|
||||
|
Екатерина - специалист по продаже а/м КАМАЗ
43118-010-10 (дв.740.30-260 л.с.) | 2 220 000 |
43118-6033-24 (дв.740.55-300 л.с.) | 2 300 000 |
65117-029 (дв.740.30-260 л.с.) | 2 200 000 |
65117-6010-62 (дв.740.62-280 л.с.) | 2 350 000 |
44108 (дв.740.30-260 л.с.) | 2 160 000 |
44108-6030-24 (дв.740.55,рест.) | 2 200 000 |
65116-010-62 (дв.740.62-280 л.с.) | 1 880 000 |
6460 (дв.740.50-360 л.с.) | 2 180 000 |
45143-011-15 (дв.740.13-260л.с) | 2 180 000 |
65115 (дв.740.62-280 л.с.,рест.) | 2 190 000 |
65115 (дв.740.62-280 л.с.,3-х стор) | 2 295 000 |
6520 (дв.740.51-320 л.с.) | 2 610 000 |
6520 (дв.740.51-320 л.с.,сп.место) | 2 700 000 |
6522-027 (дв.740.51-320 л.с.,6х6) | 3 190 000 |
Нужны самосвалы? Обратите внимание на Ford-65513-02. |
Контактная информация.
г. Набережные Челны, Промкомзона-2, Автодорога №3, база «Партнер плюс».
тел/факс (8552) 388373.
Схема проезда
Схема работы компрессора в самых разных моделях холодильника одинакова: прибор откачивает из испарителя нагревшийся хладагент и нагнетает в конденсатор. Последний расположен на задней стенке аппарата и его основной задачей является передача тепла от остывающего газа воздуху помещения. Охлажденный сжиженный хладагент попадает в испаритель и воздух внутри камеры охлаждается.
Из чего состоит компрессор?
Строение испарителя и конденсатора практически не изменялось. А вот с компрессорами эксперименты проводятся и сейчас.
Причина проста: холодильные установки весьма различны по объему и устройству, и, соответственно, для их обслуживания, требуются аппараты разного класса.
Внешне холодильник потребительского класса выглядит либо как холодильный шкаф, либо как стол. А вот конструкция может заметно отличаться.
Стандартное исполнение подразумевает установку прибора и электродвигателя с вертикальным валом в герметичном кожухе. Мотор при включении приводит в действие коленчатый вал внутри компрессора. При вращении вала поршень совершает возвратно-поступательные движения, откачивая хладагент из испарителя и нагнетая его в конденсатор. В камеру газ попадает через всасывающий клапан – открывается, когда создается разрежение, а выводится через нагнетательный – открывается при обратном ходе, когда в камере образуется повышенное давление газа.
В зависимости от строения поршня, различают аппараты:
Существует модификация, в которой коленчатый вал отсутствует. Вместо этого поршень приводит в движение переменный ток, подающийся на катушку. Эта схема более экономична, так как исключает из цепочки передачи механическую часть.
Нагнетание газа происходит за счет вращения двух роторов – ведущего и ведомого, которые соприкасаются по всей длине и вращаются навстречу друг другу. Газ, попадая в воздушные карманы уменьшающегося объема, сжимается и через отверстие малого диаметра подается в конденсатор.
Скорость вращения роторов не зависит от давления, что обеспечивает стабильные показатели. Вибрации при этом практически не создается, уровень шума очень низкий. На фото – роторное устройство.
tehnika.vyborkuhni.ru
По принципу действия и основным конструктивным особенностям различают К. поршневые, ротационные, центробежные, осевые и струйные. К. также подразделяют по роду сжимаемого газа (воздушные, кислородные и др.), по создаваемому давлению рн (низкого давления — от 0,3 до 1 Мн/м2, среднего — до 10 Мн/м2 и высокого — выше 10 Мн/м2), по производительности, то есть объёму всасываемого Vвс (или сжатого) газа в единицу времени (обычно в м3/мин) и другим признакам. К. также характеризуются частотой оборотов n и потребляемой мощностью N.
Принципы действия ротационного и поршневого К. в основном аналогичны и отличаются лишь тем, что в поршневом все процессы происходят в одном и том же месте (рабочем цилиндре), но в разное время (из-за чего и потребовалось предусмотреть клапаны), а в ротационном К. всасывание и нагнетание осуществляются одновременно, но в различных местах, разделенных пластинами ротора. Известны другие конструкции ротационного К., в том числе винтовые, с двумя роторами в виде винтов. Для удаления воздуха с целью создания разрежения в каком-либо пространстве применяют роторные водокольцевые вакуум-насосы. Регулирование производительности ротационного К. осуществляется обычно изменением частоты вращения их ротора.
Центробежный К. в основном состоит из корпуса и ротора, имеющего вал 1 с симметрично расположенными рабочими колёсами. Центробежный 6-ступенчатый К. разделён на три секции и оборудован двумя промежуточными холодильниками, из которых газ поступает в каналы 12 и 13. Во время работы центробежного К. частицам газа, находящимся между лопатками рабочего колеса, сообщается вращательное движение, благодаря чему на них действуют центробежные силы. Под действием этих сил газ перемещается от оси К. к периферии рабочего колеса, претерпевает сжатие и приобретает скорость. Сжатие продолжается в кольцевом диффузоре из-за снижения скорости газа, то есть преобразования кинетической энергии в потенциальную. После этого газ по обратному направляющему каналу поступает в другую ступень К. и т.д.
Получение больших степеней повышения давления газа в одной ступени (более 25—30, а у промышленных К. — 8—12) ограничено главным образом пределом прочности рабочих колёс, допускающих окружные скорости до 280—500 м/сек. Важной особенностью центробежных К. (а также осевых) является зависимость давления сжатого газа, потребляемой мощности, а также кпд от его производительности. Характер этой зависимости для каждой марки К. отражается на графиках, называемых рабочими характеристиками.
Регулирование работы центробежных К. осуществляется различными способами, в том числе изменением частоты вращения ротора, дросселированием газа на стороне всасывания и др.
Осевой К. имеет ротор 4, состоящий обычно из нескольких рядов рабочих лопаток 6. На внутренней стенке корпуса 2 располагаются ряды направляющих лопаток 5. Всасывание газа происходит через канал 3, а нагнетание через канал 1. Одну ступень осевого К. составляет ряд рабочих и ряд направляющих лопаток. При работе осевого К. вращающиеся рабочие лопатки оказывают на находящиеся между ними частицы газа силовое воздействие, заставляя их сжиматься, а также перемещаться параллельно оси К. (откуда его название) и вращаться. Решётка из неподвижных направляющих лопаток обеспечивает главным образом изменение направления скорости частиц газа, необходимое для эффективного действия следующей ступени. В некоторых конструкциях осевых К. между направляющими лопатками происходит и дополнительное повышение давления за счёт уменьшения скорости газа. Степень повышения давления для одной ступени осевого К. обычно равна 1,2—1,3, т. е. значительно ниже, чем у центробежных К., но кпд у них достигнут самый высокий из всех разновидностей К.
Техническое совершенство осевых, а также ротационных, центробежных и поршневых К. оценивают по их механическому кпд и некоторым относительным параметрам, показывающим, в какой мере действительный процесс сжатия газа приближается к теоретически наивыгоднейшему в данных условиях.
Струйные К. по устройству и принципу действия аналогичны струйным Насосам. К ним относят струйные аппараты для отсасывания или нагнетания газа или парогазовой смеси. Струйные К. обеспечивают более высокую степень сжатия, чем струйные насосы. В качестве рабочей среды часто используют водяной пар.Основные типы К., их параметры и области применения показаны в табл.
Типы компрессоров и их характеристика
--------------------------------------------------------------------------------------------------------------------------------------------------
| Тип компрессора | Предельные параметры | Область применения |
|------------------------------------------------------------------------------------------------------------------------------------------------|
| Поршневой | VВС = 2—5 м3/мин | Химическая |
| | РН = 0,3—200 Мн/м2 | промышленность, |
| | (лабораторно до 7000 Мн/м2) | холодильные установки, |
| | n = 60—1000 об/мин | питание пневматических |
| | N до 5500 квт | систем, гаражное хозяйство. |
|------------------------------------------------------------------------------------------------------------------------------------------------|
| Ротационный | VВС = 0,5—300 м3/мин | Химическая |
| | РН = 0,3—1,5 Мн/м2 | промышленность, дутье в |
| | n = 300—3000 об/мин | некоторых металлургических |
| | N до 1100 квт | печах и др. |
|------------------------------------------------------------------------------------------------------------------------------------------------|
| Центробежный | VВС = 10—2000 м3/мин | Центральные компрессорные |
| | РН = 0,2—1,2 Мн/м2 | станции в металлургической, |
| | n = 1500—10000 (до 30000) | машиностроительной, |
| | об/мин | горнорудной, |
| | N до 4400 квт (для | нефтеперерабатывающей |
| | авиационных — до десятков | промышленности |
| | тысяч квт) | |
|------------------------------------------------------------------------------------------------------------------------------------------------|
| Осевой | VВС = 100—20000 м3/мин | Доменные и сталелитейные |
| | РН = 0,2—0,6 Мн/м2 | заводы, наддув поршневых |
| | n = 2500—20000 об/мин | двигателей, газотурбинных |
| | N до 4400 квт (для | установок, авиационных |
| | авиационных — до 70000 квт) | реактивных двигателей и др. |
--------------------------------------------------------------------------------------------------------------------------------------------------
Лит.: Шерстюк А. Н., Компрессоры, М.—Л., 1959; Рис В. Ф., Центробежные компрессорные машины, 2 изд., М.— Л., 1964; Френкель М. И., Поршневые компрессоры, 3 изд., Л., 1969: Центробежные компрессорные машины, М., 1969.
Е. А. Квитковская.
Рис. 1. Поршневой компрессор: 1 — коленчатый вал; 2 — шатун; 3 — поршень; 4 — рабочий цилиндр; 5 — крышка цилиндра; 6 — нагнетательный трубопровод; 7 — нагнетательный клапан; 9 — воздухозаборник; 9 — всасывающий клапан; 10 — труба для подвода охлаждающей воды.
Рис. 2. Ротационный пластинчатый компрессор: 1 — отверстие для всасывания воздуха; 2 — ротор; 3 — пластина; 4 — корпус; 5 — холодильник; 6 и 7 — трубы для отвода и подвода охлаждающей воды.
Рис. 3. Центробежный компрессор: 1 — вал; 2, 6, 8, 9, 10 и 11 — рабочие колёса; 3 и 7 — кольцевые диффузоры; 4 — обратный направляющий канал; 5 — направляющий аппарат; 12 и 13 — каналы для подвода газа из холодильников;14 — канал для всасывания газа.
Рис. 4. Осевой компрессор: 1 — канал для подачи сжатого газа; 2 — корпус; 3 — канал для всасывания газа; 4 — ротор; 5 — направляющие лопатки; 6 — рабочие лопатки.
dic.academic.ru
Компрессоры — это устройства, предназначенные для сжатия разнообразных рабочих сред до определенного давления. В современной промышленности применяют кислородные, азотные, фреоновые и другие агрегаты. Но наибольшее распространение получило оборудование, которое производит сжатый воздух. Такие установки применяют во всех отраслях промышленности, а также в энергетике, строительстве, авторемонте, фармакологии, медицине и других направлениях деятельности.
Важно отметить, что эффективность агрегата напрямую зависит от того, насколько он соответствует конкретным условиям эксплуатации. А это значит, что перед покупкой следует изучить устройство компрессора и его характеристики. Это позволит сделать правильный выбор и приобрести ту установку, которая максимально полно отвечает потребностям того или иного предприятия.
Современные производители предлагают потребителям широчайший модельный ряд техники. Поэтому прежде чем говорить о том, как устроен воздушный компрессор, отметим, что установки значительно различаются по конструкции, техническим характеристикам, принципу действия и другим особенностям. Так, к примеру, агрегаты можно классифицировать по таким признакам, как:
Что касается других отличий, то к их числу стоит отнести тип охлаждения, производительность, область применения и т.д. Логично предположить, что в каждом случае конструкция агрегата будет различаться. А это значит, что без уточнения деталей нельзя ответить на вопрос о том, как устроен воздушный компрессор. Именно поэтому ниже мы приводим только базовое строение механизма, которое в зависимости от модели может быть дополнено теми или иными деталями и узлами.
Итак, основными конструкционными элементами компрессора являются:
Устройство поршневого компрессора предлагает наличие одного или нескольких цилиндров, в которых происходит сжатие воздуха. При движении поршня по направлению от впускного клапана создается разряжение, вследствие которого воздух наполняет цилиндр. При обратном движении происходит сжатие рабочей среды. Когда давление достигает заданного значения, воздух преодолевает усилие пружины нагнетательного клапана и попадает в ресивер.
Остались вопросы по устройству компрессоров, предназначенных для сжатия воздуха? Специалисты нашей компании готовы подробно рассказать обо всех особенностях бытовых и промышленных установок. Чтобы получить консультацию, достаточно связаться с нами по телефону, указанному на сайте.
Подготовлено: Елизавета Семёнова
www.starkraft.ru
В настоящий момент рынок сбыта изобилует разнообразными моделями пневмокомпрессоров для автомобилей. В связи с этим возникает закономерный вопрос – зачем что-то делать самому, если можно купить? Ответ на него есть – во-первых, существует много подделок, а во-вторых, сделать устройство своими руками экономичней и надежней, а главное, без особых трудозатрат.
Вернуться к оглавлениюОсновным требованием, предъявляемым к подобным устройствам, является постоянная и равномерная подача сжатого воздуха на краскопульт. Продаваемые в магазинах запчастей автонасосы по праву называются компрессорами, но годны они только для подкачки шин. Попробуйте подключить его к аэрографу и окрасить эмалью какую-нибудь поверхность. Результат окажется плачевным – вместо глянцевого блеска однородного слоя, будут матовые пятна и потеки лака.
Это произойдет потому, что на выходе автоматического насоса из-за конструктивных особенностей воздух пульсирует. Сгладить пульсации можно только с помощью ресивера – сосуда для содержания созданного насосом сжатого газа. По своей сути он является объемной камерой, в которой давление воздуха превышает атмосферное в несколько раз. Поэтому к ресиверу выдвигаются следующие требования – его стенки должны быть прочными и герметичными.
Итак, даже самый элементарный вариант изготовления воздушного компрессора для покраски предполагает наличие нагнетателя (ручной насос, поршневой компрессор и т. д.) и емкости для содержания сжатого воздуха. Причем объем ресивера должен быть таким, чтобы выход газа был равномерным на всем этапе покраски детали.
Более продвинутые модели оснащаются системой автоматики, обратными клапанами, масловлагоотделителями и пылезащитными фильтрами. И весь этот комплекс приспособлений входит в компрессор, изготовление которого мы рассмотрим.
Вернуться к оглавлениюВ качестве устройства, подающего воздух в ресивер, возьмем компрессор от старого бытового холодильника.
Его основные достоинства:
Если есть на примете старый холодильный агрегат, то демонтировать компрессор с него не составит труда. Если у вас есть несколько нерабочих морозильников, то, делая выбор, имейте в виду – двигатели импортных меньше вибрируют, а старые советские хоть и шумные, но выдают большее избыточное давление.
Для выполнения работ потребуются кусачки, универсальная отвертка “на 3”, набор ключей. Первым делом демонтируем трубки двигателя, ведущие к радиаторной решетке, перекусив их кусачками. Причем именно перекусив, а не перепилив ножовкой по металлу. Хотя во втором случае срез будет более ровным, но внутрь трубочек непременно попадет металлическая стружка. Впоследствии при включении двигателя, эти твердые частицы выведут поршневую систему из строя в течение нескольких минут.
Откусываем провода, ведущие к реле, оставляя куски длиной 15-25 см. После этого можно откручивать компрессор. Главное, не забыть промаркировать верхнюю крышку регулировочного реле, пока оно стоит на своем месте. Работа этого устройства основана на использовании сил гравитации, поэтому оно чувствительно к положению в пространстве.
На большинстве моделей бытовых холодильников верхняя крышка маркируется стрелочкой. Но лучше перестраховаться и поставить собственную метку. Демонтировав нагнетатель, забираем с собой весь его крепеж, самое главное — не забыть демпферные резинки, они заметно снижают вибрацию.
После того, как вы сняли двигатель с реле, нужно убедиться в их работоспособности, чтобы быть уверенными, что эти устройства в нашем изделии будут работать исправно. Для этого подадим временное питание на регулировочное реле. Это можно сделать при помощи штепсельной вилки с кусочком провода длиной 50 см. Делаем скрутку с проводами из реле, изолируем места соединения и развальцовываем сплющенные при демонтаже трубки для обеспечения циркуляции воздуха.
Устанавливаем компрессор так, чтобы промаркированная крышка реле была вверху, подаем на вход схемы 220 В. Если регулирующее устройство функционирует, то двигатель начнет работать, прокачивая через себя воздух. При этом одна из трубок будет всасывать воздух, а другая — выдувать. Маркером рисуем на патрубках направление движения воздуха, так мы не перепутаем при последующем монтаже вход и выход. После этого даем поработать нагнетателю минут 5-10, если он работает равномерно без изменения тональности гудения и сбоев, значит двигатель исправен и пригоден для установки в устройство компрессор воздушный, который мы будем использовать в ремонтных работах для покраски своими руками.
Вернуться к оглавлениюВ качестве ресивера лучше всего использовать корпус огнетушителя объемом от 10 литров, запорно-пусковое устройство (ЗПУ) которого имеет наружную резьбу три четверти дюйма.
Следует обратить внимание, что в качестве баллона стоит выбирать литые, бесшовные огнетушители (как правило, маркируемые ОУ). Их корпуса рассчитаны на огромную нагрузку, на заводе они выдерживают испытание на прочность при внутреннем давлении в 1000 атмосфер (для наших нужд с большим запасом хватит 10-20).
Вывернув ЗПУ из корпуса огнетушителя при помощи фонарика, исследуйте состояние внутренней поверхности ресивера. При наличии малейших следов коррозии избавляемся от неё с помощью специальных смесей для удаления ржавчины.
Если есть желание выполнить компрессор в одной цветовой гамме, счищаем старую краску с корпуса до металла. Затем грунтуем и окрашиваем в новый цвет. Итак, основные комплектующие готовы. Для того чтобы дальше собирать компрессор воздушный для покраски, следует отправиться на закупки.
Вернуться к оглавлениюДля дальнейшего создания компрессора потребуется приобрести некоторые элементы:
Закупив все необходимое, можно собрать компрессор воздушный своими руками. Перед выполнением работ произведем замену масла в двигателе нагнетателя.
Вернуться к оглавлениюЗалитое при изготовлении холодильника в двигатель минеральное масло (веретенка) на всем сроке работы не контактирует с атмосферой – система полностью герметична. Компрессор имеет свойство “потеть” маслом, при замкнутой системе это не страшно – влетевшие капельки возвращаются обратно.
Разорвав контур, мы подвергаем веретенку воздействию атмосферы, и она быстро теряет свои смазывающие функции. Если оставить такое масло в нагнетателе, поршни начнут быстро изнашиваться и двигатель придет в негодность. Поэтому лучше его сразу поменять на моторное полусинтетическое, имеющее дополнительные присадки.
Помимо входного и выходного патрубков, корпус компрессора от холодильника содержит третью трубочку, конец которой запаян. Он изначально спроектирован для смены смазывающего состава двигателя. Закупоренную часть патрубка следует удалить. Для этого по окружности аккуратно надпиливаем заливную трубку, ни в коем случае не стараясь пропилить стенки. Иначе внутрь двигателя попадут металлические частицы.
Надпиленный конец отламываем, а оставшийся патрубок развальцовываем при помощи шила. Затем сливаем старое масло в какую-нибудь емкость, чтобы определить требуемый для замены объем. Полусинтетику заливаем, используя шприц. После заправки маслом, регламентный патрубок закупориваем при помощи винтика с намотанной на него фум лентой.
Вернуться к оглавлениюНа место ЗПУ в корпусе огнетушителя вворачиваем водопроводный четверник, предварительно обмотав его резьбу фум лентой для уплотнения. В дальнейшем на всех винтовых соединениях конструкции используем этот материал для подмотки. Также для надежности поверх фум ленты наносим маслобензостойкий герметик.
На верхний вывод крестовины через переходный фитинг наворачиваем реле регулятор давления в ресивере. К одному из оставшихся входов четверника приворачиваем обратный клапан, а к нему — штуцер для подключения маслобензостойкого шланга. Обратный клапан защищает нагнетатель от избыточного давления воздуха в ресивере. На последний оставшийся свободный ввод накручиваем кислородный редуктор, к нему присоединяем запорный кран, чтобы иметь возможность перекрывать выход газа при смене пневмоинструментов.
К крану приворачиваем переходной штуцер для подключения шланга краскопульта или подкачивающего пистолета. Редуктор позволит свести на нет скачки давления нагнетателя и выдать равномерную струю плотного воздуха.
Далее обеспечиваем защиту двигателя от пыли и краскопульта от влаги и масла. Для этого перед воздухозаборным патрубком нагнетателя устанавливаем фильтр грубой очистки бензиновых двигателей. Его мембраны защитят всю систему от попадания твердых частиц. Микроскопические капельки жидкости, которые могут попасть в автоэмаль, задержит дизельный фильтр. Его мы устанавливаем на выход нагнетателя, который имеет свойство “потеть” маслом. Осталось сделать последние шаги – закрепить все элементы на одной раме, подключить питание и отрегулировать рабочее давление в камере ресивера.
Один из вариантов сборки на одной базе – прикрепить все детали к деревянной доске при помощи жестяных полосок и саморезов. Единую раму можно оснастить для мобильности колесиками от мебельной фурнитуры. Питание подаем через закупленный выключатель. Итак, воздушный компрессор для покраски готов. Чтобы он прослужил долго, раз в год меняйте фильтры и масло. Удачи!
krasymavto.ru
КОМПРЕ́ССОР -а; м. [от лат. compressus - сжимание] Машина для сжатия и подачи газов или воздуха под давлением.
◁ Компре́ссорный, -ая, -ое. К-ая установка.
устройство для сжатия и подачи какого-либо газа под давлением; степень повышения давления в компрессоре более 3,5. По принципу сжатия различают компрессоры объёмные (компримирование вследствие уменьшения объёма газа) и динамические (вследствие ускорения потока газа).
КОМПРЕ́ССОР, устройство для сжатия и подачи воздуха или другого газа под давлением. По принципу действия и основным конструктивным особенностям различают компрессоры поршневые, ротационные, центробежные, осевые и струйные. Компрессоры также подразделяют по роду сжимаемого газа (воздушные, кислородные и др.), по создаваемому давлению (низкого давления — от 0,3 до 1 МПа, среднего — до 10 МПа и высокого — выше 10 МПа) и другим признакам. Поршневой компрессор в основном состоит из рабочего цилиндра и поршня; имеет всасывающий и нагнетательный клапаны, расположенные обычно в крышке цилиндра. Поршневые компрессоры бывают одно- и многоцилиндровые, с вертикальным, горизонтальным, V- или W-oбразным и другим расположением цилиндров, одинарного и двойного действия (когда поршень работает обеими сторонами), а также одноступенчатого или многоступенчатого сжатия. Принцип действия одноступенчатого воздушного поршневого компрессора: во время возвратных движений поршня в рабочем цилиндре из-за увеличения объёма, заключённого между днищем поршня и крышкой цилиндра, возникает разрежение и атмосферный воздух открывает всасывающий клапан и поступает в рабочий цилиндр. При обратном ходе поршня воздух будет сжиматься, а затем, когда его давление станет достаточно большим, чтобы преодолеть сопротивление пружины, прижимающей к седлу нагнетательный клапан, воздух открывает последний и поступает в трубопровод. При сжатии газа в компрессоре его температура значительно повышается. Для предотвращения самовозгорания смазки компрессоры оборудуются водяным (труба для подвода воды) или воздушным охлаждением. Поршневые компрессоры используются в химической промышленности, холодильных установках, питании пневматических систем и др. Ротационные компрессоры имеют один или несколько роторов, которые бывают различных конструкций. Значительное распространение получили ротационные пластинчатые компрессоры, имеющие ротор с пазами, в которые свободно входят пластины. Корпус ротационного компрессора охлаждается водой, для подвода и отвода которой предусмотрены трубы. Ротационные компрессоры используются в химической промышленности, дутье в некоторых металлургических печах и др. Принципы действия ротационного и поршневого компрессоров в основном аналогичны и отличаются лишь тем, что в поршневом все процессы происходят в одном и том же месте (рабочем цилиндре), но в разное время (из-за чего и потребовалось предусмотреть клапаны), а в ротационном компрессоре всасывание и нагнетание осуществляются одновременно, но в различных местах, разделенных пластинами ротора. Центробежный компрессор в основном состоит из корпуса и ротора, имеющего вал с симметрично расположенными рабочими колесами. Во время работы центробежного компрессора частицам газа, находящимся между лопатками рабочего колеса, сообщается вращательное движение, благодаря чему на них действуют центробежные силы. Под действием этих сил газ перемещается от оси компрессора к периферии рабочего колеса, претерпевает сжатие и приобретает скорость. Сжатие продолжается в кольцевом диффузоре из-за снижения скорости газа, то есть преобразования кинетической энергии в потенциальную. Центробежные компрессоры используются в центральных компрессорных станциях в металлургической, машиностроительной, горнорудной, нефтеперерабатывающей промышленности. Осевой компрессор имеет ротор, состоящий обычно из нескольких рядов рабочих лопаток. При работе осевого компрессора вращающиеся рабочие лопатки оказывают на находящиеся между ними частицы газа силовое воздействие, заставляя их сжиматься, а также перемещаться параллельно оси компрессора (откуда его название) и вращаться. У осевых компрессоров самый высокий КПД из всех разновидностей компрессоров. Осевые компрессоры применяют в составе газотурбинных установок, авиационных реактивных двигателей, на сталелитейных заводах и др. Струйные компрессоры по устройству и принципу действия аналогичны струйным насосам (см. СТРУЙНЫЙ НАСОС). К ним относят струйные аппараты для отсасывания или нагнетания газа или парогазовой смеси. Струйные компрессоры обеспечивают более высокую степень сжатия, чем струйные насосы. В качестве рабочей среды часто используют водяной пар. Компрессоры впервые стали применяться в середине 19 веке, в России строятся с начала 20 века.dic.academic.ru
Cтраница 1
Назначение компрессора - отводить пары из испарителя, поддерживая в нем низкое давление р0, и сжимать их до давления в конденсаторе рк, определяемого температурой окружающей среды. Через шатун 3, соединенный с поршнем 7 поршневым пальцем 5, вращательное движение вала преобразуется в возвратно-поступательное движение поршня. Цилиндр 4 соединен с картером болтами. Герметичность соединения обеспечивается прокладкой. Поршневые кольца 6 уменьшают перетечку сжатого пара из цилиндра в картер. [1]
Назначение компрессора - отводить пары из испарителя, поддерживая в нем низкое давление р0, и сжимать их до давления в конденсаторе рк, определяемого температурой окружающей среды. Через шатун 3, соединенный с поршнем 7 поршневым пальцем 5, врашьтельное движение вала преобразуется в возвратно-поступательное движение поршня. Цилиндр 4 соединен с картером болтами. Герметичность соединения обеспечивается прокладкой. Поршневые кольца 6 уменьшают перетечку сжатого пара из цилиндра в картер. [2]
Назначение компрессора - дать добавочный холод, и поэтому отпадают этиленовый и аммиачный циклы, применяемые в схеме ранее рассмотренной установки. [3]
Назначение компрессора состоит в сжатии газа и непрерывной подаче его к месту потребления. Сжатый газ находит широкое применение в технике, в частности в авиации. [4]
Назначение компрессора - сжатие и перемещение паров и газов. [6]
Назначением компрессора высокого давления является сжатие очищенной алотоводородной смеси ( после метилирования) от 2 4 - 2 5 до 32 МПа. Плотность сжимаемого газа из-за высокой концентрации и нем водорода мала, поэтому степень сжатии нзо-товодородной смеси в одном центробежном колесе компрессора также невелика. Чтобы обеспечить сжатие газа до конечного давления компрессор должен иметь несколько десятков колес с числом оборотов 11 - 12 тыс. в 1 мин. Вследствие значительного нагрева газа при сжатии предусмотрено его промежуточное охлаждение. [8]
При назначении компрессора для сжатия газов, опасных по взрыву и отравлению, компрессор изготовляется со специальными сальниками и приводом от электродвигателя, располагаемого в отдельном помещении. [9]
В чем состоит назначение компрессора и вакуум-насоса. [10]
Каждое из перечисленных требований отражает назначение компрессора и выражается через самостоятельную конструкторскую размерную цепь. Замыкающими звеньями ( рис. III.11) этих цепей являются: Лд - линейное мертвое пространство; Б А - зазор между сопряженными цилиндрическими поверхностями поршня и гильзы; ВА - соосность цилиндрических сопряженных поверхностей поршня и гильзы; РА - параллельность оси наружной цилиндрической поверхности поршня к оси сопрягаемой поверхности гильзы в плоскости, проходящей через ось вращения коленчатого вала и ось цилиндра; 7д - перпендикулярность оси отверстия большой головки шатуна к оси наружной цилиндрической поверхности поршня. [11]
Выбор схемы компрессора зависит от назначения компрессора, условий эксплуатации, подачи, рабочего давления, числа ступеней и распределения давления между ними. [12]
Определение компрессора дано в § 1.1. Назначение компрессоров состоит в сжатии газов и перемещении их к потребителям по трубопроводным системам. [13]
В зависимости от устройства и: назначения компрессора в этих системах может употребляться масло разных или одинаковых марок. [15]
Страницы: 1 2 3 4
www.ngpedia.ru