Камаз 44108 тягач В наличии!
Тягач КАМАЗ 44108-6030-24
евро3, новый, дв.КАМАЗ 740.55-300л.с., КПП ZF9, ТНВД ЯЗДА, 6х6, нагрузка на седло 12т, бак 210+350л, МКБ, МОБ
 
карта сервера
«ООО Старт Импэкс» продажа грузовых автомобилей камаз по выгодным ценам
+7 (8552) 31-97-24
+7 (904) 6654712
8 800 1005894
звонок бесплатный

Наши сотрудники:
Виталий
+7 (8552) 31-97-24

[email protected]

 

Екатерина - специалист по продаже а/м КАМАЗ
+7 (904) 6654712

[email protected]

 

Фото техники

20 тонный, 20 кубовый самосвал КАМАЗ 6520-029 в наличии
15-тонный строительный самосвал КАМАЗ 65115 на стоянке. Техника в наличии
Традиционно КАМАЗ побеждает в дакаре

тел.8 800 100 58 94

Техника в наличии

тягач КАМАЗ-44108
Тягач КАМАЗ 44108-6030-24
2014г, 6х6, Евро3, дв.КАМАЗ 300 л.с., КПП ZF9, бак 210л+350л, МКБ,МОБ,рестайлинг.
цена 2 220 000 руб.,
 
КАМАЗ-4308
КАМАЗ 4308-6063-28(R4)
4х2,дв. Cummins ISB6.7e4 245л.с. (Е-4),КПП ZF6S1000, V кузова=39,7куб.м., спальное место, бак 210л, шк-пет,МКБ, ТНВД BOSCH, система нейтрализ. ОГ(AdBlue), тент, каркас, рестайлинг, внутр. размеры платформы 6112х2470х730 мм
цена 1 950 000 руб.,
КАМАЗ-6520
Самосвал КАМАЗ 6520-057
2014г, 6х4,Евро3, дв.КАМАЗ 320 л.с., КПП ZF16, ТНВД ЯЗДА, бак 350л, г/п 20 тонн, V кузова =20 куб.м.,МКБ,МОБ, со спальным местом.
цена 2 700 000 руб.,
 
КАМАЗ-6522
Самосвал 6522-027
2014, 6х6, дв.КАМАЗ 740.51,320 л.с., КПП ZF16,бак 350л, г/п 19 тонн,V кузова 12куб.м.,МКБ,МОБ,задняя разгрузка,обогрев платформы.
цена 3 190 000 руб.,

СУПЕР ЦЕНА

на АВТОМОБИЛИ КАМАЗ
43118-010-10 (дв.740.30-260 л.с.) 2 220 000
43118-6033-24 (дв.740.55-300 л.с.) 2 300 000
65117-029 (дв.740.30-260 л.с.) 2 200 000
65117-6010-62 (дв.740.62-280 л.с.) 2 350 000
44108 (дв.740.30-260 л.с.) 2 160 000
44108-6030-24 (дв.740.55,рест.) 2 200 000
65116-010-62 (дв.740.62-280 л.с.) 1 880 000
6460 (дв.740.50-360 л.с.) 2 180 000
45143-011-15 (дв.740.13-260л.с) 2 180 000
65115 (дв.740.62-280 л.с.,рест.) 2 190 000
65115 (дв.740.62-280 л.с.,3-х стор) 2 295 000
6520 (дв.740.51-320 л.с.) 2 610 000
6520 (дв.740.51-320 л.с.,сп.место) 2 700 000
6522-027 (дв.740.51-320 л.с.,6х6) 3 190 000


Перегон грузовых автомобилей
Перегон грузовых автомобилей
подробнее про услугу перегона можно прочесть здесь.


Самосвал Форд Нужны самосвалы? Обратите внимание на Ford-65513-02.

КАМАЗы в лизинг

ООО «Старт Импэкс» имеет возможность поставки грузовой автотехники КАМАЗ, а так же спецтехники на шасси КАМАЗ в лизинг. Продажа грузовой техники по лизинговым схемам имеет определенные выгоды для покупателя грузовика. Рассрочка платежа, а так же то обстоятельство, что грузовики до полной выплаты лизинговых платежей находятся на балансе лизингодателя, и соответственно покупатель автомобиля не платит налогов на имущество. Мы готовы предложить любые модели бортовых автомобилей, тягачей и самосвалов по самым выгодным лизинговым схемам.

Контактная информация.

г. Набережные Челны, Промкомзона-2, Автодорога №3, база «Партнер плюс».

тел/факс (8552) 388373.
Схема проезда



7. Система охлаждения жидкостная закрытого типа. Система охлаждения жидкостная


плюсы и минусы :: SYL.ru

Чтобы установить водяное охлаждение для ПК, нужно хорошо разобраться в этой теме. Такой подход связан со многими факторами. Но главным образом, некачественный сбор этого типа СО может привести к разгерметизации и заливу всей системы, а этого, понятное дело, никому не хочется. Ну а прежде чем мы узнаем все за и против водяного охлаждения, попробуем разобраться с самостоятельным монтажом и другими аспектами, стоит начать с самого начала.

Система охлаждения

Она знакома многим, кто хоть раз заглядывал в компьютер и рассматривал какие-либо детали. Воздушное или активное охлаждение наиболее распространенное, популярное и то, которое мы встречаем в обычным ПК. В самой системе существует условная «Святая Троица», куда входит вентилятор видеокарты, процессора и корпуса. Конечно, в самых простых их может быть только два, так как корпусный устанавливают рядом с чипом и его в целом хватает.

Также иногда процессорные вентиляторы заменяют на более мощные и также объединяют их с корпусным, устанавливая целостную конструкцию на материнскую плату. Такой тип охлаждения стоит значительно меньше, даже если вы приобретете самый дорогой кулер.

Далее есть водяная система охлаждения для ПК. В этом варианте пользователю придется потратить намного больше денег, так как вариант имеет сложную конструкцию, состоит из десятка элементов. Чтобы собрать такую систему, в любом случае нужен будет профессиональный совет, так как те, кто ни разу не сталкивался с этим, вряд ли смогут правильно и безопасно установить оборудование.

Эти две наиболее популярные системы могут дополняться еще парочкой разновидностей, о которых знают немногие. К примеру, фреоновая установка представляет собой «холодильник», который охлаждает определенный компонент. Есть ватерчиллер, который получил еще более сложную конструкцию и совмещает жидкостное охлаждение и фреоновую установку.

В последнее время стали популярны системы открытого испарения, где за рабочее тело отвечает сухой лед, жидкий азот или гелий. Сейчас такие варианты пользуются популярностью у тех, кто любит экстремальный оверклокинг. Также стоит упомянуть о системе каскадного охлаждения, которая похожа на фреоновую установку, но имеет еще более сложную конструкцию. И наконец система с элементами Пальтье, которая требует другую активную СО.

Для чего?

Как водяное охлаждение для ПК, так и все другие виды – это системы, помогающие отвести тепло от нагревающихся элементов в компьютере. Как уже говорилось ранее, обычно дополнительного охлаждения требуют процессоры, видеокарты, элементы на материнской плате.

При этом тепло, которое формируется в корпусе, может быть утилизировано несколькими способами. К примеру, в атмосферу воздух отправляют активные системы, которые имеют радиатор. Так, воздушное охлаждение может быть представлено двумя типами: активным и пассивным. В первом случае вместе с радиатором работает вентилятор. Во втором – только радиатор.

В случае воздушного охлаждения тепло отводится от радиатора благодаря излучению тепла и конвекции. Если нет вентилятора, то конвекция естественная, если есть – принудительная. Также тепло может утилизироваться вместе с теплоносителем, как в случае водяного охлаждения, так и за счет фазового перехода носителя тепла в случае испарительной системы.

Опасность

Если вы понимаете, для чего нужно водяное охлаждение для ПК или воздушное, но не осознаете опасность перегрева, тогда следующая информация для вас. Из наиболее безобидного, обычно перенасыщение ПК теплым воздухом приводит к торможению системы: частоты процессора падает, графический ускоритель также становится медленнее, страдают и модули памяти.

Из трагического – перегрев принесет «смерть» вашей машине. Причем это может произойти несколькими способами. Если обратиться к физике, то за счет перегрева происходят необратимые и обратимые процессы.

Так, к необратимым относят химические явления. Перегрев либо резкий, либо длительный влияет на элементы, которые меняют свое молекулярное строение. После этого каким-либо образом спасти любимую видеокарту не удастся никак. Обратимые больше относятся к физическим процессам. В таком случае что-то плавится или рушится, соответственно, может быть заменено. Хотя последние случаи не всегда возможно исправить.

Сравнение

Чтобы понять, что такое водяное охлаждение для ПК, плюсы и минусы такой системы, стоит сравнить его с самым популярным вариантом охлаждения. Как мы знаем, кулер представляет собой конструкцию из радиатора, через который проходят трубки теплоотвода и вентилятора. Такую систему легко устанавливать в корпус. Обычно она крепится на четырех винтах.

Причем после упаковки вам ничего не нужно делать, собирать отдельные части или что-то к чему-то докупать. Просто находите место на материнской плате и крепите туда ваше приобретение. К доступной стоимости и простоте монтажа добавляются и недостатки такого варианта.

Прежде всего, почему воздушное охлаждение меняют на жидкостное – из-за неэффективности первого. Особенно если пользователь желает осуществить критический разгон процессора, то обычный кулер с этим не справится. Также часто не хватает такой системы и там, где «сидят» две и более видеокарт.

Следующим недостатком являются габариты радиатора. Конечно, не во всех случаях. Но чаще всего у хорошего кулера очень высокий профиль, что вызывает неудобства в установке и помещение его в компактный корпус. И последнее – это шум. С ним сталкиваются все пользователи. Причем если в спокойном режиме можно и не услышать систему, то при максимальной нагрузке на ПК вентиляторы набирают обороты и создают много шума.

Что это?

Итак, чаще всего встречается именно игровой ПК с водяным охлаждением. Это совсем не случайно. Во-первых, для него нужна мощная система. Во-вторых, он требует сильного охлаждения. В-третьих, некоторые геймеры все же любят развлечь себя оверклокингом, а для этого обязательно иметь СО, которая справится с непредвиденными перегревами и нагрузками.

Сразу стоит сказать, что водяное охлаждения далеко не всем по карману, поэтому трудно сказать, должен ли каждый геймер приобрести себе такое. Но если у вас есть достаточно средств, вы устали от перегрева системы, хотите поэкспериментировать с частотами, а еще и избавиться от излишнего шума кулера, то этот вариант подойдет вам идеально.

Работа

Водяное охлаждение для ПК своими руками сделать непросто. Поэтому, если средств действительно достаточно, лучше приобрести готовое. Но прежде чем мы перейдем к этому вопросу, стоит понять основной принцип работы такой конструкции. Это охлаждение не требует много места или каких-то особых форматов корпуса. Ему не нужен большой объем системного блока, чтобы работать более эффективно. В целом такой вариант встанет даже в самый нестандартный блок, с поправкой на сложности в монтаже.

Как уже говорилось ранее, система в качестве теплоносителя использует воду. Когда процессор нагревается, он излучает тепло, которое передает воде через теплообменник. Им здесь служит ватерблок. Тут вода становится теплее, и, естественно, её нужно охладить. Поэтому дальше она переносится на следующую точку теплообмена. Ею является радиатор. В этой точке тепло передается воздуху, который выводится за пределы ПК.

Сразу возникает вопрос, по какому принципу движется вода внутри корпуса. Её активностью занимается специальный насос – помпа. Понятно, что водяное охлаждение для ПК своими руками или купленное в магазине намного лучше воздушного, так как вода имеет высокий показатель теплоемкости и теплопроводности. Кроме того, теплоотвод становится эффективнее и быстрее.

Конструкция

Как уже говорилось ранее, конструкция этой системы намного сложнее, чем просто вентилятор и радиатор. Тут больше компонентов, которые при самостоятельной сборке следует тщательно подбирать. Есть как обязательные компоненты, так и дополнительные, которые не помешают, но без которых можно обойтись.

Корпус для ПК с водяным охлаждением должен обзавестись ватерблоком. Как показывает практика, хватает и одного, но лучше больше. Также внутри должен быть радиатор, помпа, шланги, фитинги и вода.

Помимо вышеуказанных элементов, без которых система не обойдется, должен быть резервуар, термодатчики, контроллеры помпы и вентиляторов, также не помешает парочка фильтров, бэкплейты, дополнительный ватерблок, разнообразные датчики и измерители и прочее.

Для тех, кто хочет самостоятельно собрать всю систему, мы рассмотрим каждый обязательный элемент отдельно.

Ватерблок

Итак, это первый и один из главных элементов во всей системе. Он является теплообменником, который передает тепло от греющегося элемента к воде. В целом конструкция этой детали практически одна. Он обычно состоит из металла или пластиковой крышки, имеет крепления, которые помогают установить его на нужный элемент.

Интересно, что ватерблоков так много, что есть даже такие, которые обеспечивают охлаждение частям, которые и не сильно в нем нуждаются. Но главное, что на основные, такие как процессоры, тоже есть. Соответственно, есть процессорные ватерблоки, для видеокарт и системных чипов.

Кстати, для графических ускорителей есть несколько вариантов теплообменника. Один вариант защищает только графический чип, другой накрывает сразу все элементы, в число которых входит чип, память, элементы напряжения и т. д.

Радиатор

Далее, те, кто пытается решить вопрос, как сделать водяное охлаждение для ПК, должны найти радиатор. Это водовоздушный обменник тепла, который участвует в передаче тепла от воды к воздуху. Они также могут быть двух видов: пассивный и активный.

Эти варианты мы встречали, когда описывали разновидность воздушного охлаждения. Пассивный выводит тепло естественно, а в активном варианте – принудительно с помощью вентилятора. Конечно, вариант пассивного радиатора в нашем случае встречается крайне редко. Несмотря на то что он вообще не издает шума, все же эффективность охлаждения в разы ниже. Кроме того, пассивные радиаторы намного крупнее и занимают много места, а значит, вызывают проблемы в установке всей системы.

Радиаторы с продувом все же распространенные, эффективные и удобные. Вентиляторы для них обычно мощные, которые также умеют регулировать скорость, а значит, систему из шумной можно мигом превратить в бесшумную, если в этом есть нужда. Размеры такого радиатора также варьируются.

Помпа

Конечно, нужно подобрать много элементов, чтобы собрать качественное водяное охлаждение. Помпы для ПК представлены электрическим насосом. Он отвечает за движение воды по трубкам от одной точки теплообмена к другой. Помпы могут быть разные, применяются они и более, и менее мощные. Есть варианты, которые работают от 220 вольт, а есть такие, которым достаточно 12 вольт.

Кстати, для системы водяного охлаждения (СВО) ранее использовали аквариумные помпы, которые работали при 220 вольт. Но такая замена вызывала некоторые трудности. Приходилось одновременно включать и насос, и ПК. Для этого нужно было установить особый механизм, что являлось дополнительной тратой.

Со временем технологии пошли вперед, появились специализированные помпы, с лучшей мощностью, компактным размером и работой от 12 вольт.

Трубки

Те, кто хоть раз видел либо кастомное водяное охлаждение для ПК, либо магазинный вариант, знают, что есть во всей конструкции трубки. Обычно именно по таким шлангам проносится вода от одной точки теплообмена к другой. Это обязательный компонент, который, в принципе, может иметь некоторые вариации.

Чаще всего для ПК эти трубки изготавливаются из ПВХ. Есть, конечно, варианты из силикона. На производительность трубка мало оказывает влияния, единственное, на что нужно обратить внимание, – это на диаметр. Меньше 8 мм лучше не приобретать, если собираетесь самостоятельно изготавливать СВО.

Фитинги

Это еще одна, не менее важная деталь, которая необходима и входит в комплект водяного охлаждения для ПК. Это соединительный механизм, который помогает подключить трубки к ватерблоку, помпе и радиатору. Их обычно вкручивают в отверстие с резьбой на вышеуказанных элементах всей системы.

Кстати, интересно, что если вы приобретаете самостоятельно отдельные части, то к комплектующим в коробке не будут идти фитинги. Это вызвано тем, что производители хотят, чтобы пользователь сам решил, какого формата, размера, разъема и т. д. ему нужны эти механизмы. Если же вы приобрели целиком систему, то, естественно, в комплекте будут все детали.

Есть и разные виды фитинга. К примеру, наиболее распространенным считается вариант компрессионный, который имеет накидную гайку. Есть прямые, угловые, в зависимости от положения и монтажа системы. Как уже говорилось ранее, есть разница и в резьбе.

Вода

Последний обязательный элемент цельной системы охлаждения – вода. Лучше всего использовать дистиллированную воду, которая избавилась от всех примесей. Также возможно применять деионизированную воду, которая в целом практически не отличается от предыдущего варианта, просто добывается другим методом. В некоторых случаях ее смешивают со специальными смесями и используют в СВО.

Пан или пропал

Конечно, лучшее водяное охлаждение для ПК – это то, которое проверено большинством пользователей и знакомо многим по обзорам. Но все же у некоторых покупателей возникает вопрос, а не сделать ли самостоятельно СВО. Нужно понимать, что подразумевается под самостоятельной сборкой. Обычно пользователи могут приобрести себе практически готовую систему, которую нужно лишь установить в корпус.

Есть же и самодельные системы, для которой покупатель самостоятельно выбирает все компоненты. К последнему варианту можно отнести еще один вид СВО, который собирается из «подручных» материалов. В этом случае имеются в виду найденные радиаторы на барахолках, а то и на свалках, выдернутые откуда-то вентиляторы и т. д.

Последний вариант, конечно, максимально опасный, так как ничего вас не сможет спасти от разгерметизации системы и залива всего ПК водой. А вот самостоятельная сборка правильных элементов - вещь неплохая, но только для тех, кто и вправду во всем разбирается. Главным преимуществом является, конечно, то, что вы можете подобрать такие компоненты, которые вам точно подойдут и понравятся. Поискать что-то подешевле и повыгоднее.

Готовая система – это всегда гарантия. Несмотря на то что многие считают такой вариант слишком простым и менее производительным, все же водяное охлаждение для ПК Corsair, Swiftech, Alphacool, Koolance и других, получили только положительные отклики от покупателей.

Готовая система – это огромный плюс, так как вы сразу покупаете все, что вам нужно, без дополнительных докупок и прочего. У вас в комплекте есть инструкция по установке, в которой обычно все понятно и подробно расписано. Также у вас есть гарантия на всю систему в целом. Единственным недостатком такого варианта считается отсутствие вариативности. То есть производитель представил СВО в паре моделей, а других модификаций нет и быть не может.

Выводы

Водяное охлаждение для ПК вещь нужная и важная, особенно для тех, у кого геймерский компьютер. Плюсов у такого варианта множество. Это тихая мощная система, возможность совершать критический разгон, стабильность системы в целом, приятный внешний вид, а также долгие сроки эксплуатации.

Так, водяное охлаждение позволяет не только проводить оверклокинг, но и подключать сразу несколько видеокарт, при этом корпус ПК может быть закрыт, а шума он практически не будет издавать.

Из минусов обычно выделяют трудности в монтаже, стоимость и ненадежность. С первым никуда не деться, хотя, если посмотреть пару обзоров и изучить инструкцию, ничего трудного нет. Стоимость также довольно внушительная, но за это мы можем в разы улучшить спецификации видеокарты, процессора, и частично все может окупиться.

Ненадежность - вещь субъективная. Главная опасность – это разгерметизация системы и залив всех компонентов. Она может произойти либо в любительских самодельных СВО, которые собрали из дешевых элементов, либо в случае, если вы невнимательно читали инструкцию и халатно отнеслись к монтажу.

www.syl.ru

7. Система охлаждения жидкостная закрытого типа.

Системой охлаждения называется совокупность устройств, осуществляющих принудительный регулируемый отвод и передачу теплоты от деталей двигателя в окружающую среду. Система охлаждения предназначена для поддержания оптимального температурного режима, обеспечивающего получение максимальной мощности, высокой экономичности и длительного срока службы двигателя.

Для принудительного и регулируемого отвода теплоты в двигателях автомобилей применяют два типа системы охлаждения. Тип системы охлаждения определяется теплоносителем (рабочим веществом), используемым для охлаждения двигателя. В жидкостной системе охлаждения используются специальные охлаждающие жидкости — антифризы различных марок, имеющие температуру загустевания - 40 °С и ниже. Антифризы содержат антикоррозионные и антивспенивающие присадки, исключающие образование накипи. Они очень ядовиты и требуют осторожного обращения. По сравнению с водой антифризы имеют меньшую теплоемкость и поэтому отводят теплоту от стенок цилиндров двигателя менее интенсивно.

По сравнению с воздушной жидкостная система охлаждения более эффективная, менее шумная, обеспечивает меньшую среднюю температуру деталей двигателя, улучшение наполнения цилиндров горючей смесью и более легкий пуск двигателя при низких температурах, а также использование жидкости для подогрева горючей смеси и отопления салона кузова автомобиля. Однако в системе возможно подтекание охлаждающей жидкости и имеется вероятность переохлаждения двигателя в зимнее время.

Конструкция и работа жидкостной системы охлаждения

В двигателях автомобилей применяется закрытая (герметичная) жидкостная система охлаждения с принудительной циркуляцией охлаждающей жидкости. Внутренняя полость закрытой системы охлаждения не имеет постоянной связи с окружающей средой, а связь осуществляется через специальные клапаны (при определенном давлении или вакууме), находящиеся в пробках радиатора или расширительного бачка системы. Охлаждающая жидкость в такой системе закипает при 110... 120 °С. Принудительная циркуляция охлаждающей жидкости в системе обеспечивается жидкостным насосом. Система охлаждения двигателя состоит из рубашки охлаждения головки и блока цилиндров, радиатора, насоса, термостата, вентилятора, расширительного бачка, соединительных трубопроводов и сливных краников. Кроме того, в систему охлаждения входит отопитель салона кузова автомобиля. При непрогретом двигателе основной клапан термостата 19 (рис. 11) закрыт, и охлаждающая жидкость не проходит через радиатор 10. В этом случае жидкость нагнетается насосом 17 в рубашку охлаждения 8 блока и головки цилиндров двигателя. Из головки блока цилиндров через шланг 3 жидкость поступает к дополнительному клапану термостата и попадает вновь в насос. Вследствие циркуляции этой части жидкости двигатель быстро прогревается. Одновременно меньшая часть жидкости поступает из головки блока цилиндров в обогреватель (рубашку) впускного трубопровода двигателя, а при открытом кране — в отопитель салона кузова автомобиля.

Рис. 11. Система охлаждения двигателя: 1, 2, 3, 5, 15, 18 — шланги; 4 — патрубок; 6 — бачок; 7, 9 — пробки; 8 — рубашка охлаждения; 10 — радиатор; 11 — кожух; 12 — вентилятор; 13, 14 — шкивы; 16— ремень; 17— насос; 19 — термостат

При прогретом двигателе дополнительный клапан термостата закрыт, а основной клапан открыт. В этом случае большая часть жидкости из головки блока цилиндров попадает в радиатор, охлаждается в нем и через открытый основной клапан термостата поступает в насос. Меньшая часть жидкости, как и при непрогретом двигателе, циркулирует через обогреватель впускного трубопровода двигателя и отопитель салона кузова. В некотором интервале температур основной и дополнительный клапаны термостата открыты одновременно, и охлаждающая жидкость циркулирует в этом случае по двум направлениям (кругам циркуляции). Количество циркулирующей жидкости в каждом круге зависит от степени открытия клапанов термостата, чем обеспечивается автоматическое поддержание оптимального температурного режима Двигателя. Расширительный бачок 6, заполненный охлаждающей жидкостью, сообщается с атмосферой через резиновый клапан, Установленный в пробке 7 бачка. Бачок соединен шлангом с наливной горловиной радиатора, которая имеет пробку 9 с клапанами. Бачок компенсирует изменения объема охлаждающей жидкости, и в системе поддерживается постоянный объем циркулирующей жидкости. Для слива охлаждающей жидкости из системы охлаждения имеются два сливных отверстия с резьбовыми пробками, одно из которых находится в нижнем бачке радиатора, а другое в блоке цилиндров двигателя. Температура жидкости в системе контролируется указателем, датчик которого установлен в головке блока цилиндров двигателя. Жидкостный насос обеспечивает принудительную циркуляцию жидкости в системе охлаждения двигателя. На двигателях автомобилей применяют лопастные насосы центробежного типа (рис. 12). Вал 6 насоса установлен в отлитой из алюминиевого сплава крышке 4 в двухрядном неразборном подшипнике 5. Подшипник размещен и зафиксирован в крышке стопорным винтом 8. На одном конце вала напрессована литая чугунная крыльчатка 1, а на другом конце — ступица 7и шкив 11 вентилятора 15. При вращении вала насоса охлаждающая жидкость через патрубок 10 поступает к центру крыльчатки, захватывается ее лопастями, отбрасывается к корпусу 2 насоса под действием центробежной силы и через окно 3 в корпусе направляется в рубашку охлаждения блока цилиндров двигателя. Уплотнительное устройство Р, состоящее из самоподжимной манжеты и графитокомпозитного кольца, установленное на валу насоса, исключает попадание жидкости в подшипник вала. Привод насоса и вентилятора осуществляется клиновым ремнем 12 от шкива 13, который установлен на переднем конце коленчатого вала двигателя. С помощью этого ремня также вращается шкив 14 генератора. Нормальную работу насоса и вентилятора обеспечивает правильное натяжение ремня. Натяжение ремня регулируют путем перемещения генератора в сторону от двигателя (показано на рис. 12 стрелкой а). Насос корпусом 2, отлитым из алюминиевого сплава, крепится к фланцу блока цилиндров в передней части двигателя.

Рис. 12. Жидкостный насос (а) и вентилятор (б) двигателя: 1 — крыльчатка; 2 — корпус; 3 — окно; 4 — крышка; 5 — подшипник; 6 — вал; 7 — ступица; 8 — винт; 9 — уплотнительное устройство; 10 — патрубок; 11, 13,14 — шкивы; 12 — ремень; 13 — вентилятор; 16 — накладка; 17 — болт

Рассмотрим устройство насоса, привод которого осуществляется зубчатым ремнем (рис. 13). Вал 4 насоса установлен в корпусе 5 из алюминиевого сплава в неразборном двухрядном шариковом подшипнике 3. Подшипник стопорится в корпусе винтом 2 и уплотняется специальным устройством 6, включающим в себя графитокомпозитное кольцо и манжету. На переднем конце вала напрессован зубчатый шкив 1 из спеченного материала, а на заднем конце — крыльчатка 8. В крыльчатке сделаны два сквозных отверстия 7, которые соединяют между собой полости с охлаждающей жидкостью, расположенные по обе стороны крыльчатки. Благодаря этим отверстиям выравнивается давление охлаждающей жидкости на крыльчатку с обеих сторон, что исключает осевые нагрузки на вал насоса при его работе. Вал насоса приводится во вращение через шкив 1 зубчатым ремнем привода распределительного вала от коленчатого вала. При вращении вала жидкость поступает к центру крыльчатки и под действием центробежной силы направляется в рубашку охлаждения двигателя. Насос крепится корпусом к блоку цилиндров двигателя через уплотнительную прокладку. Термостат способствует ускорению прогрева двигателя и регулирует в определенных пределах количество охлаждающей жидкости, проходящей через радиатор. Термостат представляет собой автоматический клапан. В двигателях автомобилей применяют неразборные двухклапанные термостаты с твердым наполнителем.

Рис. 13. Жидкостный насос двигателя: 1 — шкив; 2 — винт; 3 — подшипник; 4 — вал; 5 — корпус; 6 — уплотнительное устройство; 7 — отверстие; 8 — крыльчатка

Термостат (рис. 14) имеет два входных патрубка 1 и 11, выходной патрубок 6, два клапана (основной 8, дополнительный 2) и чувствительный элемент. Термостат установлен перед входом в насос охлаждающей жидкости и соединяется с ним через патрубок 6. Через патрубок 1 термостат соединяется с головкой блока цилиндров двигателя, а через патрубок 11 — с нижним бачком радиатора.

Рис. 14. Термостат

Чувствительный элемент термостата состоит из баллона 4, резиновой диафрагмы 5 и штока 9. Внутри баллона между его стенкой и резиновой диафрагмой находится твердый наполнитель 10 (мелкокристаллический воск), обладающий высоким коэффициентом объемного расширения. Основной клапан 8 термостата с пружиной начинает открываться при температуре охлаждающей жидкости более 80 °С. При температуре менее 80 °С основной клапан закрывает выход жидкости из радиатора, и она поступает из двигателя в насос, проходя через открытый дополнительный клапан 2 термостата с пружиной 3. При возрастании температуры охлаждающей жидкости более 80 С в чувствительном элементе плавится твердый наполнитель, и объем его увеличивается. Вследствие этого шток 9 выходит из баллона 4, и баллон перемещается вверх. Дополнительный клапан 2 при этом начинает закрываться и при температуре более 94 С перекрывает проход охлаждающей жидкости от двигателя к насосу. Основной клапан 8 в этом случае открывается полностью, и охлаждающая жидкость циркулирует через радиатор. Расширительный бачок служит для компенсации изменений объема охлаждающей жидкости при колебаниях ее температуры и для контроля количества жидкости в системе охлаждения. Он также содержит некоторый запас охлаждающей жидкости на ее естественную убыль и возможные потери. На автомобилях применяют полупрозрачные пластмассовые бачки с заливной горловиной, закрываемой пластмассовой пробкой. Через горловину система заполняется охлаждающей жидкостью, а через клапаны, размещенные в пробке, осуществляется связь внутренней полости бачка и системы охлаждения с атмосферой. В пробке расширительных бачков часто имеется один резиновый клапан, срабатывающий при давлении, близком к атмосферному. При сливе охлаждающей жидкости из системы пробку снимают с расширительного бачка. Расширительный бачок размещается в подкапотном пространстве отделения двигателя, где крепится к кузову автомобиля. Радиатор обеспечивает отвод теплоты охлаждающей жидкости в окружающую среду. На легковых автомобилях применяются трубчато-пластинчатые радиаторы.

Радиатор автомобиля (рис. 15, а) — неразборный, имеет вертикальное расположение трубок и горизонтальное расположение охлаждающих пластин. Бачки радиатора и трубки латунные, а охлаждающие пластины стальные, луженые. Трубки и пластины образуют сердцевину 5 радиатора. В верхнем бачке J радиатора имеется горловина 2, через которую систему охлаждения заполняют жидкостью. Горловина герметично закрывается пробкой J, имеющей два клапана — впускной 7 и выпускной 8. Выпускной клапан открывается при избыточном давлении в системе 0,05 МПа, и закипевшая охлаждающая жидкость через патрубок 6 и соединительный шланг выбрасывается в расширительный бачок. Впускной клапан не имеет пружины и обеспечивает связь внутренней полости системы охлаждения с окружающей средой через расширительный бачок и резиновый клапан в его пробке, который срабатывает при давлении, близком к атмосферному. Впускной клапан перепускает жидкость из расширительного бачка при уменьшении ее объема в системе (при охлаждении) и пропускает в расширительный бачок при увеличении объема (при нагревании жидкости). Радиатор установлен нижним бачком 4 на кронштейны кузова на двух резиновых опорах, а вверху закреплен двумя болтами через стальные распорки и резиновые втулки.

Рис. 15. Неразборный радиатор (а) и кожух (б) вентилятора двигателя: 1 — пробка; 2 — горловина; 3,4— бачки; 5 — сердцевина; 6 — патрубок; 7, 8 — клапаны; 9 — кожух; 10 — уплотнитель

Для направления воздушного потока через радиатор и более эффективной работы вентилятора за радиатором установлен стальной кожух 9 вентилятора (рис. 15, 6), состоящий из двух половин. Обе половины кожуха имеют резиновые уплотнители 10, которые уменьшают проход воздуха к вентилятору помимо радиатора и предохраняют от поломок кожух и радиатор при колебаниях двигателя на резиновых опорах крепления. Радиатор не имеет жалюзи и утепляется в случае необходимости специальным съемным чехлом-утеплителем. Радиатор автомобиля, приведенный на рис. 16, — разборный, с горизонтальным расположением трубок и вертикальным расположением охлаждающих пластин. Радиатор не имеет заливной горловины и выполнен двухходовым — охлаждающая жидкость входит в него и выходит через левый бачок, который разделен перегородкой. Бачки радиатора пластмассовые. Левый бачок 8 имеет три патрубка, через которые соединяется с расширительным бачком, термостатом и выпускным патрубком головки блока цилиндров. Правый бачок 1 имеет сливную пробку 10, в нем установлен датчик 3 включения вентилятора. К бачкам через резиновые уплотнительные прокладки Скрепится сердцевина 2радиатора. Она состоит из двух рядов алюминиевых круглых трубок и алюминиевых пластин с насечками. В части трубок вставлены пластмассовые турбулизаторы в виде штопоров. Двойной ход жидкости через радиатор, насечки на охлаждающих пластинах и турбулизаторы в трубках обеспечивают турбулентное движение жидкости и воздуха, что повышает эффективность охлаждения жидкости в радиаторе. Алюминиевая сердцевина и пластмассовые бачки существенно уменьшают массу радиатора. Радиатор установлен на трех резиновых опорах 9. Две опоры находятся снизу под левым и правым бачками, а третья опора — сверху. Резиновые опоры и прокладки между сердцевиной и бачками делают радиатор нечувствительным к вибрациям.

Рис. 16. Разборный радиатор (а) и электровентилятор (6) двигателя: 1, 8— бачки; 2 — сердцевина; 3 — датчик; 4 — прокладка; 5 — вентилятор; 6 — электродвигатель; 7 — кожух; 9 — опора; 10 — пробка

Вентилятор увеличивает скорость и количество воздуха, проходящего через радиатор. На двигателях автомобилей устанавливают четырех- и шестилопастные вентиляторы. Вентилятор 15 двигателя (см. рис. 12) — шестилопастный. Лопасти его имеют скругленные концы и расположены под утлом к плоскости вращения вентилятора. Вентилятор крепится накладкой 16 и болтами 17 к ступице и приводится во вращение от шкива коленчатого вала. На некоторых двигателях (см. рис. 16) применяется электровентилятор. Он состоит из электродвигателя 6 и вентилятора 5. Вентилятор — четырехлопастный, крепится на валу электродвигателя. Лопасти на ступице вентилятора расположены неравномерно и под углом к плоско

studfiles.net

СИСТЕМА ЖИДКОСТНОГО ОХЛАЖДЕНИЯ

В системе жидкостного охлаждения циркулирующая жидкость воспринимает теплоту от стенок цилиндров, головки блока и других нагретых деталей и передает эту теплоту через радиатор окружающей среде.По способу циркуляции охлаждающей жидкости различают термосифонные и принудительные (насосные) системы.

В термосифонных системах охлаждения циркуляция жидкости происходит вследствие разности плотностей нагретой и охлажденной жидкости. В насосных системах охлаждения циркуляция жидкости осуществляется с помощью специального насоса. Эта система является более надежной, кроме того, ее масса и объем значительно меньше, чем термосифонной системы охлаждения.

В автомобильных двигателях применяют системы принудительного охлаждения. В качестве теплоносителя обычно используют воду. Однако вследствие низкой температуры кипения и высокой температуры замерзания воды желательна замена ее другими видами теплоносителей. До сих пор еще не найден теплоноситель, удовлетворяющий всем требованиям, предъявляемым к нему (высокая температура кипения, низкая температура замерзания, достаточно высокая теплоемкость, малая вязкость, анти-коррозионность, хорошая смачиваемость, постоянство физических свойств и химического состава, малая стоимость, удобство хранения и эксплуатации). Широкое распространение при эксплуатации двигателей в зимних условиях получили водяные растворы глицерина и гликолей, понижающие температуру замерзания до минус 40—65° С.

Для двигателей с жидкостным охлаждением допускаемая температура охлаждающей жидкости в закрытых системах (система охлаждения герметично закрыта при помощи паро-воздушного клапана) равна 100° С (максимальная, кратковременно допустимая 105° С), а в открытых системах (система охлаждения сообщается с атмосферой через контрольную трубку) 90—95° С.

В современных автомобильных двигателях исключительно применяется система жидкостного охлаждения закрытого типа с принудительной циркуляцией жидкости и с одной или двумя системами регулирования — потемпературамжидкости(термостат) и воздуха (жалюзи перед радиатором).

Принудительная система охлаждения состоит из следующих элементов: рубашек охлаждения цилиндров и головок цилиндров, водяного насоса, радиатора, вентилятора, вспомогательных устройств и контрольно-измерительных приборов (термостаты, жалюзи, термометры и манометры).

1. Рубашка охлаждения

Рубашки охлаждения цилиндров и головки цилиндров проектируют с учетом прочности блока и головки и технологичности их изготовления. Скорость протекания воды в рубашке колеблется в пределах 0,5—1,0 м/сек. Для равномерного охлаждения всех цилиндров охлаждающую жидкость подводят отдельно к каждому цилиндру. Для этого внутри блока цилиндров делают каналы, в которые подается вода, поступающая к цилиндрам через окна в стенках этих каналов. Перепуск воды осуществляется через несколько отверстий в блоке и головке цилиндров, причем эти отверстия расположены в зоне наиболее нагретых частей головки цилиндров. Полости головки цилиндров должны иметь такую форму, чтобы при заполнении системы водой, в них не могли образовываться паровые и воздушные пробки. Кроме того, в системе охлаждения не должна оставаться вода при сливе ее через выпускные краны.

Подвод охлаждающей жидкости может производиться: 1) к нижней части цилиндров, что позволяет избежать образования застойных зон и паро-воздушных пробок, нарушающих циркуляцию; 2) к верхней части блока, в этом случае нижняя часть рубашки исключается из принудительной циркуляции, вследствие чего повышается температура нижнего пояса гильз; 3) к головке цилиндров, откуда относительно небольшое количество жидкости поступает в блок, а остальное — в радиатор. В последнем случае рубашки блоков неполностью включены в систему принудительной циркуляции и цилиндры омываются жидкостью, предварительно нагретой в головке. При этом циркуляция жидкости в блоке создается путем отсоса ее насосом через торцовые окна. Эта система обеспечивает быстрое прогревание гильз после пуска двигателя.

2. Водяной насос

В системе охлаждения обычно применяется водяной насос центробежного типа. Валик насоса, объединенный с валиком вентилятора, приводится в действие клиновидным ремнем от шкива на переднем конце коленчатого вала. Радиальные зазоры между крыльчаткой и корпусом водяного насоса должны бытьнеболее1мм,осевые — неболее0,2 мм.Передаточное отношение привода насоса равно 0,98—1,95. Скорость жидкости во всасывающих патрубках одноступенчатых водяных насосов не превышает 2,5—3 м1сек. Наибольший напор, создаваемый водяным насосом, зависит от сопротивления системы охлаждения. Для нормальной работы системы охлаждения давление в любой точке жидкостного тракта не должно быть меньше давления парообразования жидкости. Напор, создаваемый водяным насосом в автомобильном двигателе, составляет 35—150 кн/м? (3,5— 15 м вод. ст.). Мощность, затрачиваемая на приведение в действие насоса, равна 0,2—0,5% эффективной мощности двигателя.

Для повышения надежности работы системы охлаждения в корпусе насоса на входе перед крыльчаткой располагают винтовой направляющий аппарат для создания вращательного движения поступающей жидкости. Скорость жидкости во впускных каналах не превышает 2,5—3 м/сек.

3. Радиатор

Радиатор предназначен для передачи теплоты воды окружающему воздуху. Для повышения охлаждающего эффекта радиатора подводимый от двигателя поток горячей воды разбивается на ряд мелких струек, каждая из которых проходит по трубке или каналу, обдуваемому воздухом. В автомобильных двигателях радиатор должен иметь небольшую лобовую поверхность при значительной поверхности охлаждения.

Наибольшее распространение получили трубчатые радиаторы . Охлаждающая решетка таких радиаторов состоит из вертикальных трубок плоского, овального или круглого сечения, припаянных к верхнему и нижнему резервуарам радиатора. Эти трубки проходят через ряд тонких горизонтальных пластин, которые повышают эффективность охлаждения и жесткость конструкции. Овальные и плоские трубки лучше сопротивляются разрыву, лучше обтекаются воздухом и имеют большую относительную поверхность охлаждения, чем круглые.

В пластинчатых радиаторах охлаждающая жидкость циркулирует в пространстве, образованном каждой парой спаянных между собой по краям 2 пластин 1. Верхние и нижние концы пластин впаяны в отверстия верхнего и нижнего резервуаров радиатора. Воздух проходит между спаянными пластинами. Для увеличения поверхности охлаждения пластины делают волнистыми. Такие радиаторы быстро загрязняются, имеют большое количество паяных швов и требуют более тщательного ухода, поэтому их применяют сравнительно редко.

В трубчатом и пластинчатом радиаторах охлаждающая жидкость протекает по трубкам, омываемым снаружи воздухом.

В сотовом радиаторе воздух проходит по горизонтальным трубкам, омываемым снаружи охлаждающей жидкостью. К достоинствам радиатора такого типа относится большая, чем в радиаторах других типов, поверхность охлаждения. Недостатки сотовых радиаторов те же, что и у пластинчатых, и это препятствует их широкому распространению.

Глубина сердцевины радиатора составляет 75—150 мм. Сердцевинурадиатораглубиной75—150ммнаглухосоединяют с резервуарами при помощи пайки. Радиатор устанавливается на резиновых подушках и крепится к раме автомобиля. В верхнем резервуаре расположен заливной патрубок с сетчатым фильтром. В этом патрубке находится конец контрольной трубки, которая внизу сообщается с окружающей средой и предохраняет трубки радиатора от разрыва.

У двигателей с закрытой системой охлаждения для предохранения ее от разрушения в пробке горловины радиатора устанавливают паро-воздушный клапан , состоящий из двух клапанов: парового и воздушного. Паровой клапан 2 предохраняет систему от разрушения при повышении температуры жидкости и регулируется на давление 20—30 кн/м2 (0,2—0,3 кГ/см2). При этом давлении паровой клапан перепускает пар в атмосферу.

Воздушный клапан 1 предохраняет систему от разрушения при падении давления в системе (при остывании жидкости), и его регулируют на разрежение открытия 1 —4 кн/м2 (0,01 —0,04 кГ/см2). Приэтом давленииклапанперепускаетвоздухизатмосферы.

Скорость жидкости в трубках радиатора должна быть 0,7— 0,9 м/сек. Скорость воздуха, отнесенная к сечению перед фронтом радиатора, изменяется в пределах 7—12 м/сек.

При проектировании размеры радиатора выбирают в соответствии с компоновкой автомобиля и целесообразными затратами мощности на привод вентилятора для обеспечения нормального теплового состояния двигателя. Количество воздуха, проходимого через радиатор автомобильного двигателя, равно (0,2 — т — 0,3) Nе л/ч [или (140 ч — 220) Nnкг/ч, если Neв л. с].

Ориентировочно охлаждающая поверхность радиатора для легковых автомобилей F= (13 -т — 20) 10~5 Neм2, где Nе в em [F= = (0,10 — 5 — 0,15) Neм2, если N(1 в л. с] и для грузовых автомобилей F= (20 ч — 40) 10 5 Neм2 [F= (0,15 -*■ 0,3) Neм2, если Neв л. с].

4. Вентилятор

В автомобильных двигателях преимущественно применяют вентиляторы осевого типа. Диаметры вентиляторов колеблются в пределах 0,3—0,7 м (большие значения относятся к вентиляторам грузовых автомобилей). Наивыгоднейший угол атаки для плоских лопастей 40—45°, а для выпуклых — около 35°. Ширина лопастей равна 30—70 мм. Число лопастей, изготовляемых из листовой стали толщиной 1,25—1,8 мм, не превышает 4-6.

Для уменьшения вибрации и шума лопасти вентилятора располагают Х-образно, попарно под углами 70 и 110°. Вентиляторы устанавливают на одном валу с водяным насосом. Привод вентилятора осуществляется с помощью ременной передачи, ведущий шкив которой установлен на коленчатом валу двигателя. Расстояние между радиатором и вентилятором достигает 80— 100 мм при установке направляющего кожуха и 10—15 мм без него.

Для повышения экономичности могут применяться вентиляторы с переменной производительностью, у которых число оборотов изменяется от максимального до нуля или изменяется угол наклона лопаток к направлению воздушного потока. Эта регулировка осуществляется с помощью термостата. При пуске холодного двигателя термостат устанавливает лопасти вентилятора в положение, при котором воздух через радиатор не просасывается или отсасывается от двигателя к радиатору для ускорения прогрева последнего.

Для уменьшения мощности, необходимой для привода вентилятора, и улучшения работы системы охлаждения разработаны и применяются отключающиеся вентиляторы с автоматическим приводом (двигатели ГАЗ-53А и др.). В этом случае шкив привода вентилятора снабжается электромагнитной муфтой с обмоткой, а сам вентилятор со ступицей устанавливается свободно па подшипниках. При нормальной температуре воды в системе охлаждения температурный датчик, расположенный в верхнем бачке радиатора, размыкает электрическую цепь муфты, и вращение от шкива вентилятору не передается — вентилятор выключен. При повышении температуры до 90—95° С датчик замыкает электрическую цепь, включая муфту, которая притягивает ступицу вентилятора и последний начинает вращаться вместе со шкивом.

При подборе вентилятора следует учитывать, что количество воздуха, подаваемого вентилятором, пропорционально первой степени числа оборотов коленчатого вала, создаваемый напор — второй степени числа оборотов, а потребляемая мощность — третьей степени числа оборотов.

5. Термостат

Принцип действия двухклапанного термостата состоит в следующем.

Когда вода в системе холодная, то клапан 1 перекрывает отверстие, ведущее в радиатор, а вода из головки цилиндров поступает через окна 2 в корпус 4 к впускному патрубку водяного насоса, минуя радиатор. Когда температура воды поднимается до 65° С (по ГОСТу температура начала открытия клапана равна 70—75° С), гофрированный баллон 5 термостата вследствие увеличенияупругостипаровсмесибудетдеформироватьсяи клапан 1 начнет открываться, а клапан 3 перекроет окна 2 в корпусе термостата. В результате этого поток воды направляется в радиатор, а перепуск к водяному насосу прекращается. Клапан 1 открывается полностью при температуре воды 90° С (по ГОСТу температура полного открытия клапана равна 83—90° С). При охлаждении воды термостат возвращает клапаны в первоначальное положение. Суммарная площадь окон термостата должна быть не менее 70% площади проходного сечения основного клапана.

Недостатком жидкостных термостатов является их зависимость от внешнего давления, что может вызвать значительное колебание температуры открытия клапана.

В некоторых моделях двигателей (ЗИЛ-130 и др.) получил применение более надежно работающий термостат с твердым наполнителем. Такой термостат представляет собой баллон 13, закрытый герметично крышкой 10 . Между баллоном и его крышкой закреплена резиновая мембрана 11. Внутренность баллона заполнена активной массой 12, состоящей из церезина (кристаллический нефтяной воск), перемешанного с медным порошком. Эта масса имеет значительный коэффициент’ объемного расширения, что обусловливает большие перестановочные усилия и нечувствительность термостата к изменению внешнего давления. Наибольшее расширение достигается при температуре 75—80° С.

На мембрану опирается шток 9, расположенный в направляющей части крышки и шарнирно соединенный с клапаном 7, который установлен на шарнирной опоре в горловине 6 водяного патрубка. Клапан 7 постоянно прижимается к краям горловины пружиной 8.

Для дополнительного регулирования температурного режима системы охлаждения служат шторки и решетки из поворачивающихся пластин (жалюзи), устанавливаемые перед радиатором и регулируемые вручную или автоматически (с помощью термостата).

maestria.ru

Жидкостная система охлаждения — Мегаобучалка

Жидкостная система охлаждения может быть термосифонной и при­нудительной, открытой и закрытой.

При термосифонной системе охлаждения охлаждающая жидкость циркулирует по рубашке охлаждения и соединенному с ней радиатору благодаря различной плотности горячей и холодной жидкости в верхней и нижней части системы (горячая жидкость поднимается, а холод­ная опускается).

Данная система охлаждения проста, но малонадежна и требует ра­диатор увеличенной емкости. Поэтому на автомобильных двигателях применяется принудительная система охлаждения (рис. 5.1), в которой движение охлаждающей жидкости осуществляется жидкостным насосом.

Принципиальная система охлаждения состоит из жидкостного и воздушного трактов.

Жидкостной тракт системы включает в себя: рубашку 6 охлажде­ния, термостат, радиатор 1, жидкостной насос 5, расширительный ба­чок 4 и трубопроводы.

Воздушный тракт системы состоит из радиатора 1, вентилятора 9 и направляющих элементов тракта.

Открытая система сообщается с окружающей средой непосредственно, а закрытая — с помощью специальных клапанов, размещенных, как правило, в пробке радиатора, которые позволяют поднять давление и температуру кипения охлаждающей жидкости, тем самым повысить рабочую температуру жидкости, благодаря чему можно уменьшить габаритные размеры радиатора.

Закипевшая охлаждающая жидкость резко снижает эффективность системы охлаждения, так как в этом случае в жидкости образуются пузырьки пара, в результате принудительная циркуляция жидкости замедляется. Поэтому современные ДВС имеют закрытую жидкостную систему охлаждения.

Принцип действия системы охлаждения заключается в следующем: жидкостной насос 5, приводимый от коленчатого вала, засасывает охлаждающую жидкость из нижней части радиатора и нагнетает ее в рубашку охлаждения 6. Проходя по каналам рубашки, охлаждающая жидкость охлаждает цилиндры и головку блока цилиндров. Затем охлаждающая жидкость проходит через верхний бачок 12 (рис. 5.1, б) радиатора, куда по множеству трубок поступает в нижний бачок радиатора. Протекая через сердцевину радиатора, охлаждающая жидкость пе­редает теплоту окружающему воздуху и охлаждается. Далее охлаждаю­щая жидкость снова засасывается насосом. Этот путь охлаждающей жидкости называют циркуляцией по большому кругу.

 

 

 

Рис. 5.1. Жидкостные системы охлаждения с различным подводом охлаждающей жидкости: а — через нижний пояс цилиндров; б — через верхний пояс цилиндров; в — в головку блока цилиндров через водораспределительную трубу; / — радиатор; 2 — пароотводная трубка; 3 — коробка термостатов; 4 — расширительный бачок; 5 — жидкостной насос; 6 — рубашка охла­ждения двигателя; 7 — обходная трубка; 8 — одноклапанный термостат; 9 — вентилятор; 10 — нижний бачок радиатора; // — сердцевина радиатора; 12 — верхний бачок радиатора; 13 — двухклапанный термостат; 14 — водораспределительная труба

 

На пути охлаждающей жидкости из рубашки охлаждения в верхнем патрубке устанавливается термостат, представляющий собой клапан, который автоматически в зависимости от температуры изменяет направление движения охлаждающей жидкости. Если жидкость холодная, клапан термостата перекрывает проход жидкости в радиатор и направ­ляет ее сразу в насос — циркуляция по малому кругу.

Клапан термостата начинает открываться, пропуская охлаждающую жидкость в радиатор при температуре 70—87 °С.

Интенсивному охлаждению охлаждающей жидкости в радиаторе способствует поток воздуха, создаваемый вентилятором 9. Скорость потока охлаждающего воздуха зависит от скорости движения автомобиля. Изменить скорость потока можно с помощью жалюзи 2 (рис. 5.2, а), установленных перед радиатором.

Охлаждающая жидкость может подводиться в рубашку охлаждения двигателя через нижний пояс цилиндров, верхний пояс и головку блока цилиндров.

Подвод охлаждающей жидкости через нижний пояс цилиндров характерен для дизелей, которые допускают повышение температуры головки блока цилиндров, способствующее лучшему протеканию процес­са воспламенения от сжатия.

В двигателях с принудительным воспламенением, склонных к дето­нации при наличии в камере сгорания перегретых зон, охлаждающая жидкость подводится через верхние пояса (рис. 5.1, б) или даже через головку блока цилиндров (см. рис. 5.1, в). В последнем случае нагретые участки головки блока цилиндров охлаждаются наиболее интенсивно.

Для подвода охлаждающей жидкости в рубашку охлаждения иногда применяют водораспределительные трубы 14 (см. рис. 5.1, в), имеющие окна против каждого цилиндра. Благодаря этому достигается параллельный подвод охлаждающей жидкости одинаковой температуры ко всем цилиндрам и улучшается равномерность их охлаждения.

Контроль над работой системы охлаждения осуществляется с помощью датчиков и указателя температуры, а также сигнализатора аварийной температуры охлаждающей жидкости.

Датчики устанавливаются в системе охлаждения двигателя, а указатель и сигнализатор — на приборной доске в кабине водителя.

megaobuchalka.ru

Жидкостная система охлаждения — МегаЛекции

Оглавление

Введение……………………………………………………….......................... 3

1. Типы системы охлаждения………………………………………………… 4

2. Жидкостная система охлаждения…………………………………………. 6

3. Воздушная система охлаждения…………………………………………... 9

4. Основные неисправности системы охлаждения………………………... 11

Заключение…………………………………………………………………… 13

Список литературы………………………………………………………....... 14

Введение

Система охлаждения предназначена для принудительного отвода от деталей двигателя лишнего тепла и передачи его окружающему воздуху. Благодаря этому создается определенный температурный режим, при котором двигатель не перегревается и не переохлаждается. Тепло в двигателях отводится двумя способами: жидкостью (жидкостная система охлаждения) или воздухом (воздушная система охлаждения). Эти системы поглощают 25 — 35 % тепла, выделяющегося во время сгорания топлива. Температура охлаждающей жидкости, находящейся в головке блока цилиндров, должна быть равна 80 —95 0С. Такой температурный режим наиболее выгоден, обеспечивает нормальную работу двигателя и не должен изменяться в зависимости от температуры окружающего воздуха и нагрузки двигателя. Температура в течение рабочего цикла двигателя изменяется от 80—120 °С (минимальная) в конце впуска до 2000 —2200 °С (максимальная) в конце сгорания смеси.

Чрезмерное охлаждение двигателя вредно отражается на его работе. При переохлаждении двигателя на стенках цилиндров конденсируются пары топлива (бензина), смывая смазку, разжижают масло в картере. В этих условиях происходит интенсивный износ поршневых колец, поршней, цилиндров и снижается экономичность и мощность двигателя. Нормальная работа системы охлаждения способствует получению наибольшей мощности, снижению расхода топлива и увеличению срока службы двигателя без ремонта.

Большинство двигателей имеет жидкостные системы охлаждения (открытые или закрытые). У открытой системы охлаждения внутреннее пространство непосредственно сообщается с окружающей атмосферой. Распространение получили закрытые системы охлаждения, у которых внутреннее пространство только периодически сообщается с окружающей средой при помощи специальных клапанов. В этих системах охлаждения повышается температура кипения охлаждающей жидкости и уменьшается её выкипание.

 

Типы системы охлаждения

Система охлаждения двигателя служит для отвода избыточного тепла от стенок цилиндров и передачи его в окружающую среду, а также для поддержания теплового режима двигателя в заданных пределах.

В автомобильных двигателях система охлаждения может быть жидкостной или воздушной. Наибольшее распространение получила жидкостная закрытая система охлаждения с принудительной подачей охлаждающей жидкости к наиболее нагретым местам в двигателе (гнездам выпускных клапанов, стенкам камер сгорания, бобышкам установки свечи зажигания). Следовательно, сначала охлаждаются наиболее нагретые детали двигателя, а затем, менее нагретые. Это обеспечивает наиболее оптимальный режим работы двигателя, при котором наибольшее количество теплоты, выделившейся при сгорании горючей смеси в цилиндрах двигателя, превращается в полезную работу.

При недостаточном охлаждении цилиндров и других нагреваемых деталей снижается мощность двигателя из-за ухудшения весового наполнения цилиндров горючей смесью, происходит самовоспламенение горючей смеси или ее детонационное сгорание.

Двигатель при этом перегревается, выгорает масло на стенках цилиндров, а это ведет к недостаточной смазке трущихся поверхностей и еще большему их нагреву. В результате увеличивается износ цилиндров, поршней, поршневых колец, коренных и шатунных подшипников.

При чрезмерном охлаждении цилиндров и других деталей часть тепла уносится с охлаждающей жидкостью и не превращается в полезную работу. Кроме того, горючая смесь, попадая на холодные стенки цилиндров, конденсируется и, превращаясь в бензин, смывает масло со стенок цилиндров, а стекая в поддон картера двигателя, разжижает там масло, ухудшая его смазочные свойства, Все это при водит к потере мощности двигателя и к его износу.

Исследованиями установлено, что наиболее оптимальная температура охлаждающей жидкости при работе двигателя 85-95°С. Для поддержания ее в заданных пределах в системе охлаждения устанавливают термостат и жалюзи.

Температуру охлаждающей жидкости в двигателе контролируют при помощи термометра в кабине автомобиля, и датчика, установленного в головке блока цилиндров.

Распределение теплоты, выделившейся при сгорании горючей смеси в цилиндрах двигателя, видно из уравнения теплового баланса, которое может быть ориентировочно составлено на основании теоретических подсчетов или определено путем лабораторного исследования.

Распределение теплоты в различных двигателях неодинаково. Оно зависит от конструктивных факторов, таких как тип двигателя, степень сжатия, диаметр и ход поршня, а также от эксплуатационных показателей.

 

Жидкостная система охлаждения

Жидкостные системы охлаждения получили большее распространение, так как с их помощью создается более благоприятный тепловой режим для деталей двигателя возможность изготовления деталей двигателя из сравнительно недорогих материалов. Такие двигатели при при работе создают меньше шума за Счет наличия двойных стенок (рубашки) и слоя охлаждающей жидкости.

Система охлаждения – жидкостная, закрытого типа, с принудительной циркуляцией. Герметичность системы обеспечивается впускным и выпускным клапанами в пробке расширительного бачка. Выпускной клапан поддерживает повышенное (по сравнению с атмосферным) давление в системе на горячем двигателе (за счет этого температура кипения жидкости становится выше, уменьшаются паровые потери). Он открывается при давлении 1,1-1,5 кгс/см2. Впускной клапан открывается при понижении давления в системе относительно атмосферного на 0,03-0,13 кгс/см2 (на остывающем двигателе).

Тепловой режим работы двигателя поддерживается термостатом и электровентилятором радиатора. Последний включается датчиком, ввернутым в левый бачок радиатора (на двигателе ВАЗ-2110) или через реле по сигналу электронного блока управления двигателем (на двигателях ВАЗ-2111, -2112). Контакты датчика замыкаются при температуре 99±2°С, а размыкаются при температуре 94±2°С.

Для контроля температуры охлаждающей жидкости в головку блока цилиндров двигателя ввернут датчик, связанный с указателем температуры на приборной панели. В выпускном патрубке впрыскных двигателей (ВАЗ-2111, -2112) установлен дополнительный датчик температуры, выдающий информацию для электронного блока управления двигателем.

Насос охлаждающей жидкости – лопастной, центробежного типа, приводится от шкива коленчатого вала зубчатым ремнем привода газораспределительного механизма. Корпус насоса – алюминиевый. Валик вращается в двухрядном подшипнике с «пожизненным» запасом пластичной смазки.

Наружное кольцо подшипника стопорится винтом. На передний конец валика напрессован зубчатый шкив, на задний – крыльчатка. К торцу крыльчатки прижато упорное кольцо из графитосодержащей композиции, под которым находится сальник. При выходе насоса из строя рекомендуется заменять его в сборе.

Перераспределением потоков жидкости управляет термостат. На холодном двигателе перепускной клапан термостата перекрывает патрубок, ведущий к радиатору, и жидкость циркулирует только по малому кругу (через байпасный патрубок термостата), минуя радиатор. На двигателе ВАЗ-2110 малый круг включает радиатор отопителя, впускной коллектор, блок подогрева карбюратора и жидкостную камеру полуавтоматического пускового устройства. На двигателях ВАЗ-2111, -2112 жидкость, кроме отопителя, подается к блоку подогрева дроссельного узла (подогрев впускного коллектора не предусмотрен).

При температуре 87±2°С перепускной клапан термостата начинает перемещаться, открывая основной патрубок; при этом часть жидкости циркулирует по большому кругу, через радиатор. При температуре около 102°С патрубок полностью открывается, и вся жидкость циркулирует по большому кругу. Ход основного клапана должен составлять не менее 8 мм.

Термостат двигателя ВАЗ-2112 имеет повышенное сопротивление байпасного клапана (дроссельное отверстие), за счет чего увеличивается поток жидкости через радиатор отопителя. Охлаждающая жидкость заливается в систему через расширительный бачок. Он изготовлен из полупрозрачного полиэтилена, что позволяет визуально контролировать уровень жидкости.

Бортовая система контроля также сообщает о падении уровня жидкости, для этого в крышке бачка предусмотрен датчик. С бачком также соединены две пароотводные трубки: одна – от радиатора отопителя, другая – от радиатора охлаждения двигателя.

Радиатор состоит из двух вертикальных пластмассовых бачков (левый – с перегородкой) и двух горизонтальных рядов круглых алюминиевых трубок с напрессованными охлаждающими пластинами. Для повышения эффективности охлаждения пластины штампуются с насечкой. Трубки соединены с бачками через резиновую прокладку. Жидкость подается через верхний патрубок, а отводится через нижний. Рядом с впускным патрубком расположен тонкий патрубок пароотводной трубки.

Емкость системы жидкостного охлаждения зависит от размеров и степени форсирования (например, степени сжатия) двигателя и в среднем составляет 0,2.,.0,3 л на лошадиную силу. Поэтому у легковых автомобилей она содержит до 8...12 л жидкости, у грузовых машин с бензиновым карбюраторным двигателем — до 30 л, а у грузовиков с дизельным двигателем — до 50 л. Антифриз, содержащий антикоррозийные и антивспенивающие добавки, а также добавки, исключающие образование накипи, марки тосол А-40 или А-65 имеет температуру загустения соответственно — 40 и — 65°С. При работе двигателя жидкость, омывающая его цилиндры и головку, нагревается и открывает автоматический клапан (термостат), расположенный в трубопроводе, соединяющем двигатель с радиатором. Насос, приводимый в действие от коленчатого вала, создает циркуляцию жидкости в системе. Горячая жидкость, проходя по трубкам радиатора, отдает тепло воздуху, подаваемому в него вентилятором.

Интенсивность охлаждения двигателя можно менять, изменяя интенсивность циркуляции жидкости или интенсивность воздушного потока, проходящего через радиатор, в зависимости от температуры воздуха окружающей среды или условий движения (скорость, нагрузка и т.д.).

Не рекомендуется использование воды в системе охлаждения: горячая вода вызывает интенсивную коррозию алюминиевых деталей.

megalektsii.ru

Жидкостная система охлаждения — КиберПедия

В автотракторных двигателях применяют жидкостные системызакрытого типа с принудительной циркуляцией охлаждающеготеплоносителя. Она состоит из жидкостного и воздушного трактов.Жидкостный тракт системы включает: рубашку 6 (рис. 16.1) ох-лаждения блока цилиндров, термостат 3, радиатор 1, жидкостныйнасос 7, расширительный бачок 4 и трубопроводы. Воздушныйтракт системы состоит из радиатора 7, вентилятора 8 и направ-ляющих элементов тракта.

Закрытая система сообща-ется с атмосферой при боль-шой разности давлений с по-мощью специальных клапа-нов. Такая система позволя-ет поднять давление в сис-теме и температуру кипенияохлаждающей жидкости и,тем самым, повысить рабо-чую температуру жидкости,что дает возможность умень-шить габариты радиатора.

Регулирование температу-ры охлаждающей жидкостиосуществляется изменениеммассового расхода горячего ихолодного теплоносителей,циркулирующих в жидко-стном и воздушном трактах системы. В жидкостном тракте рольрегуляторов выполняют жидкостный насос и термостат. Послед-ний организует циркуляцию охлаждающей жидкости по «боль-шому» кругу через радиатор (наиболее интенсивное охлаждение),по «малому» кругу через обводной трубопровод 9, минуя радиа-тор, или частично по одному и другому кругу в зависимости отстепени открытия регулирующего элемента.

Расход охлаждающего воздуха зависит от скорости движениятранспортного средства и, следовательно, частоты вращения ко-ленчатого вала, а также от скорости воздуха, создаваемой вен-тилятором. Варьирование расхода воздуха при приводе вентиля-тора от коленчатого вала осуществляется с помощью гидравли-ческой или электромагнитной муфты, изменяющей частоту еговращения. Все большее применение находят системы с автоном-ным электрическим приводом вентилятора и позиционным ре-гулированием его производительности. Изменять расход воздухатакже можно варьированием аэродинамического сопротивлениявоздушного тракта с помощью жалюзи, установленных перед ра-диатором.

В качестве охлаждающей жидкости используют тосол — растворэтилентликоля в воде с добавлением присадок. В отличие от воды,он обеспечивает надежную работу двигателя при низких темпера-турах и не вызывает разрушения системы.

1 2 3 4 5 6 Рис. 16.1. Схема системы охлаждения: 1 — радиатор, 2 — паровоздушная трубка; J — термостат; 4 — расширительный ба- чок; 5 ~ пробка расширительного бачка; 6—рубашка охлаждения блока цилиндров, 7—насос; 8— вентилятор; 9— обводной трубопровод

Увеличить теплопередачу в системе можно повышением тем-пературного перепада между теплоносителями, увеличением ско-рости движения теплоносителей, совершенствованием конструк-ции радиатора в целях создания больших теплорассеивающих по-верхностей или усиления турбулизации теплоносителей.

Воздух Воздух Воздух Воздух

ш uu ш

да*

 

Жидкость Рис. 16.2. Решетки охлаждения трубчато-пластинчатых радиаторов (а — принципиальная схема; б — рядное расположение трубок; в — шахматное расположение; г — шахматное расположение под утлом к воздушному потоку; д — охлаждающая пластина с отогнутыми просечками) и труб- чато-ленточных радиаторов (е — принципиальная схема; ж — охлажда- ющая лента)

 

Скорость воздуха перед фронтом радиатора автомобиля, со-здаваемая вентилятором, составляет 6... 18 м/с, а при движенииавтомобиля увеличивается в зависимости от его скорости. Ско-рость охлаждающей жидкости в радиаторе — 0,4...0,7 м/с.

Однако следует учитывать, что при повышении рассматривае-мых скоростей и турбулизации гидравлические потери и затратына привод вентилятора и жидкостного насоса растут пропорцио-нально квадрату скорости.

Радиатор является теплообменником, объединяющим два кон-тура системы охлаждения. В автотракторных двигателях в основ-ном применяют трубчато-пластинчатые и трубчато-ленточныерешетки радиаторов.

При изготовлении радиаторов для прохода охлаждающей жид-кости применяют шовные или цельнотянутые трубки из латуннойленты толщиной до 0,15 мм.

Втрубчато-пластинчатыхрадиаторахошшщющт трубки рас-полагают по отношению к потоку воздуха в ряд, в шахматномпорядке или в шахматном порядке под углом (рис. 16.2, а...г). Пла-стины оребрения выполняют плоскими или волнистыми. В целяхинтенсификации теплоотдачи на них могут быть выполнены спе-циальные турбулизаторы в виде отогнутых просечек, которые об-разуют узкие и короткие воздушные каналы, расположенные подуглом к потоку воздуха (рис. 16.2, д).

В трубчато-ленточныхрадиаторах (рис. 16.2, ё) охлаждающиетрубки располагают в ряд. Ленту для решетки изготовляют измеди толщиной 0,05...0,1 мм. В целях интенсификации теплоот-дачи создают турбулизацию воздушного потока путем выполне-ния на ленте фигурных выштамповок или отогнутых просечек(рис. 16.2, ж).

В современных двигателях достаточно широко используют ра-диаторы из алюминиевого сплава, которые дешевле и легче. Од-нако их тепловые свойства и надежность несколько хуже.

Вентилятор обеспечивает требуемый расход воздуха для съематеплоты. Наиболее распространены одноступенчатые осевые вен-тиляторы с числом лопастей от четырех до восьми. Вентиляторподбирают по согласованию его характеристики с характеристи-кой воздушного тракта автомобиля. Рабочее колесо осевого венти-лятора устанавливают в направляющих кожухах.

Лопасти вентилятора изготовляют литыми или клепаными. Ло-пасти клепаных вентиляторов штампуют из листовой стали. Онипросты в изготовлении, но имеют невысокий КПД. Литые венти-ляторы изготовляют из синтетических материалов с профилиро-ванными лопастями. Они имеют существенно больший КПД. Дляуменьшения шума лопасти устанавливают на ступице с перемен-ным шагом.

Жидкостный насос подает жидкость в рубашку охлаждения. Наи-более распространены одноколесные центробежные насосы (рис. 16.3),имеющие 4... 8 спиральных или радиальных лопаток.

Для получения более равномерного распределения потоков ох-лаждающей жидкости по рядам цилиндров V-образного двигателяиногда предусматривают два отвода из улитки насоса.

Привод насоса осуществляется от коленчатого вала ремнямиили зубчатыми шкивами из металлокерамики. Мощность, затра-чиваемая на привод насоса, составляет 0,5... 1 % от номинальноймощности двигателя. Герметичность подшипника насоса обеспе-чивает уплотнитель, состоящий из корпуса, резиновой уплотни-тельной манжеты, разжимной пружины и неподвижного графи-тового кольца, которое постоянно прижимается пружиной к вра-щающемуся торцу крыльчатки.

Расширительный бачок стабилизирует уровень жидкости в ру-башке охлаждения, обеспечивает прием расширяющейся жидко-сти и отделение воздуха, газов и пара из охлаждающей жидкости.Пробка расширительного бачка разъединяет закрытую систему ох-лаждения с атмосферой. В ней встроены воздушный и паровой

\

16 14 13 12 11 10

Рис. 16.3. Жидкостный насос:

/ — ступица вентилятора; 2— вентилятор; 3 — болт; 4— кольцо; 5 — пружиннаяшайба; 6 — дистанционная втулка; 7 — стопорный винт; 8 — прокладка; 9 —приемный патрубок; 10 — корпус; 11 — крыльчатка; 12 — вал; 13 — уплотни-тель; 14— крышка; 15— шариковый двухрядный подшипник; 16— шкив; Л —полость насоса; Б — приемное отверстие шланга отопителя; В — контрольное

отверстие

клапаны, которые служат для стабилизации давления в системеохлаждения. Паровой клапан открывается при избыточном давле-нии паров жидкости 0,045...0,05 МПа и выпускает часть их в ат-мосферу. Воздушный клапан открывается при падении давления всистеме относительно атмосферного примерно на 0,01 МПа ивпускает в нее дополнительный воздух.

cyberpedia.su

Общее устройство и работа жидкостной системы охлаждения

Теплоту в двигателях отводят двумя способами: жидкостью (жидкостная си­стема охлаждения) или воздухом (воз­душная система охлаждения). Эти си­стемы поглощают 25 — 35% теплоты, выделяющейся во время сгорания топ­лива. Температура охлаждающей жид­кости, находящейся в головке блока ци­линдров, должна быть равна 80 — 95 °С. Такой температурный режим является оптимальным. Он обеспечивает нор­мальную работу двигателя и не должен меняться в зависимости от температуры окружающего воздуха и нагрузки двига­теля. Температура в течение рабочего цикла двигателя изменяется от 80 — 120 С (минимальная) в конце впуска до 2000 — 2200 "С (максимальная) в конце сгорания смеси.

Если двигатель не охлаждать, то газы, имеющие высокую температуру, сильно нагревают детали двигателя и они расширяются. Масло на цилин­драх и поршнях выгорает, их трение и скорость изнашивания возрастают. От чрезмерного расширения деталей проис­ходит заклинивание поршней в цилин­драх двигателя, в результате чего он может выйти из строя. Чтобы избежать отрицательных явлений, вызываемых перегревом двигателя, его необходимо охлаждать.

Однако чрезмерное охлаждение дви­гателя также отрицательно сказывается на его работе. При переохлаждении на стенках цилиндров конденсируются пары топлива (бензина),

 

которые смы­вают смазочный материал, разжижают масло в картере. В этих условиях проис­ходит интенсивное изнашивание порш­невых колец, поршней, цилиндров и снижается экономичность и мощность двигателя. Нормальная работа системы охлаждения способствует получению на­ибольшей мощности, снижению расхода топлива и увеличению срока службы двигателя без ремонта.

Большинство двигателей имеет жид­костные системы охлаждения. Распро­странение получили закрытые системы охлаждения с принудительной циркуля­цией жидкости. В данных системах вну­треннее пространство только периоди­чески сообщается с окружающей средой при помощи специальных клапанов. В этих системах повышается температу­ра кипения охлаждающей жидкости, уменьшается ее вскипание и образова­ние накипи. Жидкость подается в двига­тель насосом под давлением. Интенсив­ность циркуляции жидкости и обдув радиатора воздухом зависят от частоты вращения коленчатого вала двигателя. Открытые системы охлаждения на авто­мобильных двигателях не применяются.

Принципиальная схема жидкостной системы охлаждения показана на рис. 45. Система охлаждения автомобильного двигателя состоит из водяной рубашки 16, радиатора /, вентилятора 24, термостата 9, насоса с крыльчаткой 17, отводящего 8 и подводящего 18 па­трубков, ремня 23 привода вентилятора, датчика 13 указателя температуры жид­кости, сливных кранов 15 и 21 и других деталей. Вокруг цилиндров двигателя и головки блока имеется пространство с двойными стенками (водяная рубашка или водяная полость), где циркулирует охлаждающая жидкость.

 

 

Рис. 45.

Схема жидкостной системы охлаждения двигателя:

/ — радиатор; 2 — верхний бачок; 3 — пробка

радиатора; 4 — контрольная трубка;

5 — верхний патрубок радиатора; 6 и 19 —

резиновые шланги; 7 — перепускной шланг;

8 и 18 — соответственно отводящий и подводящий

патрубки; 9 — термостат; 10 — отверстие;

// — головка блока; /2— водораспределительная

трубка; 13 датчик указателя температуры

жидкости; 14 — блок цилиндров; 15 и 21 —

сливные краны; 16 — водяная рубашка:

17 — крыльчатка водяного центробежного

насоса; 20 — нижний патрубок радиатора;

22 — нижний бачок радиатора; 23 ~ ремень

привода вентилятора; 24 — вентилятор

 

Во время работы двигателя охла­ждающая жидкость нагревается и пода­ется водяным насосом в радиатор, где она охлаждается, а затем снова поступает в рубашку блока цилиндров. Для на­дежной работы двигателя необходимо, чтобы охлаждающая жидкость постоян­но циркулировала по замкнутому кругу двигатель — радиатор — двигатель. Жидкость может циркулировать по малому кругу, минуя радиатор (непрогретый двигатель, термостат закрыт), или по большому кругу, поступая в ра­диатор (прогретый двигатель, термо­стат открыт). Направление движения охлаждающей жидкости показано на рис. 45 стрелками.

Водяная рубашка 16 двигателя со­стоит из рубашки блока цилиндров и рубашки головки блока, соединенных между собой отверстиями в прокладке между головкой и блоком. Крыльчатка 17 водяного центробежного насоса и вентилятор приводятся в действие клиновидным ремнем 23. При вращении крыльчатки насоса охлаждающая жид­кость нагнетается в водораспредели­тельную трубку 12, расположенную в головке блока. Через отверстия К) в трубке жидкость направляется к па­трубкам выпускных клапанов, благода­ря чему охлаждаются наиболее на­гретые части головки блока и цилин­дров. Нагретая охлаждающая жидкость поступает в верхний отводящий патру­бок 8. Если термостат 9 закрыт, то по перепускному шлангу 7 жидкость снова поступает к центробежному насосу. При открытом термостате охлаждающая жидкость проходит в верхний бачок 2 радиатора, охлаждается, протекая по трубкам, и поступает в нижний бачок 22 радиатора. Охлажденная в радиаторе жидкость по нижнему подводящему па­трубку 18 подводится к насосу.

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

zdamsam.ru


© 2007—2018
423800, Набережные Челны , база Партнер Плюс, тел. 8 800 100-58-94 (звонок бесплатный)