ­ленными в неподвижных щеткодержателях. Через кольца и щетки обмотка ротора замыкается на пусковой трехфазный реостат, который изменяет активное сопротивление обмотки ротора в момент пуска. Обмотка статора такого двигателя включается непосредственно в трехфазную сеть (рис. 8.7).

Эта система используется либо для пуска (для уменьше­ния пускового тока при одновременном сохранении враща­ющего момента), либо для регулирования скорости враще­ния ротора двигателя. После разгона ротора пусковой рео­стат выключается, и обмотка закорачивается с помощью спе­циального центробежного автоматического замыкателя. Для уменьшения потерь на трение в некоторых двигателях с фаз­ным ротором имеются приспособления для отвода щеток от контактных колец после их замыкания.

Одним из важнейших достоинств асинхронного двигате­ля с фазным ротором является то, что в момент пуска созда­ется большой вращающий момент при значительно меньших, чем у короткозамкнутых двигателей, пусковых токах. Объяс­няется это тем, что асинхронный двигатель при пуске разви­вает максимальный вращающий момент тогда, когда актив­ное сопротивление ротора будет равно индуктивному сопро­тивлению двигателя. А так как у двигателей с фазным рото­ром активное сопротивление ротора можно изменять с помо­щью пускового реостата, то и пусковые характеристики их значительно лучше, чем у двигателей с короткозамкнутым ротором.

Пуск асинхронного двигателя с фазным ротором произ­водится следующим образом. Пусковой реостат устанавли­вается на холостую клемму (цепь ротора разомкнута), а на статор подается сетевое напряжение. Затем включается пус­ковой реостат, и его сопротивление постепенно уменьшают и делают равным нулю, когда двигатель приобретет номиналь­ную скорость. Пусковой ток двигателя с фазным ротором превышает номинальный всего в 1,5-2 раза. Кроме того, вклю­чение в цепь ротора пускового реостата значительно увели­чивает вращающий момент.

Сущность процесса регулирования скорости асинхронно­го двигателя с фазным ротором при помощи регулировочно­го реостата сводится к следующему. Ротор двигателя обла­дает определенной инерцией, и поэтому сразу после введения

реостата его скорость и индуцируемая в роторе ЭДС Е2 в

начальный момент остаются неизменными. Увеличение со­противления пускового реостата в цепи ротора вызывает

уменьшение тока ротора 12, что приводит к уменьшению вра­щающего момента (см. формулу (8.3)). Вследствие этого ско­рость вращения ротора п2 начнет уменьшаться. Уменыпе­ние скорости п2 аналогично увеличению скольжениям, вслед­ствие чего индуцируемая в роторе ЭДС Е2, пропорциональ­ная s, также начнет расти, вызывая увеличение тока ротора I2. Рост тока I2 и уменьшение скорости вращения ротора п2

будет продолжаться до тех пор, пока ток I2 не достигнет сво­его прежнего значения. В этом случае вращающий момент снова станет равным статическому, и двигатель начнет вра­щаться с постоянной скоростью, величина которой будет уже несколько меньше, чем до введения реостата. Регулировка скорости асинхронного двигателя с фазным ротором может осуществляться только в сторону уменьшения оборотов.

studfiles.net

Асинхронный двигатель с фазным ротором

Асинхронный двигатель с фазным роторомАсинхронные двигатели – распространенный тип электрических машин, преобразующих электрическую энергию в механическую. Название связано с тем, что в таком двигателе быстрота изменения магнитной индукции отличается от скорости вращения ротора.

Такие двигатели используются для запуска многих механизмов на производстве, в быту, ремонтных работах, строительстве, растениеводстве, животноводстве и др. Их популярность связана с удобством и безопасностью использования, удачной конструкцией, высокой мощностью, относительно невысокой ценой. Но стоит отметить и недостатки: тепловые потери, нелинейные характеристики, малый пусковой момент.

Различают два вида асинхронных двигателей: с короткозамкнутым и фазным ротором.  Если ротор имеет собственные обмотки, то такое устройство называется асинхронным двигателем с фазным ротором. Об электродвигателе асинхронном трехфазном подробнее в другой статье.

Более сложное устройство асинхронного двигателя с фазным ротором оправдано тем, что это позволяет плавно регулировать частоту вращения. Кроме того, он обладает лучшими пусковыми свойствами, что и предопределяет область его использования – в машинах, которые включаются под нагрузкой и требуют регулирования скорости. К примеру, он находит широкое применение во всех крановых механизмах, при длительной работе с пониженными скоростями.

Неизбежный минус конструкции – более значительные масса, габариты и цена (по сравнению с аналогичными характеристиками двигателей с короткозамкнутым ротором).

Асинхронные двигатели с фазным ротором применяют при резко-переменной нагрузке при мощности свыше 100 кВт, а также при повторно-кратковременной и кратковременной нагрузках.

Рассмотрим устройство двигателя с фазным ротором подробнее.

Асинхронный двигатель с фазным ротором конструкция

1, 7 — подшипники; 2, 6 – подшипниковые щиты; 3 — корпус; 4 – сердечник статора с обмоткой; 5 – сердечник ротора; 8 — вал; 9 – коробка выводов; 10 — лапы; 11 – контактные кольца

На валу ротора закреплены пакеты магнитопровода, а в пазах размещена трехфазная обмотка. Ее концы выведены через отверстие в валу в специальную коробку. Выводы обмоток присоединены к трем контактным кольцам, изолированным друг от друга и от вала при помощи изоляционных прокладок. К кольцам, в свою очередь, плотно примыкают графитовые или металлографитовые щетки, необходимый контакт обеспечивается при помощи щеткодержателей.

Щетки имеют соединение с добавочным сопротивлением, задача которого – обеспечение постепенного роста тока и более мягкого запуска. Зачастую оно представляет собой реостат, использование которого позволяет осуществлять ступенчатый пуск. Также это позволяет двигателю с фазным ротором запускаться с небольшим пусковым током (что предоставляет возможность установки двигателей с фазным ротором в маломощных сетях). Дополнительное сопротивление может ограничить ток при реверсе, торможении или уменьшении скорости. Резисторы используются в те периоды, когда двигатель набирает скорость, в дальнейшем, по завершении разгона, они отключаются. Переключение роторного резистора совершается вручную или автоматически.

Подключение двигателя с фазным ротором

Теперь мы расскажем о подключении двигателя с фазным ротором. Для фазного ротора характерно соединение «звезда» или «треугольник» (это определяет напряжение сети: первый вариант – при напряжении 380 В, второй – при 220В).

Асинхронный двигатель с фазным ротором схема подключения

Чтобы правильно осуществить подключение, в обязательном порядке надо знать паспортные данные машины. Выбор схемы соединения («звезда» или «треугольник») обусловлен характеристиками устройства и линейного напряжения сети. Поэтому перед подключением необходимо тщательно изучить данные паспорта, иначе двигатель может просто сгореть.

На корпусе двигателя размещена коробка, где на шесть клемм выведены концы трех обмоток статора. Нам необходимо определить, какие из них являются началами фазных обмоток, а какие – их концами. Стандартное обозначение начала обмоток — С1,С2 и С3, концы обмоток маркируются С4, С5 и С6. Для соединения «звезда» все рабочие концы фазных обмоток объединяются в один узел.

При схеме «треугольник» вы соединяете последовательно концы и начала обмоток. К точкам соединения подаются фазы. Следовательно, мы соединяем С1, С5 и L1; С2, С6 и L2; С3, С4 и L3.

При соединении «треугольником» пусковой ток намного выше, чем при соединении «звездой». Поэтому, если вы видите на корпусе маркировку 127/220, двигатель необходимо подключать «звездой». Если вы видите в паспорте обозначение 220/380, то можете включать его «треугольником» в сеть 220 В и «звездой» — в сеть 380 В.

Стоит также отметить, что при соединении «звездой» двигатели функционируют намного мягче, но не способны показать полную мощность, указанную производителем. При соединении «треугольником» мощность двигателя почти в 1, 5 раза выше, чем при соединении в «звезду».

Если двигатель не оснащен колодкой подключения, вам сначала потребуется определить концы и начала обмоток самостоятельно. Для этого отсоедините все провода, и решите эту задачу с помощью омметра, вольтметра и обычной батарейки.

 

jelektro.ru


© 2007—2018
423800, Набережные Челны , база Партнер Плюс, тел. 8 800 100-58-94 (звонок бесплатный)