Камаз 44108 тягач В наличии!
Тягач КАМАЗ 44108-6030-24
евро3, новый, дв.КАМАЗ 740.55-300л.с., КПП ZF9, ТНВД ЯЗДА, 6х6, нагрузка на седло 12т, бак 210+350л, МКБ, МОБ
 
карта сервера
«ООО Старт Импэкс» продажа грузовых автомобилей камаз по выгодным ценам
+7 (8552) 31-97-24
+7 (904) 6654712
8 800 1005894
звонок бесплатный

Наши сотрудники:
Виталий
+7 (8552) 31-97-24

[email protected]

 

Екатерина - специалист по продаже а/м КАМАЗ
+7 (904) 6654712

[email protected]

 

Фото техники

20 тонный, 20 кубовый самосвал КАМАЗ 6520-029 в наличии
15-тонный строительный самосвал КАМАЗ 65115 на стоянке. Техника в наличии
Традиционно КАМАЗ побеждает в дакаре

тел.8 800 100 58 94

Техника в наличии

тягач КАМАЗ-44108
Тягач КАМАЗ 44108-6030-24
2014г, 6х6, Евро3, дв.КАМАЗ 300 л.с., КПП ZF9, бак 210л+350л, МКБ,МОБ,рестайлинг.
цена 2 220 000 руб.,
 
КАМАЗ-4308
КАМАЗ 4308-6063-28(R4)
4х2,дв. Cummins ISB6.7e4 245л.с. (Е-4),КПП ZF6S1000, V кузова=39,7куб.м., спальное место, бак 210л, шк-пет,МКБ, ТНВД BOSCH, система нейтрализ. ОГ(AdBlue), тент, каркас, рестайлинг, внутр. размеры платформы 6112х2470х730 мм
цена 1 950 000 руб.,
КАМАЗ-6520
Самосвал КАМАЗ 6520-057
2014г, 6х4,Евро3, дв.КАМАЗ 320 л.с., КПП ZF16, ТНВД ЯЗДА, бак 350л, г/п 20 тонн, V кузова =20 куб.м.,МКБ,МОБ, со спальным местом.
цена 2 700 000 руб.,
 
КАМАЗ-6522
Самосвал 6522-027
2014, 6х6, дв.КАМАЗ 740.51,320 л.с., КПП ZF16,бак 350л, г/п 19 тонн,V кузова 12куб.м.,МКБ,МОБ,задняя разгрузка,обогрев платформы.
цена 3 190 000 руб.,

СУПЕР ЦЕНА

на АВТОМОБИЛИ КАМАЗ
43118-010-10 (дв.740.30-260 л.с.) 2 220 000
43118-6033-24 (дв.740.55-300 л.с.) 2 300 000
65117-029 (дв.740.30-260 л.с.) 2 200 000
65117-6010-62 (дв.740.62-280 л.с.) 2 350 000
44108 (дв.740.30-260 л.с.) 2 160 000
44108-6030-24 (дв.740.55,рест.) 2 200 000
65116-010-62 (дв.740.62-280 л.с.) 1 880 000
6460 (дв.740.50-360 л.с.) 2 180 000
45143-011-15 (дв.740.13-260л.с) 2 180 000
65115 (дв.740.62-280 л.с.,рест.) 2 190 000
65115 (дв.740.62-280 л.с.,3-х стор) 2 295 000
6520 (дв.740.51-320 л.с.) 2 610 000
6520 (дв.740.51-320 л.с.,сп.место) 2 700 000
6522-027 (дв.740.51-320 л.с.,6х6) 3 190 000


Перегон грузовых автомобилей
Перегон грузовых автомобилей
подробнее про услугу перегона можно прочесть здесь.


Самосвал Форд Нужны самосвалы? Обратите внимание на Ford-65513-02.

КАМАЗы в лизинг

ООО «Старт Импэкс» имеет возможность поставки грузовой автотехники КАМАЗ, а так же спецтехники на шасси КАМАЗ в лизинг. Продажа грузовой техники по лизинговым схемам имеет определенные выгоды для покупателя грузовика. Рассрочка платежа, а так же то обстоятельство, что грузовики до полной выплаты лизинговых платежей находятся на балансе лизингодателя, и соответственно покупатель автомобиля не платит налогов на имущество. Мы готовы предложить любые модели бортовых автомобилей, тягачей и самосвалов по самым выгодным лизинговым схемам.

Контактная информация.

г. Набережные Челны, Промкомзона-2, Автодорога №3, база «Партнер плюс».

тел/факс (8552) 388373.
Схема проезда



Устройство и принцип работы синхронного генератора однофазного переменного тока. Синхронный генератор принцип работы и устройство


УСТРОЙСТВО И ПРИНЦИП ДЕЙСТВИЯ СИНХРОННОГО ГЕНЕРАТОРА

Синхронной машиной называется такая машина переменного тока, частота вращения ротора которой находится в строго постоянном отношении к частоте тока в сети

 

, (14.1)

 

где n – частота вращения ротора, об/мин; n1 – частота вращения магнитного поля статора; – частота переменного тока, Гц; р – число пар полюсов.

По другому определению у синхронной машины угловая скорость ротора равна угловой скорости магнитного поля .

Синхронная машина, как и все электрические машины обратима, может работать в трех режимах: генераторном, двигательном и в режиме компенсатора реактивной мощности.

Наиболее распространенным режимом работы синхронных машин является генераторный режим, так как почти вся электрическая энергия на Земле вырабатывается синхронными генераторами. Синхронные генераторы – самые мощные электрические машины, созданные человеком [2].

На тепловых и атомных электростанциях эксплуатируются турбогенераторы мощностью 1200 МВт на 3000 об/мин и 1600 МВт на 1500 об/мин. Турбогенераторы – неявнополюсные быстроходные электрические машины; они имеют диаметр ротора 1,2–1,25 м и длину активной части статора около 7 м. В турбогенераторах достигнут наивысший кпд для вращающихся машин, примерно равный 99 %.

На гидроэлектростанциях устанавливаются гидрогенераторы – явнополюсные тихоходные электрические машины. Диаметр ротора Красноярского гидрогенератора мощностью 500 МВт равен 16,1 м, высота сердечника статора 1,75 (машина вертикального исполнения), кпд – 98,2 %.

На дизель-генераторных установках устанавливаются синхронные генераторы мощностью на сотни и на десятки тысяч киловатт. Выпуск автомобильных и тракторных генераторов мощностью сотни ватт достигает десятков миллионов штук в год.

Синхронные машины применяются как двигатели в приводах большой мощности. На металлургических заводах, шахтах, холодильниках они приводят в движение насосы, компрессоры, вентиляторы и другие механизмы, работающие с неизменной частотой вращения. Специальные синхронные двигатели малой мощности используются в устройствах, где требуется строгое постоянство скорости: электронасосы, автоматические самопишущие приборы, устройства программирования и т. п.

Достоинством синхронной машины является то, что она может быть источником реактивной мощности. Если асинхронные машины для создания поля потребляют из сети реактивную мощность, то синхронные в зависимости от степени возбуждения выдают в сеть или забирают из сети реактивную мощность.

Способность синхронной машины работать с опережающим cosφ и отдавать при этом в сеть реактивную мощность позволяет улучшать режим работы и экономичность системы электроснабжения.

Устройство.

Синхронная машина состоит из неподвижной части – статора, в пазах которого размещается многофазная(как правило, трехфазная) обмотка, и вращающейся части– ротора с обмоткой возбуждения постоянного тока, выведенной на два контактных кольца. Статор синхронной машины аналогичен статору асинхронной машины (см. лекцию 1).

Роторы синхронных машин выполняются явнополюсными и неявнополюсными (рис. 14.1).

 

 

Рис. 14.1. Ротор синхронных машин: a – c явновыраженнымиполюсами; б – с неявновыраженными полюсами

 

Явнополюсной ротор собирается из отдельных частей (рис 14.1, а), а обмотка возбуждения выполняется в виде катушек 1, которые размещают на полюсах 2 и крепят полюсными наконечниками 3. Полюсы укрепляются на крестовине ротора. Такая конструкция применяется в тихоходных машинах: в гидрогенераторах равнинных гидростанций (n = 80–250 об/мин) и синхронных двигателях (n = 50–750 об/мин). Число полюсов этих машин достигает нескольких десятков; например, генераторы Днепровской ГЭС имеют 72 полюса.

Обмотка возбуждения неявнополюсных роторов закладывается в пазы, выфрезерованные в сплошной стальной паковке, и крепится стальными клиньями. Лобовые части обмотки крепят стальными кольцевыми бандажами. Такая конструкция обеспечивает высокую механическую прочность ротора и применяется как в турбогенераторах, так и в быстроходных синхронных двигателях, например, в турбо­компрессорах. Скорость этих машин равна 3000 или 1500 об/мин, а число пар полюсов невелико – 1 или 2 пары.

Постоянный ток на обмотку возбуждения подается от специального генератора-возбудителя или от выпрямителя через неподвижные щетки и контактные два кольца. Кольца расположены на валу, вращающиеся вместе с валом, изолированы от вала и друг от друга.



infopedia.su

Синхронный генератор. Устройство и принцип работы

Генераторы переменного тока служат для преобразования механической энергии первичных двигателей в электрическую. В качестве первичного двигателя применяются: паровая турбина ( система паровая турбина – генератор называется турбогенератором), водяная турбина (гидрогенератор), двигатель внутреннего сгорания (дизель- генератор), электрический двигатель ( двигатель – генератор).

Синхронной машиной называется машина, скорость вращения магнитного поля которой равно скорости ротора

(9-17)

Машина обратима и может работать как генератор, так и как двигатель. Однако наибольшее распространение они получили как генераторы переменного тока, которые устанавливают на всех современных электростанциях.

Генератор, как и всякая электрическая машина, состоит из неподвижной части – статора и вращающейся части – ротора. Часто ту часть машины, которая создает магнитное поле, называют индуктором, а ту часть машины, где располагается обмотка, в которой индуцируется эдс, называют якорем.

В основе работы синхронных генераторов лежит явление электромагнитной индукции. ЭДС, которая индуцируется в рабочей обмотке

.

Принципиально безразлично, будет ли движущийся проводник пересекать неподвижное магнитное поле или, наоборот, подвижное магнитное поле будет пересекать неподвижный проводник, поэтому конструктивно синхронные генераторы могут быть двух видов. В первом из них якорь неподвижен, а индуктор вращается (рис.111 а), во втором – наоборот (рис.111б).

а б

Рис. 111

Маломощные и низковольтные генераторы (однофазные и трехфазные) часто используются в передвижных станциях и могут работать по схеме рис. б. В этих генераторах рабочая обмотка часто выполняется на роторе, а на внутренней поверхности статора устраивается полюсная система с явно выраженными полюсами. Подключение генератора к внешней нагрузке осуществляется через скользящие токосъемы( щетки с кольцами на оси ротора).

Современные генераторы, как составная часть силовой электроэнергетики, стр ояться на высокое напряжение 15-40кВ. Снимать такие высокие напряжения с вращающейся рабочей обмотки при помощи щеточно – коллекторного узла затруднительно. Кроме того, обмотку высокого напряжения, которая при вращении ротора испытывает толчки и вибрации, очень трудно изолировать. Этим объясняется, что в современных генераторах обмотку якоря располагают на неподвижной части машины – статоре, а обмотку возбуждения (магнитные полюсы) располагают на роторе.

Схема двухполюсного синхронного генератора этого типа дана на рис. а. На статор машины намотаны три обмотки с одинаковым количеством витков, сдвинутые на угол 1200. Буквами Н и К отмечены начала и концы каждой обмотки. Магнитное поле создается обмоткой, намотанной на роторе. Через щетки и кольца к концам этой обмотки подается постоянное напряжение от специального источника питания. Ротор при помощи первичного двигателя приводится во вращение; его магнитное поле пересекает обмотки статора и в них индуктируются синусоидальные эдс.

Статор. Статор ничем не отличается от статора асинхронной машины. В его обмотке действием вращающегося магнитного поля ротора наводится эдс, подаваемая во внешнюю цепь генератора. Такая конструкция генератора позволяет устранить скользящие контакты в цепи нагрузки генератора (обмотка статора соединяется с нагрузкой непосредственно) и надежно изолировать рабочую обмотку от корпуса машины, что весьма существенно для современных генераторов, изготавливаемых на большие мощности при высоких напряжениях. Основной магнитный поток синхронного генератора, создаваемый вращающимся ротором, возбуждается от постороннего источника питания. Постоянный ток от источника проходит через обмотку ротора через два кольца и две неподвижных щетки, установленные на валу генератора. Мощность такого источника питания равна 0,25 – 1% от номинальной мощности синхронного генератора. Номинальное напряжение 115-350В.

Ротор. По свой конструкции роторы генераторов делятся наявнополюсные (тихоходные) (рис. 112а) инеявнополюсные(высокоскоростные) (рис.112 б). Число пар полюсов ротора обусловлено

а б

Рис. 112

скоростью его вращения. При частоте генерируемой эдс 50Гц неявнополюсной ротор быстроходной машины – турбогенератора, вращающийся со скоростью 3000об/мин, имеет одну пару полюсов, тогда как явнополюсной ротор тихоходного гидрогенератора, вращающийся со скоростью от 50 до 750об/мин, имеет число пар полюсов соответственно от 60 до 4.

Работа генератора под нагрузкой. Реакция якоря. Если к зажимам работающего генератора подключить внешнюю нагрузку, то в обмотках статора возникает электрический ток, который создает свое магнитное поле – поток статора. Это магнитное поле накладывается на основное магнитное поле ротора, создаваемое обмоткой возбуждения, ослабляет или усиливает его. Это воздействие поля статора на основное магнитное поле называетсяреакцией якоря.

Рассмотрим реакцию якоря при различных по характеру нагрузках.

Рис. 113

В случае активной нагрузки, при которой ток совпадает по фазе с эдс, максимум тока наступит в тот момент, когда оси полюсов ротора будут находиться напротив обмоток якоря (рис.113 а). Это так называемая поперечная реакция якоря: потоки статора и роторавзаимно перпендикулярны. В результате векторного сложения этих потоков результирующий магнитный поток генератора несколько увеличивается и смещается в пространстве, - следовательно, эдс генератора возрастает.

В случае чисто индуктивной нагрузки ток отстает от эдс по фазе на К моменту максимального значения тока в обмотке А-Х ротор должен быть повернуть на 900по часовой стрелке (рис.113 б). Магнитные потокиинаправлены встречно и результирующий магнитный поток генератора равен их разности. Такая реакция якоря уменьшает эдс генератора.

В случае чисто емкостной нагрузки ток нагрузки генератора опережает по фазе эдс на , - следовательно, ротор генератора еще не дошел 900до вертикального положения, а ток в обмотке А-Х уже имеет максимальное значение (рис.113 в). Потокииимеют одинаковое направление, увеличивают результирующий магнитный поток, а это приводит к увеличению эдс генератора.

Очевидно, что реакция якоря будет тем значительней, чем больше ток нагрузки. Таким образом, реакция якоря в синхронном генераторе приводит к изменениям магнитного потока и эдс, что является крайне нежелательным, так как изменение значения и характера нагрузки приводит к изменению напряжения на зажимах генератора.

На практике при всяком изменении нагрузки с помощью автоматики изменяют ток возбуждения; этим ослабляют влияние реакции якоря.

Для снятия различных характеристик синхронного генератора можно использовать схему рис.114 а.

Характеристика холостого хода. Эта характеристика представляет зависимость индуктированной в статоре эдс Е от тока возбуждения при разомкнутой внешней цепи машины

E=f(iB) приn=nниI= 0.

а б в

Рис. 114

Генератор приводится во вращение с синхронной скоростью, соответствующей номинальной частоте генератора. Изменяют при помощи реостата ток возбуждения, отмечая показания амперметра в цепи возбуждения. По показаниям вольтметра, включенного на зажимы обмотки статора, определяют величину индуктированной эдс Е. Характеристика холостого хода показана на рис. 114б. Прямолинейная часть характеристики указывает на пропорциональность между магнитным потоком (током возбуждения) и индуктированной эдс. В дальнейшем магнитная система генератора насыщается, кривая изгибается, т.е. при значительном увеличении тока возбуждения индуктированная эдс растет очень медленно.

Внешняя характеристика. Зависимость напряжения на зажимах генератораUот тока нагрузкиIпри постоянных значениях тока возбужденияiB, коэффициента мощностиcosφи скоростиnвращения дается внешней характеристикой (рис. в)

U=f(I).

На рис.114 в даны внешние характеристики генератора для различных видов нагрузки.

Изменение напряжения с нагрузкой происходит вследствие реакции якоря и падения напряжения в обмотке статора.

При индуктивной нагрузке реактивный ток размагничивает машину и напряжение при увеличении тока нагрузки уменьшается.

При емкостной нагрузке напряжение генератора с увеличением тока нагрузки повышается вследствие действия продольно – намагничивающей реакции якоря.

Номинальный режим нагрузки выбирается таким, чтобы при cosφ= 0,8 изменения напряжения не превышали 35 - 45% от номинального (кривая 1).

studfiles.net

Принцип действия и устройство синхронного генератора трехфазного тока

В судовых электрических станциях переменного тока применяются синхронные генераторы трехфазного тока с независимым возбуждением и с самовозбуждением. Генераторы с независимым возбуждением имеют навешанный возбудитель (электрическая машина постоянного тока) в автоматическим и ручным регулятором напряжения. У самовозбуждающихся генераторов возбуждение осуществляется через полупроводниковый выпрямитель от статора генератора; саморегулирование напряжения осуществляется статическими приборами.

Синхронные машины могут работать как генераторами, так и двигателями. В зависимости от типа привода синхронные генераторы получили и свои названия. Турбогенератор, например, — это генератор, приводимый в движение паровой турбиной, гидрогенератор вращает водяное колесо, а дизель — генератор механически связан с двигателем внутреннего сгорания.

Синхронные двигатели широко применяют для привода мощных компрессоров, насосов, вентиляторов. Синхронные микродвигатели используют для привода лентопротяжных механизмов регистрирующих приборов, магнитофонов и т.д.Статор синхронной машины по конструкции не отличается от статора асинхронного двигателя. В пазах статора размещается трехфазная, двухфазная или однофазная обмотки. Заметное отличие имеет ротор, который принципиально представляет собой постоянный магнит или электромагнит. Это налагает особые требования на геометрическую форму ротора. Любой магнит имеет полюса, число которых может быть два и более.На рис. 7.1 приведены две конструкции генераторов, с тихоходным и быстроходным ротором.

конструкции генераторов, с тихоходным и быстроходным роторомРис.7.1Быстроходными бывают, как правило, турбогенераторы. Количество пар магнитных полюсов у них равно единице. Чтобы такой генератор вырабатывал электрический ток стандартной частоты f = 50 Гц, его необходимо вращать с частотой

Принцип действия синхронного генератора основан на явлении электромагнитной индукции. Ротор с магнитными полюсами создает вращающееся магнитное поле, которое, пересекая обмотку статора, наводит в ней ЭДС. При подключении к генератору нагрузки генератор будет являться источником переменного тока.Как было показано выше, величина наводимой в обмотке статора ЭДС количественно связана с числом витков обмотки и скорости изменения магнитного потока:

Переходя к действующим значениям, выражение ЭДС можно записать в виде:

где n — частота вращения ротора генератора,Ф — магнитный поток,c — постоянный коэффициент.При подключении нагрузки напряжение на зажимах генератора в разной степени меняется. Так, увеличение активной нагрузки не оказывает заметного влияния на напряжение. В то же время индуктивная и емкостная нагрузки влияют на выходное напряжение генератора. В первом случае рост нагрузки размагничивает генератор и снижает напряжение, во втором происходит его подмагничивание и повышение напряжения. Такое явление называется реакцией якоря.Для обеспечения стабильности выходного напряжения генератора необходимо регулировать магнитный поток. При его ослаблении машину надо подмагнитить, при увеличении — размагнитить. Делается это путем регулирования тока, подаваемого в обмотку возбуждения ротора генератора.Простейший генератор трехфазного тока по конструкции аналогичен трехфазного токагенератору однофазного тока, только его якорь имеет не одну, а три обмотки АХ, BY, CZ, сдвинутые в пространстве друг относительно друга (рис. 7.2). При вращении якоря в этих обмотках наводятся э. д. с. одинаковой частоты, но имеющие разные фазы. Если амплитуды э. д. с. трех обмоток генератора равны друг другу, а сдвиг фаз между двумя любыми смежными э. д. с. равен -j= 120°, то трехфазная система э. д. с. называется симметричной.

Простейший генератор трехфазного токаРис.7.2

morez.ru

Устройство и принцип работы синхронного генератора однофазного переменного тока

Синхронные машины как двигатели применяются обычно в приводах большой мощности (более 600 кВт) или как микродвигатели, где требуется строгое постоянство скорости: электрочасы, самопишущие приборы и др. Наибольшее распространение получил генераторный режим работы синхронных машин, и почти вся электроэнергия вырабатывается синхронными генераторами, часто называемыми турбогенераторами). Синхронные генераторы на напряжение до 1000 В применяются в агрегатах для автономных систем электроснабжения.

Схема синхронной машины показана на рис. 1. Синхронная машина отличается отасинхронной тем, что ток в обмотке ротора появляется не при вращении ее в магнитном поле статора, а подводится к ней от постороннего источника постоянного тока. Статор синхронной машины выполнен так же, как и асинхронной, и на нем обычно расположена трехфазная обмотка. Обмотка ротора в синхронной машине создает магнитный поток возбуждения и называется обмоткой возбуждения. Вращающаяся обмотка ротора соединяется с внешней цепью источника постоянного тока с помощью контактных колец и щеток. Обмотка якоря в машине (генераторе) — это обмотка, в которой индуцируется ЭДС и к которой присоединяется нагрузка.

Рис. 1. Схема синхронной машины:

В — обмотка возбуждения, Uв — напряжение В цепи возбуждения

Результирующий магнитный поток создается совместным действием обмоток возбуждения и статора и вращается с той же частотой, что и ротор, поэтому такие машины называются синхронными.

В схеме на рис. 1 статор является якорем, а ротор — индуктором (возбудителем), но может быть и обращенная схема, в которой статор — индуктор, а ротор — якорь как у машины постоянного тока.

При вращении ротора с частотой n2 его магнитное поле возбуждения наводит в статоре ЭДС E1, частота которой

f1=p*n2/60

Из формулы следует, что чем больше число пар полюсов синхронной машины p*, тем меньше должна быть ее скорость вращения пдля получения заданной частоты fi.

Поэтому синхронные генераторы обычно выпускают явнополюсными с большим числом пар полюсов.

Законы электромагнитной индукции Фарадея-Максвелла и Ампера. Явление самоиндукции и взаимоиндукции и их использование в электротехнических устройствах и электрических машинах.

Работу электромагнитных цепей обычно поясняют используя законы электро-магнитной индукции Ф-Максвелла и Ампера.

Закон э/м индукции в формулировке Фарадея записывается след-м образом.

где dP магнитное значение магнитного потока в пост токе эл. поля.

На концах катушки, число витков W, возникает ЭДС инд. Пропорциональное скорости изменения потока сцепления пронизывающего данную катушку

 

Если в однородном магн. поле равномерно вращается рамка, то в ней возникает переменная ЭДС. (Генератор)

Если по рамке, помещенной в магн. поле пропускать эл. ток то на нее будет действовать вращающий момент M=pmB и рамка начнет вращаться. Принцип работы эл. двигателей

Закон Ампера

Поясняет взаимное преобразование электроэнергии в механич. Он установил связь между магнитным полем и проводником с эл. током В этом случае со стороны магнитного поля действует сила на проводник, величина которой определяется выражением

Направление силы определяется по правилу левой руки .

Вывод. Для превращения электроэнергии в механическую необходимо наличие выполнения 2-х условий:

Наличие магнитного поля.

Проводника с током

С помощью закона ампера поясняется принцип действия электродвигателей.

5-2

Если нагрузка несимметрична и соединяется по схеме Y то токи в фазах не равны, следовательно, падения напряжений в фазах не одинаково что приводит к перекосу фазных напряжений, т.е. . Это сильно влияет на работу нагрузки и потребители могут выходить из строя, для того чтобы этого не случилось при несимметричной нагрузке обязательно используют 0-й или нейтральный провод, который соединяет нулевые точки потребителей и генераторов или трансформаторов.

По I закону Кирхгофа: ; если нет нулевого провода то напряжение меняется. Основное назначение 0-го провода – выравнивание фазного напряжения.

Векторная диаграмма для 4-х проводной 3-х фазной системы.

cyberpedia.su

Схема включения и принцип работы синхронного генератора

Строительные машины и оборудование, справочник

Категория:

   Передвижные электростанции

Схема включения и принцип работы синхронного генератора

Схема включения синхронного генератора показана на рис. 1.

Синхронный генератор работает следующим образом. Ротор генератора приводится во вращение первичным двигателем с номинальной скоростью, которая поддерживается постоянной при помощи автоматического регулятора скорости первичного двигателя. Генератор возбуждают, подавая ток возбуждения/в в обмотку ротора.

Если к зажимам работающего синхронного генератора присоединить внешнюю нагрузку, то в обмотке статора появится ток, который создаст свое магнитное поле, называемое потоком обмотки статора. Этот поток делится на две части. Одна часть (поток рассеяния), замыкаясь вокруг проводников статора через его воздушный зазор и пакет, обусловливает возникновение дополнительного индуктивного сопротивления обмотки статора. Другая часть потока, замыкаясь через воздушный зазор и полюсы ротора, образует вращающееся магнитное поле статора, подобное вращающемуся полю статора асинхронного электродвигателя. Скорость вращения магнитного поля статора будет равна скорости вращения магнитного поля ротора, иначе говоря, эти поля будут вращаться с одинаковой (синхронной) скоростью.

В синхронном генераторе, работающем под нагрузкой, магнитное поле статора, накладываюсь на основное магнитное поле ротора, создаваемое обмоткой возбуждения, ослабляет или усиливает его. Воздействие намагничивающей силы якоря на магнитное поле возбуждения ротора генератора называется реакцией якоря.

Реакция якоря может быть поперечной или продольной. При поперечной реакции поле статора размагничивает набегающий край полюсов и намагничивает сбегающий край полюсов. Продольная реакция может быть продольно-размагничивающей или продольно-намагничивающей. В первом случае магнитный поток якоря направлен навстречу потоку полюсов вдоль их оси, во втором случае согласно потоку полюсов также вдоль их оси.

Рис. 1. Схема включения синхронного генератора в сеть с нагрузкой: 1 — статор, 2 — ротор, 3 — возбудитель, 4 — шунтовой регулятор, 5 — электродвигатель, 6 — лампы

Реакция якоря зависит от характера нагрузки и оказывает большое влияние на работу синхронного генератора. При чисто активной нагрузке реакция якоря будет поперечной, а при чисто индуктивной и чисто емкостной нагрузках — соответственно продольно-размагничивающей и продольно-намагничивающей. Обыч-нЪ генераторы работают на смешанную нагрузку, чаще всего на индуктивную и активную.

Регулирование тока в обмотке возбуждения (в обмотке индуктора) генератора осуществляют при помощи шунтового регулятора (реостата), включенного в цепь возбуждения возбудителя. Изменяя напряжение возбудителя, можно изменять силу тока в индукторе генератора. Сущность данного способа регулирования заключается в том, что изменение тока в обмотке возбуждения ротора вызывает изменение э. д. е., индуктируемой в обмотке статора. При этом с увеличением тока в обмотке возбуждения э. д. е., индуктируемая в обмотке статора, также увеличивается.

Необходимость регулирования тока возбуждения вызывается частыми изменениями характера и величины нагрузки.

Читать далее: Параллельная работа синхронных генераторов

Категория: - Передвижные электростанции

Главная → Справочник → Статьи → Форум

stroy-technics.ru

устройство и принцип действия, характеристики синхронного генератора, включение синхронных генераторов на параллельную работу с сетью, синхронные двигатели и компенсаторы.

Синхронные машины (СМ) используют главным образом в качестве источников электрической энергии переменного тока. Их устанавливают на мощных тепловых, гидравлических и атомных электростанциях и транспортных установках (тепловозах, автомобилях, самолетах). Конструкция синхронного генератора (СГ) определяется в основном типом привода. В зависимости от этого различают турбогенераторы (приводятся во вращение паровыми или газовыми турбинами), гидрогенераторы (приводятся во вращение гидротурбинами) и дизель-генераторы (приводятся во вращение двигателями внутреннего сгорания). СМ также могут использоваться и в качестве электродвигателей для механизмов, работающих при постоянной частоте. Для улучшения коэффициента мощности сети и компенсации реактивной мощности с целью регулирования ее напряжения применяют синхронные компенсаторы (СК).

Устройство и принцип действия.

Ротор синхронной машины вращается с той же скоростью и в том же направлении как и вращающееся магнитное поле.

Статор СМ 1 (рисунок 6.15) имеет такое же устройство, как и статор асинхронной машины.

Рисунок 6.15 – Схема синхронной машины

Обмотка статора синхронной машины 3 может выполнятся как трехфазной, так и с другим числом фаз, ее называют обмоткой якоря. Число полюсов оботок статора и ротора одинаковое. Сердечник статора с обмоткой называют якорем. На роторе 2 располагается обмотка возбуждения 4, она питается постоянным током от постороннего источника посредством двух контактных колец и щеток. Источник питания обычно называют возбудителем. Им может быть генератор постоянного тока небольшой мощности, расположенный на одном валу с синхронной машиной. Обмотка возбуждения предназначена для создания первичного магнитного поля. Ротор с обмоткой возбуждения называется индуктором.

Если ротор СМ возбудить и привести во вращение со скоростью n2, то поток возбуждения Ф будет пересекать проводники обмотки статора, в результате чего в ее фазах будут индуцироваться ЭДС с частотой

. (6.24)

ЭДС статора составляют симметричную трехфазную систему ЭДС, и при подключении к обмотке статора симметричной нагрузки эта обмотка нагрузится симметричной системой токов. Такой режим называют генераторным.

В этом случае обмотка статора создает магнитное поле, вращающееся в направлении вращения ротора со скоростью

. (6.25)

Из (6.24) и (6.25) следует

. (6.26)

Поля статора и ротора создают общее вращающееся поле, вращаясь при этом с одинаковой скоростью, т.е. синхронно.

Поле статора (якоря) оказывает воздействие на поле ротора, и называемое полем реакции якоря.

Если подвести к обмотке СМ трехфазный ток из сети в результате взаимодействия магнитных полей статора и ротора последний придет во вращение. Направление и скорость вращения ротора будут такие же как и у поля статора. В этом случае СМ будет работать в двигательном режиме.

По конструкции ротора СМ подразделяются на явнополюсные и неявнополюсные (рисунок 6.16). Явнополюсные имеют выступающие полюсы и изготовляются с числом полюсов 2р > 4. Неявнополюсные имеют цилиндрический ротор, выполняемый обычно из массивной стальной поковки. В роторе фрезеруются пазы для укладки обмотки возбуждения. Эти машины выпускаются с числом полюсов 2р = 2 и 2р = 4 и имеют поэтому большие скорости вращения (1500, 3000 об/мин). При таких скоростях применение явнополюсных машин невозможно по условиям обеспечения необходимой механической прочности крепления полюсов и обмотки возбуждения.

а) б)

Рисунок 6.16 – Роторы синхронных неявнополюсной (а) и явнополюсной (б) машин: 1 – сердечник ротора, 2 – обмотка возбуждения

В полюсных наконечниках синхронного двигателя (СД) с явнополюсным ротором размещают стержни пусковой обмотки (рисунок 6.17), выполненной из латуни. Такую же обмотку из медных стержней применяют в синхронных генераторах, она называется демпферной (успокоительной), т.к. обеспечивает быстрое затухание колебаний ротора, возникающих в переходных режимах.

Рисунок 6.17 – Устройство пусковой обмотки в синхронных двигателях:

1 – полюсы ротора, 2 – короткозамыкающие кольца, 3 – стержни «беличьей клетки», 4 – полюсные наконечники

В зависимости от способа питания обмотки возбуждения различают системы независимого и самовозбуждения. В первом случае для питания обмотки возбуждения используют установленный на валу ротора СМ генератор постоянного тока, либо отдельный генератор, приводимый во вращение синхронным двигателем. При самовозбуждении питание обмотки возбуждения осуществляется через выпрямитель от обмотки якоря.

Характеристики синхронного генератора.

Основными характеристиками, определяющими свойства синхронного генератора, являются внешние и регулировочные.

Внешние характеристики представляют собой зависимости напряжения U от тока нагрузки Iа. При этом неизменными остаются: ток возбуждения Iв, угол φ, частота f1 (постоянная частота вращения ротора n2). На рисунке 6.18 представлены внешние характеристики СГ при постоянном напряжении Uном для различных видов нагрузки. На рисунке ΔU представляет собой снижение напряжения при переходе от холостого хода к номинальному режиму.

Рисунок 6.18 – Внешние характеристики синхронного генератора при различных видах нагрузки

Регулировочные характеристики представляют собой зависимости тока возбуждения Iв от тока нагрузки Iа. При этом неизменными остаются: напряжение U, угол φ и частота f1 (рисунок 6.19). Данные характеристики демонстрируют, каким образом необходимо изменять ток возбуждения СГ, чтобы при изменении тока нагрузки напряжение оставалось неизменным. Очевидно, что при φ > 0 необходимо увеличивать ток возбуждения, а при φ < 0 – уменьшать его.

Рисунок 6.19 – Регулировочные характеристики синхронного генератора при различных видах нагрузки

Включение синхронных генераторов на параллельную работу с сетью.

На каждой электрической станции обычно бывает установлено несколько генераторов, которые включаются на параллельную работу в общую сеть. В современных энергосистемах на общую сеть, кроме того, работает целый ряд электростанций, и поэтому параллельно на общую сеть работает большое число синхронных генераторов. Благодаря этому достигается большая надежность энергоснабжения потребителей, снижение мощности аварийного н ремонтного резерва, возможность маневрирования энергоресурса ми сезонного характера и другие выгоды.

Все параллельно работающие генераторы должны отдавать в сеть ток одинаковой частоты. Поэтому они должны вращаться строго в такт, или, как говорят, синхронно.

Условия синхронизации генераторов.

При включении генераторов на параллельную работу с другими генераторами необходимо избегать чрезмерно большого толчка тока и возникновения ударных электромагнитных моментов и сил, способных вызвать повреждение генератора и другого оборудования, а также нарушить работу электрической сети или энергосистемы.

Поэтому необходимо отрегулировать надлежащим образом режим работы генератора на холостом ходу перед его включением на параллельную работу и в надлежащий момент времени включить генератор в сеть. Совокупность этих операций называется синхронизацией генератора.

Идеальные условия для включения генератора на параллельную работу достигаются при соблюдении следующих требований:

1) напряжение включаемого генератора U должно быть равно напряжению сети U или уже работающего генератора;

2) частота генератора f, должна равняться частоте сети;

3) чередование фаз генератора и сети должно быть одинаково;

4) напряжения UГ, и UС должны быть в фазе.

Синхронные двигатели и синхронные компенсаторы.

Синхронные двигатели имеют по сравнению с асинхронными большое преимущество, заключающееся в том, что благодаря возбуждению постоянным током они могут работать с cosφ = 1 и не потребляют при этом реактивной мощности из сети, а при работе с перевозбуждением даже отдают реактивную мощность в сеть. В результате улучшается коэффициент мощности сети и уменьшаются падение напряжения и потери в ней, а также повышается коэффициент мощности генераторов, работающих на электростанциях.

Максимальный момент синхронного двигателя пропорционален U, а у асинхронного двигатели U2. Поэтому при понижении напряжения синхронный двигатель сохраняет большую нагрузочную способность. Кроме того, использование возможности увеличения тока возбуждения синхронных двигателей позволяет увеличивать надежность их работы при аварийных понижениях напряжения в сети и улучшать в этих случаях условия работы энергосистемы в целом. Вследствие большого воздушного зазора добавочные потери в стали в клетке ротора синхронных двигателей меньше, чем АД, благодаря чему КПД синхронных двигателей обычно выше.

С другой стороны, конструкция синхронных двигателей сложнее, чем короткозамкнутых асинхронных двигателей, и, кроме того, синхронные двигатели должны иметь возбудитель или иное устройство для питания обмотки возбуждения постоянным током. Вследствие этого синхронные двигатели в большинстве случаев дороже асинхронных двигателей с короткозамкнутым ротором. Пуск и регулирование скорости вращения синхронных двигателей также сложнее. Тем не менее, их целесообразно применять всюду, где не требуется частых пусков и остановок и регулирования скорости вращения.

Широко применяется асинхронный пуск синхронного двигателя, когда невозбужденная машина подключается к сети и ее скорость достигает почти синхронной скорости подобно асинхронному двигателю. Далее двигатель втягивается в синхронизм.

Рабочие характеристики СД представлены на рисунке 6.20.

Рисунок 6.20 – Рабочие характеристики синхронного двигателя

СД не имеет начального пускового момента. При подключении к сети СД с неподвижным ротором при наличии постоянного тока в обмотке возбуждения электромагнитный момент за один период изменит свое направление дважды. Следовательно, средний за период момент будет равен нулю. Т.к. ротор обладает некоторой инерцией, он не будет успевать разнонятся за пол периода до синхронной частоты вращения, т.е. двигатель не придет во вращение. Таким образом, для пуска синхронного двигателя необходимо помощью внешнего момента разогнать ротор до частоты вращения, близкой к синхронной.

Учитывая, что частота вращения СД равна , ее можно регулировать изменением числа полюсов или частоты напряжения питания. Первый способ в СД нецелесообразен. Это обусловлено тем, что необходимо изменять число полюсов и на статоре, и на роторе, что усложненяет конструкцию ротора. В связи с этим на практике используют второй способ.

Синхронный двигатель, работающий на холостом ходу (без нагрузки), представляет собой синхронный компенсатор; при этом ток в обмотке якоря имеет практически только реактивную составляющую.

Синхронные компенсаторы предназначаются для компенсации коэффициента мощности сети и поддержания нормального уровня напряжения сети в районах сосредоточения потребительских нагрузок. Нормальным является перевозбужденный режим работы синхронного компенсатора, когда он отдает в сеть реактивную мощность. В связи с этим компенсаторы, как и служащие для этих же целей батареи конденсаторов, устанавливаемые на потребительских подстанциях, называют также генераторами реактивной мощности. Однако в периоды спада потребительских нагрузок (например, ночью) напряжение сети стремится возрасти и для поддержания его на нормальном уровне необходимо загрузить сеть индуктивными токами, вызывающими в ней дополнительные падения напряжения. В этих случаях синхронные компенсаторы работают в недовозбужденном режиме, когда они потребляют из сети индуктивный ток и реактивную мощность. Для этого каждый синхронный компенсатор снабжается автоматическим регулятором возбуждения или напряжения, который регулирует его ток возбуждения так, что напряжение на зажимах компенсатора остается постоянным.

 

Выводы по лекции

К основным типам вращающихся машин относят асинхронные, синхронные и машины постоянного тока. Любая машина обратима, т.е. может работать как в режиме двигателя, так и в режиме генератора. Наиболее распространенными являются асинхронные двигатели с короткозамкнутым ротором. В случае необходимости необходимости частых пусков, плавного регулирования скорости вращения в широком диапазоне, используют двигатели постоянного тока. Синхронные компенсаторы, представляющие собой синхронные двигатели, работающие на холостом ходу, применяют для компенсации коэффициента мощности сети и поддержания нормального уровня напряжения.

Вопросы для самопроверки

1 Поясните устройство асинхронной машины.

2 Поясните принцип действия асинхронного двигателя.

3 Что такое скольжение?

4 Назовите и изобразите графики известных вам характеристик асинхронного двигателя.

5. Какие способы пуска асинхронного двигателя вы знаете?

6 Какие существуют способы регулирования частоты вращения асихнонных двигателей? Кратко охарктеризуйте каждый из них.

7 Перечислите основные элементы конструкции машины постоянного тока.

8 Поясните принцип действия машины постоянного тока?

9 Какие режимы работы машины постоянного тока вы знаете?

10 Как классифицируются генераторы постоянного тока по способу возбуждения?

11 Какие способы используют для пуска двигателя постоянного тока?

12 Перечислите способы регулирования частоты вращения двигателя постоянного тока. Поясните кратко каждый из них.

13. Назовите и изобразите графики известных вам характеристик двигателя постоянного тока.

14 Что называют коммутацией в машинах постоянного тока? Как ее улучшить?

15 Поясните устройство и принцип действия синхронной машины.

16 Назовите и изобразите графики известных вам характеристик синхронного генератора.

17 Перечислите требования для включения генератора на параллельную работу с сетью.

18 В чем заключаются преимущества и недостатки использования синхронного двигателя по сравнению с асинхронным?

lektsia.com

Генератор синхронный. Устройство, конструкции и работа.

Статор синхронной машины по конструкции не отличается от статора асинхронного двигателя. В пазах статора размещается трехфазная, двухфазная или однофазная обмотки. Заметное отличие имеет ротор, который принципиально представляет собой постоянный магнит или электромагнит. Это налагает особые требования на геометрическую форму ротора. Любой магнит имеет полюса, число которых может быть два и более. На рисунке приведены две конструкции генераторов, с тихоходным и быстроходным ротором.

Конструкции синхронных генераторов

конструкции синхронных генераторовБыстроходными бывают, как правило, турбогенераторы. Количество пар магнитных полюсов у них равно единице. Чтобы такой генератор вырабатывал электрический ток стандартной частоты f = 50 Гц, его необходимо вращать с частотой:

n = 60 f / p = 60 * 50 / 1 = 3000 об/мин

На гидроэлектростанциях вращение ротора зависит от движения водяного потока. Но и при медленном вращении такой генератор должен вырабатывать электрический ток стандартной частоты f = 50 Гц. Поэтому для каждой гидроэлектростанции конструируется свой генератор, на определенное число магнитных полюсов на роторе. В качестве примера приведем параметры синхронного генератора, работающего на Днепровской ГЭС. Водяной поток вращает ротор генератора с частотой n = 33,3 об / мин. Задавшись частотой f = 50 Гц, определим число пар полюсов на роторе:

p = 60 f / n = 60 * 50 / 33,3 = 96 пар

Принцип действия синхронного генератора основан на явлении электромагнитной индукции. Ротор с магнитными полюсами создает вращающееся магнитное поле, которое, пересекая обмотку статора, наводит в ней ЭДС. При подключении к генератору нагрузки генератор будет являться источником переменного тока.

ЭДС синхронного генератора

Как было показано выше, величина наводимой в обмотке статора ЭДС количественно связана с числом витков обмотки и скорости изменения магнитного потока:

ЭДС синхронного генератораПереходя к действующим значениям, выражение ЭДС можно записать в виде:

E = c n Ф

где n — частота вращения ротора генератора, Ф — магнитный поток, c — постоянный коэффициент.

При подключении нагрузки напряжение на зажимах генератора в разной степени меняется. Так, увеличение активной нагрузки не оказывает заметного влияния на напряжение. В то же время индуктивная и емкостная нагрузки влияют на выходное напряжение генератора. В первом случае рост нагрузки размагничивает генератор и снижает напряжение, во втором происходит его подмагничивание и повышение напряжения. Такое явление называется реакцией якоря.

Для обеспечения стабильности выходного напряжения генератора необходимо регулировать магнитный поток. При его ослаблении машину надо подмагнитить, при увеличении — размагнитить. Делается это путем регулирования тока, подаваемого в обмотку возбуждения ротора генератора.

www.mtomd.info


© 2007—2018
423800, Набережные Челны , база Партнер Плюс, тел. 8 800 100-58-94 (звонок бесплатный)