|
||||
|
Екатерина - специалист по продаже а/м КАМАЗ
43118-010-10 (дв.740.30-260 л.с.) | 2 220 000 |
43118-6033-24 (дв.740.55-300 л.с.) | 2 300 000 |
65117-029 (дв.740.30-260 л.с.) | 2 200 000 |
65117-6010-62 (дв.740.62-280 л.с.) | 2 350 000 |
44108 (дв.740.30-260 л.с.) | 2 160 000 |
44108-6030-24 (дв.740.55,рест.) | 2 200 000 |
65116-010-62 (дв.740.62-280 л.с.) | 1 880 000 |
6460 (дв.740.50-360 л.с.) | 2 180 000 |
45143-011-15 (дв.740.13-260л.с) | 2 180 000 |
65115 (дв.740.62-280 л.с.,рест.) | 2 190 000 |
65115 (дв.740.62-280 л.с.,3-х стор) | 2 295 000 |
6520 (дв.740.51-320 л.с.) | 2 610 000 |
6520 (дв.740.51-320 л.с.,сп.место) | 2 700 000 |
6522-027 (дв.740.51-320 л.с.,6х6) | 3 190 000 |
Нужны самосвалы? Обратите внимание на Ford-65513-02. |
Контактная информация.
г. Набережные Челны, Промкомзона-2, Автодорога №3, база «Партнер плюс».
тел/факс (8552) 388373.
Схема проезда
Синхронная машина - это электрическая машина переменного тока, частота вращения ротора которой равна частоте вращения магнитного поля в воздушном зазоре.
Синхронные двигатели получили широкое распространение в промышленности для электроприводов, работающих с постоянной скоростью (компрессоров, насосов и т.д.). В последнее время, вследствие появления преобразовательной полупроводниковой техники, разрабатываются регулируемые синхронные электроприводы.
Статоры синхронной и асинхронной машин полностью одинаковы.
Статор синхронного генератора состоит из чугунной станины - корпуса, внутри которого находится сердечник статора, собранный из отдельных листов электротехнической стали, изолированной между собой лаком или тонкой бумагой. В пазы сердечника укладывают обмотку статора из медного изолированного провода (рис. 164).
Роторы синхронных генераторов бывают двух типов - явнополюсными и неявнополюсными (балванка).
Явнополюсными выполняют роторы синхронных генераторов с небольшим числом оборотов (от 125 об/мин до 1500 об/мин), обычно соединяемых с тихоходными гидротурбинами, и генераторов небольшой и средней мощности.
Роторы неявнополюсные применяют в генераторах с большим числом оборотов (3000 об/мин) и большой мощности, обычно соединяемых на одном валу с паровыми турбинами, называют эти генераторы турбогенераторами.
Сердечники полюсов большей частью изготовляют из литой стали, а башмаки - иногда из отдельных листов электротехнической стали. Обмотку полюсов выполняют из медных изолированных проводов. Для получения синусоидально изменяющейся э.д.с. необходимо иметь синусоидальное распределение магнитной индукции в воздушном зазоре. Это достигается неравномерностью воздушного зазора между наконечником полюса и сталью статора: по краям полюсов воздушный зазор больше, чем под серединой полюса (рис. 167).
На вал генератора надевают два кольца, изолированных от него, к которым присоединяют выводы обмотки возбуждения ротора, их называют контактными кольцами. На контактные кольца устанавливают щетки, а к щеткам подводят постоянный ток от возбудителя.
Чаще всего в качестве возбудителя применяют машину постоянного тока, которую называют машинным возбудителем, а в последнее время используют для возбуждения твердые или механические выпрямители. У большего количества синхронных машин возбудитель расположен на одном валу с генератором, а в последних конструкциях возбудитель располагают сверху статора синхронной машины.
Синхронный генератор состоит из неподвижной - статора, в пазах которого помещается трехфазная обмотка переменного тока, и вращающейся части - ротора, который представляет собой электромагнит.
Обмотки возбуждения ротора питаются через щетки и кольца постоянным током от возбудителя - машины постоянного тока или какого-нибудь выпрямителя.
Если предположить, что магнитная индукция распределяется в воздушном зазоре синусоидально - , то ЭДС, индуктируемая в якорной обмотке генератора, будет иметь вид:
Под действием этой ЭДС в цепи генератора, замкнутой на нагрузку Z, появится переменный ток . Частота переменной ЭДС рассматриваемого генератора определяется частотой вращения ротора: при одной паре полюсов поля возбуждения () одному обороту ротора соответствует один период переменного тока. В общем случае частота ЭДС синхронного генератора(Гц) прямо пропорциональна частоте вращения ротора [об/мин], т.е.
Обмотка, в которой индуктируется ЭДС, расположена на неподвижной части генератора - на статоре. При этом обмотку возбуждения располагают на роторе. Такая конструктивная схема наиболее рациональна в синхронных машинах большой мощности, так как при расположении рабочей обмотки на роторе пришлось бы передавать в рабочую обмотку через контактные кольца значительные мощности при напряжении до 20 кВ. В этих условиях работа контактных колец и щеток стала бы весьма ненадежной, а потери энергии в щеточном контакте - значительны. При расположении рабочей обмотки на статоре выводы этой обмотки присоединяют непосредственно к электрической сети. Конечно, и в этом случае машина не избавляется от контактных колец и щеток, необходимых для соединения обмотки возбуждения с возбудителем. Но так как величина тока возбуждения в десятки раз меньше рабочего (переменного) тока, а напряжение не превышает 450 В, то щеточный контакт работает более надежно, а потери энергии в нем невелики.
Исходя из перечисленных соображений синхронные машины, как правило, выполняют с рабочей обмоткой, располагаемой на статоре.
Обмотка статора синхронных машин обычно представляет собой трехфазную обмотку, соединяемую в звезду или треугольник.
На роторе расположена обмотка возбуждения, при подключении которой к источнику постоянного тока (возбудителю) возникает магнитное поле возбуждения. Посредством первичного двигателя ротор генератора приводят во вращение со скоростью . При этом магнитное поле ротора вращаясь индуктирует в трехфазной обмотке статора ЭДС ,,, которые, будучи одинаковыми по величине и сдвинутыми по фазе относительно друг друга на 120, образуют трехфазную симметричную систему ЭДС.
studfiles.net
Синхронный генератор – машина (механизм) переменного тока, которая преобразовывает определенный тип энергии в электроэнергию. К таким устройствам относят электростатические машины, гальванические элементы, солнечные батареи, термобатареи и т. п. Использование каждого вида из перечисленных приборов определяется их техническими характеристиками.
Применяют синхронные агрегаты как источники электроэнергии переменного тока: используют на мощных тепло-, гидро- и атомных станциях, на передвижных электрических станциях, транспортных системах (машинах, самолетах, тепловозах). Синхронный агрегат способен работать автономно – генератором, который питает подключаемую к ней какую-либо нагрузку, либо параллельно с сетью - в нее подключены иные генераторы.
Синхронный агрегат может включать устройства в тех местах, где нет центрального питания электрических сетей. Данные приборы можно применять в фермерских хозяйствах, которые расположены далеко от населенных пунктов.
Устройство синхронного генератора обусловлено наличием таких элементов, как:
Синхронный генератор работает в качестве генераторов и моторов. Он может переходить от графика работы генератора к графику двигателя – это зависит от действия вращающей либо тормозящей силы прибора. В графике генератора в него входит механическая, а исходит электроэнергия. В графике двигателя в него входит электрическая, а исходит механическая энергия.
Прибор включается в цепь переменного тока разного типа нелинейных сопротивлений. Синхронные агрегаты являются генераторами переменного тока на электростанциях, а синхронные моторы используются тогда, когда необходим двигатель, что работает с постоянной крутящейся частотой.
Работа синхронного генератора осуществляется по принципу электромагнитной индукции. Во время холостого движения якорная (статорная) катушка разомкнута, поэтому магнитное поле агрегата формируется одной обмоткой ротора. Когда ротор крутится от проводного мотора, у него присутствует постоянная частота, роторное магнитное поле перемещается через проводники обмоток фаз статора и осуществляет наводку повторяющихся переменных токов – электродвижущую силу (ЭДС). ЭДС носит синусоидальный, несинусоидальный либо пульсирующий характер.
Обмотка возбуждения предназначается для создания в генераторе первоначального магнитного поля, чтобы навести в катушку якоря электрическую движущую силу. В случае если якорь синхронного генератора приводят в движение путем вращения с определенной скоростью, затем возбуждают источником постоянных токов, то поток возбуждения переходит через проводники катушек статора, и в фазах катушки индуцируются переменные ЭДС.
Трехфазный синхронный генератор – устройство, имеющее трехфазную структуру переменного тока, которая имеет огромное практическое распространение. Крутящийся электромагнит способен образовывать магнитный поток (переменный), который перемещается через три фазы обмотки имеющегося статора. И результатом этого является то, что в фазах происходит переменная ЭДС однотипной частоты, сдвиг фаз осуществляется под углом, равным одной третьей периода вращения магнитных полей.
Трехфазный синхронный генератор оборудован так, что на его валу якорь является электромагнитом и питается от генератора. Когда вал вращается, к примеру, от турбины, генератор поставляет электроток, в то время как обмотка ротора питается поставляемым током. От этого якорь становится электрическим магнитом и, осуществляя обороты с тем же валом, доставляет вращающееся электромагнитное поле.
Благодаря синхронным трехфазным гидро- и турбогенераторам производится большая часть электроэнергии. Синхронные агрегаты применяются и в качестве электромоторов в таких устройствах, у которых мощность превышает 50 кВт. Во время работы синхронного агрегата в графике двигателя сам ротор соединяют с источником постоянных токов, статор же подключают к трехфазному кабелю.
Любые турбо-, гидро-, дизельные генераторы, синхронные компенсаторы, моторы, производимые на данный момент, оснащаются новейшими полупроводниковыми структурами, такими как возбуждение синхронных генераторов. В данных структурах применяется метод выпрямления трехфазных переменных токов возбудителей высокой или промышленной частоты либо напряжения возбуждаемого агрегата.
Устройство генератора таково, что структуры возбуждения могут обеспечить такие параметры работы агрегата, как:
На данный момент производится много видов индукционных приборов, но устройство генератора создано так, что в них присутствуют одинаковые части:
Чтобы получить наибольший магнитный поток, во всех генераторах используют специальную магнитную структуру, которая состоит из двух стальных сердечников.
Обмотки, что создают магнитное поле, установлены в пазах одного из сердечников, а обмотки, индуцируемые ЭДС – в пазах другого. Один из сердечников - внутренний - взаимодействует со своей обмоткой и крутится вокруг горизонтального либо вертикального стержня. Такой стержень называется ротором. Недвижимый сердечник с обмоткой называется якорем (статором).
Для оценки функции синхронных генераторов применяются те же самые характеристики, какие применяются в генераторах постоянного тока. Только некоторые условия различаются и дополняются.
Главные характеристики синхронного генератора такие:
Мощность синхронного генератора определяется такими значениями:
Синхронный генератор переменного тока – это электромашина, что преобразует механическую вращательную энергию в электрическую энергию переменных токов. Мощные генераторы таких токов устанавливают:
В настоящее время выпускается множество типов таких приборов, но все они имеют общее устройство главных элементов:
В промышленных генераторах больших размеров вращается электромагнит, являющийся ротором. Одновременно с этим обмотки с наводящимися ЭДС, уложенные в пазы статора, остаются неподвижными.
В таких устройствах, как маломощный синхронный генератор, магнитное поле создается вращающимся постоянным магнитом.
Существуют следующие виды синхронных генераторов:
Синхронный генератор (мотор) подразделяется на несколько моделей, которые предназначены для разнообразных целей:
По роду прибора ротора устройство генератора подразделяется на:
В первом случае ротор состоит из крестовины, на которой закрепляют сердечники полюсов или обмотки возбуждения. Во-втором – быстроходные агрегаты с числом оборотов 1500 либо 3000. Ротор сделан в виде цилиндра из стали довольно высокого качества с пазами, в них устанавливают обмотку возбуждения, состоящую из отдельных обмоток различной ширины.
www.syl.ru
Синхронная машина состоит из двух основных частей: неподвижной - статора и вращающейся - ротора, и имеет две основные обмотки. Одна обмотка подключается к источнику постоянного тока. Протекающий по этой обмотке ток создает основное магнитное поле машины. Эта обмотка располагается на полюсах и называется обмоткой возбуждения. Иногда у машин небольшой мощности обмотка возбуждения отсутствует, а магнитное поле создается постоянными магнитами. Другая обмотка является обмоткой якоря. В ней индуктируется основная ЭДС машины. Она укладывается в пазы якоря и состоит из одной, двух или трех обмоток фаз. Наибольшее распространение в синхронных машинах нашли трехфазные обмотки якоря.
В синхронных машинах чаще всего находит применение конструкция, при которой, обмотка якоря располагается на статоре, а обмотка возбуждения - на роторе (рис. 1). Синхронные машины небольшой мощности иногда имеют обращенное исполнение, когда обмотка якоря располагается на роторе, а обмотка возбуждения - на полюсах статора (рис. 2). В электромагнитном отношении обе конструкции равноценны.
Рассмотрим принцип действия синхронного генератора. Если через обмотку возбуждения протекает постоянный ток, то он создает постоянное во времени магнитное поле с чередующейся полярностью. При вращении полюсов и, следовательно, магнитного поля относительно проводников обмотки якоря в них индуктируются переменные ЭДС, которые, суммируясь, определяют результирующие ЭДС фаз.
Если на якоре уложены три одинаковые обмотки, магнитные оси которых сдвинуты в пространстве на электрический угол, равный 120°, то в этих обмотках индуктируются ЭДС, образующие трехфазную систему. Частота индуктируемых в обмотках ЭДС зависит от числа пар полюсов р и частоты вращения ротора п:
Векторная диаграмма синхронной машины в режиме генератора
Поток ротора направим влево по оси абсцисс (рис. 3.4). Вектор ЭДС, индуктируемой потоком ротора, отстает от него на 90 градусов. Вектор тока статораотстает от векторана угол ψ, определяемый выражением:
, |
xH и RH - индуктивное и активное сопротивление цепи нагрузки генератора.
Чтобы определить положение вектора , опустим из конца вектораперпендикуляр на направление вектора. На этом перпендикуляре, чтобы вычесть изреактивное напряжение, отложим это реактивное напряжение вниз. Затем влево из полученной точки, параллельно векторуотложим активное напряжение. Соединив полученную точку с началом координат, мы найдем вектор напряжения. Соединив ту же точку с концом вектора, получим треугольник внутренних падений напряжения генератора с гипотену
диаграмма синхронного двигателя
Будем считать, что возбуждение машины при переходе от генераторного режима к двигательному осталось неизменным, и поэтому сохраним в диаграмме двигателя, как и в диаграмме генератора, ту же длину вектора , но отложим теперьотстающим отна угол θ. Направление вектораопределяется условием. Чтобы определить направление векторапродолжим(полученное вычитанием из векторавектора) и на эту прямую опустим перпендикуляр из начала координат и отложим на нем. Теперьотстает отболее чем на 90 градусов. Положительную мощность токсоздает не с, а с напряжением сети. Векторы потоковистроим каждый под углом 90 градусов к вектору индуктируемой ими ЭДС (т е. ки).
Режим двигателя устойчив при изменении θ в пределах от 0 до -90 и неустойчив при θ<-90 градусов, когда возрастание θ не увеличивает, а уменьшает вращающий момент. Если механический тормозящий момент, приложенный к валу двигателя, превзойдет максимальное значение вращающего электромагнитного момента Мэ.м.max, то произойдет выпадение двигателя из синхронизма - ротор постепенно уменьшит скорость и, наконец, остановится, ЭДС в обмотке уменьшится до 0, а токи достигнут весьма больших значений, во много раз превышающих номинальные.
Для явнополюсной машины
Для неявнополюсной Xd=Xq
Q=*cosθ-
На электрических станциях применяют трехфазные синхронные генераторы переменного тока высокого и низкого напряжений.
Слово синхронный обозначает — одновременный. Это значит, что одновременно и в строгой математической зависимости с изменением оборотов изменяется частота тока Эта зависимость определяется формулой
где п1 — число оборотов генератора в минуту,f1 — частота тока генератора(гц), р — число пар полюсов в роторе генератора Синхронный генератор состоит из неподвижной части —статора, в пазах которого помещается трехфазная обмотка переменного тока, и вращающейся части —ротора, который представляет собой электромагнит (рис. 163).
Обмотки возбуждения ротора питаются через щетки и кольца постоянным током от возбудителя — машины постоянного тока или какого-нибудь выпрямителя
Ротор синхронного генератора, находящийся внутри статора, вращают первичным двигателем, при этом магнитное поле ротора пересекает витки трехфазной обмотки статора и индуктирует в них э. д. с. переменного тока.
В некоторых конструкциях синхронных генераторов обмотки полюсов неподвижны и укреплены на станине, а вращается трехфазная обмотка переменного тока, выполняемая в пазах стального цилиндра, набранного из листов электротехнической стали. Переменный ток в этом случае снимают с колец, т. е. скользящим контактом, что является недостатком таких генераторов. Широкого распространения эти типы генераторов но нашли.
Статор синхронного генератора состоит из чугунной станины — корпуса, внутри которого находится сердечник статора, собранный из отдельных листов электротехнической стали, изолированной между собой лаком или
тонкой бумагой. В пазы сердечника укладывают обмотку статора из медного изолированного провода (рис. 164).
Роторы синхронных генераторов бывают двух типов — явнополюсными и неявнополюсными.
Явнополюсными выполняют роторы синхронных генераторов с небольшим числом оборотов, обычно соединяемых с тихоходными гидротурбинами, и генераторов небольшой и средней мощности (рис. 165).
Роторы неявнополюсные применяют в генераторах с большим числом оборотов (3000 об/мин) и большой мощности, обычно соединяемых на одном валу с паровыми турбинами, называют эти генераторы турбогенераторами
Сердечники полюсов большей частью изготовляют из литой стали, а башмаки — иногда из отдельных листов электротехнической стали. Обмотку полюсов выполняют из медных изолированных проводов. Для получения синусоидально изменяющейся э. д. с. необходимо иметь
синусоидальное распределение магнитной индукции в воздушном зазоре. Это достигается неравномерностью воздушного зазора между наконечником полюса и сталью статора: по краям полюсов воздушный зазор больше, чем под серединой полюса (рис. 167).
На вал генератора надевают два кольца, изолированных от него, к которым присоединяют выводы обмотки возбуждения ротора, их называют контактными кольцами. На контактные кольца устанавливают щетки, а к щеткам подводят постоянный ток от возбудителя.
Чаще всего в качестве возбудителя применяют машину постоянного тока, которую называют машинным возбудителем, а в последнее время используют для возбуждения твердые или механические выпрямители.
У большего количества синхронных машин возбудитель расположен на одном валу с генератором (рис. 168), а в последних конструкциях возбудитель располагают сверху статора синхронной машины (рис. 169). Отечественной электропромышленностью выпускаются синхронные генераторы различной мощности горизонтальные и вертикальные.
Генераторы мощностью до 400 ква и более выпускаются на напряжение 400/230в и начиная с мощности 400ква на напряжение 6300в.
Горизонтальные генераторы типа СГ (С — синхронный, Г — генератор) выпускаются с машинным возбудителем, с возбуждением от твердых выпрямителей (СГС), с возбуждением от механических выпрямителей (СГТ) и другие.
Вертикальные гидрогенераторы типа ВГС (В — вертикальный, Г — гидрогенератор, С — синхронный) выпускаются мощностью от 250 до 4800 ква с машинными возбудителями
Выпускаются синхронные генераторы для сопряжения с дизелями на одном валу типа СГД — мощностью до 1000 ква
в первом случае получит ускорение, и отдаваемая им на сеть активная мощность увеличится, во втором случае ротор получит замедление, тогда мощность генератора уменьшится.
Для изменения реактивной мощности генератора изменяют его возбуждение.
studfiles.net
Синхронная машина состоит из двух основных частей — статора и ротора Статор, являющийся неподвижной частью машины, по конструкции аналогичен статору асинхронного двигателя. Трехфазная обмотка статора выполнена с таким же числом полюсов, как и ротора Ротор — вращающаяся часть машины — представляет собой систему полюсов, на которых расположена обмотка возбуждения. Ротор служит для создания основного магнитного потока. По конструкции различают роторы с явно и неявно выраженными полюсами.
Ротор с явно выраженными полюсами (рис 62,а) состоит из стального вала, роторной звезды и полюсов возбуждения с полюсными катушками, укрепленными на ободе роторной звезды.
При больших частотах вращения (3 тыс об/мин), исходя из соображений механической прочности, ротор выполняют неявнопо-люсным (рис 62,6) с выфрезерованнымн на его поверхности продольными пазами, в которые закладывают обмотку возбуждения.
На валу ротора устанавливают контактные кольца, к которым присоединяют выводы обмотки возбуждения. Кольца надежно изолируют от вала и друг от друга. К кольцам прилегают щетки,
укрепленные в щеткодержателях, образуя скользящпй контакт. Через скользящий кон- такт обмотка возбуждения подключается к источнику постоянного тока. При подключе нии обмотки возбуждения вращающегося ротора к источнику постоянного тока создается вращающийся вместе с ротором магнитный поток Ф, пересекающий трехфазную обмотку статора и по закону электромагнитной индукции в каждой фазной обмотке образуется наводящий э д с.
Э д с статора составляет симметричную трехфазную э д с, и при подключении к обмотке статора симметричной нагрузки эта обмотка нагружается симметричной системой токов. Машина при этом работает в режиме генератора
Как и все электрические машины, синхронные машины обратимы. У синхронных машин частота вращения п ротора равна частоте вращения n1 магнитного поля статора.
Синхронными называются электрические машины, частота вращения которых связана постоянным соотношением с частотой сети переменного тока, в которую эта машина включена. Синхронные машины служат генераторами переменного тока на электрических станциях, а синхронные двигатели применяются в тех случаях, когда нужен двигатель, работающий с постоянной частотой вращения. Синхронные машины обратимы, т.е. они могут работать и как генераторы, и как двигатели, хотя в конструкциях современных синхронных генераторов и двигателей имеются небольшие, но практически весьма существенные отличия. Синхронная машина переходит от режима генератора к режиму двигателя в зависимости от того, действует ли на ее вал вращающая или тормозящая механическая сила. В первом случае она получает на валу механическую, а отдает в сеть электрическую энергию, а во втором случае она потребляет из сети электрическую энергию, а отдает на валу механическую энергию.
Основной магнитный поток синхронного генератора, создаваемый вращающимся ротором, возбуждается посторонним источником-возбудителем, которым обычно является генератор постоянного тока небольшой мощности, установленный на общем валу с синхронным генератором. Постоянный ток от возбудителя подается на ротор через щетки и контактные кольца, установленные на валу ротора.
На валу ротора устанавливают контактные кольца, к которым присоединяют выводы обмотки возбуждения. Кольца надежно изолируют от вала и друг от друга. К кольцам прилегают щетки,
укрепленные в щеткодержателях, образуя скользящий контакт. Через скользящий контакт обмотка возбуждения подключается к источнику постоянного тока. При подключении обмотки возбуждения вращающегося ротора к источнику постоянного тока создается вращающийся вместе с ротором магнитный поток, пересекающий трехфазную обмотку статора и по закону электромагнитной индукции в каждой фазной обмотке образуется наводящий э д с.
Э д с статора составляет симметричную трехфазную э д с, и при подключении к обмотке статора симметричной нагрузки эта обмотка нагружается симметричной системой токов. Машина при этом работает в режиме генератора.
Как и все электрические машины, синхронные машины обратимы. У синхронных машин частота вращения ротора равна частоте вращения магнитного поля статора.
studfiles.net
СИНХРОННЫЕГЕНЕРАТОРЫ
3.1.1. Общие сведения
Синхронными машинами называются электрические машины переменного тока, у которых магнитное поле, созданное обмоткой переменного тока, вращается в пространстве с той же частотой, что и ротор, т. е. синхронно с ротором.
В настоящее время подавляющее большинство электрической энергии переменного тока вырабатывается с помощью синхронных генераторов. Генераторы, приводимые во вращение гидротурбинами, называются гидрогенераторами. На тепловых станциях с помощью паровых турбин приводят во вращение турбогенераторы. Во всевозможных промышленных установках можно встретить синхронные генераторы, приводимые во вращение двигателями внутреннего сгорания. Во всех перечисленных случаях механическая энергия турбин или двигателей превращается в электрическую энергию переменного тока.
Частота f1 энергии переменного тока, вырабатываемой синхронными генераторами, зависит от частоты вращения ротора n1 и числа пар полюсов р:
f1=pn1/60.
Однако в современной технике синхронные машины используют не только в качестве генераторов. В силовом электроприводе, в устройствах автоматики, в устройствах звукозаписи применяют большое количество синхронных машин, работающих в двигательном режиме,— синхронных двигателей.
Основная особенность синхронного двигателя — при постоянной частоте тока питающей сети f1 его ротор вращается со строго постоянной (синхронной) частотой вращения
n1=60 f1/ p
3.1.2. Конструкция синхронных генераторов
Любая синхронная машина состоит из двух основных частей: неподвижного статора и вращающегося ротора (рис. 1). Статор и ротор разделены воздушным зазором, который у крупных синхронных машин обычно значительно больше, чем у асинхронных машин, одинаковых по мощности.
По конструкции статор синхронной машины принципиальо не отличается от статора асинхронной машины. Сердечник статора 1 набирают из штампованных изолированных листов электротехнической стали. В пазах статора размещают распределенную обмотку переменного тока 2 (обычно трехфазную). На валу 4 укрепляют ротор 3 с обмоткой возбуждения.
Рис.1. Устройство явнополюсной синхронной машины
Концы этой обмотки подводят к контактным кольцам 5. Для подачи постоянного тока в обмотку возбуждения по контактным кольцам скользят щетки 6. Источником постоянного тока в рассматриваемой машине служит возбудитель 7, представляющий собой генератор постоянного тока, якорь которого укреплен на общем валу с ротором синхронной машины.
Постоянный ток, проходя по обмотке возбуждения, создает магнитное поле ротора — поле возбуждения.
Роторы синхронных генераторов бывают с явно выраженными и неявно выраженными полюсами.
Явнополюсный ротор (рис.2) состоит из вала 1, на котором укреплены сердечники полюсов с полюсными катушками 2. Сердечники полюсов заканчиваются полюсными наконечниками 3, которые обычно обрабатывают таким образом, чтобы воздушный зазор между полюсным наконечником и статором получался неравномерным. Он минимален под серединой полюса и максимален у его краев (рис.3, ). Делается это для того, чтобы кривую магнитной индукции Bo в воздушном зазоре, имеющую форму трапеции при равномерном зазоре 1, максимально приблизить к синусоиде 2.
Синхронные машины с явно выраженными полюсами обычно многополюсные. Они, как правило, рассчитываются на небольшие частоты вращения. Так, гидрогенератор Куйбышевской ГЭС имеет 88 полюсов (2р=88) и вращается с частотой n1=68,3 об/мин.
Рис. 2. Явнополюсный ротор Рис. 3. Распределение
магнитной индукции в зазоре
синхронной машины
Гидрогенераторы всегда явнополюсные. Так как при малых частотах вращения n1 (которые развивает гидротурбина) гидрогенераторы должны выдавать электроэнергию промышленной частоты 50 Гц, то они должны иметь большое число пар полюсов:
p = 60*50/ n1
Роторы гидрогенераторов имеют большой диаметр (для размещения полюсов) и малую длину.
Турбогенераторы являются быстроходными синхронными машинами. Объясняется это высокой частотой вращения паровых турбин, к. п. д. которых возрастет с увеличением частоты вращения. Обычно турбогенераторы делаются двухполюсными (2р = 2) и имеют частоту вращения n1 = 3000 об/мин.
При такой большой частоте вращения явнополюсная конструкция ротора непригодна из-за недостаточной механической прочности. Поэтому турбогенераторы имеют неявнополюсный ротор — кованый стальной цилиндр с профрезерованными продольными пазами для укладки обмотки возбуждения (см. рис. 7). Неявнополюсные роторы имеют сравнительно небольшой диаметр при значительной длине.
В синхронных машинах применяются два способа возбуждения: электромагнитное возбуждение и возбуждение постоянными магнитами.
В зависимости от способа питания обмотки возбуждения постоянным током различают независимое возбуждение и самовозбуждение.
При независимом возбуждении для получения постоянного тока применяют возбудитель В (см. рис. 1), который располагается на одном валу с синхронной машиной и представляет собой генератор постоянного тока, мощность которого не превышает 2-5% от мощности синхронной машины.
При самовозбуждении для питания обмотки возбуждения постоянным выпрямленным током, получаемым от генератора, используются выпрямители.
В случае возбуждения постоянными магнитами ротор не имеет обмотки возбуждения, а его полюсы представляют собой постоянный магнит. Это дает возможность получить машину без контактных колец, а следовательно, повысить ее надежность и к. п. д.
На полюсных наконечниках явно выраженных полюсов ротора имеются пазы, в которых укладывают стержни демпферной (успокоительной) короткозамкнутой обмотки, выполняемой по типу короткозамкнутой обмотки ротора асинхронных машин. Эта обмотка служит для успокоения ротора (уменьшения качаний) в генераторах, а также для пуска в синхронных двигателях.
Синхронные машины небольшой мощности иногда выполняют обращенными (по типу машин постоянного тока). У таких машин обмотка переменного тока размещается в пазах ротора и выводится к трем контактным кольцам, а обмотка возбуждения размещается на явно выраженных полюсах статора. Мощными эти машины не делаются, так как при такой конструкции через контактные кольца приходится пропускать большой переменный ток (основной ток машины) при высоком напряжении, тогда как в машинах обычного исполнения через контактные кольца ротора проходит небольшой по величине ток возбуждения при напряжении до 440 В.
Синхронные двигатели малых мощностей весьма разнообразны по конструкции.
3.1.3. Принцип действия синхронного генератора
Синхронные генераторы в зависимости от типа обмотки статора могут быть одно-, двух- и трехфазными. Наибольшее распространение получили трехфазные генераторы. На рис.4 представлена электромагнитная схема такого генератора. Трехфазная обмотка статора состоит из трех однофазных обмоток, равномерно распределенных по статору и сдвинутых в пространстве на 120° относительно друг друга (рис.4). Посредством первичного двигателя, в качестве которого применяются турбины (паровые или гидравлические), двигатели внутреннего сгорания или электродвигатели, ротор генератора приводится во вращение с частотой n1.
Рис. 4. Электромагнитная схема синхронного генератора
vunivere.ru
Электрогенератор (альтернатор) электротока переменного типа предназначается для процедуры преобразования кинетической и потенциальной энергии в электроэнергию. Ротор такой машины приводится в движение, а именно вращается, от двигателя первичного типа, в роли которого могут выступать ДВС (топливные двигатели), электродвигатели, турбины.
Внешний вид производственной синхронной генерирующей машины переменного тока модели СГС-14-100-6
Если альтернатор переменного тока характеризуется тем, что частота вращения его ротора совпадает с частотой вращения магнитного поля, то такие машины называются синхронными. Произвести расчет частоты вращения можно по формуле:
n = 60*f/p, где:
Часто многие неосведомленные в области электроустановок люди задаются вопросом о том, какой принцип работы синхронного генератора.
Конструкция генерирующей машины переменного тока достаточна проста. Статор и ротор – это основные компоненты синхронного генератора (СГ).
Принцип действия синхронного генератора на основе взаимодействия магнитных полей статора и ротора
Синхронный альтернатор, в основном, вырабатывает электроэнергию тогда, когда ротор синхронного генератора движется по кругу вместе с магнитным полем, линии которого встречаются в неподвижной обмотке статора. Поле образуется посредством возбуждения дополнительным устройством, например:
Стоит отметить, что процесс преобразования энергий в СГ может происходить и по-другому – вращающееся части проводникового элемента могут располагаться в обездвиженном магнитном поле. В этом случае возникает трудность токосъема через щеточно-коллекторный узел электрической машины, какой соединяет ротор с цепями ее неподвижной части. Для генераторных машин невысокой мощности подобная схема может успешно применяться. Зачастую она встречается в установках передвижного типа.
В рассматриваемом генераторе продуцируется электродвижущая сила (ЭДС), расчет которой совершается по формуле:
e = 2*π*B*l*w*Dn, где:
Электроэнергетика с такими устройствами построена, в основном, на электронапряжении в диапазоне 15 000-40 000 В. Энергообмен через коллектор альтернатора затруднителен. К тому же обмоточная катушка подвижного типа подвергается ударным нагрузкам большой силы и вращательным движениям с попеременной скоростью, что формирует проблематику с изоляционной составляющей. По этой причине якорные элементы производят обездвиженными, так как именно через них пропускается основная масса энергии.
Мощность устройства-возбудителя обычно не превосходит 4-5% от совокупной производительной мощности синхронного генератора – это дает возможность пропускать электроток через динамический узел.
Для информации. В механизмах переменного тока малой мощности (до нескольких кВт) роторный элемент изготавливается с магнитными деталями постоянного типа (ферритовыми, неодимовыми, полимерными магнитопластами и другими). В них не нужно устанавливать подвижные контакты, однако из-за этого существуют трудности с регулировкой выходного напряжения.
Статор СГ имеет почти такое же устройство и принцип функционирования, как и у асинхронного варианта. Его железные компоненты компилируются из стальных пластин (сталь применяется электротехнического назначения), которые отделаются друг от друга слоями изоляции. Обмотка переменного электротока располагается в его пазах. Провода обмоток отделяются друг от друга изолирующим слоем и закрепляются надежно, так как через них вводится нагрузка. Ротор может исполняться без выпирающих полюсов либо с ярко выраженными полюсами.
На заметку. Наибольшую популярность имеет трехфазный синхронный генератор, применяемый во многих областях жизнедеятельности человека и предприятий. Однофазные варианты обычно применяется в быту.
Основные типы СГ: а – с ротором, у которого выступают полюса; б – с не явно полюсным ротором
Синхронные генераторы с явно полюсным ротором производятся для тихоходных машин, к примеру, для установок с гидротурбинами. А СГ с не явно полюсными роторами подходят для механизмов переменного тока, вращающихся с высокой скоростью.
Синхронные генерирующие устройства могут работать в двух режимах: двигательном либо генерирующем переменный электроток. Здесь важно то, какой метод охлаждения применяется, так как генерация чего-либо всегда более требовательна. В основном, на вал монтируются крыльчатки, какие охлаждают ротор с двух сторон воздухом, проходящем через фильтрующий элемент. Потоки воздуха в такой системе охлаждения вращаются одни и те же. При работе СГ в усиленном режиме подобная система нежелательна.
Важно! Эффективнее при высоких нагрузках применять в качестве охлаждающего агента водород, какой более чем в 14 раз легче воздуха.
Внутреннее устройство СГ переменного тока
Обмотки рассматриваемого генератора отводятся концами на его распредкоробку. Трёхфазная машина имеет иное соединение обмотки – отвод совершается звездой или треугольником.
Преимущественно все синхронные генерирующие устройства поддерживают синусоидальное переменное электронапряжение. Этого можно достичь посредством изменения формы наконечников на полюсах и особым месторасположением витков в пазах не явно полюсного ротора.
В обмотках статорного элемента при присоединении выхода с наружной нагрузкой начинает протекать электроток. Образующееся при этом силовое магнитное поле совмещается с полем, что формируется роторным элементом. Такое взаимодействие полей именуется реакцией якоря.
Реакция якоря в СГ при разнородных видах нагрузки
При активной нагрузке электроток и ЭДС имеют одни и те же фазы. Предельная сила электротока проявляется в тот момент, когда полюса роторного элемента находятся на противоположной стороне от якорных обмоток. Главный магнитный поток и второстепенный поток, который формируется во время реакции якоря, перпендикулярны друг другу, а при сопоставлении формируют увеличенный итоговый поток, что увеличивает в тот момент ЭДС.
Нагрузка индуктивного вида, имея потоки, направленные навстречу друг к другу, наоборот, приводит к значительному снижению электродвижущей силы.
Нагрузка емкостного типа вызывает совмещение потоков, движущихся в одну сторону, итог – увеличение ЭДС.
Любое повышение нагрузки увеличивает влияние реакции якоря на выходное электронапряжение, которое из-за этого изменяется в ту или иную сторону, что крайне нежелательно в электросетях. Практично такой процесс можно контролировать: просто изменять возбудитель, что снизит уровень влияния реакции якоря на главное силовое поле.
Нормальный режим работы СГ можно охарактеризовать любым числом рабочих периодов, какой угодно длительности, при которых главные параметры не выходят за диапазон допустимых значений. При таком режиме работы допустимы отклонения электронапряжения на выходе и частоты в пределах 4-5% и 2,5% от номинального значения, коэффициентов мощности и тому подобные. Допуски на отклонения задаются нормативными документами и определяются нагревом машин либо же гарантируются фирмой-производителем.
Бытовой топливный синхронный генератор отечественного производства, модель «Интерскол ЭБ-5500» на 5,5 кВт
Нормальные рабочие режимы недопустимы для долгого функционирования устройства при таких обстоятельствах, как перевозбуждение или недовозбуждение, переход в режимы асинхронного типа, перегрузки. На возникновение таких обстоятельств влияют следующие отклонения в электросети:
Стоит отметить, что на нормальное функционирование механизма воздействует подключенная к нему электросеть, в которой любые нарушения работоспособности отдельно взятых источников потребления вызывают искажение формы и несимметрию электросигнала.
Диаграмма мощностей СГ
Важно! Длительная работа генерирующего энергию устройства допустима при разнице токов на фазах турбогенератора до 10% и водяных генераторов, синхронных компенсирующих машин до 15-20%.
Искривление синусоиды на СГ может случаться из-за высокомощных преобразователей, выпрямляющих устройств и прочих.
Необходимо учесть, что нормальное функционирование синхронных устройств возможно только при качественной работе охлаждающей системы. Так, при затратах охлаждающего агента в объеме более 70% от номинального значения, должна срабатывать предупреждающая сигнализация о том, что устройство нужно отключить от сети, в противном случае может произойти выход оборудования из строя. Когда расход охлаждающего агента уменьшается на 50%, то устройство должно разгрузиться порядка двух минут, после чего отключиться за максимум четыре минуты.
СГ обладают нижеследующими характерными чертами:
Синхронные генераторы нашли широкое применение в промышленности и энергообеспечении, так как имеют простую конструкцию, понятный принцип работы и могут выдерживать кратковременные перегрузки.
Для правильной эксплуатации и проведения ремонтных работ над СГ переменного тока необходимо знать их принцип работы (одинаковое по частоте вращение ротора и магнитного поля) и устройство. Эти знания пригодятся инженерам производственных предприятий и специалистам в области энергетики, а также обычным людям, которые используют подобную технику в бытовых целях.
amperof.ru
ОБЩИЕ ВОПРОСЫ ТЕОРИИ БЕСКОЛЛЕКТОРНЫХ МАШИН
Принцип действия бесколлекторных машин переменного тока
Принцип выполнения обмоток статора
Основные типы обмоток статора
Магнитодвижущая сила обмоток статора
Электрические машины переменного тока составляют основу современной электроэнергетики, как в сфере производства, так и в сфере потребления электрической энергии. За небольшим исключением все эти машины являются бесколлекторными. Существует два вида бесколлекторных машин переменного тока: асинхронные и синхронные машины. Отличаясь рабочими свойствами, эти машины имеют конструктивное сходство, и в основе их теории лежат некоторые общие вопросы, касающиеся процессов и явлений, связанных с рабочей обмоткой — обмоткой статора. Поэтому, прежде чем перейти к подробному изучению асинхронных и синхронных машин, целесообразно рассмотреть общие вопросы теории этих машин. Как асинхронные, так и синхронные машины обладают свойством обратимости (см. § В.2), т. е. каждая из них может работать как в режиме генератора, так и в режиме двигателя. Однако первоначальное знакомство с этими машинами полезно начать с рассмотрения принципа действия синхронного генератора и принципа действия асинхронного двигателя. Это даст возможность получить необходимое на данном этапе изучения представление об устройстве этих машин и происходящих в них электромагнитных процессах. Данный раздел посвящен изучению принципа действия бесколлекторных машин переменного тока в основных их режимах, устройства обмоток статоров этих машин и процесса наведения ЭДС и МДС в них.
• Принцип действия бесколлекторных машин переменного тока
Для изучения принципа действия синхронного генератора воспользуемся упрощенной моделью синхронной машины (рис. 6.1). Неподвижная часть машины, называемая статором, представляет собой полый шихтованный цилиндр 1 (сердечник статора) с двумя продольными пазами на внутренней поверхности. В этих пазах расположены стороны витка 2, являющегося обмоткой статора. Во внутренней полости сердечника статора расположена вращающаяся часть машины — ротор, представляющий собой постоянный магнит 4 с полюсами N и S, закрепленный на валу 3. Вал ротора посредством ременной передачи механически связан с приводным двигателем (на рисунке не показан). В реальном синхронном генераторе в качестве приводного двигателя может быть использован двигатель внутреннего сгорания либо турбина. Под действием вращающего момента приводного двигателя ротор генератора вращается с частотой n1 против часовой стрелки. При этом в обмотке статора в соответствии с явлением электромагнитной индукции наводится ЭДС, направление которой показано на рисунке стрелками. Так как обмотка статора замкнута на нагрузку Z, то в цепи этой обмотки появится ток i.
В процессе вращения ротора магнитное поле постоянного магнита также вращается с частотой n1, а поэтому каждый из проводников обмотки статора попеременно оказывается то в зоне северного (N) магнитного полюса, то в зоне южного (S) магнитного полюса. При этом каждая смена полюсов сопровождается изменением направления ЭДС в обмотке статора. Таким образом, в обмотке статора синхронного генератора наводится переменная ЭДС, а поэтому ток i в этой обмотке и в нагрузке Z также переменный.
Мгновенное значение ЭДС обмотки статора в рассматриваемом синхронном генераторе (В)
е = B2 l= B2 l π D1 n1 / 60 (6.1)
где B — магнитная индукция в воздушном зазоре между сердечником статора и полюсами ротора, Тл; l — активная длина одной пазовой стороны обмотки статора, м; = π D1 n1 /60 — скорость движения полюсов ротора относительно статора, м/с; D1 — внутренний диаметр сердечника статора, м.
studfiles.net