Камаз 44108 тягач В наличии!
Тягач КАМАЗ 44108-6030-24
евро3, новый, дв.КАМАЗ 740.55-300л.с., КПП ZF9, ТНВД ЯЗДА, 6х6, нагрузка на седло 12т, бак 210+350л, МКБ, МОБ
 
карта сервера
«ООО Старт Импэкс» продажа грузовых автомобилей камаз по выгодным ценам
+7 (8552) 31-97-24
+7 (904) 6654712
8 800 1005894
звонок бесплатный

Наши сотрудники:
Виталий
+7 (8552) 31-97-24

[email protected]

 

Екатерина - специалист по продаже а/м КАМАЗ
+7 (904) 6654712

[email protected]

 

Фото техники

20 тонный, 20 кубовый самосвал КАМАЗ 6520-029 в наличии
15-тонный строительный самосвал КАМАЗ 65115 на стоянке. Техника в наличии
Традиционно КАМАЗ побеждает в дакаре

тел.8 800 100 58 94

Техника в наличии

тягач КАМАЗ-44108
Тягач КАМАЗ 44108-6030-24
2014г, 6х6, Евро3, дв.КАМАЗ 300 л.с., КПП ZF9, бак 210л+350л, МКБ,МОБ,рестайлинг.
цена 2 220 000 руб.,
 
КАМАЗ-4308
КАМАЗ 4308-6063-28(R4)
4х2,дв. Cummins ISB6.7e4 245л.с. (Е-4),КПП ZF6S1000, V кузова=39,7куб.м., спальное место, бак 210л, шк-пет,МКБ, ТНВД BOSCH, система нейтрализ. ОГ(AdBlue), тент, каркас, рестайлинг, внутр. размеры платформы 6112х2470х730 мм
цена 1 950 000 руб.,
КАМАЗ-6520
Самосвал КАМАЗ 6520-057
2014г, 6х4,Евро3, дв.КАМАЗ 320 л.с., КПП ZF16, ТНВД ЯЗДА, бак 350л, г/п 20 тонн, V кузова =20 куб.м.,МКБ,МОБ, со спальным местом.
цена 2 700 000 руб.,
 
КАМАЗ-6522
Самосвал 6522-027
2014, 6х6, дв.КАМАЗ 740.51,320 л.с., КПП ZF16,бак 350л, г/п 19 тонн,V кузова 12куб.м.,МКБ,МОБ,задняя разгрузка,обогрев платформы.
цена 3 190 000 руб.,

СУПЕР ЦЕНА

на АВТОМОБИЛИ КАМАЗ
43118-010-10 (дв.740.30-260 л.с.) 2 220 000
43118-6033-24 (дв.740.55-300 л.с.) 2 300 000
65117-029 (дв.740.30-260 л.с.) 2 200 000
65117-6010-62 (дв.740.62-280 л.с.) 2 350 000
44108 (дв.740.30-260 л.с.) 2 160 000
44108-6030-24 (дв.740.55,рест.) 2 200 000
65116-010-62 (дв.740.62-280 л.с.) 1 880 000
6460 (дв.740.50-360 л.с.) 2 180 000
45143-011-15 (дв.740.13-260л.с) 2 180 000
65115 (дв.740.62-280 л.с.,рест.) 2 190 000
65115 (дв.740.62-280 л.с.,3-х стор) 2 295 000
6520 (дв.740.51-320 л.с.) 2 610 000
6520 (дв.740.51-320 л.с.,сп.место) 2 700 000
6522-027 (дв.740.51-320 л.с.,6х6) 3 190 000


Перегон грузовых автомобилей
Перегон грузовых автомобилей
подробнее про услугу перегона можно прочесть здесь.


Самосвал Форд Нужны самосвалы? Обратите внимание на Ford-65513-02.

КАМАЗы в лизинг

ООО «Старт Импэкс» имеет возможность поставки грузовой автотехники КАМАЗ, а так же спецтехники на шасси КАМАЗ в лизинг. Продажа грузовой техники по лизинговым схемам имеет определенные выгоды для покупателя грузовика. Рассрочка платежа, а так же то обстоятельство, что грузовики до полной выплаты лизинговых платежей находятся на балансе лизингодателя, и соответственно покупатель автомобиля не платит налогов на имущество. Мы готовы предложить любые модели бортовых автомобилей, тягачей и самосвалов по самым выгодным лизинговым схемам.

Контактная информация.

г. Набережные Челны, Промкомзона-2, Автодорога №3, база «Партнер плюс».

тел/факс (8552) 388373.
Схема проезда



Б. И. Горошков радиоэлектронные устройства справочник. На рис 23 и 24 показаны фрагменты шкал двух линеек цифры на рис 23


НАЗНАЧЕНИЕ И УСТРОЙСТВО ИНСТРУМЕНТОВ ДЛЯ ИЗМЕРЕНИЯ УГЛОВ. Контрольно-измерительные инструменты и техника измерений (КИП) |

Величину угла выражают в градусах, минутах и секундах. Градусом (°) называют угол, соответствующий 1/360 части окружности (в окружности 360°). Минутой (7) называют 1/60 часть градуса (в градусе 60 мин.). Секундой («) называют 1/60 часть минуты (в минуте 60 сек.).

Таким образом, 1° = 60′ = 3600″.

НАЗНАЧЕНИЕ И УСТРОЙСТВО ИНСТРУМЕНТОВ ДЛЯ ИЗМЕРЕНИЯ УГЛОВ

Применение угольников и малков.

Простейшим инструментом для проверки углов является угольник. Так как чаще всего приходится измерять прямые углы, т. е. углы, имеющие 90°, то наиболее распространенным является прямоугольный угольник. Он состоит из двух полок, причем одна полка длиннее другой. При проверке углов необходимо следить за тем, чтобы угольник плотно прилегал ребром к детали.

На рис. 20 показана правильная и неправильная проверка прямого угла угольником.

НАЗНАЧЕНИЕ И УСТРОЙСТВО ИНСТРУМЕНТОВ ДЛЯ ИЗМЕРЕНИЯ УГЛОВ

Если необходимо проверить правильность установки приспособления или детали на столе станка, применяют угольник, изображенный на рис. 21. Одна сторона угольника имеет подошву, или пятку, которой он устанавливается на столе станка.

НАЗНАЧЕНИЕ И УСТРОЙСТВО ИНСТРУМЕНТОВ ДЛЯ ИЗМЕРЕНИЯ УГЛОВ

Если требуется сравнить какой-либо угол обрабатываемой детали с углом образцовой детали, пользуются так называемыми малками.

НАЗНАЧЕНИЕ И УСТРОЙСТВО ИНСТРУМЕНТОВ ДЛЯ ИЗМЕРЕНИЯ УГЛОВ

Малка состоит из двух линеек, соединенных между собой винтом с гайкой (рис. 22). Освободив гайку, линейки можно расположить под любым углом к друг другу.

Когда малка установлена на определенный угол и винт затянут гайкой, ее накладывают на измеряемую деталь и просматривают на свет, совпадают ли грани линеек с поверхностями детали. Если между гранями линеек и поверхностями детали заметны просветы в виде клина, это значит, что деталь изготовлена неправильно.

Измерение с помощью угломера.

Угломер предназначен для измерения углов с отсчетом действительного размера по угловой шкале с нониусом. На рис. 23 показан универсальный угломер системы Семенова. Он состоит из основания 4, на которое нанесена основная градусная шкала, и сектора 6 с нанесенным на него нониусом 7. Сектор можно перемещать по основанию. С помощью державки 9 на секторе 6 можно закрепить угольник 2, на котором в свою очередь при помощи державки 3 закрепляется съемная линейка 1. Линейка 8 жестко связана с основанием 4. Винт 5 служит для скрепления сектора 6 с основанием 4. Величину измеряемого угла читают на шкале и нониусе. Наименьший отсчет по нониусу равен 2′.

НАЗНАЧЕНИЕ И УСТРОЙСТВО ИНСТРУМЕНТОВ ДЛЯ ИЗМЕРЕНИЯ УГЛОВ

Пределы измерения углов угломером системы Семенова приведены на рис. 24.

 

НАЗНАЧЕНИЕ И УСТРОЙСТВО ИНСТРУМЕНТОВ ДЛЯ ИЗМЕРЕНИЯ УГЛОВ

 

dlja-mashinostroitelja.info

2. Измерение физических величин » ГДЗ (решебник) по физике 7-11 классов

14. Представьте себе монету достоинством 50 к. и футбольный мяч. Мысленно прикиньте, во сколько раз диаметр мяча больше диаметра монеты. 

Диаметр мяча больше диаметра монеты примерно в 10 раз.

15. а) Толщина волоса равна 0,1 мм. Выразите эту толщину в см, м, мкм, нм. б) Длина одной из бактерий равна 0,5 мкм. Сколько таких бактерий уложилось бы вплотную на отрезке длиной 0,1 мм, 1 мм, 1 см?а) 0,1 мм = 0,01 см = 0,0001 м= 100 мкм = 100000 нм.б) 200 бактерий, 2000 бактерий, 20000 бактерий.

16. В Древнем Вавилоне за единицу длины принимали расстояние, которое проходил взрослый человек за время выхода диска Солнца из-за горизонта. Эта единица называлась стадием. Могла ли такая единица длины быть точной? Ответ объясните.Нет, так как разные люди проходят разное расстояние за время выхода диска Солнца из-за горизонта.

17. Какова длина бруска, изображенного на рисунке 1?L = 38 мм = 0,038 м.

18. На рисунке 2 показано, как можно измерить диаметр шара. Определите его. Пользуясь указанным методом, определите диаметр мяча, которым вы играете.d= 16 мм = 0,016 м.

19. На рисунке 3 показаны части брусков и линеек. Левые концы брусков совпадают с нулевыми отметками линеек, что на рисунке не показано, а правые концы относительно числовых отметок шкалы расположены так, как показано на рисунке. Определите на глаз длину каждого бруска, если цена деления линеек 1 см.6 см; 3,6 см; 5,4 см; 8,7 см; 2,15 см; 3,9 см; 11,35 см; 7,25 см; 9,8 см; 10,75 см.

20. С какой точностью вы можете измерить длины небольших предметов линейками, изображенными на рисунке 4, а, б, в, г?а, б — с точностью до 1 мм; в — с точностью до 5 мм; г — с точностью до 1 см.

21. Чтобы определить диаметр проволоки, ученик намотал вплотную на карандаш 30 витков, которые заняли часть карандаша длиной 3 см (рис. 5). Определите диаметр проволоки.d = 3 см/30 = 0,1 см = 1 мм.

22. Определите длину окружности головки винта или гвоздя один раз способом, изображенным на рисунке 6, другой раз — измеряя диаметр и умножая его на число π. Результаты сравните и запишите в тетради.Головку винта нужно плотно прижать к линейке, совместив шлиц винта с 0 шкалы, а затем катить винт по линейке без проскальзывания, повернув его на 360°. Сравнить полученное значение с числом πd, где d — диаметр винта, измеренный линейкой.

23. Возьмите несколько одинаковых монет, сложите их так, как показано на рисунке 7, и измерьте линейкой, имеющей цену деления 1 мм, толщину получившейся стопки. Определите толщину одной монеты. В каком случае толщина одной монеты будет измерена более точно: с малым или большим числом монет?Толщина одной монеты равна отношению толщины всех монет к их количеству. Чем больше взято монет, тем точнее результат измерений.

24. Как с помощью измерительной линейки определить средние диаметры мелких однородных предметов, например зерен пшена, чечевицы, булавочных головок, зерен мака и т. п.?Для этого надо выложить предметы вплотную вдоль линейки, измерить длину получившегося ряда и разделить ее на число предметов.

25. а) При строительстве дома уложили железобетонную плиту длиной 5,8 м и шириной 1,7 м. Определите площадь, которую заняла эта плита, б) В любом цирке мира диаметр арены равен 13 м. Какую площадь в цирке занимает арена?

26. Какой длины будет полоса, состоящая из квадратных кусочков площадью 1 см2, вырезанных из листа площадью 1 м2? 

27. Измерив диаметр круга, изображенного на рисунке 8, вычислите его площадь. Определите площадь круга, подсчитав в нем квадратики. Сравните полученные вами численные результаты.

28. Определите объем прямоугольного бруска, длина которого 1,2 м, ширина 8 см и толщина 5 см.

29. Измерив длину, ширину и высоту своей комнаты, определите ее объем.

30. Высота гранитной колонны равна 4 м, основание колонны — прямоугольник со сторонами 50 и 60 см. Определите объем колонны.

31. Каковы объемы жидкостей в мензурках, изображенных на рисунке 9?950 мл; 76 мл; 165 мл.

32. В чем состоит сходство и различие шкал мензурок, изображенных на рисунке 10?Цена деления и диапазон измерений одинаковы в обеих мензурках. У первой (конической) мензурки шкала неравномерная, а у второй (цилиндрической) — равномерная.

33. В мензурку с водой (рис. 11) опущено тело неправильной геометрической формы. Определите цену деления мензурки и объем тела.Цена деления мензурки — 10 см3; V = 800 см3 — 500 см3 = 300 см3.

34. Как определить объем одной дробинки, если даны мензурка, дробь, вода?Надо налить воду в мензурку, измерить ее объем V1. Затем кинуть в мензурку дробинку и измерить новый объем V2 воды с дробинкой. Объем дробинки V = V2 – V1.

35. Объясните, пользуясь рисунком 12, как можно определить объем тела, которое не помещается в мензурке.Поместить тело в сосуд с жидкостью, налитой до максимально возможного уровня. Тогда объем тела равен объему жидкости, вылившейся в мензурку.

36. С какой точностью можно измерить время секундомером, изображенным на рисунке 13?С точностью до 0,5 с.

37. Победитель школы по легкой атлетике пробежал дистанцию 100 м за время, которое показано на секундомере на рисунке 13. Выразите это время в минутах, часах, миллисекундах, микросекундах.11 с ≈ 0,18 мин; 11 с ≈ 0,003 ч;11 с = 11000 мс; 11 с = 11000000 мкс.

38. Ночью температура воздуха была -6 °С, а днем +4 °С. На сколько градусов изменилась температура воздуха?

39. Определите цену деления шкалы каждого термометра (рис. 14). Какую минимальную температуру можно измерить термометром, показанным на рисунке 14, а? Какую температуру показывает каждый из термометров, фрагменты которых приведены на рисунке 14, б—д?

kupuk.net

23 Отсчетные устройства: штриховой и шкаловой микроскопы

 

23 Отсчетные устройства: штриховой и шкаловой микроскопы. Эксцентриситет горизонтального круга.

С помощью отсчетных устройств в теодолитах считывают показания  с лимбов.  В  современных  точных  и  технических теодолитах применяются штриховые микроскопы (отсчет по штриху-индексу) и шкаловые  микроскопы (отсчет по шкале), а высокоточных теодолитах используют микрометры.

Отсчетный микроскоп через систему призм и линз  выводит  в  окуляр изображения  градусных делений горизонтального и вертикального кругов. На рис.23а показано поле зрение штрихового микроскопа  с  изображением штриха и лимбов с ценой деления в 10':  вертикального В и горизонтального Г.  Визуально оценивая десятые доли делений лимбов с точностью до 1', отсчеты на рисунке В=7? 45' и Г=345? 54'.

Рис.23.Поле зрения штрихового (а) и шкалового (б) микроскопов

 

В поле зрения шкалового микроскопа  теодолита  2Т30  (рис.23б) цена деления лимба составляет 1 ,  отсчетная шкала разделена через 5', отсчеты на рисунке В = -9? 37', Г = 293? 42'.

В теодолитах  со штриховыми и шкаловыми микроскопами отсчеты производят по одному концу диаметра лимба.  Для уменьшения влияния эксцентриситета горизонтального круга (рис.23.2)- несовпадения оси вращения прибора С' с центром кольца делений лимба C  -  измерение горизонтального  угла производят дважды:  при круге лево (отсчет М') и при круге право (отсчет N'). 

Рис.23.2 Схема влияния эксцентриситета

Так как при этом отсчеты берутся по диаметрально  противоположным концам лимба,  то среднее из полученных результатов не содержит погрешности от влияния эксцетриситета (M+N)/2  =(M'+N')/2.

24 Приведение теодолита в рабочее положение< Предыдущая Следующая >22 Уровни, их устройство и назначение
 

www.mybntu.com

Рис. 14.23 рис. 14.24 - стр.24

Рис. 14.23 Рис. 14.24

Рис. 14.25

Дифференциальный удвоитель. Удвоитель частоты (рис. 14.24) состоит из эмиттерного повторителя, собранного на транзисторе VT1, и усилительного каскада, построенного на транзисторе VT2. Входной сигнал через конденсатор С1 поступает в базу транзисто­ра VT1. В эмиттере этот сигнал складывается с сигналом, который проходит через транзистор VT2. Транзистор VT2 работает в нели­нейном режиме. Он пропускает отрицательные полуволны входного сигнала. Перевернутый по фазе входной сигнал будет вычитаться из сигнала эмиттерного повторителя. Уровень взаимодействующих сигналов можно регулировать резисторами R4 и R5. Резистор R4 управляет амплитудой отрицательной полуволны, а резистор R5 регулирует отношение эмиттерного сигнала к коллекторному.

Удвоитель частоты прямоугольного сигнала. Устройство (рис. 14.25, а) осуществляет преобразование входного сигнала гар­монической формы в прямоугольный сигнал с удвоенной частотой. Входной сигнал поступает в эмиттеры транзисторов VT1 и VT2. Транзистор VT1 работает в режиме ограничения. Второй транзи­стор также ограничивает сигнал, но за счет конденсатора С1 про­исходит сдвиг выходного сигнала на 90° относительно входного. Два ограниченных сигнала суммируются через резисторы R6 и R7. Суммарный двухполярный сигнал с помощью транзисторов VT3 и VT4 преобразуется в сигнал с удвоенной частотой. Эпюры сигналов в различных точках показаны на рис. 14.25, б. Удвоитель работает в широком диапазоне частот от 20 Гц до 100 кГц. Такой диапазон можно перекрыть, если применить со­ответствующую емкость конденсато­ра С1. Входной сигнал должен иметь амплитуду не менее 2 В.

Компенсационный умножитель. Умножитель частоты компенсацион­ного типа (рис. 14.26) построен на одном транзисторе. Ограниченный по амплитуде сигнал суммируется с входным сигналом гармонического вида на резисторе R1 В Deэvль тате на выходе формируется сигнал, частота которого в 3 раза вы ше частоты входного сигнала. Форма выходного сигнала не являет­ся идеально гармонической. Этот сигнал необходимо пропустить через фильтр, чтобы уменьшить уровень высоких гармоник На Фор­му сигнала в большой степени влияет уровень ограничения транзи­стора. При малых углах отсечки выходного сигнала значительно уменьшаются высокочастотные спектральные составляющие. Умень­шается при этом и амплитуда третьей гармоники.

Рис. 14.26 Рис. 14.27

Делитель на ОУ. Делитель (рис. 14.27, а) построен на четектн-ропании суммарного сигнала на выходе ОУ. На Вход 1 полается сигнал гетеродина с амплитудой 0,1 В, на Вход 2 — преобразуемый сигнал. Зависимость амплитуды выходного сигнала от преобразуе­мого сигнала показана на рис. 14.27, б.

Глава 15

ПРЕОБРАЗОВАТЕЛИ СИГНАЛОВ

Преобразователи сигналов могут быть двух видов ди­скретные и аналоговые. К дискретному виду преобразования следует отнести выделение характерных точек исследуемого сигна­ла — фиксацию момента перехода его через нуль, выделение экстре­мальных значений и т. д. Аналоговые преобразователи осуществля­ют возведение сигнала в квадрат, изменение фазы гармонического колебания, интегрирование и дифференцирование исследуемого сиг­нала.

Наиболее распросграненными способами преобразования явля­ются дифференцирование и интегрирование. Простейшим устройст­вом, выполняющим эти функции, является ДС-цепочка Выход­ной сигнал этой цепочки будет пропорционален ее постоянной вре­мени. При интегрировании постоянная времени RC должна быть больше времени действия входного сигнала. С увеличением RC для повышения точности интегрирования уменьшают амплитуду выход­ного сигнала. С помощью пассивной RС-цепи не удается получить одновременно достаточно большой выходной сигнал и малую ошиб­ку интегрирования. Значительно лучшие результаты получаются если применять интеграторы на ОУ. Электронные интеграторы по­зволяют простыми средствами получить высокую точность интегри­рования и одновременно большое выходное напряжение. Аналогич­ное можно сказать и про дифференцирование, но здесь задача ре­шается несколько проще. Дифференцирующее устройство на ОУ мо­жет быть с успехом заменено транзисторным усилителем с ОБ. Входное сопротивление этого усилителя составляет единицы ом. В то же время амплитуда выходного сигнала определяется сопро­тивлением резистора, стоящего в цепи коллектора. Такой каскад обладает существенным преимуществом перед ОУ. Динамический диапазон транзисторного каскада значительно больше, чем каскада на ОУ.

Среди преобразователей сигналов важное место занимают ана­лого-цифровые и цифроаналоговыс преобразователи. Эти преобра­зователи являются неотъемлемой частью всех устройств, которые входят в комплекс цифровой обработки различных сигналов. Для обработки аналоговых сигналов на ЭВМ применяют аналого-циф­ровые преобразователи. Они преобразуют непрерывные сигналы в двоичные числа, которые затем вводятся в ЭВМ. После того как ЭВМ закончит обработку двоичных чисел, результаты выводятся на регистрирующие устройства, которые записывают информацию в аналоговом виде. Для этих целей применяют цнфроаналоговые пре­образователи, осуществляющие перевод двоичных чисел в непре­рывный сигнал.

Промышленностью выпускаются специальные интегральные ми­кросхемы, с помощью которых можно построить аналого-цифровые преобразователи с различным быстродействием и точностью. В со­став серии К.240 входят аналоговые узлы: К240СА — нуль-орган, К240КТ1 — разрядный ключ, К.240К.Т2 — четыре коммутируемых ключа, К240КТ5 — три разрядных ключа средней точности. Эти ин­тегральные микросхемы позволяют построить преобразователь на 10 разрядов. Время преобразования 100 мкс при входном напряже­нии от — 5 до +5 В. В основу преобразования положен принцип поразрядного кодирования.

В этой главе будут рассмотрены преобразователи, которые лег­ко реализуются на элементах широкого применения. Рассмотренные преобразователи не являются прецизионными устройствами: они не отличаются высокой точностью и большим быстродействием, по­скольку имеют небольшое число разрядов. Для увеличения числа разрядов в этих преобразователях необходимо более тщательно настраивать все входящие элементы. Схемы включения корректи­рующих элементов ОУ, которые применяются в различных устрой­ствах, можно найти в гл. 1.

1. ФАЗОЧУВСТВИТЕЛЬНЫЕ СХЕМЫ

Номограмма для расчета фазового сдвига. С помощью но­мограммы (рис. 15.1) можно определить фазовый сдвиг на любой заданной частоте в рсзистивно-емкостиых цепях. При известных со­противлениях резистора, емкости конденсатора и частоты проводит­ся прямая, соединяющая значения на шкалах сопротивлений и ем­кости. Эта прямая пересекает пунктирную линию АВ в точке М. Через эту точку и значение частоты проводят прямую, пересекаю­щую шкалу фаз. Для случая R — 10 кОм, С — 10 нФ, f = 0,1 МГц по номограмме получаем значение фазы 162°. В тех случаях когда известен фазовый сдвиг, то можно определить номиналы R и С. Прямая между значениями частоты и фазы даст точку М через которую с любым наклоном проводится прямая, определяющая значения R и С.

Рис. 15.1

Фазовращатель на полевых транзисторах. Устройство (рис. 15.2) предназначено для изменения фазы гармонического сигнала в диа­пазоне от 0 до 180° при изменении управляющего напряжения от — 1 до +1 В. В основу фазовращателя положен мост, выполненный на элементах R2, R8, С2, СЗ, VT2. В качестве управляющего эле­мента используется полевой транзистор VT2, сопротивление кото­рого меняется в зависимости от управляющего сигнала. Кроме то­го, включение этого транзистора в исток транзистора VT1 обеспе­чивает большое сопротивление для входного сигнала. Выходной сигнал фазопращательного моста подается на затвор транзистора VT3. Коэффициент усиления схемы равен 0,7. Амплитуда входного сигнала 0,3 В, а частота 100 кГц.

Рис. 15.2 Рис. 15.3 Рис. 15.4

Сложение и вычитание сиг­налов. Устройство (рис. 15.3) осуществляет одновременно сложение и вычитание двух сигналов. Если на оба входа подать гармонические сигна­лы, близкие по частоте, то на выходе будут два сигнала бие­ний. Для настройки схемы не­обходимо подать на оба вхо­да однл и тот же сигнал, тогда на коллекторе транзистора VT3 должен быть нулевой сигнал. В противном случае следует изменить сопротивление рези­стора R6.

Индикатор нуля. На вход (рис. 15.4) подается гармонический сигнал с частотой 10 кГц. На выходе формируется импульсный сиг­нал с удвоенной частотой следования. Длительность импульса при­близительно равна 1/6 периода гармонического сигнала. Формиро­вание импульсного сигнала происходит в результате насыщения транзисторов VT1 и VT2. Эти транзисторы открываются на 1/3 по­лупериода входного сигнала. Длительность открывания транзисто­ров зависит от цепочек R1C1 и R2C2. При действии отрицательной полуволны зарядный ток конденсатора С1, протекающий через R1 и базовый переход транзистора VT1, открывает VT1. Во время дей­ствия положительной полуволны входного сигнала конденсатор С1 разряжается через резистор R1. Аналогичные процессы протекают в цепи С2, R2 и VT2 (при действии положительной полуволны че­рез VT2 протекает зарядный ток конденсатора С2, который при отрицательной полуволне разряжается через R2]. В результате в точке соединения коллекторов транзисторов VTI и VT2 будет выделяться двухполярный импульсный сигнал с длительностью им­пульса меньше полупериода входного сигнала. Транзистор VT3 преобразует двухполярный сигнал в однополярный. При появлении положительного импульса транзистор VT3 открывается со стороны базы. Эмиттер в этом случае будет подключен к нулевой шине через диод VD2. Отрицательный импульс откроет транзистор VT3 со стороны эмиттера. База в это время будет подключена к нулю через диод VD1. В результате на выходе сформируется импульсный сигнал отрицательной полярности. Устройство работает в широком диапазоне частот. Для частот меньше 10 кГц необходимо увеличить емкости конденсаторов С1 и С2, а для частот больше — уменьшить.

Рис. 15.5

Рис. 15.6

Пороговый преобразователь срельефностн» сигнала. В схеме (рис. 15.5, а) осуществляется преобразование входного сигнала, имеющего плавный переход от положительного к отрица!ельному значению, в сигнал со скачкообразным переходом. Ширина зоны между разнополярнымн участками сигнала определяется порогами открывания диодов VD1 и VD2. Резистор R2 регулирует порог для положительного сигнала, а резистор R9 — для отрицательного. По­роги управляются независимо один от другого. С помощью рези­сторов R2 и R9 можно вывести диоды в проводящее состояние. В этом случае порог для положительного сигнала смещается в об­ласть отрицательных значений (и наоборот). На рис. 15.5, б при­веден пример увеличения «рельефности» входного синусоидального сигнала и зависимость фазы отсеченного сигнала от управляющего напряжения на движках потенциометров R2 (R9).

Двухканальный широкополосный фазовращатель. Фазовраща­тель (рис. 15.6) имеет равномерную амплитудно-частотную харак­теристику. Сигналы на Выходе 1 и Выходе 2 сдвинуты по фазе на 90° в диапазоне частот от 100 Гц до 10 кГц. Из-за разброса номи­налов элементов цепочки RC каскады следует подстраивать с по­мощью переменных резисторов.

2. СХЕМЫ ФОРМИРОВАНИЯ АБСОЛЮТНОГО ЗНАЧЕНИЯ

Преобразователь двухполярного сигнала. Преобразователь (рис. 15.7) выполняет функции двухполупериодного выпрямителя. Он может работать с сигналами, амплитуда которых меньше 5 В. Если увеличить номиналы источников питания, то амплитуду вход­ного сигнала также можно увеличить. Для выравнивания положи­тельных и отрицательных полуволн на выходе необходимо подбирать сопротивление резистора R4. Преобразователь работает в ши­роком диапазоне частот.

Рис. 15.7

Формирователь абсолютного значения. Двухполярный входной сигнал (рис. 15.8,с) преобразует­ся в однополярный с помощью двух диодов, которые объединя­ют входы ОУ в дифференциальном включении. Эти диоды управляют подведением входного сигнала ко входам ОУ в зависимости от его полярности. При этом на вы­ходе схемы присутствуют только отрицательные сигналы. В схеме линейная зависимость выходного сигнала от входного соблюдается для сигналов больше 1 В. Для управляющих напряжений Е семей­ство характеристик UBЫХ(UBX) приведено на риc. 15.8, б.

Рис 15.8

Преобразователь на двух ОУ. Преобразователь абсолютных значений (рис. 15.9, а) построен на двух схемах, передаточные ха­рактеристики которых близки к характеристикам идеального диода. Коэффициент передачи схем определяется отношением сопротивле­ний резисторов R2 и R3. Управляющее напряжение позволяет сдви­гать правую ветвь передаточной характеристики. При E>0 возника­ет зона ограничения входного сигнала. Например, для Е=1 В входной сигнал проходит на выход, если он превышает значение 2 В. На рис. 15.9, б приведено семейство передаточных характеристик!

Рис. 15.9

Рис. 15.10

Компенсационный преобразователь абсолютных значений. Фор­мирование абсолютного значения входного сигнала в схеме (рис. 15.10, а) осуществляется при взаимодействии входного и вы­ходного сигналов. Если на входе присутствует сигнал положитель­ной полярности, то выходной сигнал формируется за счет прохож­дения входного сигнала по цепи Rl — R4. Для входного сигнала от­рицательной полярности на выходе интегральной микросхемы фор­мируется сигнал положительной полярности, который проходит че­рез диод VD1 на резисторы R4, R2, R1. В результате на выходе образуется разностный сигнал. Поскольку сопротивление резисто­ра R1 в два раза больше сопротивления резистора R4, сигнал ми­кросхемы на выходе является преобладающим. С помощью рези­стора R2 можно балансировать схему. На рис. 15.10, б приведено семейство переходных характеристик преобразователя.

Детекторный преобразователь. Формирователь абсолютного зна­чения входного сигнала (рис. 15.11, а) построен по принципу двух-полупериодного выпрямления на диодах VD1 и VD2. Положитель­ное значение выходного сигнала ОУ DA1 проходит через диод и по­ступает на неинвертирующий вход ОУ DA2. На выходе будет по­ложительный сигнал. Отрицательное значение выходного сигнала ОУ DA1 проходит на инвертирующий вход ОУ DA2. На выходе также будет положительный сигнал. Для положительного входного сигнала коэффициент передачи равен K+ = R6R4/R5R1. а для отри­цательного —

Рис. 15.11

Рис. 15.12

На рис. 15.11, б приведено семейство передаточных характеристик преобразователя.

Параллельный преобразователь. Схема получения абсолютного значения входного сигнала (рис. 15.12, а) имеет большое входное сопротивление. Здесь входной сигнал действует на две микросхемы одновременно. Для положительных значений входного сигнала ко­эффициент усиления схемы равен единице, а для отрицательных — зависит от K_=1 — (R4R2/R3R1). При R4R2/R3R1 = 2 получим точное совпадение по амплитуде сигналов на выходе. Для управления пе­редаточной характеристикой схемы можно менять напряжение Е. Можно ввести дополнительное управление характеристикой, если менять напряжение на инвертирующем входе ОУ DA2. В приведен­ной схеме можно использовать ОУ различных типов. На рис. 15.12,6 представлено семейство передаточных характеристик преобразова­теля.

Рис. 15.13

Рис. 15.14

Прицезнонный детектор. Преобразователь (рис. 15.13, а) пост­роен на двух ОУ. Двухполупериодное выпрямление реализуется пу­тем переключения диодов. Знак коэффициента усиления меняется при смене знака входного сигнала.-Полярность выходного сигнала положительная. Положительный входной сигнал, вызывает появле­ние положительного напряжения на выходе DA1. Диод VD1 закрывается, a VD2 открывается. Усилитель DA2 обеспечивает необходи­мый коэффициент усиления с помощью делителей Rl, R2 и R3, R4. При отрицательной полярности входного сигнала диод VD1 откры­вается, a VD2 закрывается. Отрицательная полуволна проходит на инвертирующий вход усилителя DA2.

При коэффициенте усиления K сопротивление резистора равно R1 = R2(K+1)/(К-1) или R1=R3R2/(R3+R2). Рис. 15.13, б иллю­стрирует передаточную характеристику схемы.

Параллельный преобразователь абсолютного значения. Преоб­разователь (рис. 15.14) состоит из инвертора, построенного на ОУ DA1, и двух детекторов на ОУ DA2 и DA3. С помощью потенцио­метра R4 осуществляется установка равенства передачи положи­тельных и отрицательных полярностей входного сигнала. В ОУ DA2 и DA3 постоянное напряжение на выходе можно скомпенси­ровать потенциометрами R10 и R17. В настроенной схеме динами­ческий диапазон входного сигнала с частотами от 0 до 3 кГц лежит в интервале от 0,4 мВ до 5,5 В с нелинейностью менее 0,2 %. Ча­стотный диапазон работы преобразователя ограничен применяемы­ми ОУ. Применение вместо интегральной микросхемы К153УД1 ми­кросхем К140УД1Б и К140УД7 позволит расширить частотный диа­пазон до 10 кГц. Для устранения возбуждения в микросхемах К153УД1 необходимо применить корректирующие элементы: между выводами 5, 6 конденсатор С = 56 пФ и выводами 1, 5 резистор R=1,5 кОм и конденсатор С = 300 пФ.

Рис. 15.15 Рис. 15.16

Последовательная схема преобразователя. На ОУ DA1 в соста­ве преобразователя (рис. 15.15) построен двухполупериодный де­тектор. В этой микросхеме происходит разделение полярностей входного сигнала. Сигнал с отрицательной полярностью проходит на инвертирующий вход усилителя DA2. На выходе этого усилите­ля сигналы объединяются на резисторе R11. С помощью резисто­ра R11 добиваются равенства частей выходного сигнала, соответ­ствующих положительной и отрицательной полярностям входного сигнала. Порог разделения входного сигнала можно регулировать в ОУ DA1 с помощью резистора R6. Входной сигнал с частотой от О до 5 кГц и с амплитудой от 1 мВ до С В передается на выход с нелинейностью менее 0,2 %.

3. УМНОЖИТЕЛИ

Устройство возведения сигнала в квадрат с фазовраща­телем. Устройство (рис. 15.1G), моделирующее возведение сигнала в квадрат, состоит из трех полевых транзисторов. Первый транзи­стор выполняет функции повторителя сигнала. В истоке и стоке этого транзистора присутствуют одинаковые по амплитуде противо­фазные сигналы. Эти сигналы подаются в затворы двух других транзисторов, имеющих общую нагрузку, на которой и выделяется квадратичный сигнал. Для получения удовлетворительного преобра­зования сигнала необходимо подобрать транзисторы с идентичными характеристиками. С помощью напряжения смещения, поступающе­го на VT2 и VT3 с потенциометров R8 и R9 от источника 5 В, ра­бочие точки транзисторов VT2 и VT3 устанавливаются на началь­ном участке входной характеристики.

Параллельная схема возведения сигнала в квадрат. Схема (рис. 15.17) использует противофазные сигналы. Полевые транзи­сторы должны быть подобраны по основным параметрам (крутиз­на и напряжение отсечки). Для подстройки режимов работы тран­зисторов необходимо подстроить резисторы R2 и R4. Частотный диапазон работы от 100 Гц до 500 кГц. Амплитуда входного сигна­ла 0,5 В.

Мостовая схема возведения сигнала в квадрат. Схема получе­ния квадрата входного сигнала (рис. 15.18) построена на полевых транзисторах VT3 и VT4 Управления полевыми транзисторами осу­ществляется двумя противофазными сигналами, пгпучаемими на коллекторах VT1 и VT2. С помощью резисторов R2 и R7 устанав­ливаются напряжения на коллекторах транзисторов VT1 и VT2 Это необходимо в случае различия порогов отсечки. Для устране­ния несовпадения крутизны у транзисторов следует подобрать со­противление резистора R6. Устройство работает при входных сигна­лах до 5 В. При изменении входного сигнала от 1 до 5 В на выхо­де возникает составляющая первой гармоники, приблизительно рав­ная 10 % от выходного сигнала.

Рис. 15.17

Дифференциальная схема квадратора. Возведение сигнала в квадрат (рис. 15 19) осуществляется с помощью полевых транзи­сторов. Интегральная микросхема типа К122УД1 служит для уста­новки рабочего режима полевых транзисторов и усиления сигнала. Из-за разброса напряжений отсечки полевых транзисторов им тре­буются разные положительные потенциалы на затворе. Регулиров­ка этих напряжений осуществляется резистором R2, а общий уро­вень сигнала для обоих транзисторов регулируется резистором R3.

Рис. 15.18 Рис. 15.19 Рис. 15.20

Уменьшение разброса транзисторов по крутизне достигается изме­нением амплитуды выходного сигнала микросхемы DA с помощью резистора R8. Максимальная амплитуда входного сигнала 50 мВ, а выходная амплитуда более 150 мВ. Максимальная частота вход­ного сигнала около 100 кГц.

Квадратичный преобразователь. Преобразователь (рис. 15.20) использует ОС с кусочно-линейной аппроксимацией. Погрешность преобразования меньше ±1 %. Транзисторы выполняют функции пороговых элементов, которые при открывании подключают на вход ОУ токозадающие резисторы. Пороги открывания транзисто­ров устанавливаются с помощью делителя R6 — R10.

Квадратор. Приведенная схема (рис. 15.21) имеет квадратич­ную передаточную характеристику для входного сигнала с ампли­тудой до 5 В. Точность возведения сигнала в квадрат не хуже 3 %. Частота входного сигнала лежит в диапазоне от 100 Гц до 50 кГц. Для балансировки микросхемы DA1 используются два по­тенциометра. Потенциометр R14 устанавливает равные между со­бой напряжения на выводах 6 и 8 Регулировка уровня этих напря­жений осуществляется с помощью потенциометра R16.

При работе с малыми амплитудами входного сигнала следует подбирать резисторы, подключаемые к выводам 5, 9 и 3, 11. К этим входам микросхемы должны быть подключены равные со­противления. Подбором этих резисторов можно также скомпенси­ровать напряжение смещения нуля микросхемы.

Выходной дифференциальный сигнал преобразователя (DA1) поступает на ОУ DA2. С помощью ОУ DA2 значительно ослабля­ются синфазные помехи, которые приходят по цепям цитания на выход интегральной Микросхемы DAI Синфазные помехи могут возникнуть и в самой микросхеме, если она не сбалансирована. С помощью потенциометра R19 устанавливается нулевой сигнал на выходе при отсутствии входного сигнала. Для стабилизации ОУ К140УД5 к выводу 4 подключается корректирующая емкость 510 пФ.

Умножитель. Умножитель (рис. 15 22) собран на девяти микро­схемах типа К.159НТ1, каждая из которых представляет собой два выполненных по единой технологии и близких по параметрам тран­зистора. Операция перемножения осуществляется в микросхемах DA4 и DA5. На выходе перемножителя стоят два повторителя с общим источником тока в эмиттерных цепях. Этот каскад снижает уровень синфазных помех, которые проходят на выход перемножи­теля по цепям питания. На входе схемы помещен усилитель с кол­лекторной нелинейной нагрузкой, имеющей логарифмическую харак­теристику. Сигнал со Входа 1 проходит через этот каскад, который выполнен на DA1 и DA2, что позволяет расширить динамический диапазон входных сигналов. Микросхемы DA3 и DA7 выполняют функции термокомпенсированных генераторов тока. Поскольку в логарифмическом и перемножающем каскадах транзисторы подоб­раны по параметрам, то точность перемножения двух сигналов с частотами от 0,1 Гц до 100 кГц не хуже 1 %. Амплитуды входных сигналов могут меняться от 1 мВ до 1 В.

Рис. 15.21

refdb.ru


© 2007—2018
423800, Набережные Челны , база Партнер Плюс, тел. 8 800 100-58-94 (звонок бесплатный)