Камаз 44108 тягач В наличии!
Тягач КАМАЗ 44108-6030-24
евро3, новый, дв.КАМАЗ 740.55-300л.с., КПП ZF9, ТНВД ЯЗДА, 6х6, нагрузка на седло 12т, бак 210+350л, МКБ, МОБ
 
карта сервера
«ООО Старт Импэкс» продажа грузовых автомобилей камаз по выгодным ценам
+7 (8552) 31-97-24
+7 (904) 6654712
8 800 1005894
звонок бесплатный

Наши сотрудники:
Виталий
+7 (8552) 31-97-24

[email protected]

 

Екатерина - специалист по продаже а/м КАМАЗ
+7 (904) 6654712

[email protected]

 

Фото техники

20 тонный, 20 кубовый самосвал КАМАЗ 6520-029 в наличии
15-тонный строительный самосвал КАМАЗ 65115 на стоянке. Техника в наличии
Традиционно КАМАЗ побеждает в дакаре

тел.8 800 100 58 94

Техника в наличии

тягач КАМАЗ-44108
Тягач КАМАЗ 44108-6030-24
2014г, 6х6, Евро3, дв.КАМАЗ 300 л.с., КПП ZF9, бак 210л+350л, МКБ,МОБ,рестайлинг.
цена 2 220 000 руб.,
 
КАМАЗ-4308
КАМАЗ 4308-6063-28(R4)
4х2,дв. Cummins ISB6.7e4 245л.с. (Е-4),КПП ZF6S1000, V кузова=39,7куб.м., спальное место, бак 210л, шк-пет,МКБ, ТНВД BOSCH, система нейтрализ. ОГ(AdBlue), тент, каркас, рестайлинг, внутр. размеры платформы 6112х2470х730 мм
цена 1 950 000 руб.,
КАМАЗ-6520
Самосвал КАМАЗ 6520-057
2014г, 6х4,Евро3, дв.КАМАЗ 320 л.с., КПП ZF16, ТНВД ЯЗДА, бак 350л, г/п 20 тонн, V кузова =20 куб.м.,МКБ,МОБ, со спальным местом.
цена 2 700 000 руб.,
 
КАМАЗ-6522
Самосвал 6522-027
2014, 6х6, дв.КАМАЗ 740.51,320 л.с., КПП ZF16,бак 350л, г/п 19 тонн,V кузова 12куб.м.,МКБ,МОБ,задняя разгрузка,обогрев платформы.
цена 3 190 000 руб.,

СУПЕР ЦЕНА

на АВТОМОБИЛИ КАМАЗ
43118-010-10 (дв.740.30-260 л.с.) 2 220 000
43118-6033-24 (дв.740.55-300 л.с.) 2 300 000
65117-029 (дв.740.30-260 л.с.) 2 200 000
65117-6010-62 (дв.740.62-280 л.с.) 2 350 000
44108 (дв.740.30-260 л.с.) 2 160 000
44108-6030-24 (дв.740.55,рест.) 2 200 000
65116-010-62 (дв.740.62-280 л.с.) 1 880 000
6460 (дв.740.50-360 л.с.) 2 180 000
45143-011-15 (дв.740.13-260л.с) 2 180 000
65115 (дв.740.62-280 л.с.,рест.) 2 190 000
65115 (дв.740.62-280 л.с.,3-х стор) 2 295 000
6520 (дв.740.51-320 л.с.) 2 610 000
6520 (дв.740.51-320 л.с.,сп.место) 2 700 000
6522-027 (дв.740.51-320 л.с.,6х6) 3 190 000


Перегон грузовых автомобилей
Перегон грузовых автомобилей
подробнее про услугу перегона можно прочесть здесь.


Самосвал Форд Нужны самосвалы? Обратите внимание на Ford-65513-02.

КАМАЗы в лизинг

ООО «Старт Импэкс» имеет возможность поставки грузовой автотехники КАМАЗ, а так же спецтехники на шасси КАМАЗ в лизинг. Продажа грузовой техники по лизинговым схемам имеет определенные выгоды для покупателя грузовика. Рассрочка платежа, а так же то обстоятельство, что грузовики до полной выплаты лизинговых платежей находятся на балансе лизингодателя, и соответственно покупатель автомобиля не платит налогов на имущество. Мы готовы предложить любые модели бортовых автомобилей, тягачей и самосвалов по самым выгодным лизинговым схемам.

Контактная информация.

г. Набережные Челны, Промкомзона-2, Автодорога №3, база «Партнер плюс».

тел/факс (8552) 388373.
Схема проезда



Получение металлов и их применение. Из чего состоит металл


Металлы — WiKi

Классификация

Из 118 химических элементов, открытых на данный момент, к металлам относят:

6 элементов в группе щелочных металлов: Li, Na, K, Rb, Cs, Fr

4 в группе щёлочноземельных металлов: Ca, Sr, Ba, Ra

а также вне определённых групп бериллий и магний

40 в группе переходных металлов:

— Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn;— Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd;— La, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg;— Ac, Rf, Db, Sg, Bh, Hs, Mt, Ds, Rg, Cn;

7 в группе лёгких металлов: Al, Ga, In, Sn, Tl, Pb, Bi

7 в группе полуметаллов[1]: B, Si, Ge, As, Sb, Te, Po

14 в группе лантаноиды + лантан (La):Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu

14 в группе актиноиды (физические свойства изучены не у всех элементов) + актиний (Ac):Th, Pa, U, Np, Pu, Am, Cm, Bk, Cf, Es, Fm, Md, No, Lr.

Также металлическими свойствами может обладать водород[2][3].

Таким образом, к металлам, возможно, относится 94 элемента из всех открытых; все остальные являются неметаллами.

В астрофизике термин «металл» может иметь другое значение и обозначать все химические элементы тяжелее гелия (см. Металличность).

Кроме того, в физике металлам, как проводникам, противопоставляется полупроводники и диэлектрики (см. также Полуметалл (спинтроника))[4].

Некоторые группы/семейства металлов

  1. Щелочные:
  2. Щёлочноземельные:
  3. Другие (которые зачастую не совсем правильно относят к щёлочноземельным):
  4. Переходные:
  5. Постпереходные:
  6. Тугоплавкие
  7. Металлы платиновой группы
  8. Цветные
  9. Благородные
  10. Монетные
Аморфные металлы

Происхождение слова «металл»

Слово «металл» заимствовано из немецкого языка. Отмечается в «Травнике» Николая Любчанина, написанном в 1534 году: «…злато и серебро всех металей одолеваетъ». Окончательно усвоено в Петровскую эпоху. Первоначально имело общее значение «минерал, руда, металл»; разграничение этих понятий произошло в эпоху М. В. Ломоносова[5].

  Металлом называется светлое тело, которое ковать можно. Таких тел находим только шесть: золото, серебро, медь, олово, железо и свинец. Разделяются на высокие и простые металлы; которое разнство в том состоит, что высоких одним огнём без помощи других материй в пепел сожечь не можно, а напротив того простые через едину онаго силу в пепел обращаются.…За полуметаллы почитаются мышьяк, сурьма, висмут, цинк и ртуть.

М. В. Ломоносов

 

Немецкое слово «metall» заимствовано из латинского языка, где «metallum» — «рудник, металл». Латинское, в свою очередь, заимствовано из греческого языка (μεταλλον — «рудник, копь»).[6]

Нахождение в природе

Бо́льшая часть металлов присутствует в природе в виде руд и соединений. Они образуют оксиды, сульфиды, карбонаты и другие химические соединения. Для получения чистых металлов и дальнейшего их применения необходимо выделить их из руд и провести очистку. При необходимости проводят легирование и другую обработку металлов. Изучением этого занимается наука металлургия. Металлургия различает руды чёрных металлов (на основе железа) и цветных (в их состав не входит железо, всего около 70 элементов). Золото, серебро и платина относятся также к драгоценным (благородным) металлам. Кроме того, в малых количествах они присутствуют в морской воде и в живых организмах (играя при этом важную роль).

Известно, что организм человека на 3 % состоит из металлов[7]. Больше всего в организме кальция (в костях) и натрия, выступающего в роли электролита в межклеточной жидкости и цитоплазме. Магний накапливается в мышцах и нервной системе, медь — в печени, железо — в крови.

Производство металлов

Подготовка руды

Металлы извлекают из земли в процессе добычи полезных ископаемых. Добытые руды служат относительно богатым источником необходимых элементов. Для выяснения нахождения руд в земной коре используются специальные поисковые методы, включающие разведку и исследование рудных месторождений. Месторождения руд разрабатываются открытым или карьерным способом и подземным или шахтным способом. Иногда применяется комбинированный (открыто-подземный) способ разработки рудных месторождений.

После извлечения руд они, как правило, подвергаются обогащению. При этом из исходного минерального сырья выделяют один или несколько полезных компонентов — рудный концентрат(ы), промпродукты и отвальные хвосты. В процессах обогащения используют отличия минералов полезного компонента и пустой породы в плотности, магнитной восприимчивости, смачиваемости, электропроводности, крупности, форме зёрен, химических свойствах и др.

Работа с рудой

Из добытой и обогащённой руды металлы извлекаются, как правило, с помощью химического или электролитического восстановления. В пирометаллургии для преобразования руды в металлическое сырьё используются высокие температуры, в гидрометаллургии применяют для тех же целей водную химию. Используемые методы зависят от вида металла и типа загрязнения.

Когда металлическая руда является ионным соединением металла и неметалла, для извлечения чистого металла она обычно подвергается выплавлению — нагреву с восстановителем. Многие распространенные металлы, такие как железо, плавят с использованием в качестве восстановителя углерода. Некоторые металлы, такие как алюминий и натрий, не имеют ни одного экономически оправданного восстановителя и извлекаются с применением электролиза.[8][9]

Сульфидные руды не улучшаются непосредственно до получения чистого металла, но обжигаются на воздухе, с целью преобразования их в окислы.

Физические свойства металлов

Твёрдость

Все металлы (кроме ртути и, условно, франция) при нормальных условиях находятся в твёрдом состоянии, однако обладают различной твёрдостью. Ниже в таблице приводится твёрдость некоторых металлов по шкале Мооса.

Температура плавления

Температуры плавления чистых металлов лежат в диапазоне от −39 °C (ртуть) до 3410 °C (вольфрам). Температура плавления большинства металлов (за исключением щелочных) высока, однако некоторые «нормальные» металлы, например, олово и свинец, можно расплавить на обычной электрической или газовой плите.

Плотность

В зависимости от плотности, металлы делят на лёгкие (плотность 0,53 ÷ 5 г/см³) и тяжёлые (5 ÷ 22,5 г/см³). Самым лёгким металлом является литий (плотность 0.53 г/см³). Самый тяжёлый металл в настоящее время назвать невозможно, так как плотности осмия и иридия — двух самых тяжёлых металлов — почти равны (около 22.6 г/см³ — ровно в два раза выше плотности свинца), а вычислить их точную плотность крайне сложно: для этого нужно полностью очистить металлы, ведь любые примеси снижают их плотность.

Пластичность

Большинство металлов пластичны, то есть металлическую проволоку можно согнуть, и она не сломается. Это происходит из-за смещения слоёв атомов металлов без разрыва связи между ними. Самыми пластичными являются золото, серебро и медь. Из золота можно изготовить фольгу толщиной 0.003 мм, которую используют для золочения изделий. Однако не все металлы пластичны. Проволока из цинка или олова хрустит при сгибании; марганец и висмут при деформации вообще почти не сгибаются, а сразу ломаются. Пластичность зависит и от чистоты металла; так, очень чистый хром весьма пластичен, но, загрязнённый даже незначительными примесями, становится хрупким и более твёрдым. Некоторые металлы, такие, как золото, серебро, свинец, алюминий, осмий, могут срастаться между собой, но на это могут уйти десятки лет.

Электропроводность

Все металлы хорошо проводят электрический ток; это обусловлено наличием в их кристаллических решётках подвижных электронов, перемещающихся под действием электрического поля. Серебро, медь и алюминий имеют наибольшую электропроводность; по этой причине последние два металла чаще всего используют в качестве материала для проводов. Очень высокую электропроводность имеет также натрий, в экспериментальной аппаратуре известны попытки применения натриевых токопроводов в форме тонкостенных труб из нержавеющей стали, заполненных натрием. Благодаря малому удельному весу натрия, при равном сопротивлении натриевые «провода» получаются значительно легче медных и даже несколько легче алюминиевых.

Теплопроводность

Высокая теплопроводность металлов также зависит от подвижности свободных электронов. Поэтому ряд теплопроводностей похож на ряд электропроводностей, и лучшим проводником тепла, как и электричества, является серебро. Натрий также находит применение как хороший проводник тепла; широко известно, например, применение натрия в клапанах автомобильных двигателей для улучшения их охлаждения.

Наименьшая теплопроводность — у висмута и ртути.

Цвет

Цвет у большинства металлов примерно одинаковый — светло-серый с голубоватым оттенком. Золото, медь и цезий соответственно жёлтого, красного и светло-жёлтого цвета.

Взаимодействие с простыми веществами

На внешнем электронном уровне у большинства металлов небольшое количество электронов (1-3), поэтому они в большинстве реакций выступают как восстановители (то есть «отдают» свои электроны)

Реакции с простыми веществами

  • С кислородом реагируют все металлы, кроме золота и платиновых металлов. Реакция с серебром происходит при высоких температурах, но оксид серебра(II) практически не образуется, так как он термически неустойчив. В зависимости от металла на выходе могут оказаться оксиды, пероксиды, надпероксиды:
4Li+O2=2Li2O{\displaystyle {\mathsf {4Li+O_{2}=2Li_{2}O}}}  оксид лития 2Na+O2=Na2O2{\displaystyle {\mathsf {2Na+O_{2}=Na_{2}O_{2}}}}  пероксид натрия K+O2=KO2{\displaystyle {\mathsf {K+O_{2}=KO_{2}}}}  надпероксид калия

Чтобы получить из пероксида оксид, пероксид восстанавливают металлом:

Na2O2+2Na=2Na2O{\displaystyle {\mathsf {Na_{2}O_{2}+2Na=2Na_{2}O}}} 

Со средними и малоактивными металлами реакция происходит при нагревании:

3Fe+2O2=Fe3O4{\displaystyle {\mathsf {3Fe+2O_{2}=Fe_{3}O_{4}}}}  2Hg+O2=2HgO{\displaystyle {\mathsf {2Hg+O_{2}=2HgO}}}  2Cu+O2=2CuO{\displaystyle {\mathsf {2Cu+O_{2}=2CuO}}} 
  • С азотом реагируют только самые активные металлы, при комнатной температуре взаимодействует только литий, образуя нитриды:
6Li+N2=2Li3N{\displaystyle {\mathsf {6Li+N_{2}=2Li_{3}N}}} 

При нагревании:

2Al+N2=2AlN{\displaystyle {\mathsf {2Al+N_{2}=2AlN}}}  3Ca+N2=Ca3N2{\displaystyle {\mathsf {3Ca+N_{2}=Ca_{3}N_{2}}}} 
  • С серой реагируют все металлы, кроме золота и платины:

Железо взаимодействует с серой при нагревании, образуя сульфид:

Fe+S=FeS{\displaystyle {\mathsf {Fe+S=FeS}}} 
  • С водородом реагируют только самые активные металлы, то есть металлы IA и IIA групп, кроме Be. Реакции осуществляются при нагревании, при этом образуются гидриды. В реакциях металл выступает как восстановитель, степень окисления водорода −1:
2Na+h3=2NaH{\displaystyle {\mathsf {2Na+H_{2}=2NaH}}}  Mg+h3=Mgh3{\displaystyle {\mathsf {Mg+H_{2}=MgH_{2}}}} 
  • С углеродом реагируют только наиболее активные металлы. При этом образуются ацетилениды или метаниды. Ацетилениды при взаимодействии с водой дают ацетилен, метаниды — метан.
2Na+2C=Na2C2{\displaystyle {\mathsf {2Na+2C=Na_{2}C_{2}}}}  Na2C2+2h3O=2NaOH+C2h3{\displaystyle {\mathsf {Na_{2}C_{2}+2H_{2}O=2NaOH+C_{2}H_{2}}}} 

Взаимодействие кислот с металлами

Электронное строение

Все металлы имеют слабую связь валентных электронов (электронов внешнего энергетического уровня) с ядром. Благодаря этому созданная разность потенциалов в проводнике приводит к лавинообразному движению электронов (называемых электронами проводимости) в кристаллической решётке. Совокупность таких электронов часто называют электронным газом. Вклад в теплопроводность, помимо электронов, дают фононы (колебания решётки). Пластичность обусловлена малым энергетическим барьером для движения дислокаций и сдвига кристаллографических плоскостей. Твёрдость можно объяснить большим числом структурных дефектов (междоузельные атомы, вакансии и др.).

Из-за лёгкой отдачи электронов возможно окисление металлов, что может приводить к коррозии и дальнейшей деградации свойств. Способность к окислению можно узнать по ряду активности металлов. Этот факт подтверждает необходимость использования металлов в комбинации с другими элементами (сплав, важнейшим из которых является сталь), их легирование и применение различных покрытий.

Для более корректного описания электронных свойств металлов необходимо использовать квантовую механику. Во всех твёрдых телах с достаточной симметрией уровни энергии электронов отдельных атомов перекрываются и образуют разрешённые зоны, причём зона, образованная валентными электронами, называется валентной зоной. Слабая связь валентных электронов в металлах приводит к тому, что валентная зона в металлах получается очень широкой, и всех валентных электронов не хватает для её полного заполнения.

Принципиальная особенность такой частично заполненной зоны состоит в том, что даже при минимальном приложенном напряжении в образце начинается перестройка валентных электронов, то есть течёт электрический ток.

Та же высокая подвижность электронов приводит и к высокой теплопроводности, а также к способности зеркально отражать электромагнитное излучение (что и придаёт металлам характерный блеск).

Структура металлов

  Кристаллическая структура сплавов   Вакансия в кристаллической решётке   Образование дендритов

Ни один металл невозможно приготовить в абсолютно чистом состоянии. Технически "чистые" металлы могут содержать до нескольких процентов примесей, и если эти примеси являются элементами с низким атомным весом (например, углерод, азот или кислород), то в пересчете на атомные проценты содержание этих примесей может быть очень большим. Первые небольшие количества примесей в металле обычно входят в кристалл в виде твердого раствора. Можно выделить два главных типа твердых растворов.

  • Когда атомы примеси намного меньше атомов металла-растворителя, растворенные атомы располагаются в решетке растворителя по междоузлиям, или «пустотам». Образование таких твердых растворов — твердых растворов внедрения — почти всегда сопровождается расширением решетки растворителя, и в окрестности каждого растворенного атома имеется локальное искажение решетки.
  • Когда атомы примеси и растворителя имеют приблизительно одинаковые размеры, образуется твердый раствор замещения, в котором атомы растворенного элемента замещают атомы растворителя, так что атомы обоих сортов занимают места в узлах общей решетки. В таких случаях тоже вокруг каждого растворенного атома имеется искаженная область, а будет ли при этом решетка расширяться или сжиматься, зависит от относительных размеров атомов растворителя и растворенного вещества[11].

Для большей части металлов наиболее важными элементами, образующими твердые растворы внедрения, являются водород, бор, углерод, азот и кислород. Присутствие дислокаций всегда приводит к появлению аномально больших или малых межатомных расстояний. В присутствии примесей каждая дислокация окружена «атмосферой» примесных атомов. Примесные атмосферы «закрепляют» дислокации, потому что в результате перемещения дислокаций будет образовываться новая конфигурация с повышенной энергией. Границы между кристаллами также являются областями с аномальными межатомными расстояниями и, следовательно, тоже растворяют примесные атомы легче, чем неискаженные области кристаллов.

При увеличении содержания примесей растворенные атомы входят и в основную массу кристалла, однако все еще имеется избыток примеси по границам зерен и вокруг дислокаций. Когда содержание примеси превышает предел растворимости, появляется новая фаза, которая может представлять собой или растворенное вещество, или промежуточную фазу, или соединение. В таких случаях границы между фазами могут быть двух родов. В общем случае кристаллическая структура частичек примеси слишком отлична от структуры металла-растворителя, поэтому решетки двух фаз не могут переходить одна в другую, образуя непрерывную структуру. В таких случаях на границах раздела фаз образуются слои с нерегулярной (искаженной) структурой. С образованием границ связано появление свободной поверхностной энергии, однако энергия деформации решетки растворителя относительно невелика. В таких случаях говорят, что эти частицы выделяются некогерентно.

B ряде случаев межатомные расстояния и кристаллическая структура металла-растворителя и частичек примеси таковы, что некоторые плоскости могут соединяться между собой, образуя непрерывную структуру. Тогда говорят, что частицы второй фазы выделяются когерентно и, поскольку сопряжение решеток никогда не бывает абсолютно точным, вокруг границы образуется сильно напряженная область. В тех случаях, когда энергия деформации слишком велика для этого, соседние кристаллы могут контактировать таким образом, что при этом в пограничных слоях возникают области упругой деформации, а на самой границе раздела — дислокации. В таких случаях говорят, что частицы выделяются полукогерентно[12].

При повышении температуры вследствие увеличения амплитуды колебаний атомов может образоваться дефект кристаллической решётки, который называют вакансия или "дырка". Диффузия вакансий является одним из механизмов образования дислокаций[13].

Как правило, кристаллизация металла происходит путём переохлаждения с образованием дендритной структуры. По мере разрастания дендритные кристаллы соприкасаются, при этом образуются различные дефекты структуры. В большинстве случаев металл затвердевает так, что первая порция кристаллов содержит меньше примесей, чем последующие. Поэтому, как правило, примеси концентрируются на границах зёрен, образуя стабильные структуры[14].

Применение металлов

Конструкционные материалы

Металлы и их сплавы — одни из главных конструкционных материалов современной цивилизации. Это определяется, прежде всего, их высокой прочностью, однородностью и непроницаемостью для жидкостей и газов. Кроме того, меняя рецептуру сплавов, можно менять их свойства в очень широких пределах.

Электротехнические материалы

Металлы используются в качестве хороших проводников электричества (медь, алюминий), так и в качестве материалов с повышенным сопротивлением для резисторов и электронагревательных элементов (нихром и т. п.).

Инструментальные материалы

Металлы и их сплавы широко применяются для изготовления инструментов (их рабочей части). В основном, это инструментальные стали и твёрдые сплавы. В качестве инструментальных материалов применяются также алмаз, нитрид бора, керамика.

История развития представлений о металлах

Знакомство человека с металлами началось с золота, серебра и меди, то есть с металлов, встречающихся в свободном состоянии на земной поверхности; впоследствии к ним присоединились металлы, значительно распространенные в природе и легко выделяемые из их соединений: олово, свинец, железо и ртуть. Эти семь металлов были знакомы человечеству в глубокой древности. Среди древнеегипетских артефактов встречаются золотые и медные изделия, которые, по некоторым данным, относятся к эпохе, удаленной на 3000—4000 лет от н. э.

К семи известным металлам уже только в средние века прибавились цинк, висмут, сурьма и в начале XVIII столетия мышьяк. С середины XVIII века число открытых металлов быстро возрастает и к началу XX столетия доходит до 65, а к началу XXI века — до 96.

Ни одно из химических производств не способствовало столько развитию химических знаний, как процессы, связанные с получением и обработкой металлов; с историей их связаны важнейшие моменты истории химии. Свойства металлов так характерны, что уже в самую раннюю эпоху золото, серебро, медь, свинец, олово, железо и ртуть составляли одну естественную группу однородных веществ, и понятие о «металле» относится к древнейшим химическим понятиям. Однако воззрения на их натуру в более или менее определенной форме появляются только в средние века у алхимиков. Правда, идеи Аристотеля о природе: образования всего существующего из четырёх элементов (огня, земли, воды и воздуха) уже тем самым указывали на сложность металлов; но эти идеи были слишком туманны и абстрактны. У алхимиков понятие о сложности металлов и, как результат этого, вера в возможность превращать одни металлы в другие, создавать их искусственно, является основным понятием их миросозерцания.

Лишь Лавуазье выяснил роль воздуха при горении и показал, что прибыль в весе металлов при обжигании происходит от присоединения к металлам кислорода из воздуха, и таким образом установил, что акт горения металлов есть не распадение на элементы, а, напротив, акт соединения, вопрос о сложности металлов был решен отрицательно. Металлы были отнесены к простым химическим элементам, в силу основной идеи Лавуазье, что простые тела суть те, из которых не удалось выделить других тел. С созданием периодической системы химических элементов Менделеевым элементы металлов заняли в ней своё законное место.

См. также

Примечания

  1. ↑ Строго говоря из-за амфотерности химических свойств полуметаллы (металлоиды) представляют собой обособленную группу, не относясь ни к металлам, ни к неметаллам; К группе металлов их можно отнести лишь условно.
  2. ↑ Ranga P. Dias, Isaac F. Silvera Observation of the Wigner-Huntington transition to metallic hydrogen (англ.) // Science. — 2017-01-26. — P. eaal1579. — ISSN 1095-9203 0036-8075, 1095-9203. — DOI:10.1126/science.aal1579.
  3. ↑ In, Geology. Scientists Have Finally Created Metallic Hydrogen, Geology IN. Проверено 28 января 2017.
  4. ↑ Металлы // Энциклопедический словарь юного физика. / Сост. В. А. Чуянов. — М.: Педагогика, 1984. — с. 165—167. — 352 с.
  5. ↑ Ломоносов М. В. Основы металлургии и горного дела. — Санкт-Петербург: Императорская Академия Наук, 1763. — 416 с.
  6. ↑ Этимологический словарь русского языка. Вып. 10: М / Под общей редакцией А. Ф. Журавлёва и Н. М. Шанского. — М.: Изд-во МГУ, 2007. — 400 с. ISBN 978-5-211-05375-5
  7. ↑ Юрий Кукшкин. Химия вокруг нас
  8. ↑  (англ.) Los Alamos National Laboratory – Sodium. Архивировано 4 августа 2012 года.
  9. ↑  (англ.) Los Alamos National Laboratory – Aluminum. Архивировано 4 августа 2012 года.
  10. ↑ Поваренных А. С. Твердость минералов. — АН УССР, 1963. — С. 197-208. — 304 с.
  11. ↑ Юм-Розери, 1965, с. 92.
  12. ↑ Юм-Розери, 1965, с. 93-94.
  13. ↑ Юм-Розери, 1965, с. 97.
  14. ↑ Юм-Розери, 1965, с. 103.

Литература

Ссылки

ru-wiki.org

Что такое металл?

С самого раннего детства мы сталкиваемся с фразой, что такой-то предмет сделан из металла. Что такое металл?

Металлы - это определенная группа химических элементов (а также их сплавов), которые обладают общими для всей группы свойствами, такими как повышенная прочность, хорошая тепло- и электропроводность, ковкость, пластичность, металлический блеск.

К металлам относится почти 80 % всех известных химических элементов (96 из 118).

Физические свойства металлов

Все металлы, за исключением ртути, в обычных условиях находятся в твердом состоянии. По степени твердости самый мягкий металл - это цезий (0,2 балла по 10-балльной шкале Мооса). Самый твердый - это вольфрам. Его твердость равна 6 баллам. Твердость железа - 4 балла.

Температуры плавления (перехода в жидкое состояние) у металлов разнятся: от - 39º у ртути до 3 410º у вольфрама. Низкие температуры плавления имеют все щелочные металлы, а из обычных - олово и свинец. Их можно расплавить даже в домашних условиях на газовой горелке. Большинство металлов плавится в специальных печах с высокими температурами.

Благодаря наличию в кристаллических решетках металлов свободных подвижных электронов, все они очень хорошо проводят электричество и тепло. Самые лучшие проводники электричества из металлов - это серебро, медь и алюминий. Не случайно именно из двух последних металлов делают электропроводку.

С прекрасной теплопроводностью металлов мы также часто сталкиваемся в быту. Чтобы вскипятить воду, мы наливаем ее в металлическую кастрюлю и ставим на плиту. Тэн нагревает металл, а металл передает почти всю тепловую энергию воде.

Химические свойства металлов

В ходе химических реакций все металлы легко отдают свои электроны и выступают в роли восстановителей.

Почти все металлы окисляются кислородом. Щелочные металлы (литий, кальций) вступают во взаимодействие с кислородом при обычных условиях. Для окисления кислородом других металлов нужна повышенная температура. Например, если нагреть медную проволоку на огне, медь вступит во взаимодействие с кислородом из воздуха и покроется черной пленкой (оксидом меди):

С кислородом не реагируют золото и платина.

Из других окислителей с металлами реагируют хло

elhow.ru

Металлы в химии

Нахождение металлов в природе

Металлы широко распространены в природе и могут встречаться в различном виде: в самородном состоянии (Ag, Au, Rt, Cu), в виде оксидов (Fe3O4, Fe2O3, (NaK)2O×AlO3), солей (KCl, BaSO4, Ca3(PO4)2), а также сопутствуют различным минералам (Cd – цинковые руды, Nb, Tl – оловянные и т.д.).

По распространенности в земной коре (в массовых процентах) металлы распределяются следующим образом: Al, Fe, Ca, Na, Mg, K, Ti – 8,2%, 4,1%, 4,1%, 2,3% 2,3%, 2,1%, и 0,56%, соответственно. Натрий и магний содержатся в морской воде – 0,12 и 1,05%, соответственно.

Физические свойства металлов

Всем металлам присущи металлический блеск (однако In и Ag отражают свет лучше других металлов), твердость (самый твердый металл – Cr, самые мягкие металлы – щелочные), пластичность (в ряду Au, Ag, Cu, Sn, Pb, Zn, Fe наблюдается уменьшение пластичности), ковкость, плотность (самый легкий металл – Li, самый тяжелый – Os), тепло – и электропроводность, которые уменьшаются в ряду Ag, Cu, Au, Al, W, Fe.

В зависимости от температуры кипения все металлы подразделяют на тугоплавкие (Tкип > 1000^{\circ}С) и легкоплавкие (Tкип < 1000^{\circ}С). Примером тугоплавких металлов может быть – Au, Cu, Ni, W, легкоплавких – Hg, K, Al, Zn.

Электронное строение металлов

Среди металлов присутствуют s-, p-, d- и f-элементы. Так, s- элементы – это металлы I и II групп Периодической системы (ns1, ns2), р- элементы – металлы, расположенные в группах III – VI (ns2np1-4). Металлы d-элементы имеют большее число валентных электронов по сравнению с металлами s- и p-элементами. Общая электронная конфигурация валентных электронов металлов d-элементов – (n-1)d1-10ns2. Начиная с 6 периода появляются металлы f-элементы, которые объединены в семейства по 14 элементов (за счет сходных химических свойств) и носят особые названия лантаноидов и актиноидов. Общая электронная конфигурация валентных электронов металлов f-элементов – (n-2)f1-14(n-1)d0-1ns 2.

Получение металлов

Щелочные, щелочноземельные металлы и алюминий получают электролизом расплавов солей или оксидов этих элементов:

2NaCl = 2Na + Cl2↑

CaCl2 = Ca + Cl2↑

2Al2O3 = 4Al + 3O2↑

Тяжелые металлы получают восстановлением из руд при высоких температурах и в присутствии катализатора (пирометаллургия) (1) или восстановлением из солей в растворе (гидрометаллургия) (2):

Cu2O + C = 2Cu + CO (1)

CuSO4 + Fe = Cu + FeSO4 (2)

Некоторые металлы получают термическим разложением их неустойчивых соединений:

Ni(CO)4 = Ni + 4CO

Химические свойства металлов

Металлы способны реагировать с простыми веществами, такими как кислород (реакция горения), галогены, азот, сера, водород, фосфором и углеродом:

2Al + 3/2 O2 = Al2O3 (оксид алюминия)

2Na + Cl2 = 2NaCl (хлорид натрия)

6Li + N2 = 2Li3N (азид лития)

2Li+2C = Li2C2 (карбид лития)

2K +S = K2S (сульфид калия)

2Na + h3 = NaH (гидрид натрия)

3Ca + 2P = Ca3P2 (фосфид кальция)

Металлы взаимодействуют друг с другом, образуя интерметаллические соединения:

3Cu + Au = Cu3Au

Щелочные и некоторые щелочноземельные металлы (Ca, Sr, Ba) взаимодействуют с водой с образованием гидроксидов:

Ba + 2h3O = Ba(OH)2 + h3↑

2Na + 2h3O = 2NaOH + h3↑

В ОВР металлы являются восстановителями – отдают валентные электроны и превращаются в катионы. Восстановительная способность металла — его положение в электрохимическом ряду напряжений металлов. Так, чем левее в ряду напряжений стоит металл, тем более сильные восстановительные свойства он проявляет.

Металлы, стоящие в ряду активности до водорода способны реагировать с кислотами:

2Al + 6HCl = 2AlCl3 + 3 h3↑

Zn + 2HCl = ZnCl2 + 2h3↑

Fe + h3SO4 = FeSO4 + h3↑

Примеры решения задач

ru.solverbook.com

это что? Виды и особенности металлов

Из 118 элементов известных человеку 94 относится к металлам. Это элементы, которые образуют простые вещества с характерным блеском, высокой пластичностью и ковкостью. Какими еще свойствами обладают металлы? На какие группы они подразделяются? Давайте узнаем.

Металлы и их свойства

Описание металлов – дело нелегкое. Их сложно сравнить с другими элементами или веществами, известными в современном мире. В стандартном понимании металл – это твердое серое вещество с сильным блеском. Но все гораздо сложнее. Большинство из них действительно серого цвета, но оттенки у всех отличаются. У галлия он голубоватый, у висмута – розовый, у меди – ярко-красный, а вот цезий, стронций и золото имеют желтый оттенок.

металл это

По степени проявления своих свойств металлы очень разные. Но есть качества, которые их объединяют. Металлы относительно легко отдают электроны внешнего уровня, так как они слабо связаны с ядром атома. Их внутренняя структура представлена кристаллической решеткой, поэтому при нормальных условиях все они твердые. Исключение составляет лишь ртуть, которая твердеет только при температуре ниже -38,83 °C.

Металлы – это отличные проводники тепла и электричества. Многие из них очень пластичны, например золото, медь, чистый хром, серебро. Они способны гнуться или сминаться, не ломаясь. Другие же бывают довольно хрупкими (марганец, олово, висмут).

Группы металлов

В одних и тех же условиях металлы ведут себя неодинаково, что видно уже на примере ртути. Она очень легко становится жидкой, но далеко не все вещества ведут себя так же. В зависимости от температуры плавления выделяют легкоплавкие и тугоплавкие металлы. К последним относятся вольфрам, тантал, рений, молибден. Они плавятся при температурах больше 2000 °C.

металл группы

Выделяют также тяжелые и легкие металлы. Тяжелые - свинец, кадмий, кобальт, ртуть, медь, ванадий, обладают большим атомным весом (больше 50) и высокой плотностью. У легких все ровно наоборот. К ним относятся алюминий, галлий, индий. Самым легким является литий, с плотностью 0,533 г/см³ и атомной массой 3.

В Периодической таблице выделяют также щелочную группу металлов (литий, натрий, калий, рубидий). Они довольно легко вступают в реакцию с водой, образуя растворимую щелочь или гидроксид. Все они очень активные, мягкие и намного легче воды. Существуют и щелочноземельные металлы (кальций, барий, стронций), щелочь с водой образуют уже их оксиды или земли. Они более твердые и не такие активные, как щелочные.

Исходя из разных свойств металлов их также подразделяют на:

  • Переходные.
  • Постпереходные.
  • Цветные.
  • Черные.
  • Лантаноиды.
  • Актиноиды.
  • Благородные.
  • Металлы платиновой группы.
  • Редкоземельные.

Благородные металлы

Металлы в химических реакциях часто выступают как восстановители. Отдавая свои электроны, они подвергаются коррозийным процессам, которые их разрушают. Под действием окислителей на их поверхности образуются оксиды, гидроксиды, которые в народе называют ржавчиной.

Таким процессам подвержены многие металлы. Разрушителями для них могут быть газы и различные жидкости. Однако есть отдельный класс металлов, который практически не поддаются окислению и ржавчине. Это благородные металлы. Все они также относятся к редким и драгоценным. Их стоимость колеблется от 300 (серебро) долларов до 70 000 (родий) долларов за килограмм.

химические металлы

Благородными являются золото, серебро, а также металлы платиновой группы: платина, рутений, осмий, палладий, иридий, родий. Платина, палладий, золото и серебро очень пластичные, но слишком высоких температур не выдерживают. Остальные благородные металлы еще и тугоплавкие, они плавятся от температуры 2334 °C (рутений) до 3033 °C (осмий).

Все они стойко переносят воздействие воды и воздуха, но могут реагировать с более агрессивными веществами. Например, серебро легко растворяется в азотной кислоте, а от соприкосновения с йодом темнеет. Кстати, с помощью йода можно проверить, действительно ли изделие серебряное.

Нахождение в природе

Металлы широко распространены на нашей планете. В виде солей и соединений они содержатся в морской воде. Больше всего она полна магнием (0,12%) и кальцием (1,05%). В земной коре самый распространенный металл – это алюминий. Он составляет примерно 8% всей ее массы. В ней также содержится много железа (4,1%), кальция (4%), натрия (2,3%), магния (2,3%), калия (2,1%).

 металл класс

Но металлы присутствуют не только во внешней среде. Они присутствуют в любом живом организме, отвечая за многие жизненно важные функции. В человеческом теле содержится около 3% металлов. Железо в крови помогает гемоглобинам присоединять кислород и осуществлять обмен с углекислым газом. Магний есть в мышцах и нервной системе. Он участвует в синтезе белков, отвечает за расслабление мышц, тормозит возбуждение нервных окончаний.

Самые необходимые для нас: магний, железо, натрий, кальций, калий, цинк, медь, кобальт, марганец и молибден. Металлы содержатся в костях, в мозге, в тканях других органов. Мы получаем их с водой и продуктами питания, и постоянно нуждаемся в пополнении их запасов. При дефиците этих элементов организм работает неправильно, правда, их избыток тоже не на пользу.

Применение

Люди научились применять металлы практически во всех сферах своей жизни. Из них делают конструкционные материалы, провода, электротехнику, посуду. Неустойчивые радиоактивные элементы, такие как уран, калифорний, полоний, нашли применение в ядерной энергетике и производстве оружия.

Легкие и прочные металлы используют в космической технике и автомобилестроении. Различные элементы применяются в фармацевтике, пищевой, текстильной промышленности. Из них делают украшения, предметы быта, а также лекарства и медицинские инструменты. Литий, например, используется как антидепрессант, золото входит в средства против артрита и туберкулеза. Титан и тантал используют в хирургии для протезов и замены поврежденных частей организма.

fb.ru

Получение металлов и их применение

Несмотря на то что все чаще в промышленности и быту используются искусственно созданные материалы, отказаться от применения металлов пока не представляется возможным. Они обладают уникальным сочетанием свойств, а сплавы позволяют максимально использовать их потенциал. В каких областях происходит получение и применение металлов?

Характеристика группы элементов

Под металлами понимают совокупность неорганических химических веществ, обладающих характерными свойствами. Как правило, они включают следующее:

  • высокая теплопроводность;
  • пластичность, относительная легкость механической обработки;
  • сравнительно высокая температура плавления;
  • хорошая электропроводность;
  • характерный "металлический" блеск;
  • роль восстановителя в реакциях;
  • высокая плотность.

Разумеется, не все элементы этой группы обладают всеми этими свойствами, например, ртуть при комнатной температуре жидкая, галлий плавится от тепла человеческих рук, а висмут вряд ли можно назвать пластичным. Но в общем и целом все эти черты прослеживаются в совокупности металлов.

получение металлов

Внутренняя классификация

Металлы условно делят на несколько категорий, каждая из которых объединяет элементы, наиболее близкие друг другу по различным параметрам. Различают следующие группы:

  • щелочные - 6;
  • щелочноземельные - 4;
  • переходные - 38;
  • легкие - 7;
  • полуметаллы - 7;
  • лантаноиды - 14+1;
  • актиноиды - 14+1;

Вне групп остается еще два: бериллий и магний. Таким образом, на данный момент из всех открытых элементов 94 ученые относят к металлам.

Кроме того, стоит упомянуть, что есть и другие классификации. Согласно им, отдельно рассматриваются благородные, металлы платиновой группы, постпереходные, тугоплавкие, черные и цветные и т. д. Такой подход имеет смысл лишь при определенных целях, так что удобнее использовать общепринятую классификацию.

получение цветных металлов

История получения

Человечество на протяжении всего своего развития было тесно связано с обработкой и использованием металлов. Помимо того что они оказались наиболее распространенными элементами, из них можно было изготавливать различные изделия лишь с помощью механической обработки. Поскольку навыков работы с рудой еще не было, сначала речь шла лишь об использовании самородков. Сначала это был мягкий металл, давший название медному веку, сменившему каменный. В этот период был разработан метод холодной ковки. В некоторых цивилизациях стала возможной выплавка. Постепенно люди освоили получение цветных металлов, таких как золото, серебро, олово.

Позднее на смену медному пришел бронзовый век. Он продлился примерно 20 тысячелетий и стал переломным моментом для человечества, поскольку именно в этот период стало возможным получать сплавы. Происходит постепенное развитие металлургии, совершенствуются способы получения металлов. Однако в 13-12 вв. до н. э. произошел так называемый бронзовый коллапс, который положил начало железному веку. Это предположительно произошло из-за истощения запасов олова. А свинец и ртуть, открытые в это время, не смогли стать заменой бронзе. Так что людям предстояло развивать получение металлов из руд.

получение металлов из руд

Следующий период продлился относительно недолго - меньше тысячелетия, но оставил яркий след в истории. Несмотря на то что железо было известно гораздо раньше, оно почти не применялось из-за своих недостатков по сравнению с бронзой. Кроме того, последнюю было гораздо проще получить, в то время как выплавка руды была более трудоемким занятием. Все дело в том, что самородное железо встречается довольно редко, так что неудивительно, что отказ от бронзы происходил настолько медленно.

Значение навыков выделения металлов

По аналогии с тем, как предок человека впервые изготовил орудие труда, привязав острый камень к палке, переход к новому материалу оказался настолько же грандиозен. Основные преимущества металлических изделий состояли в том, что их было легче сделать, а также существовала возможность починки. Камень же не обладает пластичностью и ковкостью, так что любые орудия из него можно было сделать только заново, отремонтировать их не получалось.

Таким образом, именно переход к использованию металлов привел к дальнейшему совершенствованию орудий труда, появлению новых предметов быта, украшений, изготовить которые было ранее невозможно. Все это дало толчок техническому прогрессу и заложило фундамент для развития металлургии.

получение металлов электролизом

Современные методы

Если в древности людям было знакомо лишь получение металлов из руд, либо они могли довольствоваться самородками, то в настоящее время существуют и другие способы. Они стали возможными благодаря развитию химии. Таким образом, появилось два основных направления:

  • Пирометаллургия. Она начала свое развитие раньше и связана с высокими температурами, необходимыми для обработки материала. Современные технологии в этой области позволяют также использование плазмы.
  • Гидрометаллургия. Это направление занимается извлечением элементов из руд, отходов, концентратов и т. д. с помощью воды и химических реактивов. Например, крайне распространен способ, предполагающий получение металлов электролизом, также довольно популярен метод цементации.

Есть и еще одна интересная технология. Получение драгоценных металлов высокой чистоты и с минимальными потерями стало возможно именно благодаря ей. Речь об аффинаже. Этот процесс - один из видов рафинирования, то есть постепенного отделения примесей. Например, в случае с золотом используется насыщение расплава хлором, а платину растворяют в минеральных кислотах с последующим выделением реагентами.

Кстати, получение металлов электролизом чаще всего применяется, если выплавка или восстановление экономически невыгодны. Именно так происходит с алюминием и натрием. Есть и более инновационные технологии, делающие возможных получение цветных металлов даже из достаточно бедных руд без значительных затрат, но речь об этом пойдет чуть позднее.

получение драгоценных металлов

О сплавах

Большая часть металлов, известных в древности, не всегда отвечала некоторым потребностям. Коррозия, недостаточная твердость, ломкость, хрупкость, недолговечность - у каждого элемента в чистом виде есть свои недостатки. Поэтому стало необходимо найти новые материалы, объединяющие в себе преимущества известных, то есть найти способы получения сплавов металлов. На сегодняшний день существует два основных метода:

  • Литье. Расплав смешанных компонентов охлаждается и кристаллизуется. Именно этот способ позволил получить первые образцы сплавов: бронзу и латунь.
  • Прессование. Смесь порошков подвергается высокому давлению, а потом спекается.

Дальнейшее совершенствование

В последние десятилетия наиболее перспективным кажется получение металлов с применением биотехнологий, в первую очередь с помощью бактерий. Уже стало возможным извлечение из сульфидного сырья меди, никеля, цинка, золота, урана. Ученые надеются подключить микроорганизмы к таким процессам, как выщелачивание, окисление, сорбции и осаждение. Кроме того, крайне актуальной является проблема очистки глубоких сточных вод, для нее тоже пытаются найти решение, предполагающее участие бактерий.

способы получения сплавов металлов

Применение

Без металлов и сплавов была бы невозможна жизнь в том виде, в котором она сейчас известна человечеству. Высотные дома, самолеты, посуда, зеркала, электроприборы, автомобили и многое другое существует лишь благодаря далекому переходу людей от камня к меди, бронзе и железу.

Из-за своей исключительной электро- и теплопроводности металлы используются в проводах и кабелях самого различного назначения. Золото применяется для изготовления неокисляемых контактов. Благодаря своей прочности и твердости металлы широко используются в строительстве и для получения самых разных конструкций. Еще одна область применения - инструментальная. Для изготовления рабочей, например, режущей части часто используются твердые сплавы и специальные виды стали. Наконец, благородные металлы высоко ценятся как материал для ювелирных изделий. Так что областей применения предостаточно.

получение и применение металлов

Интересное о металлах и сплавах

Использование этих элементов настолько широко и имеет такую длинную историю, что неудивительно возникновение различных курьезных ситуаций. Их и просто пару любопытных фактов и стоит привести напоследок:

  • До своего широкого распространения алюминий очень ценился. Столовые приборы, которыми при приеме гостей пользовался Наполеон III, были изготовлены именно из этого материала и были предметом гордости монарха.
  • Название платины в переводе с испанского означает "серебришко". Такое нелестное имя элемент получил в связи с относительно высокой температурой плавления и, следовательно, невозможностью на протяжении долгого времени его применять.
  • В чистом виде золото мягкое, и его легко можно поцарапать ногтем. Именно поэтому для изготовления украшений его сплавляют с серебром или медью.
  • Существуют сплавы с любопытным свойством термоупругости, то есть эффектом "памяти" формы. При деформации и последующем нагревании они возвращаются к изначальному состоянию.

fb.ru

Металл - это... Что такое Металл?

Мета́лл (название происходит от лат. metallum — шахта) — один из классов элементов, которые в отличие от неметаллов (и металлоидов), обладают характерными металлическими свойствами. Металлами являются большинство химических элементов (примерно 70 %). Самым распространённым металлом в земной коре является алюминий.

Металлы (1А и 2А группа)- это химические элементы, атомы которых легко отдают валентные электроны с внешнего и предвнешнего подуровня, превращаясь в катионы, это обусловлено малым количеством валентных электронов и большим радиусом атома.

Нахождение в природе

Большая часть металлов присутствует в природе в виде руд и соединений.

Они образуют оксиды, сульфиды, карбонаты и другие химические соединения. Для получения чистых металлов и дальнейшего их применения необходимо выделить их из руд и провести очистку. При необходимости проводят легирование и другую обработку металлов. Изучением этого занимается наука металлургия. Металлургия различает руды чёрных металлов (на основе железа) и цветных (в их состав не входит железо, всего около 70 элементов). Исключением можно назвать около 16 элементов: т. н. благородные металлы (золото, серебро и др.), и некоторые другие (например, ртуть, медь), которые присутствуют без примесей. Золото, серебро и платина относятся также к драгоценным металлам. Кроме того, в малых количествах они присутствуют в морской воде, растениях, живых организмах (играя при этом важную роль).

Известно, что организм человека на 3 % состоит из металлов. Больше всего в наших клетках кальция и натрия, сконцентрированного в лимфатических системах. Магний накапливается в мышцах и нервной системе, медь — в печени, железо — в крови.

Свойства металлов

Характерные свойства металлов

Физические свойства металлов

Все металлы (кроме ртути) тверды при нормальных условиях. Однако твёрдость их различна. Так, щелочные металлы легко режутся кухонным ножом. Сталь же по твёрдости схожа с оконным стеклом. Такие металлы, как ванадий, вольфрам и хром легко царапают самую твёрдую сталь и стекло.

Твёрдость некоторых металлов по шкале Мооса:

Твёрдость Металл Обрабатываемость
0.2 Цезий очень легко царапался бы ногтём (прикосновение опасно.)
0.3 Рубидий очень легко царапался бы ногтём (прикосновение опасно.)
0.4 Калий очень легко царапался бы ногтём (прикосновение опасно.)
0.5 Натрий очень легко царапался бы ногтём (прикосновение опасно.)
0.6 Литий очень легко царапался бы ногтём (прикосновение опасно.)
1.2 Индий легко царапается ногтём
1.2 Таллий легко царапается ногтём
1.25 Барий легко царапается ногтём
1.5 Стронций царапается ногтём
1.5 Галлий царапается ногтём
1.5 Олово царапается ногтём
1.5 Свинец царапается ногтём
1.5 Ртуть царапается ногтём (в твёрдом состоянии)
1.75 Кальций царапается ногтём
2.0 Кадмий царапается алюминиевой ложкой
2.25 Висмут царапается алюминиевой ложкой
2.5 Магний царапается медной проволокой
2.5 Цинк царапается медной проволокой
2.5 Серебро царапается медной монетой
2.5 Золото царапается медной монетой
3.0 Медь царапается кухонным ножом
3.0 Сурьма царапается кухонным ножом
3.5 Платина царапается кухонным ножом
4.0 Железо царапается кухонным ножом (из нержавеющей стали)
4.0 Никель царапается кухонным ножом (из нержавеющей стали)
4.75 Палладий царапается кухонным ножом (из нержавеющей стали)
5.0 Кобальт царапается стеклом и стальным гвоздём
5.0 Цирконий царапается стеклом и стальным гвоздём
5.0 Бериллий царапается напильником из и полевым шпатом
5.5 Молибден царапается напильником из и полевым шпатом
5.5 Гафний царапается напильником из и полевым шпатом
6.0 Титан царапает стекло; царапается стеклом и напильником
6.0 Марганец царапает стекло; царапается стеклом и напильником
6.0 Германий царапает стекло; царапается стеклом и напильником
6.0 Ниобий царапает стекло; царапается стеклом и напильником
6.0 Родий царапает стекло; царапается стеклом и напильником
6.5 Рутений царапает стекло; царапается кварцом
6.5 Тантал царапает стекло; царапается кварцом
6.5 Иридий царапает стекло; царапается кварцом
7.0 Ванадий царапает все виды сталей; царапается топазом
7.0 Рений царапает все виды сталей; царапается топазом
7.0 Осмий царапает все виды сталей; царапается топазом
7.5 Вольфрам царапает все виды сталей; царапается топазом
8.5 Хром легко царапает стекло и все металлы; царапается рубином

Температуры плавления лежат в диапазоне от −39 °C (ртуть) до 3410 °C (вольфрам). Температура плавления большинства металлов (за исключением щелочных) высока, однако некоторые «нормальные» металлы, например олово и свинец, можно расплавить на обычной электрической или газовой плите.

В зависимости от плотности металлы делят на лёгкие (плотность 0,53 ÷ 5 г/см³) и тяжёлые (5 ÷ 22,5 г/см³). Самым лёгким металлом является литий (плотность 0.53 г/см³). Самый тяжёлый металл в настоящее время назвать невозможно, так как плотности осмия и иридия — двух самых тяжёлых металлов — почти равны (около 22.6 г/см³ — ровно в два раза выше плотности свинца), а вычислить их точную плотность крайне сложно: для этого нужно полностью очистить металлы, ведь любые примеси снижают их плотность.

Большинство металлов пластичны, то есть металлическую проволоку можно согнуть, и она не сломается. Это происходит из-за смещения слоёв атомов металлов без разрыва связи между ними. Самыми пластичными являются золото, серебро и медь. Из золота можно изготовить фольгу толщиной 0.003 мм, которую используют для золочения изделий. Однако не все металлы пластичны. Проволока из цинка или олова хрустит при сгибании; марганец и висмут при деформации вообще почти не сгибаются, а сразу ломаются. Пластичность зависит и от чистоты металла; так, очень чистый хром весьма пластичен, но, загрязнённый даже незначительными примесями, становится хрупким и более твёрдым.

Все металлы хорошо проводят электрический ток; это обусловлено наличием в их кристаллических решётках подвижных электронов, перемещающихся под действием электрического поля. Серебро, медь и алюминий имеют наибольшую электропроводность; по этой причине последние два металла чаще всего используют в качестве материала для проводов. Очень высокую электропроводность имеет также натрий, в экспериментальной аппаратуре известны попытки применения натриевых токопроводов в форме тонкостенных труб из нержавеющей стали, заполненных натрием. Благодаря малому удельному весу натрия, при равном сопротивлении натриевые «провода» получаются значительно легче медных и даже несколько легче алюминиевых.

Высокая теплопроводность металлов также зависит от подвижности свободных электронов. Поэтому ряд теплопроводностей похож на ряд электропроводностей и лучшим проводником тепла, как и электричества, является серебро. Натрий также находит применение как хороший проводник тепла; широко известно, например, применение натрия в клапанах автомобильных двигателей для улучшения их охлаждения.

Гладкая поверхность металлов отражает большой процент света — это явление называется металлическим блеском. Однако в порошкообразном состоянии большинство металлов теряют свой блеск; алюминий и магний, тем не менее, сохраняют свой блеск и в порошке. Наиболее хорошо отражают свет алюминий, серебро и палладий — из этих металлов изготовляют зеркала. Для изготовления зеркал иногда применяется и родий, несмотря на его исключительно высокую цену: благодаря значительно большей, чем у серебра или даже палладия, твёрдости и химической стойкости, родиевый слой может быть значительно тоньше, чем серебряный.

Цвет у большинства металлов примерно одинаковый — светло-серый с голубоватым оттенком. Золото, медь и цезий соответственно жёлтого, красного и светло-жёлтого цвета.

Химические свойства металлов

На внешнем электронном слое у большинства металлов небольшое количество электронов (1-3), поэтому они в большинстве реакций выступают как восстановители (то есть «отдают» свои электроны)

1. Реакции с простыми веществами

  • С кислородом реагируют все металлы, кроме золота, платины. Реакция с серебром происходит при высоких температурах, но оксид серебра(II) практически не образуется, так как он термически неустойчив. В зависимости от металла на выходе могут оказаться оксиды, пероксиды, надпероксиды:

4Li + O2 = 2Li2O оксид лития2Na + O2 = Na2O2 пероксид натрияK + O2 = KO2 надпероксид калияЧтобы получить из пероксида оксид, пероксид восстанавливают металлом:Na2O2 + 2Na = 2Na2OСо среднмими и малоактивными металлами реакция происходит при нагревании:3Fe + 2O2 = Fe3O42Hg + O2 = 2HgO2Cu + O2 = 2CuO

  • С азотом реагируют только самые активные металлы, при комнатной температуре взаимодействует только литий, образуя нитриды:

6Li + N2 = 2Li3NПри нагревании:2AL + N2 = 2AlN3Ca + N2 = 2Ca3N2

  • С серой реагируют все металлы, кроме золота и платины:

Железо взаимодействует с серой при нагревании, образуя сульфид:Fe + S = FeS

  • С водородом реагируют только самые активные металлы, то есть металлы IA и IIA групп кроме Be. Реакции осуществляются при нагревании, при этом образуются гидриды. В реакциях металл выступает как восстановитель, степень окисления водорода −1:

2Na + h3 = 2NaHMg + h3 = Mgh3

  • С углеродом реагируют только наиболее активные металлы. При этом образуются ацетилениды или метаниды. Ацетилениды при взаимодествии с водой дают ацетилен, метаниды — метан.

2Na + 2C = Na2C2Na2C2 + 2h3O = 2NaOH + C2h32Na + h3 = 2NaH

Легирование

Это введение в расплав дополнительных элементов, улучшающих механические, физические и химические свойства основного материала.

Микроскопическое строение

Характерные свойства металлов можно понять, исходя из их внутреннего строения. Все они имеют слабую связь электронов внешнего энергетического уровня (другими словами, валентных электронов) с ядром. Благодаря этому созданная разность потенциалов в проводнике приводит к лавинообразному движению электронов (называемых электронами проводимости) в кристаллической решётке. Совокупность таких электронов часто называют электронным газом. Вклад в теплопроводность, помимо электронов, дают фононы (колебания решётки). Пластичность обусловлена малым энергетическим барьером для движения дислокаций и сдвига кристаллографических плоскостей. Твёрдость можно объяснить большим числом структурных дефектов (междоузельные атомы, вакансии и др.).

Из-за лёгкой отдачи электронов возможно окисление металлов, что может приводить к коррозии и дальнейшей деградации свойств. Способность к окислению можно узнать по стандартному ряду активности металлов. Этот факт подтверждает необходимость использования металлов в комбинации с другими элементами (сплав, важнейшим из которых является сталь), их легирование и применение различных покрытий.

Для более корректного описания электронных свойств металлов необходимо использовать квантовую механику. Во всех твёрдых телах с достаточной симметрией уровни энергии электронов отдельных атомов перекрываются и образуют разрешённые зоны, причём зона, образованная валентными электронами, называется валентной зоной. Слабая связь валентных электронов в металлах приводит к тому, что валентная зона в металлах получается очень широкой, и всех валентных электронов не хватает для её полного заполнения.

Принципиальная особенность такой частично заполненной зоны состоит в том, что даже при минимальном приложенном напряжении в образце начинается перестройка валентных электронов, т. е. течёт электрический ток.

Та же высокая подвижность электронов приводит и к высокой теплопроводности, а также к способности зеркально отражать электромагнитное излучение (что и придаёт металлам характерный блеск).

Некоторые металлы

  1. Щелочные:
  2. Щёлочноземельные:
  3. Переходные
  4. Другие:

Применение металлов

Конструкционные материалы

Металлы и их сплавы — одни из главных конструкционных материалов современной цивилизации. Это определяется прежде всего их высокой прочностью, однородностью и непроницаемостью для жидкостей и газов. Кроме того, меняя рецептуру сплавов, можно менять их свойства в очень широких пределах.

Электротехнические материалы

Металлы используются как в качестве хороших проводников электричества (медь, алюминий), так и в качестве материалов с повышенным сопротивлением для резисторов и электронагревательных элементов (нихром и т. п.).

Инструментальные материалы

Металлы и их сплавы широко применяются для изготовления инструментов (их рабочей части). В основном это инструментальные стали и твёрдые сплавы. В качестве инструментальных материалов применяются также алмаз, нитрид бора, керамика.

Wikimedia Foundation. 2010.

dic.academic.ru

Железо сталь и прочие металлы

Железо и сталь — важнейшие металлы. Сталь получают из железа. Из нее делают множество предметов — от нефтяных вышек до канцелярских скрепок. Наряду с 80 чистыми металлами людям известно немало сплавов — смесей металлов, качества которых отличаются от качеств чистых металлов. Башенные краны, мосты, другие сооружения делают из стали, содержащей до 0,2% углерода. Углерод делает сталь прочнее, причем она сохраняет ковкость. Сталь покрывают краской для защиты от коррозии.

Железо и сталь

Железо — это элемент. Его добывают из руды — соединения железа с кислородом. Большая часть добытого железа идет на производство стали, сплава железа с углеродом. Наиболее распространенные железные руды: магнетит(вверху) и гематит(внизу). Железо добывается из руды в доменных печах. Этот процесс называется плавкой. В печи через слой железной руды, известняка и кокса продувают очень горячий воздух. Кокс представляет собой почти чистый углерод, его получают нагреванием угля. Углерод кокса соединяется с кислородом, образуя моноксид углерода, который затем «вытягивает» кислород из руды, оставляя чистое железо, и образует диоксид углеро­да. Это пример реакций восстановления. Руда, кокс и известняк поступают в печь. Известняк реагирует с имеющимися в руде примесями, образуя шлак. Внутри печи раскаленный воздух реагирует с углеродом. Образуется моноксид углерода. При этом температура в печи повышается до 2000°С. Затем оксид углерода реагирует с кислородом руды, восстанавливая ее до железа. Расплавленный шлак вытекает из нижней части печи. Его используют в строительстве дорог. В конце расплавленное железо выводится наружу. Доменная печь непрерывно функционирует 10 лет, пока её стенки не начнут разрушаться. Высота доменной печи 30 метров, толщина её стен 3 метра.

Железо, получаемое из руды, содержит углерод (около 4%) и другие примеси, в частности серу. Примеси делают желе­зо хрупким, поэтому большую его часть перерабатывают в сталь. При этом из железа удаляют­ся примеси. В стальных скрепках около 0,08% углерода. Инструменты делают из стали, содержащей хром, ванадий и до 1% углерода. Сталь получают при воздействии на расплавленное железо кислорода. Часто в железо добавляют небольшое количество стального лома. Кислород реагирует с углеродом, содержащимся в железе, при этом образуется моноксид углерода, используемый как топливо. После очистки в стали остается не более 0.04%   углерода; его количество зависит от марки стали. Сталь получают также путем переплавки стального лома в дуговой электропечи. Для получения стали расплавленное железо и стальной лом заливают в печь, называемую конвертером. В конвертер под высоким давлением закачивается почти чистый кислород. При его реакции с углеродом получается моноксид углерода (см. так же статью «Химические реакции«). Другой способ получения стали — переплавка стального лома в дуговой электропечи. Мощный электрический ток (см. статью «Электричество«) расплавляет лом. Расплавленный шлак вытекает из нижней части печи. Его используют в строительстве дорог.

Сплавы

Сплавом называется смесь двух или бо­лее металлов или металла и иного вещества. Так, латунь — это сплав меди и цинка. Латунь прочнее меди, ее легко обрабатывать, и она не подвержена коррозии. В чистых металлах атомы «упакованы» в тесные ряды (рис. слева). Ряды могут скользить относительно друг друга, что делает металл мягким. При резких сдвигах рядов металл ломается. В сплаве другие атомы укрепляют металл (см. рис. справа), т.к. сдвиг рядов уже невозможен. Поэтому сплавы прочнее чистых металлов.

Многие металлы сами по себе чересчур мягкие, чтобы их можно было использовать, зато их сплавы могут выдерживать большое давление и высокие температу­ры (см. статью «Тепло и температура«). Сталь — это сплав железа и углерода, неметалла. Добавляя небольшие количества других металлов, можно получить разновидности стали. Ножи и вилки делают из нержавеющей стали — сплава стали, хрома и никеля. Сплавы стали с марганцем чрезвычайно прочны и используются в промышленности для изготовления режущих инструментов. Алюминиево-магниевые сплавы лег­ки, прочны и не подвержены коррозии. Из них делают велосипеды и самолеты (см. статью «Полет«).

Важнейшие металлы и сплавы

Алюминий. Очень легкий серебристо-белый металл, не подверженный коррозии. Его получают из бокситов путем электролиза. Из алюминия делают электропровода, самолеты, корабли (см. статью «Плавучесть«), автомобили, банки для напитков, фольгу для приготовления пищи. Алюминиевые банки для напитков очень легкие и прочные.

Латунь. Ковкий сплав меди и цинка. Из латуни делают украшения, орнаменты, музыкальные инструменты, винты, кнопки для одежды.

Бронза. Известный с древнейших времен ковкий, не подверженный коррозии сплав меди и олова.

Кальций. Мягкий серебристо-белый металл. Входит в состав известняка и мела, а также костей и зубов животных. Кальций в человеческом организме содержится в костях и зубах. Он использует­ся в производстве цемента и высоко качественной стали.

Хром. Твердый серый металл. Ис­пользуется в производстве нержавеющей стали. Хромом покрывают металлические изделия в защитных целях и для придания им зеркального блеска.

Медь. Ковкий красноватый металл. Из меди делают электропровода, резервуары для горячей воды. Медь входит в со­став латуни, бронзы, мельхиора.

Мельхиор. Сплав меди и никеля. Из него делают почти все «серебряные» монеты.

Золото. Мягкий неактивный ярко-желтый металл. Используется в электронике и в ювелирном деле.

Железо. Ковкий серебристо-белый ферромагнетик. Добывается в основном из руды в доменных печах. Используется в инженерных конструкциях, а также в производстве стали и сплавов. В нашей крови тоже есть железо.

Свинец. Тяжелый ковкий ядовитый синевато-белый металл. Добывается из минерала гале­нита. Из свинца делают электрические батареи, крыши и экраны, защищающие от рентгеновских лучей.

Магний. Легкий серебри­сто-белый металл. Горит ярко-белым пламенем. Используется для сигнальных огней и фейерверков. Входит в состав легких сплавов. В праздничных ракетах есть магнии и другие металлы.

Ртуть. Тяжелый серебристо-белый ядовитый жидкий металл. Используется в термометрах, входит в состав зубной амальгамы и взрывчатых веществ.

Платина. Ковкий се­ребристо-белый неактивный металл. Ис­пользуется в качестве катализатора, а так­же в электронике и в производстве ювелирных изделий. Платина не вступает в реакции. Из нее делают украшения.

Плутоний. Радиоактивный металл. Образуется в ядерных реакторах при бомбардировке урана и используется в производстве ядерного оружия (см. статью «Ядерная энергия и радиоактивность«).

Калий. Легкий серебристый металл. Очень химически активен. Калиевые соединения входят в состав удобрений.

Серебро. Ковкий серовато-белый металл. Хорошо проводит тепло и электричество. Из него дела­ют украшения и столовые приборы. Входит в состав фотоэмульсии (см. статью «Фотография и фотоаппараты«).

Припой. Сплав олова и свинца. Плавится при сравнительно низкой температуре. Используется для спайки проводов в электронике.

Натрий. Мягкий серебристо-белый хими­чески активный металл. Входит в состав поваренной соли. Используется в производстве натриевых ламп и в химической промышленности.

Сталь. Сплав железа с углеродом. Широко применяется в промышленности. Нержа­веющая сталь — сплав стали с хромом — не подвержена коррозии и используется в авиакосмической индустрии (см. статью «Ракеты и космические аппараты«).

Олово. Мягкий ковкий серебристо-белый металл. Слоем олова сталь защищают от коррозии. Входит в состав таких сплавов, как бронза и припой.

Титан. Прочный белый ковкий металл, не подверженный коррозии. Из титановых сплавов делают космические аппараты, са­молеты, велосипеды.

Вольфрам. Твердый серовато-белый металл. Из него изготавливают нити ламп накаливания и детали электронных приборов. Из стали с Нить вольфрамом делают накаливания режущие инструменты.

Уран. Серебристо-белый радиоактивный металл, источник ядерной энергии. При­меняется при создании ядерного оружия.

Ванадий. Твердый ядовитый белый металл. Придает прочность стальным сплавам. Используется как катализатор при производстве серной кислоты.

Цинк. Синевато-белый металл. Добывает­ся из цинковой обманки. Используется для гальванизации железа, производства электробатареек. Входит в состав латуни.

Переработка металлов

Переработка — это повторное использование сырья, способ сохранить природные ресурсы. Металлы легко поддаются переработке, т.к. их можно переплавить и получить металл такого же качества, как и тот, что получается непосредственно из руды. Переплавлять сталь и алюминий несложно и выгодно. Медь, олово, свинец также подвергают­ся переплавке. Железные и стальные предметы можно извлечь из кучи отходов при помощи сильного магнита. Большую часть стали для переработки добывают из старых автомобилей и станков, но часть ее получают из фабричных металлических опилок и даже бытовых отходов. Стальной лом смешивают с расплавленным железом и получают новую сталь.

Алюминий — не ферромагнетик, но алюминиевые отходы можно отделить от железного лома при помощи электромагнита. Больше половины банок для напитков делают из алюминия, полученного пу­тем переработки. Чтобы узнать, сделана банка из стали или алюминия, возьми магнит. К стальной банке он прилипнет, а к алюминиевой — нет. Переработка металлолома требует значительно меньше энергии, чем получение металла из руды, и отходов при переработке меньше. Теоретически металл можно перерабатывать сколько угодно раз. Для переработки алюминиевых банок необходимо в 20 раз меньше энергии, чем для производства нового алюминия.

www.polnaja-jenciklopedija.ru


© 2007—2018
423800, Набережные Челны , база Партнер Плюс, тел. 8 800 100-58-94 (звонок бесплатный)