Камаз 44108 тягач В наличии!
Тягач КАМАЗ 44108-6030-24
евро3, новый, дв.КАМАЗ 740.55-300л.с., КПП ZF9, ТНВД ЯЗДА, 6х6, нагрузка на седло 12т, бак 210+350л, МКБ, МОБ
 
карта сервера
«ООО Старт Импэкс» продажа грузовых автомобилей камаз по выгодным ценам
+7 (8552) 31-97-24
+7 (904) 6654712
8 800 1005894
звонок бесплатный

Наши сотрудники:
Виталий
+7 (8552) 31-97-24

[email protected]

 

Екатерина - специалист по продаже а/м КАМАЗ
+7 (904) 6654712

[email protected]

 

Фото техники

20 тонный, 20 кубовый самосвал КАМАЗ 6520-029 в наличии
15-тонный строительный самосвал КАМАЗ 65115 на стоянке. Техника в наличии
Традиционно КАМАЗ побеждает в дакаре

тел.8 800 100 58 94

Техника в наличии

тягач КАМАЗ-44108
Тягач КАМАЗ 44108-6030-24
2014г, 6х6, Евро3, дв.КАМАЗ 300 л.с., КПП ZF9, бак 210л+350л, МКБ,МОБ,рестайлинг.
цена 2 220 000 руб.,
 
КАМАЗ-4308
КАМАЗ 4308-6063-28(R4)
4х2,дв. Cummins ISB6.7e4 245л.с. (Е-4),КПП ZF6S1000, V кузова=39,7куб.м., спальное место, бак 210л, шк-пет,МКБ, ТНВД BOSCH, система нейтрализ. ОГ(AdBlue), тент, каркас, рестайлинг, внутр. размеры платформы 6112х2470х730 мм
цена 1 950 000 руб.,
КАМАЗ-6520
Самосвал КАМАЗ 6520-057
2014г, 6х4,Евро3, дв.КАМАЗ 320 л.с., КПП ZF16, ТНВД ЯЗДА, бак 350л, г/п 20 тонн, V кузова =20 куб.м.,МКБ,МОБ, со спальным местом.
цена 2 700 000 руб.,
 
КАМАЗ-6522
Самосвал 6522-027
2014, 6х6, дв.КАМАЗ 740.51,320 л.с., КПП ZF16,бак 350л, г/п 19 тонн,V кузова 12куб.м.,МКБ,МОБ,задняя разгрузка,обогрев платформы.
цена 3 190 000 руб.,

СУПЕР ЦЕНА

на АВТОМОБИЛИ КАМАЗ
43118-010-10 (дв.740.30-260 л.с.) 2 220 000
43118-6033-24 (дв.740.55-300 л.с.) 2 300 000
65117-029 (дв.740.30-260 л.с.) 2 200 000
65117-6010-62 (дв.740.62-280 л.с.) 2 350 000
44108 (дв.740.30-260 л.с.) 2 160 000
44108-6030-24 (дв.740.55,рест.) 2 200 000
65116-010-62 (дв.740.62-280 л.с.) 1 880 000
6460 (дв.740.50-360 л.с.) 2 180 000
45143-011-15 (дв.740.13-260л.с) 2 180 000
65115 (дв.740.62-280 л.с.,рест.) 2 190 000
65115 (дв.740.62-280 л.с.,3-х стор) 2 295 000
6520 (дв.740.51-320 л.с.) 2 610 000
6520 (дв.740.51-320 л.с.,сп.место) 2 700 000
6522-027 (дв.740.51-320 л.с.,6х6) 3 190 000


Перегон грузовых автомобилей
Перегон грузовых автомобилей
подробнее про услугу перегона можно прочесть здесь.


Самосвал Форд Нужны самосвалы? Обратите внимание на Ford-65513-02.

КАМАЗы в лизинг

ООО «Старт Импэкс» имеет возможность поставки грузовой автотехники КАМАЗ, а так же спецтехники на шасси КАМАЗ в лизинг. Продажа грузовой техники по лизинговым схемам имеет определенные выгоды для покупателя грузовика. Рассрочка платежа, а так же то обстоятельство, что грузовики до полной выплаты лизинговых платежей находятся на балансе лизингодателя, и соответственно покупатель автомобиля не платит налогов на имущество. Мы готовы предложить любые модели бортовых автомобилей, тягачей и самосвалов по самым выгодным лизинговым схемам.

Контактная информация.

г. Набережные Челны, Промкомзона-2, Автодорога №3, база «Партнер плюс».

тел/факс (8552) 388373.
Схема проезда


Пускорегулирующие аппараты для люминесцентных ламп: конструкция. Пускорегулирующее устройство


ЭПРА – что это и схемы подключения для различных светильников

Для работы люминесцентных, энергосберегающих, светодиодных ламп и панелей необходимо наличие в цепи элементов, обеспечивающих на их входных контактах определенную заданную величину тока и напряжения. Это достигается применением пускорегулирующей аппаратуры.

В случае работы люминесцентной лампы эта аппаратура обеспечивает предварительный прогрев электродов, после чего ртуть, содержащаяся в трубке, постепенно начинает переходить в парообразное состояние. Для возникновения стабильного тлеющего разряда внутри лампы необходимо, чтобы на ее электроды поступил кратковременный импульс напряжения большой величины.

Устройство ЭПРА обеспечивает возникновение этого импульса, включение лампы после полного испарения ртути и в процессе работы понижает ток и напряжение на лампе.

В самой простой модификации такой режим обеспечивает электромагнитный дроссель совместно со стартером. Но в случае применения электромагнитного дросселя работу лампы сопровождает гудение, мерцание и мигание при включении.

Электронные пускорегулирующие аппараты в итоге решают те же задачи, что и электромагнитные. Они обязаны обеспечивать зажигание и стабильную работу светильников.

Электронный балласт – это прибор для понижения тока на элементах электрической цепи. Балласты применяются, если сопротивление нагрузки не в состоянии результативно снизить потребляемый ток. Это возникает в случаях, когда устройство имеет отрицательное переменное сопротивление по отношению к элементу питания.

Если такая нагрузка будет подключена к источнику постоянного напряжения, то через нее будет протекать ток, увеличивающийся до тех пор, пока она или источник тока не выйдут из строя.

Для предотвращения этого используется балласт, обеспечивающий активное или реактивное сопротивление, понижающее величину тока до расчетного значения.

Одним из устройств с отрицательным сопротивлением является газоразрядная лампа.

В настоящее время для пуска и обеспечения работы ламп наиболее часто стали использоваться электронные балласты ЭПРА, которые имеют целый ряд преимуществ по сравнению со схемой включения при помощи электромагнитного дросселя.

Внешний вид ЭПРА для ламп Т8

Внешний вид ЭПРА для ламп Т8

Существуют такие модификации ЭПРА, которые встраиваются в корпус люминесцентных ламп цокольной модификации.

Они устанавливаются в кожухе лампы, находящемся между цоколем и излучающей трубкой.

Для светодиодных ламп, панелей и лент, принцип работы которых основан не на использовании электрического разряда между электродами лампы, а на свечении кристаллических светодиодов, вместо ЭПРА применяются электронные блоки питания.

Они могут быть встроены в корпус лампы или же установлены в светильник как отдельный элемент цепи.

Ниже показано устройство светодиодной лампы со встроенным драйвером.

Устройство светодиодной лампы со встроенным драйвером

Компактная лампа с встроенным ЭПРА

Компактная лампа с встроенным ЭПРА

Электронные балласты не требуют для зажигания лампы наличия стартера как самостоятельного элемента цепи.

Схема электронного пускорегулирующего аппарата создает заданное напряжение и ток в последовательности, требующейся для корректной работы.

Электронная схема ЭПРА на нужном уровне стабилизирует рабочий ток и преобразует переменное синусоидальное напряжение питающей сети частотой 50 герц в ток более высокой частоты, от 20 кГц до 60 кГц.

Поэтому при работе люминесцентной лампы достигается отсутствие мерцания, пульсаций при запуске и гудения светильника.

Существуют различные варианты зажигания ламп, которые можно реализовать с помощью ЭПРА.

Это может быть плавный пуск с постепенным увеличением яркости свечения до номинальной за несколько секунд. Можно установить моментальный запуск.

Так же как и электромагнитный дроссель, ЭПРА первоначально разогревают электроды лампы, затем создают высоковольтный импульс и после возникновения тлеющего разряда поддерживают ее работу в оптимальном режиме.

Применение этих приборов ведет к увеличению энергоэффективности лампы и сохранению ее работоспособности на весь установленный срок службы.

Ниже приводится электрическая схема электронного преобразующего аппарата, применяемого для включения и регулирования работы люминесцентной лампы мощностью 30 ватт.

Электрическая схема электронного преобразующего аппарата

На мостик, состоящий из четырех диодов D1, D2, D3, D4 типа 1N4007 подается напряжение сети 220 вольт, частотой 50 герц.

На нем происходит выпрямление входного напряжения, то есть нижний полупериод синусоидального тока переходит в верхнюю часть графика.

После этого ток, который был условно преобразован в постоянный, необходимо сгладить, уменьшив его амплитуду. Это выполняет конденсатор С1.

Для того чтобы полученное выпрямленное напряжение преобразовать в напряжение высокой частоты, используется инвертор на транзисторах Т1 и Т2.

В схеме используется трансформатор TU3802, имеющий две управляющие обмотки и одну рабочую, с которой напряжение частотой 20 кГц подается на электроды лампы.

Ток, подающийся на лампу, разогревает электроды, и ртуть в колбе начинает испаряться, а импульс напряжения величиной 1 200 вольт зажигает тлеющий разряд в лампе, и она начинает работать в стабильном режиме.

Возможно подключение нескольких ламп через один электронный пускорегулирующий аппарат. Ниже показаны схемы включения двух и четырех ламп через один балласт.

Две лампы на один ЭПРА

Две лампы на один ЭПРА

Четыре лампы с общим ЭПРА

Четыре лампы с общим ЭПРА

Для люстры можно использовать ЭПРА, если в ней установлены компактные люминесцентные лампы.

Для этого нужно выбрать прибор, рассчитанный на суммарную мощность всех ламп, установленных в люстре, с двукратным запасом по величине.

Если в люстре установлены светодиодные лампы без встроенного драйвера, то в схеме желательно предусмотреть электронный блок питания.

В случае применения электронных балластов устраняются такие негативные явления, как мигание ламп во время включения, мерцание и гудение, сопровождающие работу светильников с электромагнитными ПРА. Устраняется стробоскопический эффект, который имеет место при работе ламп на переменном токе частотой пятьдесят герц.

При использовании электронного балласта возникновение этого эффекта невозможно, поскольку на лампу подается ток высокой частоты в несколько десятков килогерц.

По цене ЭПРА довольно дорогие, но их стоимость быстро окупается в результате создания ими экономичного режима работы ламп в люстре.

Можно устанавливать в люстры лампы с встроенными драйверами.

При помощи электронных ПРА можно создать режим включения ламп с постепенным нарастанием мощности, отрегулировать поочередную работу различных групп ламп в люстре и применить другие интересные решения.

Электронные блоки питания и контроллеры применяются и в цепях со светодиодными лентами.

С применением ЭПРА мощность, расходуемая светильником, становится меньше на тридцать процентов по сравнению с потребляемой при использовании ЭмПРА.

Продолжительность пригодности лампы возрастает на пятьдесят процентов в связи с обеспечением ее работы в щадящем режиме.

Сокращаются расходы на ремонт и замену комплектующих в светильниках, оборудованных ЭПРА.

Эти приборы незаменимы в цепях, обеспечивающих работу аварийного освещения.

lampagid.ru

как работает + схемы подключения

Вас интересует, зачем нужен электронный модуль ЭПРА для люминесцентных ламп и как его следует подключить? Правильный монтаж энергосберегающих светильников позволит многократно продлить их срок эксплуатации, ведь верно? Но вы не знаете, как подключить ЭПРА и нужно ли это делать?

Мы расскажем вам о назначении электронного модуля и его подключении – в статье рассмотрены конструкционные особенности этого аппарата, благодаря которому формируется так называемое стартерное напряжение, а также поддерживается оптимальный рабочий режим светильников.

Приведены принципиальные схемы подключения люминесцентных лампочек с применением электронного пускорегулятора, а также видеорекомендации по применению подобных аппаратов. Которые являются неотъемлемой частью схемы газоразрядных ламп, несмотря на то что конструктивное исполнение таких источников света может значительно отличаться.

Содержание статьи:

Конструкции пускорегулирующих модулей

Конструкции промышленных и бытовых люминесцентных осветительных приборов, как правило, оснащаются модулями ЭПРА. Аббревиатура читается вполне доходчиво – электронный пускорегулирующий аппарат.

Электромагнитное устройство старого образца

Рассматривая конструкцию этого устройства из серии электромагнитной классики, сразу можно отметить явный недостаток – громоздкость модуля.

Правда, конструкторы всегда стремились минимизировать габаритные размеры ЭМПРА. В какой-то степени это удалось, судя по современным модификациям уже в виде ЭПРА.

Электромагнитный пускорегулятор

Набор функциональных элементов электромагнитного пускорегулирующего устройства. Его составными частями, как видно, являются всего два компонента – дроссель (так называемый балласт) и стартер (схема формирования разряда)

Громоздкость электромагнитной конструкции обусловлена внедрением в схему крупногабаритного дросселя – обязательного элемента, предназначенного сглаживать сетевое напряжение и выступать в качестве балласта.

Помимо дросселя, в состав схемы ЭМПРА входят стартеры (один или два). Очевидна зависимость качества их работы и долговечности лампы, т. к. дефект стартера вызывает фальшивый старт, что означает перегрузку по току на нитях накала.

Стартер люминесцентной лампы

Так выглядит один из конструктивных вариантов стартера пускорегулирующего электромагнитного модуля люминесцентных ламп. Существует масса других конструкций, где отмечается разница в размерах, материалах корпуса

Наряду с ненадежностью стартерного пуска, люминесцентные лампы страдают от эффекта стробирования. Проявляется он в виде мерцания с определенной частотой, близкой к 50 Гц.

Наконец, пускорегулирующий аппарат обеспечивает значительные энергетические потери, то есть в целом снижает КПД ламп люминесцентного типа.

Усовершенствование конструкции до ЭПРА

Начиная с 1990 годов, схемы люминесцентных ламп все чаще стали дополнять усовершенствованной конструкцией пускорегулирующего модуля.

Основу модернизированного модуля составили полупроводниковые электронные элементы. Соответственно, уменьшились габариты устройства, а качество работы отмечается на более высоком уровне.

Электронный пускорегулятор

Результат модификации электромагнитных регуляторов – электронные полупроводниковые устройства запуска и регулировки свечения люминесцентных ламп. С технической точки зрения, отличаются более высокими эксплуатационными показателями

Внедрение полупроводниковых ЭПРА привело практически к полному исключению недостатков, какие присутствовали в схемах аппаратов устаревшего формата.

Электронные модули показывают качественную стабильную работу и увеличивают долговечность люминесцентных светильников.

Более высокий КПД, плавное регулирование яркости, повышенный коэффициент мощности – все это преимущественные показатели новых модулей ЭПРА.

Из чего состоит приспособление?

Главными составляющими элементами схемы электронного модуля являются:

  • выпрямительное устройство;
  • фильтр электромагнитного излучения;
  • корректор коэффициента мощности;
  • фильтр сглаживания напряжения;
  • инверторная схема;
  • дроссельный элемент.

Схемное построение предусматривает одну из двух вариаций – мостовая либо полумостовая. Конструкции, где используется мостовая схема, как правило, поддерживают работу с лампами высокой мощности.

Относительно мощная люминесцентная лампа

Примерно на такие приборы света (мощностью от 100 ватт) рассчитаны пускорегулирующие модули, выполненные по мостовой схеме. Которая, кроме поддержки мощности, оказывает положительное влияние на характеристики питающего напряжения

Между тем, преимущественно в составе люминесцентных светильников эксплуатируются модули, построенные на базе полумостовой схемы.

Такие приборы на рынке встречаются чаще по сравнению с мостовыми, т. к. для традиционного применения достаточно светильников мощностью до 50 Вт.

Особенности работы аппарата

Условно функционирование электроники можно разделить на три рабочих этапа. Первым делом включается функция предварительного прогрева нитей накала, что является важным моментом в плане долговечности газовых приборов света.

Особенно необходимой эта функция видится в условиях низкотемпературной окружающей среды.

Внутреннее содержимое ЭПРА

Вид рабочей электронной платы одной из моделей пускорегулирующего модуля на полупроводниковых элементах. Эта небольшая легкая плата полностью заменяет функционал массивного дросселя и добавляет ряд улучшенных свойств

Затем схемой модуля запускается функция генерации импульса высоковольтного импеданса – уровень напряжения около 1,5 кВ.

Присутствие напряжения такой величины между электродами неизбежно сопровождается пробоем газовой среды баллона люминесцентной лампы – зажиганием лампы.

Наконец, подключается третий этап работы схемы модуля, основная функция которого заключается в создании стабилизированного напряжения горения газа внутри баллона.

Уровень напряжения в этом случае относительно невысок, чем обеспечивается малое потребление энергии.

Принципиальная схема пускорегулятора

Как уже отмечалось, часто используемой конструкцией является модуль ЭПРА, собранный по двухтактной полумостовой схеме.

Принципиальная схема ЭПРА

Принципиальная схема полумостового устройства запуска и регулировки параметров люминесцентных светильников. Однако это далеко не единственное схемное решение, какие применяются для изготовления ЭПРА

Работает такая схема в следующей последовательности:

  1. Сетевое напряжение в 220В поступает на диодный мост и фильтр.
  2. На выходе фильтра образуется постоянное напряжение в 300-310В.
  3. Инверторным модулем наращивается частота напряжения.
  4. От инвертора напряжение проходит на симметричный трансформатор.
  5. На трансформаторе за счет управляющих ключей формируется необходимый рабочий потенциал для люминесцентной лампы.

Ключи управления, установленные в цепи двух секций первичной и на вторичной обмотке, регулируют требуемую мощность.

Поэтому на вторичной обмотке формируется свой потенциал для каждого этапа работы лампы. Например, при разогреве нитей накала один, в режиме текущей работы другой.

Рассмотрим принципиальную схему полумостового ЭПРА для ламп мощностью до 30 Вт. Здесь сетевое напряжение выпрямляется сборкой из четырех диодов.

Выпрямленное напряжение от диодного моста попадает на конденсатор, где сглаживается по амплитуде, фильтруется от гармоник.

Схемы приборов на мощность до 20 ватт

На качество работы схемы оказывает влияние правильный подбор электронных элементов. Нормальная работа характеризуется параметром тока на плюсовом выводе конденсатора С1. Длительность импульса розжига светильника определяется конденсатором С4

Далее посредством инвертирующей части схемы, собранной на двух ключевых транзисторах (полумост), напряжение, поступившее из сети с частотой 50 Гц, преобразуется в потенциал с более высокой частотой – от 20 кГц.

Он подается уже на клеммы люминесцентной лампы для обеспечения рабочего режима.

Примерно по такому же принципу действует мостовая схема. Разница состоит лишь в том, что в ней используются не два инвертора, а четыре ключевых транзистора. Соответственно, схема несколько усложняется, добавляются дополнительные элементы.

Мостовая схема инвертора

Узел схемы инвертора, собранный по мостовой схеме. Здесь в работе узла участвуют не два, а четыре ключевых транзистора. Причем зачастую предпочтение отдается полупроводниковым элементам полевой структуры. На схеме: VT1…VT4 — транзисторы; Tp — трансформатор тока; Uп, Uн — преобразователи

Между тем именно мостовой вариант сборки обеспечивает подключение большого количества ламп (более двух) на одном балласте. Как правило, устройства, собранные по мостовой схеме, рассчитаны на мощность нагрузки от 100 Вт и выше.

Варианты подключения люминесцентных ламп

В зависимости от схемных решений, используемых в конструкции пускорегулирующих аппаратов, варианты подключения могут быть самые разные.

Если одна модель устройства поддерживает, к примеру, подключение одного светильника, другая модель может поддерживать уже одновременную работу четырех ламп.

Включение электромагнитного пускорегулятора

Простейший вариант питания светильника через электромагнитный пускорегулирующий элемент: 1 – нить накала; 2 – стартер; 3 – стеклянная колба; 4 – дроссель; L – фазная линия питания; N – нулевая линия

Самым простым подключением видится вариант с электромагнитным устройством, где основными элементами схемы являются лишь дроссель и стартер.

Здесь от сетевого интерфейса фазная линия соединяется к одной из двух клемм дросселя, а нулевой провод подводится на одну клемму люминесцентной лампы.

Фаза, сглаженная на дросселе, отводится от его второй клеммы и соединяется на вторую (противоположную) клемму.

Остающиеся свободными еще две клеммы лампы подключаются к розетке стартера. Вот, собственно, и вся схема, которая до появления электронных полупроводниковых моделей ЭПРА использовалась повсеместно.

Подключение двух ламп

Вариант подключения двух люминесцентных светильников через один дроссель: 1 – фильтрующий конденсатор; 2 – дроссель, по мощности равный мощности двух приборов света; 3, 4 – лампы; 5,6 – стартеры запуска; L – фазная линия питания; N – нулевая линия

На базе этой же схематики реализуется решение с подключением двух люминесцентных ламп, одного дросселя и двух стартеров. Правда в этом случае требуется подбирать дроссель по мощности, исходя из суммарной мощности газовых светильников.

Дроссельный схемный вариант можно доработать с целью устранения дефекта стробирования. Он довольно часто возникает именно на светильниках с электромагнитным ЭПРА.

Доработка сопровождается дополнением схемы диодным мостом, который включается после дросселя.

Подключение к электронным модулям

Варианты подключения люминесцентных ламп на электронных модулях несколько отличаются. Каждый электронный пускорегулирующий аппарат имеет входные клеммы для подачи сетевого напряжения и выходные клеммы под нагрузку.

В зависимости от конфигурации ЭПРА, подключается одна или несколько ламп. Как правило, на корпусе прибора любой мощности, рассчитанного на подключение соответствующего количества светильников, имеется принципиальная схема включения.

Подключение двух ламп на ЭПРА

Порядок подключения люминесцентных светильников к устройству пуска и регулирования, действующего на полупроводниковых элементах: 1 – интерфейс для сети и заземления; 2 – интерфейс для светильников; 3,4 — светильники; L – фазная линия питания; N – нулевая линия; 1…6 — контакты интерфейса

На схеме выше, к примеру, предусматривается питание максимум двух люминесцентных ламп, так как в схеме используется модель двухлампового балласта.

Два интерфейса прибора рассчитаны так: один для подключения сетевого напряжения и заземляющего провода, второй для подключения ламп. Этот вариант тоже из серии простых решений.

Аналогичный прибор, но рассчитанный уже для работы с четырьмя лампами, отличается наличием увеличенного числа клемм на интерфейсе подключения нагрузки. Сетевой интерфейс и линия подключения заземления остаются без изменений.

Подключение четырех ламп на ЭПРА

Разводка подключения по четырехламповому варианту. В качестве устройства запуска и регулирования также используется электронный полупроводниковый ЭПРА. На схеме 1…10 — контакты интерфейса устройства пуска и регулирования

Однако наряду с простыми устройствами, – одно-, двух-, четырехламповыми – встречаются пускорегулирующие конструкции, схематика которых предусматривает использование функции регулировки свечения люминесцентных ламп.

Это так называемые управляемые модели регуляторов.

Чем отличаются подобные приборы от уже рассмотренных устройств? Тем, что в дополнение к сетевому и нагрузочному оснащаются еще интерфейсом для подключения управляющего напряжения, уровень которого обычно составляет 1-10 вольт постоянного тока.

Подключение управляемого светильника

Четырехламповая конфигурация с возможностью плавной регулировки яркости свечения: 1 – переключатель режима; 2 – контакты подвода управляющего напряжения; 3 – заземляющий контакт; 4, 5, 6, 7 – люминесцентные лампы; L – фазная линия питания; N – нулевая линия; 1…20 — контакты интерфейса устройства пуска и регулирования

Таким образом, разнообразие конфигурации электронных пускорегулирующих модулей позволяет организовать системы осветительных приборов разного уровня. Имеется в виду не только уровень мощности и охвата площадей, но также уровень управления.

Полезное видео по теме

Видеоматериал, сделанный на основе практики электромонтера, рассказывает и показывает — какой прибор из двух должен быть признан конечным пользователем более качественным и практичным.

Этот сюжет лишний раз подтверждает, что простые решения выглядят надёжными и долговечными:

Между тем ЭПРА продолжают совершенствоваться. На рынке периодически появляются новые модели таких приборов. Электронные конструкции тоже не лишены недостатков, но по сравнению с электромагнитными вариантами, явно показывают лучшие технические и эксплуатационные качества.

sovet-ingenera.com

Пускорегулирующее устройство для люминесцентных ламп

ЭПРА – что это такое, и как работает

Люминесцентные лампы напрямую от сети в 220 вольт не работают. Им необходим специальный переходник, который будет стабилизировать напряжение и сглаживать пульсацию тока. Этот прибор носит название пускорегулирующая аппаратура (ПРА), состоящая из дросселя, с помощью которого сглаживается пульсация, стартер, используемый как пускатель, и конденсатор для стабилизации напряжения. Правда, ПРА в этом виде – это старый блок, который постепенно выводится из оборота. Все дело в том, что ему на смену пришла новая модель – ЭПРА, то есть, тот же пускорегулирующий аппарат, только электронного типа. Итак, давайте разберемся в ЭПРА – что это такое, его схема и основные составляющие.

Пускорегулирующее устройство для люминесцентных ламп

Конструкция и принцип работы ЭПРА

По сути, ЭПРА – это электронное плато, небольшого размера, в состав которого входит несколько специальных электронных элемента. Компактность конструкции дает возможность установить плато в светильник вместо дросселя, стартера и конденсатора, которые все вместе занимают больше места, чем ЭПРА. При этом схема подключения достаточно проста. О ней чуть ниже.

Преимущества

  • Люминесцентная лампа с ЭПРА включается быстро, но плавно.
  • Она не моргает и не шумит.
  • Коэффициент мощности – 0,95.
  • Новый блок практически не греется по сравнению с устаревшим, а это прямая экономия электрического тока до 22%.
  • Новый пусковой блок снабжен несколькими видами защиты лампы, что повышает ее пожарную безопасность, безопасность эксплуатации, а также продлевает в несколько раз срок службы.
  • Обеспечение плавного свечения, без мерцания.

Пускорегулирующее устройство для люминесцентных ламп Внутреннее устройство ЭПРА

Внимание! Современные правила охраны труда предписывают использовать в рабочих помещениях люминесцентные лампы, снабженные именно этой новой аппаратурой.

Схема устройства

Начнем с того, что люминесцентные лампы – это газоразрядные источники света, которые работают по следующей технологии. В стеклянной колбе находятся пары ртути, в которые подается электрический разряд. Он-то и образует ультрафиолетовое свечение. На саму колбу изнутри нанесен слой люминофора, который преобразует ультрафиолетовые лучи в видимый глазами свет. Внутри лампы всегда находится отрицательное сопротивление, вот почему они не могут работать от сети в 220 вольт.

Но тут необходимо выполнить два основных условия:

  1. Разогреть две нитки накала.
  2. Создать большое напряжение до 600 вольт.

Внимание! Величина напряжения прямо пропорциональна длине люминесцентной лампы. То есть, для коротких светильников мощностью 18 Вт оно меньше, для длинных мощностью выше 36 Вт больше.

Теперь сама схема ЭПРА.

Пускорегулирующее устройство для люминесцентных ламп

Начнем с того, что люминесцентные лампы, к примеру, ЛВО 4×18, со старым блоком всегда мерцали и издавали неприятный шум. Чтобы этого избежать, необходимо подать на нее ток частотой колебания более 20 кГц. Для этого придется повысить коэффициент мощности источника света. Поэтому реактивный ток должен возвращаться в специальный накопитель промежуточного типа, а не в сеть. Кстати, накопитель с сетью никак не связан, но именно он питает лампу, если случиться сетевой переход напряжения через ноль.

Как работает

Итак, сетевое напряжение в 220 вольт (оно переменное) преобразуется в постоянное с показателем 260-270 вольт. Сглаживание производится с помощью электролитического конденсатора С1.

После чего постоянное напряжение необходимо перевести в высокочастотное напряжение до 38 кГц. За это отвечает полумостовой преобразователь двухтактного типа. В состав последнего входят два активных элемента, которые собой представляют два высоковольтных транзистора (биполярных). Их обычно называют ключами. Именно возможность перевода постоянного напряжения в высокочастотное дает возможность уменьшить габариты ЭПРА.

Пускорегулирующее устройство для люминесцентных ламп Электронный пускорегулирующий аппарат

В схеме устройства (балласта) также присутствует трансформатор. Он является одновременно и управляющим элементом преобразователя, и нагрузкой для него. Этот трансформатор имеет три обмотки:

  • Одна из них рабочая, в которой всего лишь два витка. Через нее происходит нагрузка на цепь.
  • Две – управляющие. В каждой по четыре витка.

Особую роль во всей этой электрической схеме играет динистор симметричного типа. В схеме он обозначен, как DB3. Так вот этот элемент отвечает за запуск преобразователя. Как только напряжение в соединениях его подключения превышает допустимый порог, он открывается и подает импульс на транзистор. После чего происходит запуск преобразователя в целом.

Далее происходит следующее:

  • С управляющих обмоток трансформатора импульсы поступают на транзисторные ключи. Эти импульсы являются противофазными. Кстати, открытие ключей вызывает наводку на двух обмотках и на рабочей тоже.
  • Переменное напряжение с рабочей обмотки подается на люминесцентную лампу через последовательно установленные элементы: первая и вторая нить накала.

Внимание! Емкость и индуктивность в электрической цепи подбираются таким образом, чтобы в ней возникал резонанс напряжений. Но при этом частота преобразователя должна быть неизменной.

Пускорегулирующее устройство для люминесцентных ламп

Обратите внимание, что на конденсаторе С5 будет происходить самое большое падение напряжения. Именно этот элемент и зажигает люминесцентную лампу. То есть, получается так, что максимальная сила тока разогревает две нити накала, а напряжение на конденсаторе С5 (оно большое) зажигает источник света.

По сути, светящаяся лампа должна снизить свое сопротивление. Так оно и есть, но снижение происходит незначительно, поэтому резонансное напряжение все еще присутствует в цепи. Это и есть причина, по которой лампа продолжает светиться. Хотя дроссель L1 создает ограничения тока на показатель разницы сопротивлений.

Преобразователь продолжает после запуска работать в автоматическом режиме. При этом его частота не меняется, то есть, идентична частоте запуска. Кстати, сам запуск длится меньше одной секунды.

Тестирование

Перед тем как запустить ЭПРА в производство проводились всевозможные тесты, которые показатели, что встроенный люминесцентный светильник может работать в достаточно широком диапазоне подаваемых на него напряжений. Диапазон составил 100-220 вольт. При этом оказалось, что частота преобразователя изменяется в следующей последовательности:

  • При 220 вольт она составила 38 кГц.
  • При 100 вольтах 56 кГц.

Но необходимо отметить, что при снижении напряжения до 100 вольт яркость свечения источника света явно уменьшилась. И еще один момент. На люминесцентный светильник всегда подается ток переменного типа. Это создает условия его равномерного износа. А точнее сказать, износа его нитей накаливания. То есть, увеличивается срок эксплуатации самой лампы. При тестировании лампы постоянным током, срок ее службы снизился в два раза.

Пускорегулирующее устройство для люминесцентных ламп

Причины неисправностей

Итак, по каким причинам люминесцентная лампа может не гореть?

  • Трещины в местах пайки на плате. Все дело в том, что при включении светильника плата начинает нагреваться. После того как он будет включен, происходит остывание блока ЭПРА. Перепады температуре негативно влияют на места пайки, поэтому появляется вероятность обрыва схемы. Исправить неполадку можно пайкой обрыва или даже обычной его чисткой.
  • Если произошел обрыв нити накаливания, то сам блок ЭПРА остается в исправном состоянии. Так что эту проблему можно решить просто – заменить сгоревшую лампу новой.
  • Скачки напряжения являются основной причиной выхода из строя элементов электронного ПРА. Чаще всего выходит из строя транзистор. Производители пускорегулирующей аппаратуры не стали усложнять схему, поэтому варисторов в ней нет, который бы и отвечали за скачки. Кстати, и установленный в цепь предохранитель также от скачков напряжения не спасает. Он срабатывает лишь в том случае, если один из элементов схемы будет пробит. Поэтому совет – скачки напряжения обычно присутствуют в непогоду, поэтому не стоит включать люминесцентную лампу, когда за окном сильный дождь или ветер.
  • Неправильно проведена схема подключения аппарата к лампам.

Пускорегулирующее устройство для люминесцентных ламп

Это интересно

В настоящее время ЭПРА устанавливаются не только с газоразрядными источниками света, но и с галогенными и светодиодными лампами. При этом нельзя использовать один аппарат, предназначенный для одного вида ламп, к другой лампе. Во-первых, не подойдут по параметрам. Во-вторых, у них разные схемы.

При выборе ЭПРА необходимо учитывать мощность лампы, в которую он будет устанавливаться.

Оптимальный вариант модели – это аппараты с защитой от нестандартных режимов работы источника света и от деактивации их.

Обязательно обратите внимание на позицию в паспорте или инструкции, где указано, в каких погодных климатических условиях электронный ПРА может работать. Это влияет и на качество эксплуатации, и на срок службы.

Пускорегулирующее устройство для люминесцентных ламп

Подключение

И последнее – это схема подключения. В принципе, ничего сложного. Обычно производитель прямо на коробке указывает эту самую схему подключения, где точно по клеммам указаны и номера, и контур подключения. Обычно для вводного контура – три клеммы: ноль, фаза и заземление. Для выходного на лампы – по две клеммы, то есть попарно, на каждую лампу.

Для чего нужна пускорегулирующая аппаратура для люминесцентных ламп

  • Пускорегулирующее устройство для люминесцентных ламп

    Как работает электронный балласт и его схема

  • Пускорегулирующее устройство для люминесцентных ламп

    Как работает стартер для ламп дневного света

    Подключение и ремонт баластника для люминесцентных ламп

    Балласт для газоразрядной лампы (люминесцентные источники света) применяется с целью обеспечения нормальных условий работы. Другое название – пускорегулирующий аппарат (ПРА). Существует два варианта: электромагнитный и электронный. Первый из них отличается рядом недостатков, например, шум, эффект мерцания люминесцентной лампы.

    Второй вид балласта исключает многие минусы в работе источника света данной группы, поэтому и более популярен. Но поломки в таких приборах тоже случаются. Прежде чем выбрасывать, рекомендуется проверить элементы схемы балласта на наличие неисправностей. Вполне реально самостоятельно выполнить ремонт ЭПРА.

    Разновидности и принцип функционирования

    Главная функция ЭПРА заключается в преобразовании переменного тока в постоянный. По-другому электронный балласт для газоразрядных ламп называется еще и высокочастотным инвертором. Один из плюсов таких приборов – компактность и, соответственно, небольшой вес, что дополнительно упрощает работу люминесцентных источников света. А еще ЭПРА не создает шум при работе.

    Балласт электронного типа после подключения к источнику питания обеспечивает выпрямление тока и подогрев электродов. Чтобы люминесцентная лампа зажглась, подается напряжение определенной величины. Настройка тока происходит в автоматическом режиме, что реализуется посредством специального регулятора.

    Такая возможность исключает вероятность появления мерцания. Последний этап – происходит высоковольтный импульс. Поджиг люминесцентной лампы осуществляется за 1,7 с. Если при запуске источника света имеет место сбой, тело накала моментально выходит из строя (перегорает). Тогда можно попытаться сделать ремонт своими руками, для чего требуется вскрыть корпус. Схема электронного балласта выглядит так:

    Пускорегулирующее устройство для люминесцентных ламп Основные элементы ЭПРА люминесцентной лампы: фильтры; непосредственно сам выпрямитель; преобразователь; дроссель. Схема обеспечивает еще и защиту от скачков напряжения питающего источника, что исключает необходимость ремонта по данной причине. А, кроме того, балласт для газоразрядных ламп реализует функцию коррекции коэффициента мощности.

    По целевому назначению встречаются следующие виды ЭПРА:

    • для линейных ламп;
    • балласт, встроенный в конструкцию компактных люминесцентных источников света.

    ЭПРА для люминесцентных ламп подразделяются на группы, отличные по функциональности: аналоговые; цифровые; стандартные.

    Схема подключения, запуск

    Пускорегулирующий аппарат подключается с одной стороны к источнику питания, с другой – к осветительному элементу. Нужно предусмотреть возможность установки и крепления ЭПРА. Подключение производится в соответствии с полярностью проводов. Если планируется установить две лампы через ПРА, используется вариант параллельного соединения.

    Схема будет выглядеть следующим образом:

    Пускорегулирующее устройство для люминесцентных ламп Группа газоразрядных люминесцентных ламп не может нормально работать без пускорегулирующего аппарата. Его электронный вариант конструкции обеспечивает мягкий, но одновременно с тем и практически мгновенный запуск источника света, что дополнительно продлевает срок его службы.

    Поджиг и поддержание функционирования лампы осуществляется в три этапа: прогрев электродов, появление излучения в результате высоковольтного импульса, поддержание горения осуществляется посредством постоянной подачи напряжения небольшой величины.

    Определение поломки и ремонтные работы

    Если наблюдаются проблемы в работе газоразрядных ламп (мерцание, отсутствие свечения), можно самостоятельно сделать ремонт. Но сначала необходимо понять, в чем заключается проблема: в балласте или осветительном элементе. Чтобы проверить работоспособность ЭПРА, из светильников удаляется линейная лампочка, электроды замыкаются, и подсоединяется обычная лампа накаливания. Если она загорелась, проблема не в пускорегулирующем аппарате.

    В противном же случае нужно искать причину поломки внутри балласта. Чтобы определить неисправность люминесцентных светильников, необходимо «прозвонить» все элементы по очереди. Начинать следует с предохранителя. Если один из узлов схемы вышел из строя, необходимо заменить его аналогом. Параметры можно увидеть на сгоревшем элементе. Ремонт балласта для газоразрядных ламп предполагает необходимость использования навыков владения паяльником.

    Если с предохранителем все в порядке, далее следует проверить на исправность конденсатор и диоды, которые установлены в непосредственной близости к нему. Напряжение конденсатора не должно быть ниже определенного порога (для разных элементов эта величина разнится). Если все элементы ПРА в рабочем состоянии, без видимых повреждений и прозвон также ничего не дал, осталось проверить обмотку дросселя.

    В некоторых случаях проще купить новую лампу. Это целесообразно сделать в случае, когда стоимость отдельных элементов выше ожидаемого предела или при отсутствии достаточных навыков в процессе пайки.

    Ремонт компактных люминесцентных ламп выполняется по сходному принципу: сначала разбирается корпус; проверяются нити накала, определяется причина поломки на плате ПРА. Часто встречаются ситуации, когда балласт полностью исправен, а нити накаливания перегорели. Починку лампы в этом случае произвести сложно. Если в доме имеется еще один сломанный источник света сходной модели, но с неповрежденным телом накала, можно совместить два изделия в одно.

    Таким образом, ЭПРА представляет группу усовершенствованных аппаратов, обеспечивающих эффективную работу люминесцентных ламп. Если было замечено мерцание источника света или он и вовсе не включается, проверка балласта и его последующий ремонт позволят продлить срок службы лампочки.

    Электронный балласт: современное решение для качественной и экономной работы люминесцентных ламп

    Несмотря на то, что долговечные и надёжные люминесцентные лампы прочно вошли в нашу жизнь, усовершенствованный пускорегулирующий механизм к ним ещё не оценён потребителями по достоинству. Основная причина этого – высокая цена на электронные пускорегулирующие аппараты.

    Главное преимущество схемы балласта для люминесцентных ламп заключается в экономии энергии, потребляемой источником света (до 20%) и увеличении срока её службы. Потратив деньги на покупку ЭПРА, мы экономим на электроэнергии и приобретении новых ламп в будущем. К преимуществам также можно отнести бесшумность, мягкость пуска и простоту установки.

    Воспользовавшись прилагаемой к устройству инструкцией, компактную микросхему электронного балласта удастся без проблем установить в светильник. Заменив ею традиционный дроссель, стартер и конденсатор, мы позволим лампе стать более экономной.

    Устройство ЭПРА для люминесцентных ламп

    Схемы электронных балластов для люминесцентных ламп выглядят следующим образом:Пускорегулирующее устройство для люминесцентных лампНа плате ЭПРА находится:

    1. Фильтр электромагнитных помех, который устраняет помехи, приходящие со стороны сети. А также гасит электромагнитные импульсы самой лампы, которые могут негативно влиять на человека и окружающие бытовые приборы. Например, создавать помехи в работе телевизора или радиоприёмника.
    2. Задача выпрямителя — преобразовывать постоянный ток сети в переменный, подходящий для питания лампы.
    3. Коррекция коэффициента мощности – схема, отвечающая за контроль сдвига по фазе переменного тока, проходящего через нагрузку.
    4. Сглаживающий фильтр предназначен для снижения уровня пульсации переменного тока.

    Как известно, выпрямитель идеально выпрямить ток не в состоянии. На выходе из него пульсация может составлять от 50 до 100 Гц, что неблагоприятно сказывается на работе лампы.

  • Инвертор используется полумостовой (для небольших ламп) или мостовой с большим количеством полевых транзисторов (для мощных ламп). КПД у первого типа относительно невысокий, но это компенсируется микросхемами-драйверами. Основная задача узла – преобразование постоянного тока в переменный.

    Пускорегулирующее устройство для люминесцентных ламп Перед тем, как выбрать энергосберегающую лампочку. рекомендуется изучить технические характеристики её разновидностей, их преимущества и недостатки. Особое внимание следует уделить месту установки компактной люминесцентной лампы. Очень частое включение-выключение или морозная погода на улице значительно сокращают продолжительность работы КЛЛ.

    Подключение LED лент в сеть 220 Вольт осуществляется с учетом всех параметров осветительных устройств — длина, количество, монохромность или многоцветность. Подробнее об этих особенностях — здесь.

  • Дроссель для люминесцентных ламп (специальная индукционная катушка из свёрнутого проводника) участвует в подавлении помех, накоплении энергии и плавной регулировке яркости.
  • Защита от перепадов напряжения – устанавливается не во всех ЭПРА. Защищает от колебаний напряжения в сети и ошибочного пуска без лампы.
  • Принцип действия устройства

    Пускорегулирующее устройство для люминесцентных лампСхему включения люминесцентной лампы вместе с балластом можно разделить на четыре основные фазы.

    Из выпрямителя ток поступает на буфер конденсатора, где сглаживается частота пульсации. Затем высокое постоянное напряжение попадает на полумостовой инвертор. Конденсаторы низкого напряжения электрода лампы и микросхемы заряжаются.

    Как только напряжение достигает 5,5 В, микросхема сбрасывается. Транзисторы регулируют зарядку конденсатора компенсационной обратной связи. Напряжение растёт. И когда оно достигает 12 В микросхема начинает генерировать колебания – система входит в фазу предварительного нагрева.

    Если лампы нет, цепь разрывается на этапе зарядки конденсаторов низкого напряжения.

    После генерирования колебаний ток течёт через центральную часть полумоста и электроды лампы. Частота колебаний постепенно снижается, а напряжение тока растёт. Весь процесс нагрева в среднем занимает до 1,8 секунды с момента включения. При этом напряжение довольно низкое, что не позволяет лампе включиться раньше положенного срока. Лампа за это время успевает прогреться. Так называемый холодный поджиг портит лампы – их концы темнеют. ЭПРА создан, чтобы надёжно защитить лампу от такого неправильного пуска.Пускорегулирующее устройство для люминесцентных ламп

    Частота полумоста снижается до минимума и приближается к показателям резонансной частоты контура, образованного электродами лампы. Минимальное значение напряжения зажигания лампы 600 Вольт. Дроссель способствует преодолению током этого значения – повышает напряжение и лампа зажигается. Поджиг происходит в среднем за 1,7 секунды.

    Пускорегулирующее устройство для люминесцентных ламп Чтобы оценить уровень эффективности применения диммера для ламп накаливания. необходимо проанализировать все плюсы и минусы использования такой схемы управления освещением. При покупке любых ламп, будет не лишним обратить внимание, могут ли они быть подвергнуты диммированию

    Установка блока защиты может продлить срок службы лампочек накаливания путем их плавного включения. Для бытовых галогенок в этих же целях используют электронный понижающий трансформатор.

    Частота тока падает до номинальной рабочей частоты. В процессе работы конденсаторы низкого напряжения постоянно заряжаются. Активируется упреждающее управление, которое регулирует частоту переключения полумоста.

    Мощность лампы поддерживается в достаточно стабильном положении, даже если происходят перепады напряжения в сети.

    • Задействование схемы ЭПРА для люминесцентных ламп исключает сильное нагревание прибора, поэтому о пожарной безопасности светильника можно не беспокоиться.
    • Устройством обеспечивается равномерное свечение – глаза не устают.
    • С недавнего времени в офисных помещениях правилами охраны труда рекомендовано использовать ЭПРА совместно со всеми люминесцентными лампами.

    Видео с примером работы люминесцентной лампы от ЭПРА

    Источники: http://onlineelektrik.ru/osveshhenie/sdiod/epra-chto-eto-takoe-i-kak-rabotaet.html, http://proosveschenie.ru/proizvodstvennye-pomeshheniya/balastnik-dlya-lyuminescentnykh-lamp.html, http://elektrik24.net/osvetitelnye-pribory/lampy/energosberegayushhie/lyuminescentnye/elektronnyj-ballast.html

    electricremont.ru

    Конструкция пускорегулирующих аппаратов для люминесцентных ламп

    Стартерные аппараты. Конструкция и технические ха­рактеристики ПРА должны соответствовать требова­ниям ГОСТ 10237-62. Согласно стандарту ПРА назы­вают устройствами балластными (УБ).

    Схема подключения пускорегулирующего аппарата

    Схема подключения пускорегулирующего аппарата.

    В зависимости от наличия и характера сдвига фаз между током инапряжением при включении люминесцентной лампы с данным УБ различают:

    • УБИ — устройства балластные индуктивные, по­требляющие из сети ток, отстающий по фазе от напря­жения;
    • УБЕ — устройства балластные емкостные, потреб­ляющие из сети ток, опережающий по фазе напряжение;
    • УБК — устройства балластные компенсированные, создающие коэффициент мощности, близкий к единице.

    В двух- и многоламповых ПРА токи отдельных ламп могут не иметь сдвига по фазе, либо иметь его. При на­личии сдвига по фазе между токами отдельных ламп в обозначение аппарата вводится буквенное обозначе­ние— А.

    По конструктивному исполнению ПРА разделяются на независимые (Н), имеющие специальные защитные кожухи, позволяющие их устанавливать вне осветитель­ной арматуры, и встроенные (В), предназначенные только для размещения внутри осветительной арматуры или в специальных защитных коробах.

    Схема электромагнитного ПРА

    Схема электромагнитного ПРА.

    При работе УБ на переменном токе они создают шум, обусловленный перемагничиванием сердечника дрос­селя и связанной с ним вибрацией пластин, из которых собран сердечник, в такт с изменением магнитного поля. Вибрация пластин создает шум низкого тона. Этот шум усиливается за счет вибрации кожуха УБ и всей кон­струкции светильника. Кроме того, из-за искажения формы кривых тока и напряжения на лампе появляется стрекочущий шум высокого тона. По создаваемым УБ уровням шума и радиопомехам различают:

    • устройства с нормальным уровнем шума и радио­помех, предназначенные для установки в промышленных помещениях;
    • устройства с пониженным уровнем шума и радио­помех (П), предназначенные для установки в админи­стративно-служебных и жилых помещениях.

    Пример обозначения типа аппарата. Двухламповое компенсирование, балластное устройство для ламп мощ­ностью 40 вт, для включения в однофазную сеть 220 в, со сдвигом фаз между токами ламп, встроенного исполне­ния, с пониженным уровнем шума и радиопомех 2УБК-40/220-АВП.

    Так как в питающих осветительные установки сетях возможны колебания напряжения в пределах ±10% 80 номинального напряжения, проверку технических ха­рактеристик ПРА ведут при двух значениях напряжения: 0,9 и 1,1 номинального. Основные технические требова­ния, которым должны отвечать проверяемые ПРА в этих условиях, приведены в табл. 1.

    Таблица 1

    Номиналь­ная мощ­ность, вт Напряжение холостого хода на зажимах стартеров (эффективное значение) не менее, о

    Напряжение холостого хода на зажимах

    лампы (амплитудное значение) не более, а

    Ток пускового режима, а

    Потери мощности в уб (от мощности ламп) не более, %, для типов балластного устройства
    и© менее не более уби убк убе
    15 114

    215

    0,36 0,65 25 28 31
    20 114

    215

    0,40 0,70 23 26 29
    30 116

    400

    0,40 0,70 23 26 29
    40 198

    400

    0,48 0,80 22 24 26
    80 198

    400

    0,90 1 ,60 20 22 24

    Примечания:

    Схема балластного устройства

    Схема балластного устройства.

    1. Если балластное устройство предназначено для нескольких ламп, то требова­ния, указанные в столбцах 2—5, должны выполняться для каждой лампы и стар­тера независимо от состояния других ламп и стартеров.
    2. Для балластных устройств с трансформацией напряжения предельное зна­чение потерь увеличивается в 1,5 раза.
    3. Предельно допустимые превышения температуры обмотки УБ в рабочем режиме, изготовленной из проводов с изоляцией класса А, 60" С; при наличии межслоевой изоляции и пропитки — 70° С; изготовленные из проводов с изоля­цией класса Е — 75° С; при наличии межслоевой изоляции и пропитки — 85° С.
    4. Предельно допустимое превышение температуры поверхности У Б 60° С.
    5. В аварийном режиме для этих же элементов УБ предельно допустимые превышения температуры будут соответственно: 120, 125, 130, 135 и 100° С.

    Важным показателем работоспособности УБ является температура, которую он имеет в рабочем и аварийном режимах. Допустимые пределы температур в этих режи­мах в зависимости от применяемых для изготовления изоляционных материалов указаны в табл. 1. Для стартерного аппарата аварийный режим возникает тогда, когда в одной из ветвей УБ закорачивается стартер (свариваются его электроды). В этом случае такая ветвь будет длительное время работать в пусковом режиме и через балласт будет проходить пусковой ток, вызываю­щий его перегрев. Учитывая возможность повышения на­пряжения в сети, проверку перегрева УБ в рабочем режиме производят при 1,05, а в аварийном режиме — 1,1 номинального напряжения.

    Схемы включения люминисцентных ламп

    Схемы включения люминисцентных ламп.

    Стандартом регламентируется коэффициент мощности УБК, состоящего из равного числа опережающих и отстающих ветвей, который должен быть не менее 0,92. Для всех остальных типов УБК коэффициент мощности должен быть не ниже 0,85.

    Кроме перечисленных требований, определяющих тех­нические параметры балластных устройств, к ним предъ­являются также требования, вытекающие из необходи­мости обеспечить безопасность и надежность работы балластов. К таким требованиям относятся величина сопротивления изоляции электрических цепей УБ, их электрическая прочность, механическая прочность, а так­же допустимые расстояния между токоведущими и нетоковедущими деталями.

    Бесстартерные аппараты

    Буквенное обозначение типов бесстартерных аппа­ратов осуществляется аналогично тому, как это принято для стартерных ПРА. Например, аппарат бесстартерный, индуктивный, для включения одной лампы мощностью 40 вт в однофазную сеть 220 в, встроенного исполнения, с пониженным уровнем шума и радиопомех:; 1АБИ-40/220-ВП.

    http://fazaa.ru/www.youtube.com/watch?v=iPg0Fjo7iqU

    Основные технические требования, предъявляемые к бесстартерным ПРА, приведены в табл. 2.

    Таблица 2

    Основные технические требования, предъявляемые к бесстартерным ПРА

    Номинальная мощность, вт Напряжение накала в пусковом режиме, в Напряжение на­кала в рабочем режиме, в

    Напряжение холостого хода, в

    Максимальный ток предвари­тельного подо­грева при l.ltv а

    при 0,9 UH

    при1.1 и„ минимальное на зажимах лампы (эффек­тивное)

    максимальное на зажимах лампы (ампли­тудное)

    20

    8

    10 4,4 170

    345

    0,65 ;
    30

    8

    10 4,4 205

    400

    0,63
    40

    8

    10 4,4 205

    400

    0,75
    80

    8

    10 4,4 220

    400

    1,6

    Допустимые перегревы в рабочем и аварийном режи­мах элементов ПРА принимаются такими же, как это указано в табл. 1.

    http://fazaa.ru/www.youtube.com/watch?v=pGoIRu-He2I

    В бесстартерных аппаратах под аварийным режимом понимается один из следующих режимов, дающий наи­больший нагрев при принятой схеме ПРА:

    • лампа или одна из ламп не включена;
    •  один из катодов лампы оборван;
    • лампа не зажигается, хотя цепь подогрева катода не повреждена.

    Все остальные требования, касающиеся величины коэффициента мощности, электрической и механической прочности, остаются такими же, как и для стартерных аппаратов.

    Поделитесь полезной статьей:

    Top

    fazaa.ru

    Что такое ЭПРА, назначение и принцип работы электронного балласта в светильнике

    Эпра для люминесцентных лампЛюминесцентные светильники обладают некоторыми недостатками, которые становятся заметными после включения света. Сильное гудение и частое мерцание света, наблюдающееся при работе подобных встроенных светильников, может вывести из душевного равновесия любого человека. Единственным решением этой проблемы является установка специального пускорегулирующего устройства под названием ЭПРА.

    Производство люминесцентных светильников задумывалось для развития систем освещения, использовавших обычные лампы накаливания, которые обладали крайне малым сроком эксплуатации. Максимальный срок службы лампы накаливания составляет около двух тысяч часов, что не может сравниться с долговечностью люминесцентных ламп, который насчитывает более 16 тысяч часов. Кроме этого, люминесцентные лампы обладают хорошим световым потоком, который превышает свет от обычных ламп более чем в шесть раз.

    Электронный балласт ЭПРА

    Эпра 18 втЭлектронным балластом называется специальное изделие, которое автоматически запускает люминесцентные лампы и продолжительное время поддерживает их в работе. Изготовление ЭМПРА началось три десятилетия тому назад. Они должны были заменить большие пускорегулирующие изделия. Специалисты связывают это с тем, что у старых пускорегулирующих аппаратов было очень много недостатков, которые сильно осложняли их использование.

    Перечень основных недостатков такой:

    • располагающийся в панели пускорегулирующего аппарата дроссель был больших габаритов и очень сильно шумел при работе;
    • довольно частое мерцание света;
    • очень маленький коэффициент полезного действия;
    • при поломке стартера может наблюдаться запоздалое срабатывание люминесцентной лампы.

    Как устроен ЭПРА 18 Вт для светодиодных ламп

    Эпра для светодиодной панелиНовый ЭМПРА для светодиодной лампы, приобретенный в любом магазине, представляет собой такие составляющие:

    1. Качественный фильтр частоты, который сглаживает помехи низкого уровня и направлен на выводы изделия. Подобный фильтр помогает уменьшить воздействие светодиодной лампы на остальное бытовое оборудование, к примеру, на число помех при работе радиоприемников или телевизоров.
    2. Мощный выпрямитель, который преобразовывает в схеме переменное напряжение в постоянное.
    3. Небольшой инвертор.
    4. Разные специальные узлы, которые необходимы для корректировки мощности в схеме светодиодной лампы.
    5. Малогабаритный фильтр постоянного напряжения.
    6. Качественный дроссель, ограничивающий максимальный ток в схеме.

    А также инвертор зачастую оснащен приспособлением, которое несет ответственность за плавность регулирования яркости света светодиодной лампы.

    ЭПРА для люминесцентных ламп

    Блок питания эпраЛюминесцентный светильник, который снабжен ЭПРА, начинает работать, проходя несколько основных этапов.

    Включение люминесцентного светильника

    Специальный выпрямитель, который отвечает за преобразование постоянного напряжения в переменное, передает его на буфер мощного конденсатора. Далее, это напряжение проходит дальше и оказывается на полумостовом инверторе. В это время заряжаются все конденсаторы и микросхемы маленького напряжения.

    Когда значение напряжения достигает показателя 7 вольт, то начинается намеренное сбрасывание микросхемы, а потом заряжается управляющий конденсатор, который регулируют несколько транзисторов. При достижении напряжением значения в 12 вольт, элементы люминесцентной лампы быстро нагреваются.

    Предварительный нагрев люминесцентного светильника

    При перемещении тока в изделии, сразу начинается уменьшение максимальной частоты колебаний, а значение напряжения возрастает. Прогревается люминесцентный светильник всего несколько секунд, если начинать отсчет с момента подачи напряжения на изделие. В этом случае электронный балласт играет роль систематизатора, потому что он не дает лампе запустится, не пройдя этап подготовительного прогрева. Это поможет избежать многих проблем в работе светильника.

    Зажигание люминесцентного светильника

    Значения показателей полумоста, к примеру, его амплитуды, уменьшаются до своего минимума. Для того чтобы люминесцентный светильник загорелся, необходимо напряжение около 620 вольт. В противном случае он просто не будет работать. Специальный дроссель способен значительно превысить это значение, увеличивая напряжение в электрической сети, что в дальнейшем приводит к зажиганию светильника. Обычно весь этот процесс занимает около нескольких секунд.

    Горение люминесцентного светильника

    Из-за работы электронного балласта, сила тока не превышает оптимальное значение для качественной работы лампы. ЭПРА полностью контролирует управление амплитудой переключения полумоста, обеспечивая тем самым стабильную работу светильника.

    ЭПРА схема подключения

    Сначала необходимо аккуратно разобрать люминесцентный светильник. Далее, стоит извлечь из него устаревшие компоненты изделия. Это, прежде всего, дроссель, разные конденсаторы, стартер и другие элементы. В светильнике необходимо оставить лишь люминесцентные лампы, жгуты проводов и ЭПРА.

    Сделать ЭПРА подключение способен абсолютно любой человек, обладающий минимальными познаниями о работе электрических схем. Конечно, что людям, не располагающим опытом в этой области, даже и не следует пытаться, а необходимо обратиться к опытному электрику.

    Для подключения электронного балласта будут необходимы такие инструменты и материалы:

    • набор отверток;
    • бокорезы;
    • прибор, определяющий фазы тока;
    • небольшое количество изоленты;
    • довольно острый нож, необходимый для обработки концов проводов;
    • крепежные материалы.

    Перед тем как собрать схему, необходимо определиться с местоположением изделия ЭПРА внутри люминесцентного светильника. При этом стоит учесть длины абсолютно всех проводов и наличие удобного доступа к нужной управляющей системе. Именно поэтому стоит заранее проделать отверстие в корпусе светильника, куда есть возможность установить ЭПРА при помощи крепежных материалов. Далее, нужно подключить электронный балласт к разъемам светильника. Существует еще один не менее важный момент, который заключается в том, что мощность ЭПРА обязана быть в несколько раз больше, чем у люминесцентного светильника.

    Как только окончен процесс правильной сборки люминесцентного светильника с устройством ЭПРА, необходимо установить его на нужное место. Сначала стоит проверить мультиметром все провода, которые торчат из стены, на присутствие в них рабочего напряжения. Когда оно отсутствует, то нужно соединить все контакты с оборудованием. После всех этих действий, стоит сделать тестовый запуск светильника, оборудованного ЭПРА. В случае когда все действия прошли успешно, то люминесцентные лампы обязаны загореться одновременно, без дополнительного процесса разогрева, а излучаемый свет не должен часто мерцать.

    Достоинства и недостатки ЭПРА 18 Вт

    Опытные электрики выделяют несколько главных достоинств использования электронных балластов в работе люминесцентных светильников. К ним, прежде всего, можно отнести:

    1. Сбережение максимальной мощности света, при уменьшении количества потребляемой блоком питания электрической энергии.
    2. Отсутствие сильного мерцания света, которое считается особенностью люминесцентных светильников.
    3. Уменьшение шума в процессе работы светильника.
    4. Большой срок эксплуатации лампы, что стало возможным из-за применения устройства ЭПРА.
    5. Удобное управление яркостью света люминесцентного светильника.
    6. Устойчивость к колебаниям и перепадам рабочего напряжения в электрической сети питания.
    7. Большая экономия в плане следующих замен основных деталей светильника. Из-за того, что при помощи блока питания будет использоваться наиболее плавный режим пуска изделия, то это может увеличить срок эксплуатации стартеров и люминесцентных ламп.

    Главным недостатком применения ЭПРА является, как и у других новейших технологий и изделий, очень высокая стоимость по сравнению с остальными подобными блоками питания.

    instrument.guru

    причины популярности, преимущества и недостатки, отличные особенности электронной и электромагнитной пускорегулирующей аппаратуры

    Особенность газоразрядных источников света заключается в том, что они не могут использоваться в составе сети в качестве отдельного элемента. Возможен только один вариант, когда они применяются в сочетании лишь со специальной аппаратурой, благодаря чему эти приборы могут нормально функционировать. И роль подобных устройств выполняет пускорегулирующая аппаратура (ПРА). В ее рамках принято выделять два типа: электронные и электромагнитные (ЭПРА и ЭМПРА). Среди технических характеристик, которыми обладают подобные пускорегулирующие аппараты, особого внимания заслуживает мощность потерь и мощность ламп, которые вместе образуют системную мощность.

    Разновидности пускорегулирующих аппаратов

    Традиционные электронные ПРА выполняются в виде механизмов, обладающих индуктивным сопротивлением. Основой их конструкции является стальной сердечник, который защищен обмоткой из медной проволоки. Эффект от эксплуатации этих устройств связан с использованием особого омического сопротивления, из-за которого происходит существенное падение мощности, сопровождающее нагревом рабочих элементов. При совместном использовании ЭПРА и люминесцентной лампы мощностью 26 ватт суммарная мощность будет равняться 32 Вт. Выполнив несложные расчеты, станет ясно, что из них мощность потерь составит лишь 8 Вт.

    Рассматриваемая аппаратура может использовать в разных сочетаниях:

    • В виде комбинации, включающей стартер тлеющего разряда;
    • Без использования дополнительных механизмов;
    • В виде ПРА, имеющей ограниченный диапазон рабочей температуры.

    Достоинства ЭМПРА

    Комбинация, при которой осветительный прибор дополняется ЭМПРА, имеет ряд важных преимуществ:

    • Лампа начинает гореть с минимальной задержкой времени;
    • Во время работы светильника не наблюдается мерцания света;
    • Используемый вариант не приводит к сокращению срока службы лампы;
    • Обеспечивается высокий порог КПД;
    • При данном варианте осветительному прибору не грозит поражение током;
    • Обеспечиваемая мощность намного превышает традиционную схему и достигает значения 0,9.

    Недостатки ЭМПРА

    Несмотря на то что ЭМПРА обладают множеством достоинств, главным из них считается низкая стоимость. Если говорить о минусах данных устройств, то к наиболее значимым следует отнести большие размеры и вес. Эти параметры приобретают особую актуальность, если данную аппаратуру планируется использовать совместно с люминесцентными лампами. Но это не единственные недостатки, которые присущи этим устройствам:

    • В процессе эксплуатации потери мощности достигают весьма высоких показателей. Если ЭПРА применяются в сочетании с маломощными люминесцентными лампами, то данные потери могут составлять значительную часть от мощности самих ламп.
    • При эксплуатации аппаратуры в промышленных условиях частота вырабатываемого светового потока часто достигает уровня 100 Гц. Подобные колебания не воспринимаются глазом, хотя на подсознательном уровне человеческий организм получает вред. Другим отрицательным следствием световых пульсаций является и «стробоскопический эффект», при котором предметы, у которых частота вращения соответствует данным пульсациям, представляются как пребывающие в статичном положении. Следствием данного явления является получение травм в цехах, где установлено оборудование, на котором используемые детали или инструмент вращаются с аналогичной частотой.
    • Поток света, вырабатываемый лампами, нельзя контролировать. Из-за этого возникают сложности с изготовлением приборов, способных обеспечивать наиболее комфортное освещение.
    • Процесс использования дросселей сопровождается появлением посторонних шумов.

    Чтобы устранить названные недостатки ЭМПРА, можно подавать к лампам ток повышенной частоты, что считается самой радикальной мерой. Практически это реализуется в виде совместного использования с лампой сложного электронного прибора, который способен изменять начальное напряжение сети и в то же время контролировать запуск светильников. В данном случае речь идет об электронных пускорегулирующих аппаратах (ЭПРА).

    Что такое ЭПРА?

    В конструкционном плане ЭПРА представляют электронные механизмы, основное предназначение которых заключается в обеспечении питания для газоразрядных и люминесцентных ламп. Данные устройства были изобретены еще в 60-х года 20 века, но только через 30 лет они смогли завоевать популярность. В последние годы все в большем количестве стран начали создаваться предприятия, выпускающие данную продукцию. И на данный момент сложилась ситуация, что общий объем производства ЭПРА уже достиг объема выпуска электромагнитных устройств.

    Причины популярности

    ЭПРА имеют сложную конструкцию и весьма недешевы. Что же помогло им стать столь востребованными? Одна из особенностей ЭПРА состоит в том, что их рабочий частотный диапазон превышает уровень в 30 кГц. Это позволяет им функционировать более эффективно, чему способствуют следующие ключевые моменты:

    • Более экономичное использование электродов;
    • Увеличение количества вырабатываемого светового потока, что достигается за счет меньших потерь при трансформации электричества в ультрафиолетовом диапазоне спектра атомов ртути при 185 нм и 254 нм.
    • Благодаря новейшим моделям ЭПРА появляется возможность для создания более комфортного освещения, продления срока службы осветительных приборов и обеспечения их безопасности.

    Комфорт освещения

    Комфорт освещения ЭПРА проявляется в следующем:

    • Во время работы отсутствует мигание ламп;
    • Вырабатываемый световой поток поступает равномерно и лишен стробоскопического эффекта;
    • В ходе эксплуатации ЭПРА не возникают посторонние шумы;
    • Вышедшие из строя лампы не мигают;
    • После установки новой лампы светильники запускаются в автоматическом режиме.

    Экономичность

    ЭПРА являются экономичными, что проявляется в следующем:

    • В отличие от ЭМПРА расход мощности сокращается на треть.
    • Поскольку эти устройства работают не на пределе своих возможностей, это позволяет им служить на 50% дольше в отличие от ЭМПРА.
    • Бережливый режим работы ЭПРА позволяет добиться экономии на техническом обслуживании.
    • Благодаря своим возможностям ЭПРА могут использоваться в системах аварийного освещения.
    • Поскольку система кондиционирования задействуется не на полную мощность, это продлевает срок ее эксплуатации.
    • Благодаря использованию данных устройств появляется возможность для облегчения аппаратов и экономии на дефицитных материалах, под которыми подразумевается медь и электрическая сталь.

    Использование ЭПРА позволяет создавать системы, способные контролировать освещение в помещениях, что проявляется в сведении к минимуму затрат на электроэнергии и обеспечении максимального комфорта. Высокий интерес проявляется и к встроенным моделям ЭПРА, используемым совместно с небольшими люминесцентными лампами. На данный момент ЭПРА стоят до 10 раз дороже по сравнению с электромагнитными аналогами. Но все же эти устройства оправдывают свою цену, учитывая, что благодаря им уменьшаются затраты электроэнергии, а лампы служат дольше обычного.

    Распространенность ЭПРА

    За последние годы электронные модели ПРА, предназначенные для эксплуатации с люминесцентными лампами, стали выпускать на 37% больше, чем раньше. Причем сегодняшний ассортимент ЭПРА уже включает наряду с одноламповым и двух-, трех- и четырехламповые варианты. По этой причине увеличивается и количество люминесцентных ламп, используемых совместно с электронными устройствами, доля которых уже составляет 50% в общем объеме.

    Подавляющее число светильников, в которых используются люминесцентные лампы, производимые европейскими предприятиями, уже сегодня имеют в конструкции электронные балласты.

    Причина того, что именно ЭПРА чаще всего отдают предпочтение, связана с тем, что на рынке стали предлагаться «тонкие» люминесцентные лампы, выполненные в 16-миллиметровых колбах, которые не рассчитаны на совместную работу с традиционными схемами включения на основе стартера и дросселя.

    Значимым достоинством ЭПРА является высокий КПД, достигающий 90%, а также мощность, равная 0,95. Чаще всего электронные балласты изготавливаются в таких конструкционных вариантах, что им не страшны ни перегрузки, ни короткие замыкания в выходной цепи.

    Постепенно ЭПРА стала выпускаться в соответствии с единым стандартом. Это привело к тому, что подавляющее большинство электронных балластов, используемых с линейными люминесцентными лампами, приобрели вытянутую форму, длина которой определялась мощностью. Для моделей, в которых использовались «тонкие» люминесцентные лампы, были предусмотрены ЭПРА, заключенные в корпуса высотой 21 мм. При этом многоламповые балласты по размерам почти не отличаются от одноламповых аналогов.

    Тот факт, что сегодня почти не найти ЭМПРА, относящиеся к классу В1 по потерям мощности, был связан с началом действия распоряжения Энергетической комиссией ЕС № 2000/55/EG. Его суть заключалась в том, что, уже начиная с декабря 2005 года, все предприятия должны были свернуть производство вышеупомянутых устройств. Ранее аналогичное решение было принято в отношении балластов классов D и С, которые с 2001 и мая 2005 года должны были перестать производиться всеми компаниями.

    Определенная роль в распространении ЭПРА принадлежит измененным Европейским нормам освещённости EN 12464-1. Данный документ содержит раздел, в котором представлены требования, касающиеся пульсаций освещенности. В нем говорится, что наличие подобных пульсаций запрещено на тех объектах, где люди находятся в течение продолжительного времени. Данный фрагмент подразумевает, что для традиционных схем включения на основе стартера и дросселя недопустимо применять люминесцентные лампы.

    Оцените статью: Поделитесь с друзьями!

    elektro.guru

    Пускорегулирующее устройство

     

    Изобретение относится к электротехнике и может быть использовано для питания безртутных натриевых ламп высокого давления (ДНаТ БР). Технический результат заключается в обеспечении надежной работы лампы ДНаТ БР. Сущность заключается в том, что пускорегулирующее устройство содержит двухполупериодный выпрямитель, включенный в сеть через токоограничительный элемент, конденсатор, подключенный параллельно выходу выпрямителя, параллельно которому через дроссель подключена газоразрядная лампа. Параллельно лампе через ограничитель тока или непосредственно подключен переключающий элемент. Индуктивность дросселя и емкость конденсатора выбраны из соотношения. 2 з.п. ф-лы, 3 ил.

    Изобретение относится к электротехнике и может быть использовано для питания безртутных натриевых ламп высокого давления (ДНаТ БР).

    Лампы ДНаТ БР традиционно используются в схемах с электронными пускорегулирующими аппаратами с преобразователями повышенной частоты (Светотехника, № 3, 2000, с.18). Эти аппараты имеют сложную электронную схему, снижающую их надежность, создают высокочастотные помехи.Наиболее близким по технической сущности является устройство для поджига и питания ртутных ламп сверхвысокого давления выпрямленным током (SU № 1325726, Н 05 В 41/231, опубл. 11.05.85 г.), содержащее двухполупериодный выпрямитель, включенный в сеть через токоограничительный элемент, два последовательно включенных конденсатора, подключенных параллельно к выходу выпрямителя, параллельно которым через дроссель подключена газоразрядная лампа. Реактивным балластом, ограничивающим ток через лампу, является конденсатор.Недостатком известного устройства является то, что использование его для питания ламп ДНаТ БР невозможно вследствие больших пульсаций тока, что приводит к погасанию разряда в лампе. Это связано с особенностями ламп ДНаТ БР, имеющих горелку малого диаметра и поэтому малое время деионизации плазмы. Питать эти лампы следует током с небольшим коэффициентом пульсаций. Кроме того, лампы ДНаТ БР характеризуются относительно большим значением модуля отрицательного дифференциального сопротивления |Rдиф|, что требует использования индуктивных или активных компенсаторов отрицательного сопротивления с величиной, большей |Rдиф|.Технический результат заключается в обеспечении надежной работы лампы ДНаТ БР.Сущность изобретения заключается в том, что в пускорегулирующем устройстве для безртутных натриевых ламп высокого давления, содержащем двухполупериодный выпрямитель, включенный в сеть через токоограничительный элемент, конденсатор, подключенный параллельно выходу выпрямителя, параллельно которому через дроссель подключена газоразрядная лампа, параллельно лампе через ограничитель тока или непосредственно подключен переключающий элемент, а индуктивность дросселя и емкость конденсатора определены из соотношенияL>|Rдиф|/600,C>2,5/(L p),где L - индуктивность дросселя, Гн;С - емкость конденсатора, мкФ;р - коэффициент пульсации тока;|Rдиф| - максимальное значение модуля дифференциального сопротивления лампы, работающей с пускорегулирующим устройством, Ом.Дроссель имеет отвод, а переключающий элемент подключен непосредственно или через ограничитель тока между отводом дросселя и электродом лампы, не соединенным с дросселем. Если в качестве ограничительного элемента взята емкость, то ее величина входит в виде слагаемого в значение емкости, определяемой из соотношения.На фиг.1 и 2 изображено пускорегулирующее устройство, на фиг.3 - часть вольтамперной характеристики лампы. Пускорегулирующее устройство (фиг.1) содержит двухполупериодный выпрямитель 1, включенный в сеть через токоограничительный элемент 2, конденсатор 3, подключенный параллельно выходу выпрямителя 1, параллельно которому через дроссель 4 подключена газоразрядная лампа 5. Параллельно лампе 5 через ограничитель тока 6 или непосредственно подключен переключающий элемент 7. Индуктивность дросселя 4 и емкость конденсатора 3 выбраны из соотношенияL>|Rдиф|/600,С>2,5/(L р),где L - индуктивность дросселя, Гн;С - емкость конденсатора, мкФ;р - коэффициент пульсации тока;|Rдиф| - максимальное значение модуля дифференциального сопротивления лампы 5, работающей с пускорегулирующим устройством, Ом.Устройство может быть реализовано и в соответствии с фиг.2. Отличие от предыдущего состоит в том, что дроссель 4 имеет отвод, а переключающий элемент 7 подключен непосредственно или через ограничитель тока 6 между отводом дросселя 4 и электродом лампы 5, не соединенным с дросселем 4.Пускорегулирующее устройство работает следующим образом. После подключения питающей сети к двухполупериодному выпрямителю 1 через токоограничительный элемент 2 конденсатор 3 заряжается. Переключающий элемент 7 переходит в проводящее состояние, через дроссель 4 течет ток, ограниченный индуктивностью дросселя 4 и ограничителем тока 6. Через некоторое время переключающий элемент 7 перейдет в непроводящее состояние. Энергия, накопленная в дросселе 4, обеспечит генерирование высоковольтного импульса, зажигающего лампу 5, через которую будет протекать ток, параметры которого определяются характеристиками токоограничительного элемента 2, выпрямителя 1, конденсатора 3, дросселя 4 и лампы 5.Работа устройства по фиг.2 не отличается от работы устройства по фиг.1. Выбор величин L и С обусловлен следующими соображениями: из фиг.3, где изображена часть вольтамперной характеристики лампы ДНаТ БР (для определенности изображена характеристика лампы ДнаТ БР-70), видно, что при изменении тока через лампу от 0,4 до 0,8 А ее дифференциальное сопротивление Rдиф отрицательно и изменяется от 100 до 30 Ом. Если изменение тока в каждый полупериод будет столь значительны, то для стабилизации режима газового разряда в лампе необходимо использовать активное сопротивление величиной более 100 Ом, что приведет к большим потерям мощности на пускорегулирующем устройстве. Можно использовать для стабилизации режима лампы и индуктивность с соответствующей величиной эффективного сопротивления, равной L. Однако такая индуктивность будет иметь значительные размеры и массу. Величина индуктивности должна быть тем больше, чем больше коэффициент пульсаций р тока через лампу, р=1-Imin/Imax, где Imin - минимальное значение тока, протекающего через лампу, включенную в данное пускорегулирующее устройство; Imax - максимальное значение тока, протекающего через лампу, включенную в пускорегулирующее устройство.При уменьшении коэффициента пульсаций, например, при включении параллельно выпрямителю 1 сглаживающего конденсатора 3 возможно уменьшить величину индуктивности дросселя 4, при сохранении устойчивой работы лампы 5, т.к. рабочая точка лампы 5 будет “перемещаться” по вольтамперной характеристике (фиг.3) в меньших пределах и колебания отрицательного дифференциального сопротивления будут проходить около меньших абсолютных значений. Из вольтамперной характеристики видно, что большие абсолютные значения Rдиф реализуются при меньших токах. При работе лампы 5 в устройстве с двухполупериодным выпрямителем 1 в каждый полупериод реализуется минимальное значение тока через лампу 5 и его максимальное значение. Когда значение тока будет минимальным, значение |Rдиф| будет наибольшим, поэтому величина сопротивления стабилизирующего разряда должна рассчитываться при этом условии. Во время разгорания лампы ее вольтамперная характеристика существенно зависит от температуры лампы 5. При определенных значениях этой температуры разряд характеризуется наибольшей величиной |Rдиф| при Imin.Известно, что для фильтра, состоящего из индуктивности и емкости при двухполупериодном выпрямлении тока, между коэффициентом пульсаций р и параметрами L и С фильтра существует соотношениеL С=2,5/р.(Радиолюбительский справочник./Под ред. Д.П.Линде. - М-Л.: Энергия, 1966, с. 335).Если среднее значение тока Icp через лампу принять равным Icp=(Imin+Imax)/2 (что при значении рmin можно определить, зная Icp - ток лампы, указанный в технических условиях на лампу, а также задав значение р. Используя вольтамперную характеристику лампы, можно определить значение Rдиф и вычислить минимально допустимое значение L. Для двухполупериодного выпрямления частота пульсации 100 Гц имеем L|Rдиф|/600. Зная величину L и р можно определить значение C=2,5/(L р).Если в качестве токоограничительного элемента 2 используется емкость, то ее величина входит в виде слагаемого в значение емкости, рассчитываемой согласно приведенного соотношения для емкости.Увеличение значений L и С больше, чем рассчитанные по приведенным соотношениям, благоприятно скажется на стабильности работы лампы. Если L и С будут иметь значения меньше определенных из соотношений, то лампа не будет работать стабильно.В качестве переключающего элемента в пускорегулирующем устройстве могут быть использованы полупроводниковые, газоразрядные или любые другие приборы, обеспечивающие переход из непроводящего состояния в проводящее и обратно. Если в качестве переключающего элемента используется газоразрядный стартер, то необходимо, чтобы его биметаллический электрод имел отрицательный потенциал.Пускорегулирующее устройство может быть использовано и для питания всех типов газоразрядных ламп высокого и низкого давления. Пускорегулирующее устройство было реализовано и испытано с лампой ДНаТ БР 70. В качестве токоограничительного элемента был выбран конденсатор емкостью 16 мкФ, индуктивность дросселя рассчитана из соотношения и равна 0,2 Гн, емкость сглаживающего конденсатора равна 100 мкФ. В качестве переключающего элемента использован газоразрядный стартер.

    Формула изобретения

    1. Пускорегулирующее устройство для безртутных натриевых ламп высокого давления, содержащее двухполупериодный выпрямитель, включенный в сеть через токоограничительный элемент, конденсатор, подключенный параллельно выходу выпрямителя, параллельно которому через дроссель подключена газоразрядная лампа, отличающееся тем, что параллельно лампе через ограничитель тока или непосредственно подключен переключающий элемент, а индуктивность дросселя и емкость конденсатора определены из соотношенияL>|Rдиф|/600;С>2,5/(L p),где L - индуктивность дросселя, Гн;С - емкость конденсатора, мкФ;р - коэффициент пульсации тока;|Rдиф| - максимальное значение модуля дифференциального сопротивления лампы, работающей с пускорегулирующим устройством, Ом.2. Устройство по п.1, отличающееся тем, что дроссель имеет отвод, а переключающий элемент подключен непосредственно или через ограничитель тока между отводом дросселя и электродом лампы, не соединенным с дросселем.3. Устройство по п.1 или 2, отличающееся тем, что если в качестве токоограничительного элемента взята емкость, то ее величина входит в виде слагаемого в значение емкости, определяемой из соотношения.

    РИСУНКИ

    Рисунок 1, Рисунок 2, Рисунок 3

    www.findpatent.ru


    © 2007—2018
    423800, Набережные Челны , база Партнер Плюс, тел. 8 800 100-58-94 (звонок бесплатный)