Камаз 44108 тягач В наличии!
Тягач КАМАЗ 44108-6030-24
евро3, новый, дв.КАМАЗ 740.55-300л.с., КПП ZF9, ТНВД ЯЗДА, 6х6, нагрузка на седло 12т, бак 210+350л, МКБ, МОБ
 
карта сервера
«ООО Старт Импэкс» продажа грузовых автомобилей камаз по выгодным ценам
+7 (8552) 31-97-24
+7 (904) 6654712
8 800 1005894
звонок бесплатный

Наши сотрудники:
Виталий
+7 (8552) 31-97-24

[email protected]

 

Екатерина - специалист по продаже а/м КАМАЗ
+7 (904) 6654712

[email protected]

 

Фото техники

20 тонный, 20 кубовый самосвал КАМАЗ 6520-029 в наличии
15-тонный строительный самосвал КАМАЗ 65115 на стоянке. Техника в наличии
Традиционно КАМАЗ побеждает в дакаре

тел.8 800 100 58 94

Техника в наличии

тягач КАМАЗ-44108
Тягач КАМАЗ 44108-6030-24
2014г, 6х6, Евро3, дв.КАМАЗ 300 л.с., КПП ZF9, бак 210л+350л, МКБ,МОБ,рестайлинг.
цена 2 220 000 руб.,
 
КАМАЗ-4308
КАМАЗ 4308-6063-28(R4)
4х2,дв. Cummins ISB6.7e4 245л.с. (Е-4),КПП ZF6S1000, V кузова=39,7куб.м., спальное место, бак 210л, шк-пет,МКБ, ТНВД BOSCH, система нейтрализ. ОГ(AdBlue), тент, каркас, рестайлинг, внутр. размеры платформы 6112х2470х730 мм
цена 1 950 000 руб.,
КАМАЗ-6520
Самосвал КАМАЗ 6520-057
2014г, 6х4,Евро3, дв.КАМАЗ 320 л.с., КПП ZF16, ТНВД ЯЗДА, бак 350л, г/п 20 тонн, V кузова =20 куб.м.,МКБ,МОБ, со спальным местом.
цена 2 700 000 руб.,
 
КАМАЗ-6522
Самосвал 6522-027
2014, 6х6, дв.КАМАЗ 740.51,320 л.с., КПП ZF16,бак 350л, г/п 19 тонн,V кузова 12куб.м.,МКБ,МОБ,задняя разгрузка,обогрев платформы.
цена 3 190 000 руб.,

СУПЕР ЦЕНА

на АВТОМОБИЛИ КАМАЗ
43118-010-10 (дв.740.30-260 л.с.) 2 220 000
43118-6033-24 (дв.740.55-300 л.с.) 2 300 000
65117-029 (дв.740.30-260 л.с.) 2 200 000
65117-6010-62 (дв.740.62-280 л.с.) 2 350 000
44108 (дв.740.30-260 л.с.) 2 160 000
44108-6030-24 (дв.740.55,рест.) 2 200 000
65116-010-62 (дв.740.62-280 л.с.) 1 880 000
6460 (дв.740.50-360 л.с.) 2 180 000
45143-011-15 (дв.740.13-260л.с) 2 180 000
65115 (дв.740.62-280 л.с.,рест.) 2 190 000
65115 (дв.740.62-280 л.с.,3-х стор) 2 295 000
6520 (дв.740.51-320 л.с.) 2 610 000
6520 (дв.740.51-320 л.с.,сп.место) 2 700 000
6522-027 (дв.740.51-320 л.с.,6х6) 3 190 000


Перегон грузовых автомобилей
Перегон грузовых автомобилей
подробнее про услугу перегона можно прочесть здесь.


Самосвал Форд Нужны самосвалы? Обратите внимание на Ford-65513-02.

КАМАЗы в лизинг

ООО «Старт Импэкс» имеет возможность поставки грузовой автотехники КАМАЗ, а так же спецтехники на шасси КАМАЗ в лизинг. Продажа грузовой техники по лизинговым схемам имеет определенные выгоды для покупателя грузовика. Рассрочка платежа, а так же то обстоятельство, что грузовики до полной выплаты лизинговых платежей находятся на балансе лизингодателя, и соответственно покупатель автомобиля не платит налогов на имущество. Мы готовы предложить любые модели бортовых автомобилей, тягачей и самосвалов по самым выгодным лизинговым схемам.

Контактная информация.

г. Набережные Челны, Промкомзона-2, Автодорога №3, база «Партнер плюс».

тел/факс (8552) 388373.
Схема проезда



Электрическим током называется направленное (упорядоченное) движение заряженных частиц. Электрическим током называется


Электрическим током называется направленное (упорядоченное) движение заряженных частиц.

Электрический ток в проводниках различного рода представляет собой либо направленное движение электронов в металлах (проводники первого рода), имеющих отрицательный заряд, либо направленное движение более крупных частиц вещества — ионов, имеющих как положительный, так и отрицательный заряд — в электролитах (проводники второго рода), либо направленное движение электронов и ионов обоих знаков в ионизированных газах (проводники третьего рода).

За направление электрического тока условно принято направление движения положительно заряженных частиц.

Для существования электрического тока в веществе необходимо:

1. наличие заряженных частиц, способных свободно перемещаться по проводнику под действием сил электрического поля;

Наличие источника тока, создающего и поддерживающего в проводнике в течение длительного времени электрическое поле.

Количественными характеристиками электрического тока являются сила тока I и плотность тока j.

Сила тока — скалярная физическая величина, определяемая отношением заряда q, проходящего через поперечное сечение проводника за некоторый промежуток времени t, к этому промежутку времени.

Единицей силы тока в СИ является ампер (А).

Если сила тока и его направление со временем не изменяются, то ток называется постоянным.

Единица силы тока — основная единица в СИ 1 А — есть сила такого неизменяющегося тока, который, проходя по двум бесконечно длинным параллельным прямолинейным проводникам очень маленького сечения, расположенным на расстоянии 1 м друг от друга в вакууме, вызывает силу взаимодействия между ними 2·10-7 Н на каждый метр длины проводников.

Рассмотрим, как зависит сила тока от скорости упорядоченного движения свободных зарядов.

Выделим участок проводника площадью сечения S и длиной l (рис. 1). Заряд каждой частицы q0. В объеме проводника, ограниченном сечениями 1 и 2, содержится nS l частиц, где n — концентрация частиц. Их общий заряд

.

Рис. 1

Если средняя скорость упорядоченного движения свободных зарядов , то за промежуток времени

все частицы, заключенные в рассматриваемом объеме, пройдут через сечение 2. Поэтому сила тока:

Таким образом, сила тока в проводнике зависит от заряда, переносимого одной частицей, их концентрации, средней скорости направленного движения частиц и площади поперечного сечения проводника.

Заметим, что в металлах модуль вектора средней скорости упорядоченного движения электронов при максимально допустимых значениях силы тока ~ 10-4м/с, в то время как средняя скорость их теплового движения ~ 106 м/с.

Плотность тока j — это векторная физическая величина, модуль которой определяется отношением силы тока I в проводнике к площади S поперечного сечения проводника, т.е.

В СИ единицей плотности тока является ампер на квадратный метр (А/м2).

Как следует из формулы (1),

.

направление вектора плотности тока совпадает с направлением вектора скорости упорядоченного движения положительно заряженных частиц. Плотность постоянного тока постоянна по всему поперечному сечению проводника.

ЗАКОНЫ ПОСТОЯННОГО ТОКА

Электрический ток.

Сила и плотность тока.

ЭДС и напряжение

I. Любое упорядоченное (направленное) движение электрических зарядов называется ЭЛЕКТРИЧЕСКИМ ТОКОМ. При приложении внешнего электрического поля Е в проводнике начинается движение зарядов, т.е. возникает электрический ток. При этом положительные заряды движутся по полю, а отрицательные - против поля. За направление тока принимают направление движения положительных зарядов. Для возникновения и существования электрического тока необходимо выполнение двух условий :

1. 1. наличие свободных носителей зарядов (т.е. вещество должно быть проводником или полупроводником при высоких температурах),

2. Наличие внешнего электрического поля.

Для количественного описания электрического тока вводится - СИЛА ТОКА – скалярная физическая велична, равная количеству электрического заряда, переносимосму за единицу времени через поперечное сечение проводника S.

- для постоянного тока, и

- для переменного тока.

Ток, сила и направление которого не изменяются со временем, называетсяпостоянным.

ПЛОТНОСТЬ ТОКА - векторная физическая величина, численно равная силе тока, проходящего через единицу площади, перпендикулярной к току.

- для постоянного тока, и

- для переменного тока.

II. ЭДС

Для того чтобы через рассматриваемый участок проводника проходил ток I, необходимо поддерживать постоянную разность потенциалов между рассматриваемыми точками проводника.

 

Для того чтобы поддерживать постоянную разность потенциалов на концах проводника его необходимо подключить к источнику тока. Источник тока производит работу по перемещению электрических зарядов вдоль всей цепи. Эта работа совершается за счёт СТОРОННИХ СИЛ – сил неэлектростатического происхождения, действующих на заряды со

стороны источника тока. Природа сторонних сил может быть различной (кроме неподвижных зарядов) :

1) химические реакции – в гальванических элементах (батарейках), аккумуляторах,

2) электромагнитной – в генераторах. При этом генераторы могут использовать а) механическую энергию – ГЭС, б) ядерную – АЭС, в) тепловую – ТЭС, г) приливов и отливов – ПЭС, д) ветровую – ВЭС и т.д.

3) использование фотоэффекта – фотоЭДС в калькуляторах и солнечных батареях,

4) пьезоэффект – пьезоЭДС, например, в пьезозажигалках,

5) контактная разность потенциалов – термоЭДС в термопарах и т.д.

Под действием поля сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, за счёт чего на клеммах источника тока поддерживается разность потенциалов и в цепи течёт ток.

Источник тока характеризуется электродвижущей силой – Э. Д. С.

 

 

ЭДС определяется работой выполняемой сторонними силами по перемещению единичного положительного заряда вдоль замкнутой цепи.

Сторонняя сила равна :

где - напряженность поля сторонних сил. Работа сторонних сил по перемещению заряда q на замкнутом участке цепи равна:

 

т.е. ЭДС равна циркуляции вектора напряженности сторонних сил. На участке 1 – 2 (см. рисунок) кроме сторонних сил действует сила электростатического поля

т.е. результирующая сила на участке 1 - 2 равна

тогда

Для замкнутой цепи

НАПРЯЖЕНИЕМ U на участке 1 -2 называется физическая величина, определяемая работой, совершаемой суммарным полем электростатических (кулоновских) и сторонних сил при перемещении единичного положительного заряда на данном участке цепи

при

 

Законы Ома

1. Закон Ома для однородного участка цепи.

Однороднымназывается участок не содержащий ЭДС.

Сила тока на однородном участке цепи прямо пропорциональна напряжению и обратно

пропорциональна сопротивлению цепи

1 Ом – сопротивление такого проводника, в котором при напряжении 1 В течёт ток 1 А.

G - электрическая проводимость. (Сименс).

Сопротивление R проводника зависит от его размеров и формы, а также от материала проводника.

,

 

где ρ - удельное сопротивление проводника - сопротивление единицы длины проводника.

ℓ - длина проводника; S - площадь поперечного сечения проводника.

 

2.Закон Ома для неоднородного участка цепи

НЕОДНОРОДНЫМназывается участок цепи, содержащий ЭДС.

 

- Закон Ома для неоднородного участка цепи в интегральной форме.

 

 

3. Закон Ома для замкнутой цепи (для полной цепи).

где где R - сопротивление внешней цепи,

г - сопротивление источника ЭДС, тогда

- Закон Ома для полной цепи

4. Закон Ома в дифференциальной форме.

σ - удельная электропроводность;

- Закон Ома в дифференциальной форме.

Плотность тока прямо пропорциональна напряженности электрического поля Е, Коэффициент пропорциональности σ - удельная электропроводность.

cyberpedia.su

Что называют электрическим током?

8.

Диэлектрик (как и всякое вещество) состоит из атомов и молекул. Так как положительный заряд всех ядер молекулы равен суммарному заряду электронов, то молекула в целом электрически нейтральна. Если заменить положительные заряды ядер молекул суммарным зарядом + Q, находящимся в центре «тяжести» положительных зарядов, а заряд всех электронов — суммарным отрицательным зарядом  – Q, находящимся в центре «тяжести» отрицательных зарядов, то молекулу можно рассматривать как электрический диполь с электрическим моментом, определяемым формулой (80.3).

Первую группу диэлектриков (N2, Н2, О2, СО2, СН4, ...) составляют вещества, молекулы которых имеют симметричное строение, т. е. центры «тяжести» положитель­ных и отрицательных зарядов в отсутствие внешнего электрического поля совпадают и, следовательно, дипольный момент молекулы р равен нулю.Молекулы таких диэлект­риков называются неполярными. Под действием внешнего электрического поля заряды неполярных молекул смещаются в противоположные стороны (положительные по полю, отрицательные против поля) и молекула приобретает дипольный момент.

Вторую группу диэлектриков (h3O, NН3, SO2, CO,...) составляют вещества, молеку­лы которых имеют асимметричное строение, т. е. центры «тяжести» положительных и отрицательных зарядов не совпадают. Таким образом, эти молекулы в отсутствие внешнего электрического поля обладают дипольным моментом. Молекулы таких диэлектриков называются полярными. При отсутствии внешнего поля, однако, дипольные моменты полярных молекул вследствие теплового движения ориентированы в пространстве хаотично и их результирующий момент равен нулю. Если такой диэлектрик поместить во внешнее поле, то силы этого поля будут стремиться повернуть диполи вдоль поля и возникает отличный от нуля результирующий момент.

Третью группу диэлектриков (NaCl, KCl, КВr, ...) составляют вещества, молекулы которых имеют ионное строение. Ионные кристаллы представляют собой простра­нственные решетки с правильным чередованием ионов разных знаков. В этих кри­сталлах нельзя выделить отдельные молекулы, а рассматривать их можно как систему двух вдвинутых одна в другую ионных подрешеток. При наложении на ионный кристалл электрического поля происходит некоторая деформация кристаллической решетки или относительное смещение подрешеток, приводящее к возни­кновению дипольных моментов.

Таким образом, внесение всех трех групп диэлектриков во внешнее электрическое поле приводит к возникновению отличного от нуля результирующего электрического момента диэлектрика, или, иными словами, к поляризации диэлектрика. Поляризацией диэлектрика называется процесс ориентации диполей или появления под воздействием внешнего электрического поля ориентированных по полю диполей.

Соответственно трем группам диэлектриков различают три вида поляризации:

электронная, или деформационная, поляризация диэлектрика с неполярными молеку­лами, заключающаяся в возникновении у атомов индуцированного дипольного момен­та за счет деформации электронных орбит;

ориентационная, или дипольная, поляризация диэлектрика с полярными молекулами, заключающаяся в ориентации имеющихся дипольных моментов молекул по полю. Естественно, что тепловое движение препятствует полной ориентации молекул, но в результате совместного действия обоих факторов (электрическое поле и тепловое движение) возникает преимущественная ориентация дипольных моментов молекул по полю. Эта ориентация тем сильнее, чем больше напряженность электрического поля и ниже температура;

ионная поляризация диэлектриков с ионными кристаллическими решетками, заключающаяся в смещении подрешетки положительных ионов вдоль поля, а отрицательных — против поля, приводящем к возникновению дипольных моментов.

9.

К проводникам относят вещества, у которых имеются свободные заряженные частицы, способные двигаться упорядоченно по всему объему тела под действием электрического поля. Заряды таких частиц называют свободными.  Проводниками являются металлы, некоторые химические соединения, водные растворы солей, кислот и щелочей, расплавы солей, ионизированные газы. Рассмотрим поведение в электрическом поле твердых металлических проводников. В металлах носителями свободных зарядов являются свободные электроны, называемые электронами проводимости. Если внести незаряженный металлический проводник в однородное электрическое поле, то под действием поля в проводнике возникает направленное движение свободных электронов в направлении, противоположном направлению вектора напряженности Ео этого поля. Электроны будут скапливаться на одной стороне проводника, образуя там избыточный отрицательный заряд, а их недостача на другой стороне проводника приведет к образованию там избыточного положительного заряда, т.е. в проводнике произойдет разделение зарядов. Эти нескомпенсированные разноименные заряды появляются на проводнике только под действием внешнего электрического поля, т.е. такие заряды являются индуцированными (наведенными), а в целом проводник по-прежнему остается незаряженным. Такой вид электризации, при котором под действием внешнего электрического поля происходит перераспределение зарядов между частями данного тела, называют электростатической индукцией. 

То есть Если во внешнее электростатическое поле внести нейтральный проводник, то свободные заряды (электроны, ионы) будут перемещаться: положительные — по полю, отрицательные — против поля . На одном конце проводника будет скап­ливаться избыток положительного заряда, на другом — избыток отрицательного. Эти заряды называются индуцированными. Процесс будет происходить до тех пор, пока напряженность поля внутри проводника не станет равной нулю, а линии напряжен­ности вне проводника — перпендикулярными его поверхности . Таким образом, нейтральный проводник, внесенный в электростатическое поле, разрывает часть линий напряженности; они заканчиваются на отрицательных индуцированных зарядах и вновь начинаются на положительных. Индуцированные заряды распределяются на внешней поверхности проводника. Явление перераспределения поверхностных зарядов на проводнике во внешнем электростатическом поле называется электростати­ческой индукцией.

10.

Емкость уединенного проводника.

Уединенным будем называть проводник, размеры которого много меньше расстояний до окружающих тел. Пусть это будет шар радиусом r. Если потенциал на бесконечности принять за 0, то потенциал заряженного уединенного шара равен:  , где e - диэлектрическая проницаемость окружающей среды.  Следовательно: 

эта величина не зависит ни от заряда, ни от потенциала и определяется только размерами шара (радиусом) и диэлектрической проницаемостью среды. Этот вывод справедлив для проводника любой формы.

Электрической емкостью проводника наз. отношение заряда проводника к его потенциалу: 

Электроемкость характеризует способность проводников или системы из нескольких проводников накапливать электрические заряды, а следовательно, и электроэнергию, которая в дальнейшем может быть использована, например, при фотосъемке (вспышка) и т.д.  Различают электроемкость уединенного проводника, системы проводников (в частности, конденсаторов).  Уединенным называется проводник, расположенный вдали от других заряженных и незаряженных тел так, что они не оказывают на этот проводник никакого влияния.  Электроемкость уединенного проводника — физическая величина, равная отношению электрического заряда уединенного проводника к его потенциалу: ~C = \frac{q}{\varphi}. В СИ единицей электроемкости является фарад (Ф).  1 Ф — это электроемкость такого проводника, потенциал которого изменяется на 1 В при сообщении ему заряда в 1 Кл. Поскольку 1 Ф очень большая единица емкости, применяют дольные единицы: 1 пФ (пикофарад) = 10-12 Ф, 1 нФ (нанофарад) = 10-9 Ф, 1 мкФ (микрофарад) = 10-6 Ф и т.д.  Электроемкость проводника не зависит от рода вещества и заряда, но зависит от его формы и размеров, а также от наличия вблизи других проводников или диэлектриков. Действительно, приблизим к заряженному шару, соединенному с электрометром, незаряженную палочку (рис. 1). Он покажет уменьшение потенциала шара. Заряд q шара не изменился, следовательно, увеличилась емкость. Это объясняется тем, что все проводники, расположенные вблизи заряженного проводника, электризуются через влияние в поле его заряда и более близкие к нему индуцированные заряды противоположного знака ослабляют поле заряда q.  Рис. 1  Если уединенным проводником является заряженная сфера, то потенциал поля на ее поверхности ~\varphi = \frac{q}{4 \pi \varepsilon_0 \varepsilon R}, где R — радиус сферы, ε — диэлектрическая проницаемость среды, в которой находится проводник. Тогда  ~C = \frac{q}{\varphi} = 4 \pi \varepsilon_0 \varepsilon R -  электроемкость уединенного сферического проводника.  Обычно на практике имеют дело с двумя и более проводниками. Рассмотрим систему из двух разноименно заряженных проводников с разностью потенциалов φ1 - φ2 между ними. Чтобы увеличить разность потенциалов между этими проводниками, необходимо совершить работу против сил электростатического поля и перенести добавочный отрицательный заряд -q с положительно заряженного проводника на отрицательно заряженный (или заряд +q с отрицательно заряженного проводника на положительно заряженный). При этом увеличивается абсолютное значение обоих зарядов: как положительного, так и отрицательного. Поэтому взаимной электроемкостью двух проводников называют физическую величину, численно равную заряду, который нужно перенести с одного проводника на другой, для того чтобы изменить разность потенциалов между ними на 1 В:  ~C = \frac{q}{\varphi_1 - \varphi_2}.  Взаимная электроемкость зависит от формы и размеров проводников, от их взаимного расположения и относительной диэлектрической проницаемости среды, заполняющей пространство между ними.

11.

Конденсаторы (condensare - сгущение) .

Можно создать систему проводников, емкость которой не зависит от окружающих тел. Первые конденсаторы - лейденская банка (Мушенбрук, сер. XVII в.).

Электрическая характеристика конденсатора определяется его конструкцией и средствами используемых материалов. Конденсатор состоит из пластин (или обкладок) находящиеся друг перед другом, сделанных из токопроводящего материала, и изолирующего материала (в основном бумага и слюда).

Конденсатор представляет собой систему из двух проводников, разделенных слоем диэлектрика, толщина которого мала по сравнению с размерами проводников.  Проводники наз. обкладками  конденсатора. Если заряды пластин конденсатора одинаковы по модулю и противоположны по знаку, то  под зарядом конденсатора понимают абсолютное значение заряда одной из его обкладок.

Электроемкостью конденсатора называют отношение заряда конденсатора к разности потенциалов между обкладками.

Основной характеристикой является емкость. Измеряют емкость в МикроФарадах (мкФ)(1*10-6 Фарада), НаноФарадах(нФ)(1*10-9 Фарада) и ПикоФарадах (пФ)(1*10-12 Фарада). Если вы разберете конденсатор, то увидите там обкладки. Емкость конденсатора пропорционально увеличивается с площадью обкладок и уменьшается с расстоянием между ними. Еще одним важным параметром конденсатора является рабочее напряжение. Напряжение это не с потолка берется, а характеризуется максимальным напряжением при превышении которого наступает пробой диэлектрика и смерть кондера.

При подключении конденсатора к батарее аккумуляторов происходит поляризация диэлектрика внутри конденсатора и на обкладках появляютсязаряды - конденсатор заряжается. Электрические поля окружающих тел почти не проникают через металлические обкладки и не влияют на разность потенциалов между ними.

Назначение конденсаторов

  1. Накапливать на короткое время заряд или энергию для быстрого изменения потенциала.

  2. Не пропускать постоянный ток.

  3. В радиотехнике: колебательный контур, выпрямитель.

ЭЛЕКТРОЕМКОСТЬ - характеризует способность двух проводников накапливать электрический заряд.  - не зависит от q и U. - зависит от геометрических размеров проводников, их формы, взаимного расположения, электрических свойств среды между проводниками.

Электроемкость плоского конденсатора

где S - площадь пластины (обкладки) конденсатора d - расстояние между пластинами eо - электрическая постоянная e - диэлектрическая проницаемость диэлектрика

Конденсатор - это система заряженных тел и обладает энергией Энергия любого конденсатора

Виды конденсаторов: 1. по виду диэлектрика: воздушные, слюдяные, керамические, электролитические 2. по форме обкладок: плоские, сферические. 3. по величине емкости: постоянные, переменные (подстроечные).

Типы конденсаторов: БМ бумажный малогабаритный БМТ - бумажный малогабаритный теплостойкий КД - керамический дисковый КЛС - керамический литой секционный КМ - керамический монолитный КПК-М - подстроечный керамический малогабаритный КСО - слюдянной опресованный КТ - керамический трубчатый МБГ - металлобумажный герметизированный МБГО - металлобумажный герметизированный однослойный МБГТ - металлобумажный герметизированный теплостойкий МБГЧ - металлобумажный герметизированный однослойный МБМ - металлобумажный малогабаритный ПМ - полистироловый малогабаритный ПО - пленочный открытый ПСО - пленочный стирофлексный открытый

  1. http://www.pppa.ru/additional/02phy/03/phy_e_19.php

  1. Вектор магнитного поля характеризует магнитное поле.  Он зависит от среды. Величина показывающая как меняется вектор магнитной индукции при переходе из вакуума в данную среду называют магнитной проницаемостью(мю)

Экспериментальные исследования показали, что все вещества в большей или меньшей степени обладают магнитными свойствами. Если два витка с токами поместить в какую-либо среду, то сила магнитного взаимодействия между токами изменяется. Этот опыт показывает, что индукция магнитного поля, создаваемого электрическими токами в веществе, отличается от индукции магнитного поля, создаваемого теми же токами в вакууме.

Физическая величина, показывающая, во сколько раз индукция магнитного поля в однородной среде отличается по модулю от индукции  магнитного поля в вакууме, называется магнитной проницаемостью: 

Магнитные свойства веществ определяются магнитными свойствами атомов или элементарных частиц (электронов, протонов и нейтронов), входящих в состав атомов. В настоящее время установлено, что магнитные свойства протонов и нейтронов почти в 1000 раз слабее магнитных свойств электронов. Поэтому магнитные свойства веществ в основном определяются электронами, входящими в состав атомов.

Одним из важнейших свойств электрона является наличие у него не только электрического, но и собственного магнитного поля. Собственное магнитное поле электрона называют спиновым (spin – вращение). Электрон создает магнитное поле также и за счет орбитального движения вокруг ядра, которое можно уподобить круговому микротоку. Спиновые поля электронов и магнитные поля, обусловленные их орбитальными движениями, и определяют широкий спектр магнитных свойств веществ.

Вещества крайне разнообразны по своим магнитным свойствам. У большинства веществ эти свойства выражены слабо. Слабо-магнитные вещества делятся на две большие группы – парамагнетики и диамагнетики. Они отличаются тем, что при внесении во внешнее магнитное поле парамагнитные образцы намагничиваются так, что их собственное магнитное поле оказывается направленным по внешнему полю, а диамагнитные образцы намагничиваются против внешнего поля. Поэтому у парамагнетиков μ > 1, а у диамагнетиков μ < 1. Отличие μ от единицы у пара- и диамагнетиков чрезвычайно мало. Например, у алюминия, который относится к парамагнетикам, μ – 1 ≈ 2,1·10–5, у хлористого железа (FeCl3) μ – 1 ≈ 2,5·10–3. К парамагнетикам относятся также платина, воздух и многие другие вещества. К диамагнетикам относятся медь (μ – 1 ≈ –3·10–6), вода (μ – 1 ≈ –9·10–6), висмут (μ – 1 ≈ –1,7·10–3) и другие вещества. Образцы из пара- и диамагнетика, помещенные в неоднородное магнитное поле между полюсами электромагнита, ведут себя по-разному – парамагнетики втягиваются в область сильного поля, диамагнетики – выталкиваются

14  

 

Электрический ток - упорядоченное движение заряженных частиц под действием сил электрического поля или сторонних сил.

За направление тока выбрано направление движения положительно заряженных частиц.

Электрический ток называют постоянным, если сила тока и его направление не меняются с течением времени.

 

Условия существования постоянного электрического тока.

 

Для существования постоянного электрического тока необходимо наличие свободных заряженных частиц и наличие источника тока. в котором осуществляется преобразование какого-либо вида энергии в энергию электрического поля.

Источник тока - устройство, в котором осуществляется преобразование какого-либо вида энергии в энергию электрического поля. В источнике тока на заряженные частицы в замкнутой цепи действуют сторонние силы. Причины возникновения сторонних сил в различных источниках тока различны. Например в аккумуляторах и гальванических элементах сторонние силы возникают благодаря протеканию химических реакций, в генераторах электростанций они возникают  при движении проводника в магнитном поле, в фотоэлементах - при действия света на электроны в металлах и полупроводниках.

Электродвижущей силой источника тока называют отношение работы сторонних сил к величине положительного заряда, переносимого от отрицательного полюса источника тока к положительному.

Основные понятия.

 

Сила тока - скалярная физическая величина, равная отношению заряда, прошедшего через проводник, ко времени, за которое этот заряд прошел.

Напряжение - скалярная физическая величина, равная отношению полной работе кулоновских и сторонних сил при перемещении положительного заряда на участке к значению этого заряда.

Закон Ома для однородного участка цепи.

Сила тока в однородном участке цепи прямо пропорциональна напряжению при постоянном сопротивлении участка  и обратно пропорциональна сопротивлению участка при постоянном напряжении.

Закон Ома для полной цепи.

Сила тока в полной цепи равна отношению электродвижущей силы источника к сумме сопротивлений внешнего и внутреннего участка цепи.

Короткое замыкание.

Из закона Ома для полной цепи следует, что сила тока в цепи  с заданным источником тока зависит только от сопротивления внешней цепи R.

Если к полюсам источника тока подсоединить проводник с сопротивлением  R<< r, то тогда только  ЭДС источника тока и его сопротивление будут определять  значение силы тока в цепи. Такое значение силы тока будет являться предельным для данного источника тока и называется током короткого замыкания. 

При последовательном соединении конец предыдущего проводника соединяется с началом следующего.

 

 

Во всех  последовательно соединенных проводниках сила тока одинакова:

I1= I2=I

 

Сопротивление всего участка равно сумме сопротивлений всех отдельно взятых проводников:

R = R1+ R2

 

 

 

Падение напряжения на всем участке равно сумме паданий напряжений на всех отдельно взятых проводниках:

U= U1 +U2

 

Напряжения на последовательно соединенных проводниках пропорциональны их сопротивлениям.

При параллельном соединении проводники подсоединяются к одним и тем же точкам цепи.

Сила тока в неразветвленной части цепи равна сумме токов, текущих в каждом проводнике:

I = I1+ I2

 

Величина, обратная сопротивлению разветвленного участка,  равна сумме обратных величин обратных сопротивлениям каждого отдельно взятого проводника:

 

   

Падение напряжения во всех проводниках одинаково:

U= U1 = U2

 

 

Силы тока в проводниках обратно пропорциональны их сопротивлениям

 

1.5

studfiles.net

Что такое электрический ток? Основные понятия, характеристики и действия. | Meanders.ru

Что такое электрический ток

Что такое электрический ток? В учебнике физики есть определение:

ЭЛЕКТРИЧЕСКИЙ ТОК — это упорядоченное (направленное) движение заряженных частиц под действием электрического поля. Частицами могут быть: электроны, протоны, ионы, дырки.

В академических учебниках определение описывается так:

ЭЛЕКТРИЧЕСКИЙ ТОК — это скорость изменения электрического заряда во времени.

  • Заряд электронов отрицателен.
  • протоны — частицы с положительным зарядом;
  • нейтроны — с нейтральным зарядом.

СИЛА ТОКА – это количество заряженных частиц (электроны, протоны, ионы, дырки), протекающих через поперечное сечение проводника.

Все физические вещества, в том числе металлы состоят из молекул, состоящих из атомов, которые в свою очередь состоят из ядер и вращающихся вокруг них электронов. Во время химических реакций электроны переходят от одних атомов к другим, поэтому, атомы одного вещества испытывают недостаток в электронах, а атомы другого вещества имеют их избыток. Это означает, что вещества имеют разноименные заряды. В случае их контакта, электроны будут стремиться перейти из одного вещества в другое. Именно это перемещение электронов и есть ЭЛЕКТРИЧЕСКИЙ ТОК. Ток, который будет течь, до тех пор, пока заряды этих двух веществ не уравняются. Взамен ушедшего электрона приходит другой. Откуда? От соседнего атома, к нему — от его соседа, так до крайнего, к крайнему — от отрицательного полюса источника тока (например — батарейки). С другого конца проводника электроны уходят на положительный полюс источника тока. Когда все электроны на отрицательном полюсе закончатся, ток пректратится (батарея «села»).

НАПРЯЖЕНИЕ — это характеристика электрического поля и представляет собой разность потенциалов двух точек внутри электрического поля.

Вроде как то не понятно. Проводник – это в простейшем случае — проволока, сделанная из металла (чаще применяется медь и алюминий). Масса электрона равна 9,10938215(45)×10-31кг. Если электрон имеет массу, то это означает, что он материален. Но проводник сделан из металла, а металл то, твёрдый, как по нему текут какие то, электроны?

Число электронов в веществе, равное числу протонов лишь обеспечивает его нейтральность, а сам химический элемент определяется количеством протонов и нейтронов исходя из периодического закона Менделеева. Если чисто теоретически отнять от массы любого химического элемента все его электроны, он практически не приблизится к массе ближайшего химического элемента. Слишком большая разница между массами электрона и ядра (масса только 1-го протона примерно в 1836 больше массы электрона). А уменьшение или увеличение числа электронов должно приводить лишь к изменению общего заряда атома. Число электронов у отдельно взятого атома всегда переменно. Они, то покидают его, вследствие теплового движения, то возвращаются обратно, потеряв энергию.

Если электроны движутся направленно, значит, они «покидают» свой атом, а не будет теряться атомарная масса и как следствие, меняться и химический состав проводника? Нет. Химический элемент определяется не атомарной массой, а количеством ПРОТОНОВ в ядре атома, и ничем другим. При этом наличие или отсутствие электронов или нейтронов у атома роли не играет. Добавим — убавим электроны — получим ион, добавим — убавим нейтроны — получим изотоп. При этом химический элемент останется тем же.

С протонами другая история: один протон — это водород, два протона — это гелий, три протона — литий и.т.д (см. таблицу Менделеева). Поэтому, сколько ни пропускай ток через проводник, химический состав его не изменится.

Другое дело электролиты. Здесь как раз ХИМИЧЕСКИЙ СОСТАВ МЕНЯЕТСЯ. Из раствора под действием тока выделяются элементы электролита. Когда все выделятся, ток прекратится. Всё потому, что носители заряда в электролитах — ионы.

Бывают химические элементы без электронов:

1. Атомарный космический водород.

2. Газы в верхних слоях атмосферы Земли и других планет с атмосферой.

2. Все вещества в состоянии плазмы.

3. В ускорителях, коллайдерах.

Под действием электрического тока химические вещества (проводники) могут «рассыпаться». Например, плавкий предохранитель. Движущиеся электроны на своем пути расталкивают атомы, если ток сильный — кристаллическая решетка проводника разрушается и проводник расплавляется.

Рассмотрим работу электровакуумных приборов.

процесс движения электронов

Напомню, что во время действия электрического тока в обычном проводнике, электрон, покидая своё место, оставляет там «дырку», которая затем заполняется электроном от другого атома, где в свою очередь так же образуется дырка, в последствии заполняемая другим электроном. Весь процесс движения электронов происходит в одну сторону, а движение «дыр», в противоположную. То есть дырка – явление временное, она заполняется всё равно. Заполнение необходимо для сохранения равновесия заряда в атоме.

А теперь рассмотрим работу электровакуумного прибора. Для примера возьмём простейший диод – кенотрон. Электроны в диоде во время действия электрического тока испускаются катодом в направлении анода. Катод покрыт специальными окислами металлов, которые облегчают выход электронов из катода в вакуум (малая работа выхода). Никакого запаса электронов в этой тоненькой пленке нет. Для обеспечения выхода электронов катод сильно разогревают нитью накала. Со временем раскаленная пленка испаряется, оседает на стенках колбы, и эмиссионная способность катода уменьшается. И такой электронно-вакуумный прибор попросту выкидывают. А если прибор дорогой, его восстанавливают. Для его восстановления колбу распаивают, заменяют катод на новый, после чего колбу обратно запаивают.

Электроны в проводнике двигаются «перенося на себе» электрический ток, а катод пополняется электронами от проводника, подключенного к катоду. На замену электронам, покинувшим катод, приходят электроны от источника тока.

Понятие «скорость движения электрического тока» не существует. Со скоростью, близкой к скорости света (300 000 км/с), по проводнику распространяется электрическое поле, под действием которого все электроны начинают движение с малой скоростью, которая приблизительно равна 0,007 мм/с, не забывая ещё и хаотически метаться в тепловом движении.

Давайте теперь разберёмся в основных характеристиках тока

Представим картину: У вас имеется стандартная картонная коробка с горячительным напитком на 12 бутылок. А вы пытаетесь засунуть туда ещё бутылку. Предположим вам это удалось, но коробка едва выдержала. Вы засовываете туда ещё одну, и вдруг коробка рвётся и бутылки вываливаются.

Коробку с бутылками можно сравнить с поперечным сечением проводника:

Чем шире коробка (толще провод), тем большее количество бутылок (СИЛУ ТОКА), она может в себя поместить (обеспечить).

В коробке (в проводнике) можно поместить от одной до 12 бутылок – она не развалится (проводник не сгорит), а большее число бутылок (большую силу тока) она не вмещает (представляет сопротивление).Если сверху на коробку, мы поставим ещё одну коробку, то на одной единице площади (сечении проводника) мы разместим не 12, а 24 бутылки, е

meanders.ru

Электрический ток

Электрический ток - это направленное движение заряженных частиц под действием электрического поля. Заряженные частицы в твердых веществах, например, металлах - это электроны, в жидких (электролитах) - ионы (анионы и катионы), в плазме и газах - электроны и положительные ионы, в полупроводниках - электроны и так называемые дырки.

Проводники, полупроводники и изоляторы.

Не все тела одинаково проводят электричество. Тела, хорошо проводящие электричество, называются ПРОВОДНИКАМИ, а плохо проводящими электричество – ИЗОЛЯТОРАМИ или ДИЭЛЕКТРИКАМИ. Существует и промежуточная группа тел, обладающая слабой способностью проводить электричество – ПОЛУПРОВОДНИКИ.

Поэтому абсолютно естественно, что провод, которым монтируется электрика в доме состоит из металлической части, как правило, меди или алюминия, обернутой в резиновое изоляционное покрытие, которое не проводит электрический ток. Классификация проводников показывает, что они бывают самые разные, но принцип их устройства будет всегда один: внутри проводящий материал, снаружи диэлектрик.

Электрический ток

Проводники первого рода и проводники второго рода.

Проводники делятся на проводники первого рода и проводники второго рода. Проводники первого рода – металлы и их сплавы, а проводники второго рода - водные растворы кислот, солей и щелочей, сильно разряженные газы.

Твердые и жидкие проводники, прохождение через которые электрического тока не вызывает переноса вещества в виде ионов, называются проводниками первого рода. Электрический ток в проводниках первого рода осуществляется потоком электронов (электронная проводимость). К таким проводникам относятся твёрдые и жидкие металлы и некоторые неметаллы (графит, сульфиды цинка и свинца). Их удельное сопротивление r лежит в пределах 10–8 – 10–5 Ом×м. Температурный коэффициент проводимости отрицателен, то есть с ростом температуры электропроводность уменьшается.

Вещества, прохождение через которые электрического тока вызывает передвижение вещества в виде ионов (ионная проводимость), называются проводниками второго рода. Типичными проводниками второго рода являются растворы солей, кислот и оснований в воде и некоторых других растворителях, расплавленные соли и некоторые твёрдые соли. Температурный коэффициент электропроводности положителен.

Деление проводников в зависимости от типа проводимости (электронная или ионная) является условным. Известны твёрдые вещества со смешанной проводимостью, например Ag2S, ZnO, Cu2O и др. В некоторых солях при нагревании наблюдается переход от ионной проводимости к смешанной (CuCl).

Какие электроны называются свободными?

Если мы обратимся к основам электротехники, то мы вспомним, что все тела состоят из атомов. Атом в свою очередь сам состоит из миниатирных частиц: нейтронов, протонов и электронов. В зависимости от того, насколько сильна связь электрона с атомным ядром, лучше или хуже выражена проводимость материала.

К диэлектрикам относятся резина, стекло, слюда, фарфор, смола и многие другие материалы. Физическая сущность этих явлений заключается в следующем. В диэлектриках все электроны прочно удерживаются ядрами атомов. В проводниках же, например в металлах, существуют электроны, слабо связанные с ядрами. Эти электроны наиболее удалены от ядер и под воздействием электрического поля соседних ядер отрываются, переходя с внешних орбит одних атомов к другим, при этом они свободно или почти свободно перемещаются по проводнику. Такие электроны называются СВОБОДНЫМИ ЭЛЕКТРОНАМИ.

Скорость движения электронов.

Движение свободных электронов в проводнике происходит беспорядочно, и скорость их движения определяется тепловым состоянием проводника. Но если на проводник подействовать силами внешнего электрического поля, создав на его концах разность потенциалов, то под действием этих сил движение электронов будет упорядочено – направлено в одну сторону. Такое движение свободных электронов в металлическом проводнике называется ЭЛЕКТРОННЫМ ТОКОМ, а способность проводника проводить электронный ток – ЭЛЕКТРОННОЙ ПРОВОДИМОСТЬЮ.

В проводнике второго рода имеет место ИОННЫЙ ТОК, который возникает также под влиянием сил электрического поля. Этот ток представляет собой направленное движение положительных и отрицательных ионов. Способность проводников проводить ионный ток называется ИОННОЙ ПРОВОДИМОСТЬЮ.

Как получить электрический ток

Направление электрического тока.

В диэлектриках имеет место так называемый ТОК СМЕЩЕНИЯ, который возникает в результате смещения электронов в атомах под действием сил внешнего электрического поля. В вакууме ток создается потоком электронов, вылетающих с поверхности металлического проводника, а в разряженных газах – потоком электронов и ионов. В обоих случаях направленное движение электронов и ионов также происходит под влиянием внешнего электрического поля. Таким образом, ЭЛЕКТРИЧЕСКИЙ ТОК в проводящих средах есть направленное движение потока свободных заряженных частиц под действием сил внешнего электрического поля.

Направление движение свободных электронов можно получить, соединив, например, один конец металлической проволоки с металлическим шаром, заряженным отрицательно, а другой - с шаром, заряженным положительно. Электроны, имеющиеся в избытке на отрицательно заряженном шаре, направляются к положительно заряженному шару с недостатком электронов, т.е. по проволоке пройдет электрический ток. Он будет течь до тех пор, пока разность потенциалов между разноименно заряженными шарами не станет равной нулю. В нашем примере это произойдет почти мгновенно. Если же разность потенциалов между этими шарами поддерживать постоянно, то по проволоке будет идти электрический ток постоянный по величине и направлению.

Скорость распространения электрического поля.

Условно за направление электрического тока принято считать направление, обратное движению свободных электронов, т.е. направление тока от плюса к минусу. Скорость же распространения электрического тока по проводнику равна скорости распространения света в вакууме, т.е. 300 000 км/сек. Эту скорость электронов нельзя смешивать со скоростью поступательного движения электронов при электрическом токе, которая равна всего нескольким миллиметрам в секунду.

Как получить электрический ток?

Для получения электрического тока существуют специальные устройства, которые непрерывно поддерживают разность потенциалов на концах проводника. Эти устройства обычно называются ИСТОЧНИКАМИ ТОКА или ИСТОЧНИКАМИ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ. Основными источниками тока являются:

  • Механические источники электрического тока – ЭЛЕКРИЧЕСКИЕ ГЕНЕРАТОРЫ, в которых механическая энергия преобразуется в электрическую.
  • Химические источники электрической энергии - ГАЛЬВАНИЧЕСКИЕ ЭЛЕМЕНТЫ И АККУМУЛЯТОРЫ. В них химическая энергия преобразуется в электрическую.
  • Тепловые источники электроэнергии – ТЕРМОЭЛЕМЕНТЫ, в которых тепловая энергия преобразуется в электрическую.
  • В настоящее время также находят применение лучистые и атомные источники электрической энергии. Сначала в электрическую энергию преобразуется световая, а затем – ядерная энергия.

Независимо от того, по какому принципу работает тот или иной источник электрического тока, в каждом из них происходит процесс разделения электрических зарядов физических тел и вместе с тем процесс преобразования какого-либо вида энергии в электрическую.

Сегодня уже нет смысла рассуждать о пользе электричества. Оно используется повсеместно. Поэтому просто необходимо понимать природу этого явления, чтобы оно не причинило ущерб. Нужно принимать все меры предосторожности, чтобы не возникло короткого замыкания, вследствие которого может произойти пожар. И, конечно, надо быть крайне аккуратными, чтобы не получить удар электричеством, так как поражение электрическим током может быть смертельно опасным для жизни.

Во избежании неприятностей и опасных ситуаций для подключения или ремонта электропроводки вызывайте профессионального мастера. Созвонитесь с нашим оператором и закажите вызов электрика в Юбилейный или воспользуйтесь услугами электрика в городе Мытищи. А если нужен электромонтаж в Сергиевом Посаде в квартире или деревянном доме, то пригласите мастера-оценщика для составления сметы, а также посмотрите видео по электрике, выполненной нашими мастерами.

Если материал этой статьи был для вас интересен и полезен, поделитесь им со своими знакомыми в социальных сетях. Возможно, кому-то эта информация очень пригодится. C уважением, Королевский электрик в Щёлково.

elektrik-korolev.ru

Электрический ток. Электрическим током называется любое упорядоченное (направленное) движение электрических зарядов

Электрическим током называется любое упорядоченное (направленное) движение электрических зарядов.

Различают:

а) ток проводимости, когда заряженные частицы перемещаются внутри макроскопического тела. Так, допустим, если в каком либо проводнике создать электрическое поле, то на хаотическое тепловое движение свободных заряженных частиц будет накладываться направленное движение этих частиц, создавая тем самым электрический ток;

б) конвекционный ток, когда заряды перемещаются вместе с макроскопическими телами;

в) ток в вакууме, когда заряды (электроны, ионы) движутся независимо от окружающих тел.

Для существования электрического тока необходимо наличие свободных носителей зарядов и электрического поля, которое вызывало бы их направленное движение. В отличие от электростатики, где рассматривается равновесие зарядов и поэтому электрическое поле в проводниках отсутствует, при наличии тока напряженность электрического поля внутри проводника отлична от нуля. Для создания такого поля необходим какой-либо внешний источник.

Движение электронов и ионов непосредственно увидеть невозможно. Однако это движение вызывает различные сопутствующие явления, по которым и можно судить о наличии тока.

В 1820 г Х.К. Эрстед обнаружил, что проводник с током вызывает появление сил, действующих на магнитную стрелку.

Магнитное действие проявляется во всех случаях независимо от природы проводника и является самым общим признаком электрического тока.

Электрический ток вызывает также тепловое действие, нагревая проводник, по которому он течет, и химическое действие, разлагая вещество на составные химические части.

Электрический ток характеризуется величиной называемой силой тока Электрический ток. Электрическим током называется любое упорядоченное (направленное) движение электрических зарядов - Инвестирование - 1 . Сила тока Электрический ток. Электрическим током называется любое упорядоченное (направленное) движение электрических зарядов - Инвестирование - 2 определяется зарядом, проходящим за одну секунду через любое поперечное сечение проводника. Ток, величина и направление которого не изменяется, называется постоянным. Для постоянного тока Электрический ток. Электрическим током называется любое упорядоченное (направленное) движение электрических зарядов - Инвестирование - 3 , где Электрический ток. Электрическим током называется любое упорядоченное (направленное) движение электрических зарядов - Инвестирование - 4 — электрический заряд, проходящий за время Электрический ток. Электрическим током называется любое упорядоченное (направленное) движение электрических зарядов - Инвестирование - 5 через поперечное сечение проводника. Единицей силы тока в СИ служит ампер (А). Ампер входит в число основных единиц этой системы и вводится на основе магнитного взаимодействия токов.

Электрический ток может быть обусловлен движением как положительных, так и отрицательных частиц. За направление тока принимается направление, в котором перемещаются положительные заряженные частицы. Движения в противоположных направлениях частиц, противоположных по знаку, создают во всех отношениях эквивалентные токи. Например, в металлических проводниках действительное направление свободных электронов противоположно направлению тока.

studlib.info


© 2007—2018
423800, Набережные Челны , база Партнер Плюс, тел. 8 800 100-58-94 (звонок бесплатный)