Камаз 44108 тягач В наличии!
Тягач КАМАЗ 44108-6030-24
евро3, новый, дв.КАМАЗ 740.55-300л.с., КПП ZF9, ТНВД ЯЗДА, 6х6, нагрузка на седло 12т, бак 210+350л, МКБ, МОБ
 
карта сервера
«ООО Старт Импэкс» продажа грузовых автомобилей камаз по выгодным ценам
+7 (8552) 31-97-24
+7 (904) 6654712
8 800 1005894
звонок бесплатный

Наши сотрудники:
Виталий
+7 (8552) 31-97-24

[email protected]

 

Екатерина - специалист по продаже а/м КАМАЗ
+7 (904) 6654712

[email protected]

 

Фото техники

20 тонный, 20 кубовый самосвал КАМАЗ 6520-029 в наличии
15-тонный строительный самосвал КАМАЗ 65115 на стоянке. Техника в наличии
Традиционно КАМАЗ побеждает в дакаре

тел.8 800 100 58 94

Техника в наличии

тягач КАМАЗ-44108
Тягач КАМАЗ 44108-6030-24
2014г, 6х6, Евро3, дв.КАМАЗ 300 л.с., КПП ZF9, бак 210л+350л, МКБ,МОБ,рестайлинг.
цена 2 220 000 руб.,
 
КАМАЗ-4308
КАМАЗ 4308-6063-28(R4)
4х2,дв. Cummins ISB6.7e4 245л.с. (Е-4),КПП ZF6S1000, V кузова=39,7куб.м., спальное место, бак 210л, шк-пет,МКБ, ТНВД BOSCH, система нейтрализ. ОГ(AdBlue), тент, каркас, рестайлинг, внутр. размеры платформы 6112х2470х730 мм
цена 1 950 000 руб.,
КАМАЗ-6520
Самосвал КАМАЗ 6520-057
2014г, 6х4,Евро3, дв.КАМАЗ 320 л.с., КПП ZF16, ТНВД ЯЗДА, бак 350л, г/п 20 тонн, V кузова =20 куб.м.,МКБ,МОБ, со спальным местом.
цена 2 700 000 руб.,
 
КАМАЗ-6522
Самосвал 6522-027
2014, 6х6, дв.КАМАЗ 740.51,320 л.с., КПП ZF16,бак 350л, г/п 19 тонн,V кузова 12куб.м.,МКБ,МОБ,задняя разгрузка,обогрев платформы.
цена 3 190 000 руб.,

СУПЕР ЦЕНА

на АВТОМОБИЛИ КАМАЗ
43118-010-10 (дв.740.30-260 л.с.) 2 220 000
43118-6033-24 (дв.740.55-300 л.с.) 2 300 000
65117-029 (дв.740.30-260 л.с.) 2 200 000
65117-6010-62 (дв.740.62-280 л.с.) 2 350 000
44108 (дв.740.30-260 л.с.) 2 160 000
44108-6030-24 (дв.740.55,рест.) 2 200 000
65116-010-62 (дв.740.62-280 л.с.) 1 880 000
6460 (дв.740.50-360 л.с.) 2 180 000
45143-011-15 (дв.740.13-260л.с) 2 180 000
65115 (дв.740.62-280 л.с.,рест.) 2 190 000
65115 (дв.740.62-280 л.с.,3-х стор) 2 295 000
6520 (дв.740.51-320 л.с.) 2 610 000
6520 (дв.740.51-320 л.с.,сп.место) 2 700 000
6522-027 (дв.740.51-320 л.с.,6х6) 3 190 000


Перегон грузовых автомобилей
Перегон грузовых автомобилей
подробнее про услугу перегона можно прочесть здесь.


Самосвал Форд Нужны самосвалы? Обратите внимание на Ford-65513-02.

КАМАЗы в лизинг

ООО «Старт Импэкс» имеет возможность поставки грузовой автотехники КАМАЗ, а так же спецтехники на шасси КАМАЗ в лизинг. Продажа грузовой техники по лизинговым схемам имеет определенные выгоды для покупателя грузовика. Рассрочка платежа, а так же то обстоятельство, что грузовики до полной выплаты лизинговых платежей находятся на балансе лизингодателя, и соответственно покупатель автомобиля не платит налогов на имущество. Мы готовы предложить любые модели бортовых автомобилей, тягачей и самосвалов по самым выгодным лизинговым схемам.

Контактная информация.

г. Набережные Челны, Промкомзона-2, Автодорога №3, база «Партнер плюс».

тел/факс (8552) 388373.
Схема проезда



Система питания топливом бензинового двигателя. Система питания бензинового двигателя


Система питания бензиновых двигателей

Система питания бензиновых двигателей

Принцип функционирования системы управления впрыском топлива

Общая информация

Топливо засасывается из топливного бака электрическим топливным насосом и подается через топливный фильтр к топливной распределительной магистрали. Регулятор давления обеспечивает поддержание давления в топливной системе на уровне 3.0 атм.

Через электроуправляемые инжекторы топливо импульсно впрыскивается во впускной трубопровод, расположенный непосредственно перед впускными клапанами двигателя. Блок управления двигателем производит последовательное управление инжекторами в соответствии с порядком зажигания, регулирует время впрыска и тем самым количество впрыскиваемого топлива.

Воздух, необходимый для образования топливной смеси, засасывается двигателем через воздушный фильтр и поступает через дроссельную заслонку, воздухораспределитель и впускной трубопровод к впускным клапанам. Количество всасываемого воздуха регулируется дроссельной заслонкой, приводимой тросом от педали газа. Объем всасываемого воздуха определяется датчиком воздушного потока (MAF). Для увеличения мощности двигателя установлен турбокомпрессор, приводимый потоком выпускных газов.

Блок управления двигателем определяет оптимальное время зажигания, момент впрыска и количество впрыскиваемого топлива согласованно с другими системами автомобиля.

Информация от других датчиков и управляющие напряжения, поступающие к исполнительным органам, обеспечивают оптимальную работу двигателя в любой ситуации. Если некоторые датчики выходят из строя, блок управления переключается в режим аварийной программы, чтобы исключить возможное повреждение двигателя и обеспечить дальнейшее движение автомобиля.

Расположение компонентов систем управления бензиновыми двигателями указано на иллюстрациях.

Расположение компонентов системы управления 4-цилиндровым двигателем

* На иллюстрации не обозначены

Расположение компонентов системы управления двигателем V6

* На иллюстрации не обозначены

Схема компоненты системы питания и выпуска ОГ приведены на иллюстрациях.

Схема впускного воздушного тракта и тракта выпуска ОГ 4-цилиндровых двигателей

Схема подачи топлива бензиновых двигателей на примере 4-цилиндрового двигателя

Краткое описание принципов функционирования некоторых из датчиков и исполнительных устройств системы управления двигателем

Датчик положения дроссельной заслонки (TPS) вмонтирован в исполнительный механизм дроссельной заслонки и выдает на ECM информацию о текущем угле положения дроссельной заслонки. Второй потенциометр сообщает ECM данные о базовом значении и формирует запасной сигнал при выходе из строя потенциометра дроссельной заслонки.

Датчик положения коленчатого вала (CKP) передает блоку управления информацию о числе оборотов коленчатого вала и нахождении поршня первого цилиндра в ВМТ.

Датчик температуры охлаждающей жидкости (ECT) представляет собой резистор с отрицательным температурным коэффициентом, сопротивление которого уменьшается с ростом температуры.

Датчик измерения массы воздуха (MAF) представляет собой термоанемометрический измеритель, вмонтированный во впускной воздушный тракт двигателя, и используется ECM при определении параметров дозировки воздушно-топливной смеси.

Система вентиляции топливного бака/улавливания топливных испарений (EVAP) состоит из угольного адсорбера и э/м клапана управления продувкой последнего. В адсорбере аккумулируются пары топлива, образующиеся в результате его нагрева. При работе двигателя скопившиеся в адсорбере топливные испарения вытягиваются во впускной тракт и направляются в камеры сгорания.

Лямбда-зонды измеряют содержание кислорода в отработавших газах (ОГ) до и после каталитических преобразователей и передают соответствующие сигналы в блок управления двигателем.

carmanz.com

Техническое обслуживание системы питания бензиновых двигателей

 

Техническое обслуживание системы питания заключается в проверке ее технического состояния, обнаружении и устранении неисправностей, заправке горючим, в проведении комплекса работ по обеспечению надежной работы фильтров, насосов и карбюратора.

При ЕТО машина заправляется горючим, приборы системы питания очищаются от грязи и пыли.

При ТО-1 выполняются работы, предусмотренные ЕТО, а также очищается воздушный фильтр, проверяется крепление топливного насоса, карбюратора, впускного и выпускного коллекторов, выпускной трубы и глушителя.

Проверяется работа карбюратора и его привода, при необходимости выполняется регулировка карбюратора на минимальную частоту вращения коленчатого вала двигателя на холостом ходу.

При ТО-2 дополнительно к перечисленным работам сливается отстой из топливных баков, фильтров и фильтра-отстойника, промываются фильтры и фильтры-отстойники, проверяются работа топливного насоса, уровень горючего в поплавковой камере карбюратора, действие привода, полнота открытия и закрытия дроссельной и воздушной заслонок.

При СО промываются топливные баки без снятия их с машины, продуваются топливопроводы, устанавливается заслонка подогрева горючей смеси в соответствии с предстоящим периодом эксплуатации. Карбюратор разбирается, с его деталей удаляются отложения, промывается и проверяется действие ограничителя частоты вращения коленчатого вала двигателя.

В процессе обслуживания выявляются и устраняются отказы и неисправности.

К основным отказам и неисправностям системы питания бензиновых двигателей относятся переобогащение или переобеднение горючей смеси, прекращение подачи горючего.

Внешними признаками переобогащения горючей смеси являются перегрев и перебои в работе двигателя, падение мощности, хлопки в глушителе, дымный выпуск, большие отложения нагара в камере сгорания, на клапанах, поршнях, свечах.

Признаками переобеднения горючей смеси являются вспышки во впускном коллекторе в результате медленного горения смеси, падение мощности и перегрев двигателя, перерасход горючего и др.

Причинами этих неисправностей могут быть повышенный или пониженный уровень горючего в поплавковой камере карбюратора, изменение проходного сечения его жиклеров и воздушных каналов вследствие засорения или износа, неисправность экономайзера, подсос воздуха.

Прекращение подачи горючего может произойти из-за разрыва диафрагмы топливного насоса, поломки или ослабления пружин егоклапанов, плохого прилегания клапанов вследствие ослабления пружин или попадания грязи,засорения топливопроводов, фильтров и топливного бака, попадания и замерзания в них воды (зимой), подсоса воздуха через соединения топливопроводов между баком и насосом или прокладку фильтра-отстойника.

Работа топливного насоса по создаваемому им давлению может проверяться также без снятия его с двигателя. Для этого в тройник между штуцером карбюратора и топливопроводом, подходящим к нему от насоса, устанавливают прибор мод. 527Б, который имеет контрольный манометр со шкалой до 1 кгс/см2 (100 кПа). При работе двигателя на малой частоте вращения на холостом ходу исправный бензиновый насос должен создавать давление 0,2 – 0,3 кгс/см2 (20 – 30 кПа), которое после остановки двигателя в течение 15 с не должно падать более чем на 0,05 кгс/см2 (5 кПа).

 

 

1 – винты регулировки качества смеси; 2 – упорный винт

 

Рисунок. 24.1 - Регулировка системы холостого хода

 

Систему холостого хода карбюратора регулируют упорным винтом 2 (рисунок 24.1), ограничивающим закрытие заслонок, и винтом 1, изменяющими состав горючей смеси при полностью прогретом двигателе и при совершенно исправной системе зажигания. Особое внимание должно быть обращено на исправность свечей и точность зазора между их электродами.

Начиная регулировку, необходимо завернуть винт качества смеси до упора, а затем отвернуть на три оборота. После этого следует пустить двигатель и установить упорным винтом такое наименьшее открытие дроссельной заслонки, при котором двигатель работает устойчиво. Смесь надо обеднять с помощью регулировочного винта, завертывая этот винт при каждой пробе на ¼ оборота до тех пор, пока двигатель не начнет работать с явными перебоями из-за сильного обеднения смеси в цилиндрах. Затем следует обогатить смесь, вывернув регулировочный винт на ½ оборота.

Отрегулировав состав смеси, следует попытаться уменьшить частоту вращения коленчатого вала при холостом ходе, постепенно отвертывать упорный винт дроссельной заслонки, после чего надо вновь попытаться обеднить смесь с помощью винта, как указано выше. Обычно после двух–трех попыток удается найти правильное положение для регулировочных винтов.

Нужно иметь в виду, что если карбюратор двухкамерный, то качество смеси регулируется в каждой камере отдельно.

 

Похожие статьи:

poznayka.org

Система питания бензиновых двигателей

Система питания бензиновых двигателей

Общая информация

Все рассматриваемые в настоящем Руководстве модели оборудованы электронной системой распределенного впрыска топлива (SFI). За счет использования в системе управления новейших технологических решений SFI обеспечивает оптимизацию компоновки воздушно-топливной смеси при любых условиях эксплуатации двигателя.

Топливо в системе питания находится под постоянным давлением и через инжекторы впрыскивается во впускные порты каждого из цилиндров двигателя. Дозировка подачи топлива осуществляется путем управления временем открывания электромагнитных клапанов инжекторов в соответствии с количеством нагнетаемого в двигатель воздуха, определяемым конкретными условиями функционирования. Продолжительность открывания инжекторов определяется параметрами формируемых модулем управления (ECM) электрических импульсов, что позволяет осуществлять весьма точную дозировку компонентов горючей смеси.

ECM определяет требуемую продолжительность времени открывания инжекторов на основании анализа непрерывно поступающих от информационных датчиков данных о количестве всасываемого в двигатель воздуха - термоанемометрический датчик измерения массы воздуха (MAF), текущих оборотах двигателя - датчик положения коленчатого вала (CKP), и положении дроссельных заслонок - TPS.

Помимо перечисленных функций система распределенного впрыска топлива осуществляет также контроль токсичности отработавших газов, оптимизацию соотношения расход топлива/эффективность отдачи двигателя, а также обеспечивает адекватные стартовые параметры и прогрев двигателя в холодную погоду, исходя из данных о температурах охлаждающей жидкости (датчик ECT) и всасываемого воздуха (датчик IAT).

Система подачи воздуха

Впускной воздушный тракт

Впускной воздушный тракт состоит из воздухозаборника, двух резонаторных камер, сборки воздухоочистителя и соединяющим его с корпусом дросселя воздуховодом. Первый резонатор помещается выше воздухоочистителя по потоку, при помощи отводного шланга соединен с задней частью воздухозаборника и эффективно способствует снижению уровня шумового фона, возникающего при всасывании воздуха в двигатель. Вторая резонаторная камера подключена к воздуховоду впускного воздушного тракта непосредственно впереди корпуса дросселя.

Конструкция впускного воздушного тракта бензинового двигателя

Прогоняемый через воздухоочиститель воздух поступает в корпус дросселя, откуда, в определяемом положением дроссельных заслонок (датчик TPS) количестве, по впускному трубопроводу подается к впускным портам цилиндров двигателя, где смешивается с впрыскиваемым через инжекторы топливом, формируя горючую смесь. Стабильность оборотов холостого хода обеспечивается за счет перепускания части воздушной массы в обход корпуса дросселя непосредственно во впускной трубопровод. Контроль количества перепускаемого воздуха осуществляется ECM посредством управления функционированием специального перепускного клапана стабилизации оборотов холостого хода (IAC).

Датчик температуры всасываемого воздуха (IAT)

Датчик IAT установлен на сборке воздухоочистителя и служит для измерения температуры всасываемого в двигатель воздуха. В основу конструкции датчика положен термистор, сопротивление которого обратно пропорционально температуре чувствительного элемента. Отслеживаемые датчиком параметры преобразуются в электрические сигналы и передаются на ECM, осуществляющий управление компоновкой воздушно-топливной смеси, а также моментами впрыска и воспламенения.

Датчик измерения массы воздуха (MAF)

Термоанемометрический датчик MAF установлен во впускном воздушном тракте непосредственно позади воздухоочистителя и выступает в качестве источника информации, поставляющего ECM данные о количестве всасываемого в двигатель воздуха. На основании анализа поступающей от датчика информации ECM осуществляет компоновку воздушно-топливной смеси.

Корпус дросселя

Помещенные в корпус дросселя заслонки управляются от педали газа, в соответствии с положением которой, в большей или меньшей степени перекрывают проходные дроссельные отверстия, что позволяет регулировать расход поступающего в камеры сгорания двигателя воздуха. На холостых оборотах, когда педаль газа полностью отпущена, заслонки практически полностью перекрывают дроссель и основная масса воздуха (более половины) поступает во впускной трубопровод через специальный электромагнитный клапан стабилизации оборотов холостого хода (IAC) в обход корпуса дросселя. Использование клапана IAC позволяет также осуществлять контроль стабильности оборотов холостого хода вне зависимости от изменений текущей нагрузки на двигатель (например, при включении кондиционера воздуха или других энергоемких потребителей).

Конструкция корпуса дросселя

Датчик положения дроссельных заслонок (TPS)

TPS устанавливается на корпусе дросселя и механически соединен с осью дроссельных заслонок. Датчик вырабатывает и посылает ECM сигнальное напряжение, величина которого прямо пропорциональна степени открывания заслонок. Закрытому и открытому положениям заслонок соответствуют четко определенные значения напряжения.

ECM наделен интеллектуальными способностями, позволяющими ему компенсировать неизбежные временн ые изменения рабочих характеристик датчика при привязке их к положению дроссельной заслонки.

Электромагнитный клапан стабилизации оборотов холостого хода (IAC)

Клапан IAC включен во впускной воздушный тракт впереди корпуса дросселя и осуществляет управление величиной расхода воздуха, перепускаемого в обход последнего при работе двигателя на холостых оборотах. Клапан срабатывает по сигналам ECM, позволяя последнему поддерживать обороты холостого хода двигателя на заданном уровне.

Конструкция клапана IAC

Система подачи топлива

Общие сведения

Помещенный в бензобак погружной топливный насос обеспечивает подачу горючего под давлением к каждому из инжекторов топливной магистрали. Бензин подается от насоса к инжекторам по топливному тракту с включенным в него фильтром тонкой очистки. Специальный регулятор поддерживает давление топлива в магистрали на заданном оптимальном уровне. Через инжекторы топливо в необходимом количестве впрыскивается непосредственно в камеры сгорания каждого из цилиндров двигателя, где смешивается с воздухом и образует горючую смесь. Количество топлива и момент впрыска вычисляются модулем управления. Избыток горючего по возвратной линии поступает обратно в топливный бак.

Схема организации системы подачи топлива

Топливный бак

Изготовленный из штампованной стали топливный бак объемом 60 л установлен под автомобилем, непосредственно перед задним мостом под сборкой заднего сиденья.

Бак оснащен защитным экраном, предохраняющим его от ударов камнями, и крепится под днищем автомобиля при помощи пяти болтов.

Конфигурация рабочего объема бака выбрана таким образом, чтобы топливозаборник бензонасоса оставался в погруженном положении при любом уровне заполнения бака, даже во время резкого маневрирования.

В заливную горловину бака встроен специальный односторонний клапан, предотвращающий проникновение топлива из рабочего объема бака обратно в горловину при движении по бездорожью и резком маневрировании.

Помните, что правильное (до срабатывания трещотки храповика) затягивание крышки заливной горловины является гарантией поддержания требуемого избыточного давления в топливном тракте.

Не забывайте время от времени загонять автомобиль на эстакаду и внимательно осматривать топливный бак и подведенные к нему линии на предмет выявления механических повреждений.

Топливный насос

Топливный насос объединен в единую сборку с датчиком запаса топлива. Насос имеет роторную конструкцию и помещен внутрь топливного бака, что позволяет в существенной мере снизить уровень производимого им при работе шумового фона.

Управление функционированием топливного насоса осуществляет ECM. При выработке модулем управления соответствующей команды происходит активация реле топливного насоса, после чего электромотор начинает вращаться, приводя в движение ротор насосной сборки. Засасываемое через сетчатый фильтр топливозаборника горючее по соединительным линиям поступает в топливную магистраль и под напором подается на инжекторы. Накачанное насосом давление в топливном тракте поддерживается на постоянном уровне при помощи специального регулятора. С целью предотвращения падения давления топлива при отключении бензонасоса в насосную сборку включен специальный запорный клапан.

Избыток топлива по возвратной линии отводится обратно в топливный бак.

Регулятор давления топлива

Регулятор давления установлен с подведенного к инжекторам конца линии подачи топлива и состоит из двух разделенных диафрагмой камер: топливной и пружинной. Топливная камера соединена с линией подачи топлива, пружинная - с впускным трубопроводом. При увеличении глубины разрежения во впускном трубопроводе оттягивание диафрагмы приводит к открыванию подведенной к топливной камере регулятора возвратной линии, - в результате давление в топливной магистрали снижается. Снижение глубины разрежения в трубопроводе приводит к отжиманию диафрагмы пружиной и увеличению подающего давления. Описанный механизм позволяет поддерживать разницу между давлением впрыска и разрежением во впускном трубопроводе на постоянном уровне, составляющем 290 кПа.

Топливные инжекторы

В системе распределенного впрыска используются инжекторы с верхней подачей топлива. Схема подключения инжекторов обеспечивает охлаждение их потоком топлива. Инжекторы такой конструкции отличаются компактными размерами, высокой термостойкостью, пониженным шумовым фоном и простотой в обслуживании.

Продолжительность открывания электромагнитного игольчатого клапана инжектора определяется длиной вырабатываемого ECM управляющего импульса. Ввиду того, что сечение сопла инжектора, величина открывания клапана и давление подачи топлива поддерживаются постоянными, количество впрыскиваемого в камеру сгорания топлива определяется исключительно продолжительностью времени открывания, соответствующего длине управляющего импульса.

Датчик запаса топлива

Датчик объединен в единую сборку с топливным насосом и состоит из закрепленного на рычаге поплавка и потенциометра.

Изменение уровня топлива отслеживается потенциометром по положению поплавка, соответствующее показание выводится на вмонтированный в комбинацию приборов измеритель.

Соединительные линии топливного тракта

Подача горючего от бензонасоса к топливной магистрали и возврат его в топливный бак осуществляется по металлическим трубками и шлангам линий подачи и возврата топлива. Линии посредством фиксаторов крепятся к днищу автомобиля. И должны регулярно проверяться на наличие механических повреждений.

Помимо подающего и возвратного бензопроводов к числу соединительных линий тракта системы питания следует также отнести линии отвода топливных испарений, по которым скапливающиеся в топливном баке во время стоянки пары топлива отводятся в специальный помещающийся в двигательном отсеке угольный адсорбер. При выжимании педали газа после прогрева двигателя до нормальной рабочей температуры по команде ECM осуществляется продувка адсорбера с выводом скопившегося в нем топлива во впускной трубопровод с последующим сжиганием его в нормальном рабочем цикле двигателя.

Фильтр тонкой очистки

Фильтр тонкой очистки включен в состав линии подачи топлива.

Корпус топливного фильтра способен выдерживать достаточно высокие температурные, вибрационные и ударные нагрузки. Внутрь корпуса вложен бумажный фильтрующий элемент, обеспечивающий очистку подаваемого в топливную магистраль горючего от посторонних частиц, не улавливаемых сеткой топливозаборника бензонасоса и способных вывести из строя инжекторы.

Рекомендации по экономии расхода топлива

Существенное влияние на расход топлива оказывает стиль вождения автомобиля. Приведенные ниже рекомендации позволят владельцу добиться экономии расхода топлива при получении адекватной отдачи от двигателя.

  • Старайтесь избегать длительных прогревов двигателя, - начинайте движение сразу, как только обороты стабилизируются;
  • При остановке автомобиля на время более на 40 секунд глушите двигатель;
  • Всегда старайтесь двигаться на максимально высокой передаче, избегая резких разгонов;
  • В дальних поездках по возможности старайтесь двигаться с равномерной скоростью. Избегайте движения на чрезмерно высоких скоростях. Управляйте автомобилем осмотрительно. Без надобности не тормозите;
  • Не перевозите не автомобиле излишний груз. Если верхний багажник не используется, снимите его с крыши;
  • Регулярно проверяйте давление накачки шин, не допуская чрезмерного его снижения.

carmanz.com

Все для вашей иномарки 54 RUS - Двигатель - Система питания | Ликбез по устройству автомобиля

Одним из важнейших достоинств двигателя внутреннего сгорания является то, что автомобиль на одной заправке топливом может проехать 500 - 600 и более километров. Это расстояние называется запасом хода автомобиля. Конечно, максимальный пробег машины «на одном баке» зависит от многих факторов, но основным из них является именно правильная работа системы питания двигателя.

 

Система питания двигателя предназначена для хранения, очистки и подачи топлива, очистки воздуха, приготовления горючей смеси и подачи ее в цилиндры двигателя. На различных режимах работы двигателя количество и качество горючей смеси должно быть различным, и это тоже обеспечивается системой питания.

 

Поскольку в этой книге мы с вами рассматриваем работу карбюраторного бензинового двигателя, то в дальнейшем, под топливом будет подразумеваться именно бензин.

 

 

Рис. 13 Схема расположения элементов системы питания

1 - заливная горловина с пробкой; 2 - топливный бак; 3 - датчик указателя уровня топлива с поплавком; 4 - топливозаборник с фильтром; 5 - топливопроводы; 6 - фильтр тонкой очистки топлива; 7 - топливный насос; 8 - поплавковая камера карбюратора с поплавком; 9 - воздушный фильтр; 10 - смесительная камера карабюратора; 11 - впускной клапан; 12 - впускной трубопровод; 13 - камера сгорания

 

Система питания (рис. 13) состоит из:

  • топливного бака,
  • топливопроводов,
  • фильтров очистки топлива,
  • топливного насоса,
  • воздушного фильтра,
  • карбюратора.

 

Топливный бак - это емкость для хранения топлива. Обычно он размещается в задней, более безопасной части автомобиля. От топливного бака к карбюратору бензин поступает по топливопроводам, которые тянутся вдоль всего автомобиля, как правило, под днищем кузова.

У рачительного водителя первая ступень очистки бензина происходит при заливке его в топливный бак. Для этого в заливной горловине бака следует установить сетчатый или какой-либо другой фильтр. К сожалению, в нашем бензине содержится много примесей. Не говоря уже о простой воде, там еще присутствуют твердые частицы и вязкие компоненты, которые все вместе могут легко вывести систему питания из строя.

 

Если вспомнить слова известного юмориста, то «старые колготки, много на что могут сгодиться». Но грязь и воду от бензина - они очень хорошо отделяют! И пусть завидует «загнивающий запад» нашей смекалке!

 

Вторая ступень очистки топлива - сетка на топливозаборнике внутри бака. Она не дает возможности оставшимся после «колготок» примесям и воде, попасть в систему питания двигателя.

Наличие и количество бензина в баке водитель может контролировать по показаниям указателя уровня топлива, расположенного на щитке приборов (см. рис. 63). Емкость топливного бака среднестатистического легкового автомобиля обычно составляет 40 - 50 литров. Когда же уровень бензина в баке уменьшается до 5 - 9 литров, на щитке приборов загорается соответствующая желтая (или красная) лампочка - лампа резерва. Это сигнал водителю о том, что пора подумать о заправке.

 

Топливный фильтр (как правило, устанавливается самостоятельно) - следующий, третий этап очистки топлива. Фильтр располагается в моторном отсеке и предназначен для тонкой очистки бензина, поступающего к топливному насосу (возможна установка фильтра и после насоса). Обычно применяется одноразовый фильтр, при загрязнении которого требуется его замена.

 

Топливный насос - предназначен для принудительной подачи топлива из бака в карбюратор. Насос состоит из (рис. 14): корпуса, диафрагмы с пружиной и механизмом привода, впускного и нагнетательного (выпускного) клапанов. В нем также находится сетчатый фильтр для очередной - четвертой ступени очистки бензина.

 

Рис. 14 Схема работы топливного насоса а) всасывание топлива, б) нагнетание топлива

1 - нагнетательный патрубок; 2 - стяжной болт; 3 - крышка; 4 - всасывающий патрубок; 5 - впускной клапан с пружиной; 6 - корпус; 7 - диафрагма насоса; 8 - рычаг ручной подкачки; 9 - тяга; 10 - рычаг механической подкачки; 11 - пружина; 12 - шток; 13 - эксцентрик; 14 - нагнетательный клапан с пружиной; 15 - фильтр для очистки топлива

 

Топливный насос приводится в действие от валика привода масляного насоса (ВАЗ 2105) или от распределительного вала двигателя (ВАЗ 2108). При вращении вышеуказанных валов, имеющийся на них эксцентрик набегает на шток привода топливного насоса. Шток начинает давить на рычаг, а тот, в свою очередь, заставляет диафрагму опускаться вниз. Над ней создается разряжение и впускной клапан, преодолевая усилие пружины, открывается. Порция топлива из бака засасывается в пространство над диафрагмой.

 

При сбегании эксцентрика со штока, диафрагма освобождается от воздействия рычага и, за счет жесткости пружины, поднимается вверх. Возникающее при этом давление закрывает впускной клапан и открывает нагнетательный. Бензин над диафрагмой отправляется к карбюратору. При очередном набегании эксцентрика на шток, бензин всасывается и процесс повторяется.

 

Обратите внимание на то, что подача бензина в карбюратор происходит только за счет усилия пружины, которая поднимает диафрагму. А это означает, что когда поплавковая камера карбюратора будет заполнена и игольчатый клапан (см. рис. 16) перекроет путь бензину, диафрагма топливного насоса останется в нижнем положении. И до тех пор, пока двигатель не израсходует часть топлива из карбюратора, пружина будет не в состоянии «вытолкнуть» из насоса очередную порцию бензина.

 

Так как топливный бак расположен ниже карбюратора, то возникает необходимость в принудительной подаче бензина. Если предположить, что бак находится на крыше автомобиля, то потребность в насосе отпадает. В этом случае бензин будет поступать в карбюратор самотеком, что и используют некоторые водители в «безвыходной» ситуации при отказе насоса в работе. Закрепив канистру с бензином в положении, явно выше карбюратора и соединив их между собой (не забывая правил противопожарной безопасности), можно продолжить поездку.

 

Воздушный фильтр (рис. 15) - необходим для очистки воздуха, поступающего в цилиндры двигателя. Фильтр устанавливается на верхней части воздушной горловины карбюратора.

 

Рис. 15 Воздушный фильтр

1 - крышка; 2 - фильтрующий элемент; 3 - корпус; 4 - воздухозаборник

 

 

Учтите, при загрязнении фильтра возрастает сопротивление движению воздуха, что может привести к повышенному расходу топлива, так как горючая смесь будет слишком обогащаться бензином. А чем это грозит кроме финансовых затрат, вы узнаете чуть позднее.

Карбюратор предназначен для приготовления горючей смеси и подачи ее в цилиндры двигателя. В зависимости от режимов работы двигателя карбюратор меняет качество (соотношение бензина и воздуха) и количество этой смеси.

 

Карбюратор – это один из самых сложных устройств автомобиля. Он состоит из множества деталей и имеет несколько систем, которые принимают участие в приготовлении горючей смеси, обеспечивая бесперебойную работу двигателя. Давайте разберемся с устройством и принципом работы карбюратора на несколько упрощенной схеме.

 

 

Рис. 16. Схема работы простейшего карбюратора

1 - топливная трубка; 2 - поплавок с игольчатым клапаном; 3 - топливный жиклер; 4 - распылитель; 5 - корпус карабюратора; 6 - воздушная заслонка; 7 - диффузор; 8 - дроссельная заслонка

 

Простейший карбюратор (рис. 16) состоит из:

  • поплавковой камеры,
  • поплавка с игольчатым запорным клапаном,
  • распылителя,
  • смесительной камеры,
  • диффузора,
  • воздушной и дроссельной заслонок,
  • топливных и воздушных каналов с жиклерами.

 

Как же все-таки готовится горючая смесь?

При движении поршня в цилиндре от верхней мертвой точки к нижней (такт впуска), над ним создается разряжение. Поток воздуха с улицы, через воздушный фильтр и карбюратор, устремляется в освободившийся объем цилиндра (см. рис. 13).

 

При прохождении воздуха через карбюратор, из поплавковой камеры через распылитель, который расположен в самом узком месте смесительной камеры – диффузоре, высасывается топливо. Это происходит по причине разности давлений в поплавковой камере карбюратора, которая связана с атмосферой, и в диффузоре, где создается значительное разряжение.

Поток воздуха дробит вытекающее из распылителя топливо и смешивается с ним. На выходе из диффузора происходит окончательное перемешивание бензина с воздухом, и затем уже готовая горючая смесь поступает в цилиндры.

 

Каждый из вас периодически пользуется каким-либо устройством, использующим принцип пульверизации. Неважно, что это – флакон с духами, банка с краской и насадкой к пылесосу или бачок-опрыскиватель для увлажнения цветов. В любом случае, за счет разности давлений из некой емкости высасывается жидкость, которая затем дробится и смешивается с воздухом.

 

Для примера можно взять даже обычный чайник, так как, вместе со своим носиком, он очень похож на поплавковую камеру с распылителем.

Зальем в чайник воду так, чтобы уровень в его носике не доходил до края примерно 1-1,5 мм. И если вы создадите сильный поток воздуха (например, вентилятором или феном), то он будет высасывать воду из носика чайника, смешиваться с ней и «увлажнять» пол в вашей квартире.

 

Примерно также это происходит и в карбюраторе, но вместо пола, тщательно измельченный и смешанный с воздухом бензин попадает в цилиндры двигателя.

Из схемы работы простейшего карбюратора (рис. 16) можно понять, что двигатель не будет работать нормально, если уровень топлива в поплавковой камере (воды в чайнике) выше нормы, так как в этом случае бензина будет выливаться больше, чем надо. Если же уровень бензина будет меньше нормы, то и его содержание в смеси будет меньше, что опять нарушит правильную работу двигателя. Исходя из этого, количество бензина в камере должно быть неизменным.

 

Уровень топлива в поплавковой камере карбюратора регулируется специальным поплавком (рис.16), который, опускаясь вместе с игольчатым запорным клапаном, позволяет бензину поступать в камеру. Когда же поплавковая камера начинает наполняться, поплавок всплывает и закрывает своим клапаном проход для бензина.

Это простейший пример саморегулирующегося автомата. Ну, а если и сейчас непонятно, то придется зайти в соседний «кабинет», располагающийся обычно рядом с кухней, и посмотреть на работу запорного клапана в сливном бачке, всем известного домашнего сантехнического прибора.

 

В салоне у водителя под правой ногой имеется педаль газа, предназначенная для управления карбюратором. А на что конкретно, на какую деталь карбюратора передается усилие ноги?

Когда водитель «давит на газ», на самом деле он управляет той заслонкой, которая обозначена на рисунке 16, как дроссельная. Дроссельная заслонка, посредством рычагов или троса, связана именно с педалью газа. В исходном положении заслонка закрыта. А когда водитель нажимает на педаль, заслонка начинает открываться, поток воздуха, проходящего через карбюратор, увеличивается. При этом, чем больше открывается дроссельная заслонка, тем больше высасывается топлива, так как повышаются объем и скорость потока воздуха, проходящего через диффузор и «высасывающее» разряжение увеличивается.

 

Когда же водитель отпускает педаль газа, заслонка под воздействием возвратной пружины начинает закрываться. Поток воздуха уменьшается, и в цилиндры поступает все меньше и меньше горючей смеси. Двигатель «теряет обороты», уменьшается крутящий момент на колесах автомобиля, и соответственно, мы с вами едем медленнее.

А если совсем убрать ногу с педали газа, то дроссельная заслонка закроется полностью. Возникает вопрос! А как же теперь со смесеобразованием? Ведь мотор заглохнет!

 

Рис. 17а Схема работы системы холостого хода

1 - топливный канал системы холостого хода; 2 - топливный жиклер системы холостого хода; 3 - игольчатый клапан поплавковой камеры карбюратора; 4 - топливный жиклер; 5 - дроссельная заслонка; 6 - винт «качества» системы холостого хода; 7 - воздушный жиклер системы холостого хода; 8 - воздушная заслонка

 

 

Оказывается, для поддержания работы двигателя на холостом ходу, в карбюраторе есть свои каналы, по которым воздух все-таки может попасть под дроссельную заслонку, смешиваясь по пути с бензином (рис. 17а).

 

При закрытой дроссельной заслонке воздуху не остается другого пути, кроме как проходить в цилиндры по каналу холостого хода. А по пути, он высасывает бензин из топливного канала и, смешиваясь с ним, опять же, превращается в горючую смесь. Почти готовая к «употреблению» смесь попадает в поддроссельное пространство, там окончательно перемешивается и затем поступает в цилиндры двигателя.

 

Рис 17б Винты регулировки карабюратора

1 -винт “количества”; 2 - винт “качества” 

 

На рисунке 17а вы можете увидеть один из двух винтов регулировки карбюратора. С помощью этого винта регулируется качество смеси (соотношение воздуха и бензина), необходимое для работы двигателя на холостом ходу. А вторым винтом (количества смеси – рис. 17б) регулируется плотность прикрытия самой дроссельной заслонки, от положения которой будет зависеть объем потока воздуха.

На холостом ходу, при нормально работающей системе подачи топлива и отрегулированном карбюраторе, коленчатый вал двигателя должен устойчиво вращаться со скоростью примерно 800 – 900 об/мин.

 

В объеме этой книги не хотелось бы затрагивать работу и других систем карбюратора, так как у всех вас будут различные модели этого весьма сложного устройства. Карбюраторы «Озон» отличаются от своих собратьев серии «Солекс», «пятерочные» (ВАЗ 2105) отличается от «восьмерочных» (ВАЗ 2108), а об «иномарочных» и говорить не стоит. Поэтому хочется напомнить вам о том, что существует литература по конкретным моделям ваших автомобилей.

 

Однако есть кое-что общее в автомобилях отечественного производства. В частности, на панели приборов (или под ней) располагается рукоятка «подсоса», которая управляет воздушной заслонкой карбюратора (рис.16). Если прикрывать эту заслонку (вытягивать на себя рукоятку «подсоса»), то будет увеличиваться разряжение в смесительной камере карбюратора. Вследствие этого топливо из поплавковой камеры начинает высасываться более интенсивно и горючая смесь обогащается, что необходимо для запуска холодного двигателя.

Затем, по мере прогрева, водитель должен постепенно утапливать рукоятку «подсоса» (приоткрывать заслонку), не допуская уж очень больших оборотов коленчатого вала, так как повышенные обороты, не полностью прогретого двигателя, резко сокращают его ресурс. По окончании же прогрева, воздушную заслонку следует открыть полностью (это ее нормальное положение).

 

Надо отметить, что современный автомобиль не нуждается в полном прогреве его двигателя перед началом движения, стоя на месте! Системы подачи топлива, охлаждения и смазки двигателя давным-давно претерпели качественные изменения по сравнению с автомобилями выпуска 30-х годов. Поэтому двигатель не пострадает оттого, что почти сразу после его запуска, Вы начнете плавное движение автомобиля.

 

О степени прогрева двигателя вам «расскажет» стрелочный указатель температуры охлаждающей жидкости, который расположен на щитке приборов (см. рис.63). Вертикальное положение стрелки говорит о том, что двигатель уже полностью прогрелся.

 

При вытягивании рукоятки «подсоса», на щитке приборов включается лампочка, подсвечивающая окошко (обычно желтого цвета) с соответствующим символом. Погаснет эта лампочка только тогда, когда воздушная заслонка будет полностью открыта (кнопка подсоса полностью утоплена).

Карбюратор смешивает бензин с воздухом в строго определенной пропорции. Горючая смесь называется нормальной, если на одну часть бензина приходится 15 частей воздуха (1:15). Это соотношение может меняться в зависимости от различных факторов, и соответственно будет меняться качество смеси. Если воздуха будет больше, то смесь называется обедненной или бедной.

 

Если же воздуха меньше – обогащенной или богатой.

Обедненная и бедная смеси - это голодная пища для двигателя, в ней топлива меньше нормы. Обогащенная и богатая смеси – слишком калорийная пища, так как топлива в ней больше, чем надо. Вышеприведенная терминология соответствует известным словам: «недокорм» и «голод» или «перекорм» и «обжорство». Если подумать о своем здоровье, то из четырех предложенных вариантов, для постоянного рациона лучше выбрать легкий «недокорм», чем другие три «убивающие диеты».

 

Режимы работы карбюратора.

 

Для каждого режима работы двигателя карбюратор готовит горючую смесь соответствующего качества.

Пуск холодного двигателя. При этом режиме воздушную заслонку карбюратора следует полностью закрыть, то есть рукоятку «подсоса» надо вытянуть «до упора». Педаль газа при пуске холодного двигателя трогать не рекомендуется, поэтому и дроссельная заслонка также полностью закрыта. Состав горючей смеси для пуска холодного двигателя должен быть, и получается, богатым.

 

Режим холостого хода. Автомобиль стоит на месте или движется «накатом». Двигатель (полностью прогретый) работает на оборотах холостого хода. Воздушная заслонка полностью открыта, а дроссельная закрыта. Состав смеси при этом получается обогащенным.

 

Режим частичных (средних) нагрузок. Машина едет со скоростью около 60 км/час или близко к этому. Включена высшая передача, а нога водителя слегка нажимает на педаль газа, поддерживая средние обороты коленчатого вала двигателя. Состав смеси получается обедненный.

 

Режим полных нагрузок. Водитель плавно, почти до конца, нажал на педаль газа, автомобиль едет с большой скоростью. Для поддержания этого режима состав смеси должен быть обогащенным.

 

Режим ускорения. Водитель резко нажал на педаль газа «до пола», для ускорения автомобиля при обгоне, при отрыве от потока транспорта и тому подобное. Состав смеси получается обогащенным, близким к богатому.

 

Обратите внимание, наиболее экономичный режим работы карбюратора получается в случае частичных (средних) нагрузок!

Если в вашем автомобиле имеется прибор - эконометр, то именно на средней скорости движения автомобиля он покажет минимальный расход топлива. Любая «грубая» работа с педалью газа значительно увеличивает расход топлива, резко возрастают нагрузки на все механизмы и детали двигателя. При этом страдают и детали агрегатов, через которые крутящий момент передается на ведущие колеса.

 

Вождение автомобиля с резкими ускорениями и замедлениями просто не имеет смысла. Расход бензина при таком стиле езды резко увеличивается, уменьшается ресурс двигателя, загрязняется окружающая среда, тратятся нервы, а выигрыш во времени составляет мизерную величину или вообще отсутствует.

Не мешает знать, что разница во времени прибытия в конечную точку маршрута протяженностью 40 - 50 километров в городских условиях, у «нормальных» и «дерганых» водителей, составляет не более 5 - 6 минут. Так стоит ли «дергаться»?

 

Основные неисправности системы питания.

 

Не поступает топливо в карбюратор вследствие засорения компенсационного отверстия в пробке топливного бака (или вентиляционной трубки бака), чрезмерного засорения фильтра топливозаборника или фильтра тонкой очистки. Возможны неисправности и топливного насоса: повреждение диафрагмы или ее пружины, а также «зависание» или не плотное закрытие клапанов.

 

Для устранения неисправности все упомянутые элементы системы питания следует последовательно проверить. Затем промыть и поставить на место все то, что исправно, а неисправные узлы и детали поменять на новые.

 

Двигатель не развивает полной мощности и (или) работает с перебоями из-за нарушения уровня топлива в поплавковой камере, загрязнения топливных или воздушных фильтров, жиклеров или каналов. А возможно карбюратор просто неправильно отрегулирован.

Для устранения неисправности надо заменить или промыть соответствующие фильтры, продуть воздухом под давлением все каналы и жиклеры карбюратора, и произвести необходимые регулировки.

 

Подтекание топлива может происходить по причине потери герметичности топливного бака, фильтра, насоса, карбюратора или в многочисленных соединениях топливопровода.

Для устранения неисправности следует подтянуть хомуты креплений топливных шлангов, поменять поврежденные прокладки. Негерметичность, возникшую по причине механических повреждений элементов системы питания, устраняют путем их замены. Если же вы предпочитаете ремонт, то производить его необходимо только в специализированных мастерских.

То, что очередной дилетант пытался заварить дырку в бензобаке, обычно слышат все в радиусе километра от взрыва.

 

Эксплуатация системы питания.

 

Топливный бак, как правило, не требует к себе внимания со стороны водителя на протяжении всего срока службы автомобиля. Однако иногда, все же приходится снимать бак с машины и капитально промывать его от грязи, которая попала туда в результате заправки машины некачественным бензином. В случае небольшого загрязнения можно попробовать слить отстой, для чего надо отвернуть пробку в нижней части топливного бака. Ну а если сильно не повезет, то приходится демонтировать всю систему питания.

Если забивается компенсационное отверстие в пробке топливного бака (или вентиляционная трубка), то создается разряжение, которое не позволяет бензину поступать в карбюратор, так как топливный насос не справляется с этим разряжением. Определить «вакуум» можно по звуку во время открытия пробки топливного бака. Думаю, все из вас открывали консервные банки, и поэтому звук будет вам знаком.

 

Загрязнение воздушного фильтра способствует увеличению концентрации вредных веществ в выхлопных газах, выбрасываемых в атмосферу, так как содержание бензина в горючей смеси значительно возрастает. Необходимо периодически менять фильтрующий элемент. Срок его замены оговаривается инструкцией завода-изготовителя, но при эксплуатации автомобиля по пыльным дорогам, этот срок может (и должен) быть уменьшен.

 

Правильно отрегулированный карбюратор готовит нормальную горючую смесь. Однако со временем нарушаются регулировки, засоряются жиклеры и каналы, выходят из строя детали карбюратора, и в цилиндры может поступать постоянно богатая или бедная смесь, что пагубно сказывается на работе двигателя.

 

Если карбюратор готовит богатую смесь, то наблюдаются:

  • черный дым и «выстрелы» из глушителя,
  • повышенный расход топлива,
  • потеря мощности двигателя,
  • перегрев двигателя,
  • разжижение масла в поддоне картера двигателя.

Если карбюратор готовит бедную смесь, то наблюдаются:

  • «хлопки» в карбюраторе,
  • потеря мощности двигателя,
  • перегрев двигателя.

Вышеописанные «кошмары» могут наблюдаться и при неисправностях системы зажигания, но об этом мы поговорим позже. А сейчас каждый из вас должен призадуматься и решить для себя один важный вопрос. Или вам придется овладеть необходимым минимумом навыков по регулировкам карбюратора, или периодически, при малейших подозрениях на неправильную работу двигателя отправляться к автомеханику.

 

При обслуживании карбюратора необходимо производить очистку наружной и внутренней поверхностей его корпуса, продувку сжатым воздухом жиклеров, топливных и воздушных каналов, проверку и регулировку уровня топлива в поплавковой камере, проверку и, в случае необходимости, замену диафрагм карбюратора, а также регулировку оборотов холостого хода двигателя с помощью, уже известных вам, двух винтов. Для успешного обслуживания карбюратора следует внимательно изучить соответствующий раздел «Руководства по ремонту и эксплуатации» вашего автомобиля. Тогда, после нескольких попыток, вы будете в состоянии наладить правильную работу карбюратора.

 

А если все-таки вы не уверены в своих знаниях, то лучше обратиться за помощью к специалисту или, по крайней мере, к «знающему» соседу.

О том, что существует топливный насос, следует вспоминать перед первой поездкой после каждой длительной стоянки автомобиля. Так как поплавковая камера карбюратора связана с атмосферой, то естественно бензин будет частично испаряться, а при длительной стоянке, он испарится полностью. 

Для того чтобы не «мучить» двигатель безуспешными попытками запуска, предварительно следует накачать бензин в поплавковую камеру карбюратора с помощью рычага ручной подкачки, который располагается в нижней части корпуса топливного насоса.

inomarka54.ru

Система питания двигателя с впрыском топлива - 6 Декабря 2014 - АвтоБлог

 

Инжекторная система

Данная система вытеснила карбюраторную систему за счет ряда преимуществ. В отличие от карбюратора, в инжекторной системе впрыска подача топлива в цилиндры двигателя осуществляется за счет форсунок, которые управляются электронным блоком управления. Благодаря этому, изменить параметры можно буквально за считанные секунды.

Рис. 1. Топливная рейка современного бензинового двигателя

 

Первый инжекторный двигатель

Мотор с впрыском был изготовлен в России в 1916 году Стечкиным и Микулиным. Инжекторный АШ-82ФН оказался настолько удачным, что выпускалcя еще долгие десятилетия, использовался на вертолете Ми-4 и до сих пор используется на самолетах Ил-14.

Рис. 2. Двигатель АШ-82ФН

 

Первые системы питания не нашли широкого применения. Вновь вспомнили о них в 60-х годах XX века. Тогда эти системы были исключительно механическими, затем им на смену пришли современные системы впрыска с электронным управлением. А уже в 90 годах XX века стали широко внедрять электронику. Это позволило усовершенствовать и систему питания двигателя, кроме того возникал возможность координации ее действий с остальными частями двигателя.

Системы управления двигателем в автомобилестроении начали применяться с 1951 года, когда механической системой непосредственного впрыска бензина производства западногерманской фирмы Bosch был оснащён двухтактный двигатель микролитражного купе 700 Sport, выпущенного фирмой Goliath.

Это позволило уменьшить вертикальную высоту двигателя и создать очень красивую машину для того времени.

Рис. 3. Первый автомобиль с инжекторным двигателем - купе Goliath 700 Sport

 

Устройство впрыска

Рис. 4. Инжекторная система: 1-топливный бак; 2-электробензонасос; 3-топливный фильтр; 4-регулятор давления топлива; 5-форсунка; 6-электронный блок управления; 7-датчик массового расхода воздуха; 8-датчик положения дроссельной заслонки; 9-датчик температуры ОЖ; 10-регулятор ХХ; 11-датчик положения коленчатого вала; 12-датчик кислорода; 13-нейтрализатор; 14-датчик детонации; 15-клапан продувки адсорбера; 16-адсорбер

 

Воздух под давлением поступает в двигатель. Но предварительно поток анализируется специальным датчиком, который вычисляет объем воздуха в данный момент времени. Эти данные передаются на контроллер, который анализирует не только данные с датчика расхода воздуха, но и другие данные по работе двигателя, такие как частота вращения коленчатого вала двигателя, температура двигателя и воздуха.

После того как вся полученная информация обработана, компьютер определяет количество топлива, которое является оптимальным для данного объема воздуха и при этом было получено максимальное КПД (коэффициент полезного действия) от двигателя.

После обработки всей информации на форсунки подается электрически разряд определенной продолжительности. Форсунки открываются на необходимый период времени и впрыскивают заданную дозу топлива во впускной коллектор.

 

Типы выпрыска систем питания

Рис. 5. Системы впрыска: а-моновпрыск; б-распределенный впрыск

 

Моновпрыск - электронно управляемая система впрыска топлива, в которой электромагнитная форсунка периодически впрыскивает топливо во впускной трубопровод перед дроссельной заслонкой.

Распределенный впрыск - система подачи топлива во впускной коллектор через отдельную для каждого цилиндра топливную форсунку

Система распределенного впрыска (многоточечная система впрыска) относится к системам впрыска топлива бензиновых двигателей. Работа системы основана на впрыске топлива в каждый цилиндр отдельной форсункой.

По принципу действия системы распределенного впрыска топлива разделяются на системы непрерывного и импульсного впрыска. В зависимости от вида управления различают системы распределенного впрыска с механическим и электронным управлением.

Известными конструкциями системы распределенного впрыска топлива являются системы K-Jetronic, KE-Jetronic и L-Jetronic. Основным производителем систем впрыска является фирма Bosch.

 

Подтипы систем распределенного впрыска

  • Одновременный - когда за один рабочий такт (два оборота коленвала - 720 градусов) двигателя все 4 форсунки отрабатывают два раза одновременно.

Рис. 6. Диаграмма работы одновременного впрыска

  • Попарно-параллельный или групповой - когда за один рабочий такт двигателя форсунки отрабатывают парами (1-4 и 2-3) параллельно два раза за рабочий такт

Рис. 7. Диаграмма работы попарно-параллельного впрыска

  • Фазированный или последовательный - когда за один рабочий такт двигателя каждая форсунка отрабатывает по одному разу в соответствии с фазой впрыска. Естественно, что время впрыска во всех системах различно, при этом количество поданного в цилиндры за один рабочий такт топлива примерно одинаково.

Рис. 8. Диаграмма работы фазированного впрыска

 

На диаграммах работы желтым обозначен впуск, черным - впрыск топлива, молнией - зажигание. В системах впрыска Bosch MP7.0H используется несколько другой алгоритм фазированного впрыска, вместо привычного 1-3-4-2 топливо подается последовательно 1-2-3-4. 

Суммарное время впрыска на одновременном и попарно-параллельном способе одинаково, на фазированном - в два раза выше, т.к за 1 цикл одновременного и попарно-параллельного впрыска форсунка включается 2 раза, а на фазированном - 1, поэтому время ее работы увеличено в 2 раза.

Инжекторные агрегаты обладают несомненными плюсами, по сравнению с карбюраторными. Они менее токсичны, более экономичны, легко запускаются. Кроме того, крутящий момент таких моторов доступен в широком диапазоне оборотов.

Имеет данная система питания и минусы: более сложная конструкция, высокая чувствительность агрегата к качеству горючего. Кроме того, форсунки являются не ремонтируемыми узлами, что удорожает ремонт. Для диагностики же их состояния и очистки, СТО должно иметь современное дорогое оборудование.

 

источники: wikipedia.org ; amastercar.ru ; popmech.ru ; systemsauto.ru

 

www.autoscience.ru

Система питания карбюраторных двигателей.

Система питания карбюраторного двигателя



Система питания карбюраторного бензинового двигателя с искровым зажиганием служит для хранения топлива, его очистки от механических примесей, приготовления горючей смеси, а также для подачи горючей смеси в цилиндры двигателя и отвода из них отработавших газов. Кроме того, в функции системы питания входит очистка воздуха, используемого для приготовления горючей смеси.

Горючая смесь состоит из топлива и воздуха, соединенных в определенной пропорции и тщательно перемешанных друг с другом. При сгорании горючей смеси в цилиндрах двигателя выделяется тепловая энергия, преобразуемая затем в механическую энергию.

Система питания карбюраторного двигателя (Рис. 1) состоит из топливного бака 6, топливного насоса 7, воздушного фильтра 1, карбюратора 4, топливопроводов 5, впускного 2 и выпускного 3 трубопроводов, приемной трубы 8 глушителей и собственно глушителей 9 и 10.

Основным топливом, используемым для работы карбюраторных двигателей с принудительным воспламенением, является бензин – жидкий продукт переработки нефти, горючая смесь лёгких углеводородов.

***



Схема работы карбюраторной системы питания

Топливо (бензин) из бака подается насосом 7 по топливопроводам 5 в карбюратор 4. Через воздушный фильтр 1 в карбюратор поступает воздух. Приготовленная в карбюраторе из топлива и воздуха горючая смесь подается в цилиндры двигателя по впускному трубопроводу 2. Отработавшие газы отводятся из цилиндров двигателя в окружающую среду через выпускной трубопровод 3, приемную трубу 8 глушителей, основной 10 и дополнительный 9 глушители.

В системе питания бензиновых двигателей автомобилей обязательными элементами являются фильтры очистки топлива (у двигателей грузовых автомобилей - фильтры грубой и тонкой очистки), а также воздушный фильтр.

Топливо из бака через фильтры насосом подается к карбюратору, где смешивается в определенной пропорции с воздухом, поступающим через воздухоочиститель. Полученная горючая смесь из-за разрежения в цилиндрах двигателя с большой скоростью перемещается по впускному трубопроводу, при этом дополнительно перемешиваясь, и попадает в цилиндры двигателя, где и сгорает посредством искрового воспламенения от электрической свечи.

За счет давления образовавшихся при сгорании горючей смеси газов, воздействующих на детали и узлы кривошипно-шатунного механизма, осуществляется работа двигателя.

***

Автомобильный бензин



k-a-t.ru

Система питания топливом бензинового двигателя

Лабораторная работа 5

Лабораторная работа 5 МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ Учреждение образования «Гомельский государственный университет имени Франциска Скорины» Кафедра лесохозяйственных дисциплин МЕХАНИЗАЦИЯ ЛЕСОХОЗЯЙСТВЕННЫХ РАБОТ

Подробнее

КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫЕ МАТЕРИАЛЫ

КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫЕ МАТЕРИАЛЫ КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫЕ МАТЕРИАЛЫ по дисциплине «Силовые агрегаты» Вопросы к зачету 1. Для чего предназначен двигатель, и какие типы двигателей устанавливают на отечественных автомобилях? 2. Классификация

Подробнее

Система впрыска Renault 19

Система впрыска Renault 19 Система впрыска Renault 19 Одноточечная система впрыска 1 датчик температуры всасываемого воздуха; 2 приемник форсунки; 3 регулятор давления подачи топлива; 4 штуцер обратного хода топлива; 5 штуцер подача

Подробнее

СИСТЕМА УПРАВЛЕНИЯ ДВИГАТЕЛЕМ

СИСТЕМА УПРАВЛЕНИЯ ДВИГАТЕЛЕМ - Система управления двигателем 17-3 СИСТЕМА УПРАВЛЕНИЯ ДВИГАТЕЛЕМ На автомобиле установлены подвесная педаль и трос привода дроссельной заслонки. На автомобиля, оборудованны двигателем модели 4D6 с электронным

Подробнее

Неисправности системы впрыска топлива

Неисправности системы впрыска топлива Неисправности системы впрыска топлива На автомобиле применена система распределенного впрыска топлива с обратной связью. Распределенным впрыск называется потому, что топливо впрыскивается в каждый цилиндр

Подробнее

Разработка открытого урока

Разработка открытого урока МОН и МП КК Государственное бюджетное профессиональное образовательное учреждение Краснодарского края «Белоглинский аграрно-технический техникум» Разработка открытого урока по учебной дисциплине ПМ.01

Подробнее

Электронная система управления

Электронная система управления Электронная система управления Содержание 1. Особенности 2. Функции Датчик детонации Датчик положения дроссельной заслонки Клапан управления частотой вращения холостого хода Датчик давления и температуры

Подробнее

Двигатель F9Q. Система питания топливом

Двигатель F9Q. Система питания топливом Двигатель F9Q. Система питания топливом 1 Двигатель F9Q. Система питания топливом Топливный насос высокого давления (ТНВД) расположен на левой передней части двигателя, приводится зубчатым ремнем привода

Подробнее

7.2. Пусковые жидкости

7.2. Пусковые жидкости 7.2. Пусковые жидкости Назначение. Пусковые жидкости это вспомогательные средства, позволяющие улучшить воспламеняемость топлив. Необходимость в них может возникнуть в холодное время года при недостаточной

Подробнее

9.14 Узлы системы впрыска

9.14 Узлы системы впрыска 9.14 Узлы системы впрыска Узлы системы впрыска Для того чтобы лучше понять функционирование системы впрыска в целом, вначале важно узнать о задачах ее отдельных узлов. 1 Датчик числа оборотов двигателя

Подробнее

Системные проверки и регулировки

Системные проверки и регулировки xxx xxx 12345xxxxx Дата 05.янв.2014 Менеджмент двигателя Системные проверки и регулировки Предварительные условия Двигатель прогрет до нормальной рабочей температуры. Система зажигания в исправном состоянии.

Подробнее

ОПИСАНИЕ ТОПЛИВНОЙ СИСТЕМЫ

ОПИСАНИЕ ТОПЛИВНОЙ СИСТЕМЫ Page 1 of 8 ОПИСАНИЕ ТОПЛИВНОЙ СИСТЕМЫ Топливная система A Блок цилиндров B Головка цилиндра 1 Топливный бак 1a Фильтр грубой очистки в топливном баке 2a Отсечной клапан, подача 2b Отсечной клапан, возврат

Подробнее

Устройство карбюратора К-124

Устройство карбюратора К-124 Устройство карбюратора К-124 Для приготовления горючей смеси служит установленный на двигатель карбюратор К 124. 1 дроссельная заслонка 2 корпус смесительной камеры 3 винт регулировки качества (состава)

Подробнее

Системы впрыска Common Rail. Delphi

Системы впрыска Common Rail. Delphi Системы впрыска Common Rail. Диагностика дизельных систем Bosch и Delphi ЭБ У Искусство удивлять Входные и выходные сигналы, общие сведения Плюсовой вывод аккумуляторной батареи Датчик положения педали

Подробнее

Проверка одноточечной системы впрыска

Проверка одноточечной системы впрыска Проверка одноточечной системы впрыска Самостоятельная проверка Многие виды проверки системы впрыска не доступны для автомобилистов-любителей, так как их невозможно сделать при отсутствии необходимых контрольно-измерительных

Подробнее

Легковые автомобили Двигатель

Легковые автомобили Двигатель The customer is our coach Training Учебное пособие Легковые автомобили Двигатель Система впрыска и зажигания HFM Вводная документация Выпуск 02/2000 ЗАО Мерседес-Бенц Автомобили Учебный центр Учебное пособие

docplayer.ru


© 2007—2018
423800, Набережные Челны , база Партнер Плюс, тел. 8 800 100-58-94 (звонок бесплатный)