|
||||
|
Екатерина - специалист по продаже а/м КАМАЗ
43118-010-10 (дв.740.30-260 л.с.) | 2 220 000 |
43118-6033-24 (дв.740.55-300 л.с.) | 2 300 000 |
65117-029 (дв.740.30-260 л.с.) | 2 200 000 |
65117-6010-62 (дв.740.62-280 л.с.) | 2 350 000 |
44108 (дв.740.30-260 л.с.) | 2 160 000 |
44108-6030-24 (дв.740.55,рест.) | 2 200 000 |
65116-010-62 (дв.740.62-280 л.с.) | 1 880 000 |
6460 (дв.740.50-360 л.с.) | 2 180 000 |
45143-011-15 (дв.740.13-260л.с) | 2 180 000 |
65115 (дв.740.62-280 л.с.,рест.) | 2 190 000 |
65115 (дв.740.62-280 л.с.,3-х стор) | 2 295 000 |
6520 (дв.740.51-320 л.с.) | 2 610 000 |
6520 (дв.740.51-320 л.с.,сп.место) | 2 700 000 |
6522-027 (дв.740.51-320 л.с.,6х6) | 3 190 000 |
Нужны самосвалы? Обратите внимание на Ford-65513-02. |
Контактная информация.
г. Набережные Челны, Промкомзона-2, Автодорога №3, база «Партнер плюс».
тел/факс (8552) 388373.
Схема проезда
Конструктивно, электрогенератор состоит из:
Работает он следующим образом:
Один полный оборот рамки внутри магнитного поля приводит к тому, что возникающая ЭДС, дважды меняет свое направление, причем ее величина дважды увеличивается до максимального значения (проводники проходили под полюсами магнитов) и дважды была равна нулю (проводники двигались вдоль силовых линий магнитного поля).
Такое изменение ЭДС в процессе непрерывного вращения рамки вызывает в замкнутой электрической цепи постоянно изменяющийся по направлению и величине синусоидальный электрический ток, который в настоящее время называют переменным.
В современной энергетике используются индукционные генераторы переменного тока различного типа. При этом, принцип их действия одинаков и базируется на принципе электромагнитной индукции.
В общем виде, такие устройства представляют собой достаточно сложное изделие, состоящее из медной проволоки, и большого количества изоляционных и конструктивных материалов.
Любой генератор переменного тока состоит из:
В маломощных устройствах щетки и кольца используются значительно реже, так как в их конструкциях можно использовать вращающиеся постоянные магниты, которым подвод питающего напряжения не нужен.
Как правило:
Однако, в больших промышленных генераторах, внешний сердечник, создающий магнитное поле, вращается вокруг внутреннего, а обмотки, в которых индуцируется ЭДС, остаются неподвижными.
Во время работы, в обмотке ротора возникает ЭДС, амплитуда которой пропорциональна количеству витков. Кроме того, она пропорциональна и амплитуде переменного магнитного потока (через виток).
Принцип работы синхронного генератора:
При этом, главным преимуществом является то, что напряжение и силу переменного тока можно легко и практически без потерь преобразовать в достаточно широких пределах.
Особенно, такое преобразование необходимо в случае передачи электроэнергии на большие расстояния. Электроэнергия обладает большими преимуществами перед другими видами энергии.
Ее можно передавать на большие расстояния с малыми потерями и достаточно легко распределять между потребителями. Кроме того, электроэнергия просто превращается в другие виды энергии (световая, тепловая, механическая и пр.).
Именно поэтому, генераторы переменного тока в современных условиях получили очень широкое применение. С их помощью вырабатывается электроэнергия, которая затем используется во всех отраслях промышленности, а также в быту и на всех видах транспорта.
В связи с большим разнообразием генераторов, выпускаемых промышленностью различных стран, была разработана и достаточно обширная система их классификации.
Так, генераторы переменного тока различают по:
Электрогенераторы переменного тока бывают:
Конструкции с неподвижным статором получили наибольшее распространение благодаря тому, что отпадает необходимость в использовании контактных колец и плавающих щеток.
По способу возбуждения электрогенераторы бывают:
По количеству фаз различают электрогенераторы:
Наибольшее распространение получили трехфазные генераторы.
Это связано с наличием некоторых преимуществ, среди которых нужно отметить возможность беспроблемного получения:
Трехфазные генераторы отличаются электрическими схемами соединения фазных обмоток.
Бывает, что фазные обмотки соединяются:
Для получения связанной трехфазной системы, обмотки электрогенератора нужно соединить между собой одним из двух способов:
Соединение «звездой» предусматривает электрическое соединение концов всех обмоток в одной точке. Точка соединения называется «нулем». При таком соединении нагрузка к генератору может быть подключена 3 или 4 проводами.
Провода, идущие от начала обмоток называются линейными, а провод, идущий от нулевой точки — нулевым. Напряжение между линейными проводами называют линейным.
Линейное напряжение больше фазного в 1,73 раза.
Напряжение между нулевым и любым из линейных проводов называется фазным. Фазные напряжения равны между собой и сдвинуты друг относительно друга на угол, который равен 120 градусов.
Особенностью схемы является также равенство линейных и фазных токов.
Наиболее распространена 4 проводная схема — соединение «звездой» с нейтральным проводом. Она позволяет избежать перекоса фаз в случае подключения несимметричной нагрузки, например, на одной фазе — включена активная нагрузка, а на другой — емкостная или реактивная. При этом, обеспечивается сохранность включенных электроприборов.
Соединение «треугольником» — это последовательное соединение обмоток трехфазного генератора: конец первой обмотки соединяется с началом второй, ее конец — с началом третьей, а конец последней — с началом первой.
В этом случае, линейные провода отводятся от точек соединения обмоток. При этом, линейное напряжение равно фазному, а величина линейного тока в 1,73 раза больше фазного.
Все упомянутые зависимости справедливы только при равномерной нагрузке фаз. При неравномерной нагрузке фаз, их необходимо пересчитывать аналитическими или графическими методами.
Индукционные генераторы находят свое применение практически во всех областях жизнедеятельности человеческого общества.
Причем в любом случае, для получения переменного тока используется энергия вращения вала генератора.
Это касается:
Генераторы, устанавливаемые на электростанциях, вырабатывают большое количество электроэнергии, которая затем передается на огромные расстояния.
Они разрабатываются под конкретные, узкоспециализированные задачи и представляют собой сложнейшие устройства, для установки которых необходимо строить отдельные здания и сооружения. Кроме того, их работа обеспечивается специально организованной инфраструктурой.
Промышленные генераторы используются для обеспечения электроэнергией объектов, в работе которых не должно быть перебоев с подачей напряжения.
Кроме того, их используют для обеспечения электроэнергией строительных площадок, вахтовых поселков, удаленных ферм и буровых установок, находящихся в местах, где подводка стационарных линий электропередач невозможна или экономически нецелесообразна.
Как правило, для работы они используют дизельное топливо, вырабатывая при этом переменный ток большой мощности (220 или 380 В). Используются для этого синхронные генераторы, которые способны обеспечить работу промышленного оборудования большой мощности.
В дизельных установках, вал генератора вращается с помощью двигателя внутреннего сгорания (ДВС).
Все комплектующие изделия, входящие в состав промышленного генератора, монтируются на высокопрочных стальных шасси, которое при необходимости устанавливается:
Бытовые электрогенераторы приобрели большую популярность сравнительно недавно.
Они используются для электрификации небольших коттеджей, загородных домов и дач, а также помогают решить ряд проблем, связанных с некорректной работой централизованной электросети и часто применяются в качестве аварийных источников переменного тока на ранее электрифицированных объектах подобного типа.
В устройствах этого типа для вращения вала генератора используют как бензиновые, так и дизельные ДВС. Они вырабатывают переменный ток небольшой мощности (от 0,5 до 15 кВт) и отличаются:
При выборе бытового генератора переменного тока, потенциальному потребителю необходимо обращать внимание на:
househill.ru
Мощный тяговый генератор переменного тока – строение
Здравствуйте, ценители мира электрики и электроники. Если вы частенько заглядываете на наш сайт, то наверняка помните, что совсем недавно у нас вышел достаточно объемный материал про то, как устроен и работает генератор постоянного тока. Мы подробно описали его строение от самых простых лабораторных прототипов, до современных рабочих агрегатов. Обязательно почитайте, если еще этого не сделали.
Сегодня мы разовьем эту тему, и разберемся, в чем заключается принцип действия генератора переменного тока. Поговорим о сферах его применения, разновидностях и много еще о чем.
Основной принцип работы альтернатора
Начнем с самого основного – переменный ток отличается от постоянного тем, что он с некоторой периодичностью меняет свое направление движения. Также он меняет и величину, о чем мы подробнее поговорим далее.
Спустя определенный промежуток времени, который мы назовем «Т» значения параметров тока повторяются, что на графике можно изобразить в виде синусоиды – волнистой линии, проходящей с одинаковой амплитудой через центральную линию.
Итак, назначение и устройство генераторов переменного тока, называемого раньше альтернатором, заключается в преобразовании кинетической энергии, то есть механической, в электрическую. Подавляющее большинство современных генераторов используют вращающееся магнитное поле.
Строение простейшего электромагнитного генератора
Генератор переменного тока — как устроен
Спустя половину оборота, все снова вернется в изначальное состояние, и цикл повторится снова. В итоге мы получили, что за время совершения полного оборота рамки, ток дважды возрастал до максимума и падал до нуля, и единожды менял свое направление относительно нчального движения.
В его честь была названа частота тока
Принято считать, что длительность периода обращения равняется 1 секунде, а число периодов «Т» является частотой электрического тока. В стандартных электрических сетях России и Европы за одну секунду ток меняет свое направление 50 раз – 50 периодов в секунду.
Обозначают в электронике один такой период особой единицей, названной в честь немецкого физика Г. Герца. То есть в приведенном примере российских сетей частота тока составляет 50 герц.
Вообще, переменный ток нашел очень широкое применение в электронике благодаря тому, что: величину его напряжения очень просто изменять при помощи трансформаторов, не имеющих движущихся частей; его всегда можно преобразовать в постоянный ток; устройство таких генераторов намного надежнее и проще, чем для выработки постоянного тока.
Мощнейшие генераторы, установленные на Пушкинской ГЭС
Как устроен генератор переменного тока, в принципе, понятно, но вот, сравнивая его с собратом для выработки постоянного, не сразу можно уловить разницу.
Если вы прочли предыдущий материал, то наверняка помните, что рамка в простейшей схеме была соединена с коллектором, разделенным на изолированные контактные пластины, а тот, в свою очередь, был связан со щетками, скользящими по нему, через которые и была подключена внешняя цепь.
За счет того, что пластины коллектора постоянно меняются щетками, не происходит смены направления тока – он просто пульсирует, двигаясь в одном направлении, то есть коллектор является выпрямителем.
Устройство и принцип действия генератора переменного тока
Трехфазные генераторы переменного тока и устройство их
Если увеличить число пар полюсов, то в генераторе пропорционально возрастет и число полных изменений тока за один оборот якоря, и частота его будет измерять иначе, по формуле: f = np, где f – это частота, n – число оборотов в секунду, p – количество пар магнитных полюсов устройства.
Интересно знать! Образование ЭДС происходит не только тогда, когда проводник смещается относительно магнитного поля, но и наоборот, когда двигается само поле относительно проводника, чем активно и пользуются конструкторы электродвигателей и генераторов.
Синхронный генератор электрического тока и принцип действия этого устройства
Совет! Кстати, неподвижная часть генератора переменного тока называется статором, так как она статична, а вращающаяся – ротором.
Вращать легче центральную часть
Классифицировать и отличить генераторы можно по нескольким признакам. Давайте назовем их.
Отличаться они могут по количеству фаз и быть одно-, двух- и трехфазными. На практике наибольшее распространение получил последний вариант.
Схема трехфазного генератора
Смещение синусоид на 1/3 такта
Варианты соединения обмоток у трехфазного генератора
Принципиальная схема генератора тока
Еще одной особенностью трехфазной схемы подключения является появление вращающегося магнитного поля, что позволяет создавать простые и надежные асинхронные электродвигатели.
Но и это не все. При выпрямлении однофазного тока на выходе выпрямителя получается напряжение с пульсациями от нуля до максимального значения. Причина, думаем, ясна, если вы поняли основной принцип работы такого устройства. Когда же присутствует сдвиг по времени фаз, пульсации сильно уменьшаются, не превышая 8%.
Отличаются генераторы и по виду, которых существует 2:
Синхронный генератор
Принцип действия и устройство синхронного генератора.
Асинхронный электрический двигатель
Последнее различие моделей, которое хотелось бы затронуть, связано со способом запитки возбуждающей обмотки.
Тут можно выделить 4 типа:
Промышленное производство мощных генераторов
Применяются такие генераторы практически во всех сферах человеческой деятельности, где требуется электрическая энергия. Причем принцип ее добычи отличается только способом приведения в движение вала устройства. Так работают и гидро-, и тепло- и даже атомные станции.
Данные станции запитывают по проводам общественные сети, к которым подключается конечный потребитель, то есть все мы. Однако существует множество объектов, к которым невозможно доставить электрическую энергию таким способом, например, транспорт, стройплощадки вдали от линий электропередач, очень далекие поселки, вахты, буровые установки и прочее.
Это означает только одно – требуется свой генератор и двигатель, приводящий его в движение. Давайте рассмотрим несколько небольших и часто встречающихся в нашей жизни устройств.
На фото — электрический генератор для автомобиля
Кто-то возможно тут же скажет: «Как? Это же генератор постоянного тока!». Да, действительно, так оно и есть, однако таковым его делает лишь наличие выпрямителя, который этот самый ток делает постоянным. Основной принцип работы ничем не отличается – все тот же ротор, все тот же электромагнит и прочее.
Принципиальная схема автомобильного генератора
Это устройство функционирует таким образом, что вне зависимости от скорости вращения вала, оно вырабатывает напряжение в 12В, что обеспечивается регулятором, через который идет питание обмотки возбуждения. Обмотка возбуждения стартует, запитываясь от автомобильного аккумулятора, ротор агрегата приводится в движение двигателем автомобиля через шкив, после чего начинает индуцироваться ЭДС.
Для выпрямления трехфазного тока используется несколько диодов.
Бензиновый генератор
Устройство бензинового генератора переменного тока, ровно, как и дизельного, мало чем отличается от того, что установлен в вашем автомобиле, за исключением нюанса, что ток он будет выдавать, как положено, переменный.
Из особенностей можно выделить то, что ротор агрегата всегда должен вращаться с одной скоростью, так как при перепадах выработка электроэнергии становится хуже. В этом кроется существенный недостаток подобных устройств – подобный эффект происходит при износе деталей.
Интересно знать! Если к генератору подключить нагрузку, которая будет ниже рабочей, то он не будет использовать свою мощность на полную, съедая часть жидкого топлива впустую.
Панель управления генератора
На рынке представлен большой выбор подобных агрегатов, рассчитанных на разную мощность. Они пользуются большой популярность за счет своей мобильности. При этом инструкция по пользованию предельно проста – заливаем своими руками топливо, запускаем двигатель поворотом ключа и подключаемся…
На этом, пожалуй, закончим. Мы разобрали назначение и общее устройство этих приборов максимально просто. Надеемся, генератор переменного тока и принцип его действия стали к вам чуточку ближе, и с нашей подачи вы захотите погрузиться в увлекательный мир электротехники.
elektrik-a.su
Генераторный узел представляет собой электродвигатель, предназначенный для преобразования механической энергии в электрическую. В зависимости от типа и назначения габариты, устройство и принцип работы генераторов переменного тока могут будут отличаться.
Содержание
[ Раскрыть]
[ Скрыть]
Работа генератора заключается в создании электродвижущей силы в проводнике под действием изменяющегося магнитного поля.
По конструкции электрогенератор включает в себя следующие элементы:
Схема простейшего генераторного устройства переменного тока
Образование электродвижущей силы в обмотках статорного механизма осуществляется после появления электрополя. Для последнего характерны вихревые образования. Данные процессы происходят в результате изменения магнитного потока. Причем последний меняется из-за быстрого вращения роторного механизма.
Ток от него поступает в электроцепь посредством контактных элементов, выполненных в виде деталей скольжения. Для более упрощенного прохождения напряжения к концам обмотки производится подсоединение колец. К этим контактным составляющим подключаются неподвижные щеточные элементы. С их помощью между электропроводкой и обмоткой роторного устройства появляется связь.
В витках магнитного элемента происходит образование поля, в нем формируется ток небольшой величины. По сравнению с напряжением, которое выдает простейший генераторный агрегат на внешнюю электроцепь. Если узел характеризуется небольшой мощностью, то в нем поле образует постоянный магнит, который может прокручиваться. Благодаря такому устройству и принципу работы генератора переменного тока в целом упрощается вся система. Поэтому из конструкции можно убрать щетки и контактные элементы.
Канал «Top Generators» наглядно и схематично в видеоролике показал принцип функционирования агрегата.
Между собой устройства, позволяющие генерировать напряжение, делятся на синхронные и асинхронные. Они могут использоваться в различных сферах жизнедеятельности, но работать будут по разному принципу.
Одним из свойств такого типа устройств является то, что частота тока, который оно воспроизводит, пропорциональна скорости вращения роторного механизма.
Между собой синхронные агрегаты делятся на несколько типов:
Синхронный агрегат конструктивно включает в себя два основных элемента:
Схематическое устройство синхронного генераторного агрегата
Принцип действия может незначительно отличаться в зависимости от типа устройства — явнополюсного либо неявнополюсного. Количество пар полюсных элементов роторного механизма определяется скоростью вращения узла. Если частота образующейся ЭДС составляет 50 Гц, то при 3 тысячах об/мин неявнополюсное устройство обладает одной парой полюсов. В явнополюсных агрегатах, вращающихся при 50-750 оборотах в минуту, количество пар полюсных элементов составит от 60 до 4.
В маломощных синхронных агрегатах питание обмотки возбуждения осуществляется посредством воздействия выпрямленного тока. Электроцепь появляется в результате активации трансформаторных устройств, которые входят в общую цепь нагрузки узла. Также она включает в себя полупроводниковый выпрямительный блок, который может собираться по любой схеме, но обычно как трехфазный мост. Основная электроцепь включает в себя обмотку возбуждения агрегата с регулировочным реостатным устройством.
Процедура самовозбуждения оборудования состоит в следующем:
Такой узел представляет собой устройство, производящее электроэнергию с использованием принципа действия асинхронного двигателя. Данный тип агрегатов именуется индукционным. Асинхронное устройство обеспечивает оперативный поворот роторного механизма, а его скорость вращения намного выше по сравнению с синхронным. Простой двигатель может применяться в качестве генераторной установки без дополнительных настроек.
Асинхронные агрегаты используются в разных сферах:
Схематическое подключение асинхронного агрегата
Основными составляющими элементами данного типа устройств считаются статорный механизм и ротор. Первый является неподвижным, а второй прокручивается внутри него. Ротор отделен от статорного механизма воздушным зазором. Чтобы снизить величину вихревых токов, сердечники составляющих элементов делаются из отдельных листов электротехнической стали. Их толщина в зависимости от производителя может составить от 0,35 до 0,5 мм. Сами листы оксидируются при изготовлении, то есть подвергаются термической обработке, что позволяет увеличить их поверхностное сопротивление.
Сердечник статорного механизма устанавливается внутрь станины, которая является наружной частью агрегата. На внутренней стороне детали располагаются пазы, в них находится обмотка. Статорная электрообмотка зачастую выполняется из катушек с небольшим шагом. В ее основе используется медный изолированный проводник.
Асинхронный тип двигателей производит электроэнергию при увеличенной скорости прокручивания роторного механизма. Этот параметр всегда выше, чем у синхронных агрегатов. При прокручивании роторного устройства и выработки электричества потребуется сильный крутящий момент. Если в двигателе используется так называемый вечный холостой ход, это обеспечит равную скорость прокручивания в течение всего ресурса эксплуатации установки.
По числу использующихся фаз все генераторные агрегаты делятся на две группы:
Схема подключения оборудования с одной фазой
Этот тип устройств используется для работы с любыми потребителями электроэнергии, главное — чтобы они были однофазными.
Самые простые конструкции состоят из:
Благодаря наличию последнего в результате рамочного прокручивания через щетки образуется постоянный контакт с рамкой. Параметры тока, который меняется с учетом закона гармоники, будут разными и передаются на щеточный узел, а также в схему потребителей напряжения. На сегодняшний день однофазные агрегаты являются наиболее популярным типом автономного источника питания. Они могут использоваться для подключения практически всех бытовых электроприборов.
Такой тип устройств относится к классу универсальных, но более дорогих агрегатов. Отличительная особенность трехфазных генераторов заключается в необходимости постоянного и дорогостоящего технического обслуживания. Несмотря на это, данный тип установок получил наибольшее распространение.
Это обусловлено следующими преимуществами:
Данный тип подключения подразумевает электросоединение концов обмоток в определенной точке, которая именуется «нулем». При выполнении такого подсоединения нагрузку к генераторному узлу можно подать посредством трех или четырех кабелей. Проводники от начала обмоток считаются линейными. А основной кабель, который идет от нулевой точки, является нулем. Параметр напряжения между проводниками считается линейным (эта величина выше в 1,73 раза по сравнению с фазной).
Схема типа «звезда» для подключения трехфазного оборудования
Одной из основных особенностей данного варианта является равенство токов. Четырехпроводной тип «звезды» с нейтральным кабелем считается самым распространенным. Его использование позволяет предотвратить перекос фаз при подсоединении несимметричной нагрузки. К примеру, если на одном контакте она активная, а на другом — реактивная или емкостная. При использовании такого варианта обеспечивается максимальная защищенность включенного электрооборудования.
Данный метод подключения представляет собой последовательное подсоединение обмоток трехфазного агрегата. Конец первой намотки должен быть соединен с началом второй, а ее контакт — с третьей. Затем проводник от обмотки под номером 3 подсоединяется к началу первого элемента.
При такой схеме линейные кабели отводятся от точек подключения обмоток. Параметр линейного напряжения по величине соответствует фазному. А значение первого тока выше второго в 1,73 раза. Описанные свойства актуальны исключительно в случае равномерной нагрузки фаз. Если она будет неравномерной, то параметры необходимо пересчитать графическим или аналитическим способом.
Электросхемы соединений агрегата «треугольником»
Автомобильные и бытовые установки могут разделяться между собой в соответствии с видом топлива, на котором они функционируют. Генераторный узел может работать на бензине или дизеле.
В таких устройствах источником механической энергии является двигатель. Агрегат относится к классу четырехконтактных карбюраторных ДВС. В бензогенераторах используются двигатели, рассчитанные на 1-6 кВт. В продаже можно встретить агрегаты, разработанные для функционирования при 10 кВт, с их помощью можно обеспечить питание всех световых и электроприборов в частном доме.
Бензогенераторы могут похвастаться невысокой стоимостью и длительным ресурсом эксплуатации, хотя по сравнению с дизельными — они немного меньше. Выбор агрегата осуществляется с учетом нагрузок, в условиях которых он будет функционировать. Если узел работает с большим пусковым током и применяется для электросварки, то лучше отдать предпочтение синхронным устройствам. При выборе асинхронного типа агрегата двигатель сможет справиться с пусковыми токами. Но важно, чтобы генераторная установка была полностью загружена, в противном случае топливо будет расходоваться нецелесообразно.
Канал «Olifer TV» рассказал о выборе агрегатов для частного дома в соответствии с типом горючего, на котором он будет использоваться.
Такой агрегат приводит в действие мотор, функционирующий на дизеле.
В его основе используется:
Мощность генераторной установки полностью определяется аналогичным параметром самого двигателя. Если она будет невысокой, к примеру, для запитки бытового электрооборудования, то лучше отдать предпочтение бензиновым установкам. Дизельный тип агрегатов целесообразно использовать там, где требуется высокая мощность. Двигатели внутреннего сгорания обычно применяются с верхней установкой клапанов. Они обладают более компактными размерами, а также высокой надежностью.
Кроме того, дизельные ДВС при функционировании выделяют меньше токсичных газов, опасных для здоровья человека, и более удобны в плане ремонта. Специалисты рекомендуют отдать предпочтение агрегатам, корпус которых выполнен из стали, так как пластмасса имеет меньший ресурс использования.
Более надежными являются генераторные дизельные установки, не оснащенные щетками.
Напряжение, которое они вырабатывают, стабильнее. В среднем, если бак заправлен дизельным горючим под завязку, это обеспечит возможность работы генератора в течение семи часов. Если агрегат будет установлен стационарно, то его конструкцию можно дополнить внешним резервуаром для залива топлива.
Канал «Фабрика Тока» продемонстрировал работу дизельного агрегата, использующегося для обеспечения энергией частного дома.
Производство электрической энергии осуществляется аналогично, как на любой классической модели генератора. В первую очередь производится выработка переменного тока. Он выпрямляется и подается на инверторный узел, а затем преобразуется опять в переменный, только с необходимыми техническими параметрами.
В основе агрегата используется электронный модуль, включающий в себя:
По типу выходного напряжения инверторные агрегаты могут разделяться на:
Инверторные агрегаты могут функционировать без перерыва либо промежутками. В качестве объектов потребления энергии обычно выступают учреждения, где нельзя допустить перепадов напряжения.
Основные преимущества инверторных установок:
Минусы:
Использование инверторных устройств актуально в случае, когда требуемая величина мощности составляет не больше 6 кВт. Если агрегат будет использоваться на постоянной основе, то лучше отдать предпочтение классическому типу.
Канал «Garage КАХОВКА» протестировал бензиновую установку инверторного класса от производителя «ПилоД».
Для самостоятельного изготовления асинхронного агрегата понадобится следующее:
Перед началом работ необходимо сделать несколько манипуляций, которые позволят правильно выполнить расчет параметра мощности агрегата:
Полученный узел сможет обеспечить энергией электрическую пилу, циркулярку или болгарку, т. е. любой маломощный инструмент.
При использовании самодельного генератора переменного тока нельзя допустить перегрева двигателя, иначе это приведет к его поломке и даже взрыву.
В процессе сборки и эксплуатации надо учитывать следующие нюансы:
Канал «Halyk Smart» рассказал о нюансах функционирования агрегата переменного тока.
razvodka.com
Генератор тока— это электрическая машина, которая преобразует механическую энергию в электрическую. Они могут генерировать как постоянный, так и переменный ток.
До второй половины XX века на автотранспорте применялись генераторы постоянного тока. Затем широкое распространение получили полупроводниковые диоды, которые позволяли выпрямить переменный ток или сделать его постоянным. Поэтому и в этой сферы генераторы постоянного тока заменили более надежные и компактные трехфазные генераторы переменного тока.
В прошлой статье Я подробно рассмотрел вопросы работы электродвигателя, сейчас будут изложены общие принципы работы и устройства генератора тока. Я не буду подробно останавливаться на машинах постоянного тока, потому что в быту, гаражах и на автотранспорте они сегодня не применяются. Они лишь широко используются в городском электротранспорте: троллейбусах и трамваях .
Генератор работает на основе закона электромагнитной индукции Фарадея— электродвижущая сила (ЭДС) индуцируется в прямоугольном контуре (проволочной рамке), вращающимся в однородном вращающемся магнитном поле.
ЭДС также возникает в неподвижной прямоугольной рамке, если в ней вращать магнит.
Простейший генератор представляет собой прямоугольную рамку, размешенную между 2 магнитами с разными полюсами. Для того что бы снять с вращающейся рамки напряжение используются токосъемные кольца.На практике же используются электромагниты, которые представляют собой катушки индуктивности или обмотки из медного провода в электроизоляционном лаке. При прохождении электрического тока по обмоткам, они начинают обладать электромагнитными свойствами. Для их возбуждения необходим дополнительный источник тока- в автомобилях это аккумуляторная батарея. В бытовых электростанциях возбуждение при заводке происходит в результате самовозбуждения или от дополнительного маломощного генератора постоянного тока, который приводится в движение валом генератора.
По принципу работы генераторы могут быть синхронными или асинхронными.
Для примера рассмотрения устройства возьмем автомобильный трехфазный генератор.
Автомобильный генератор состоит из корпуса и двух крышек с отверстиями для вентиляции. Ротор вращается в 2 подшипниках и приводится в движение при помощи шкива. По своей сути ротор является электромагнитом, состоящий из одной обмотки. Ток на нее подается при помощи двух медных колец и графитовых щеток, которые соединены с электронным реле-регулятором. Оно отвечает за то, что бы выдаваемое напряжение генератором всегда было в допустимыми пределах 12 Вольт с допустимыми отклонениями и не зависело от частоты вращения шкива. Реле-регулятор может быть как встроено в корпус генератора, так и находится за его пределами.
Статор состоит из трех медных обмоток, соединенных между собой в треугольник. К точкам их соединения подключен выпрямительный мост из 6 полупроводниковых диодов, которые преобразуют напряжение из переменного в постоянное.
Бензиновый электрогенератор состоит из двигателя и приводящего им в движение на прямую- генератора тока, который может быть как синхронного, так и асинхронного типа.
Двигатель оснащен системами: запуска, впрыска топлива, охлаждения, смазки, стабилизации оборотов. Вибрацию и шум поглощают глушитель, виброгасители и амортизаторы.
Блок автоматики и управления следит за работой электростанции и при необходимости корректирует и защищает в аварийных ситуациях.
В более дешевых электростанциях происходит ручной запуск, а в более дорогих- автозапуск при помощи стартера и аккумуляторной батареи.
Более подробно об электростанциях Вы сможете узнать из нашей следующей статьи «Как выбрать электростанцию для дома или гаража».
jelektro.ru
Переменный ток – движущая сила многих производств и транспорта, в частности, автомобилей. Существуют как небольшие модели величиной с кулак, так и гигантские устройства несколько метров в высоту.
Генератор – та самая техническая система, которая преобразует механическую (кинетическую) энергию в электрическую. Как же действует генератор?
Как бы не был устроен генератор, в основе его действия лежит процесс электромагнитной индукции – появление в замкнутом контуре электрического тока под воздействием измененного магнитного потока.
Генератор условно делят на 2 части: индуктор и якорь.
Индуктором называют ту часть устройства, где создается магнитное поле, а якорем – ту половину, где образуется электродвижущая сила или ток.
Постоянным остается его техническое строение: проволочная обмотка и магнит.
В обмотке возникает электродвижущая сила под воздействием магнитного поля. Это основа для генератора. Но мощный переменный ток нельзя получить из такой примитивной конструкции. Для преобразования нужен сильный магнитный поток.
Перед тем, как проверить генератор на работоспособность, необходимо отсоединить статор, чтобы выводы обмотки не контактировали между собой. Измерение сопротивление производится с помощью мультиметра.Все нюансы подключения генератора к домашней электросети можно изучить из этой статьи.
Для этого в проволочную намотку добавляют 2 стальных сердечника, которые и определяют назначение и устройство генератора переменного тока. Это статор и ротор. Обмотка, которая создает магнитное поле, помещается в паз одного сердечника – это статор, или индуктор. Он остается неподвижен в отличие от ротора. Статор питается постоянным током. Бывают двухполюсным или многополюсным.
Ротор, или также — якорь, активно вращается с помощью подшипников и продуцирует электродвижущую силу или переменный ток. Представляет собой внутренний сердечник с медной проволочной намоткой.
Генератор имеет прочный металлический корпус с несколькими выходами, что зависит от целевого назначения устройства. Переменчиво количество катушек с проволочной намоткой.
Теперь выясним, на каком принципе основана работа генераторов переменного тока. Схема функционирования достаточно проста и понятна. При условии постоянной скорости ротора электрический ток будет производиться единым потоком.
Вращение ротора провоцирует изменение магнитного потока. В свою очередь электрическое поле порождает появление электрического тока. Через контакты с кольцами на конце ток от ротора проходит в электрическую цепь устройства. Кольца имеют хорошее скользящее свойство. Они прочно контактируют со щеточками, которые являются постоянными неподвижными проводниками между электрической цепью и медной проволочной обмоткой ротора.
В медной обмотке вокруг магнита присутствует ток, но он очень слаб в сравнении с силой электрического тока, который выходит из ротора по цепи в устройство.
По этой причине для вращения ротора используют только слабый ток, подведенный по контактам со скольжением. Существуют релейная и полупроводниковая схемы управления люстрой по двум проводам. Причем вариант с использованием транзисторов имеет наибольшую популярность благодаря более долгим сроком эксплуатации и высокой частотой переключения.Как по световому потоку ламп узнать уровень освещенности помещения, можно узнать здесь. А о методах нахождения скрытой проводки в квартире или доме — читайте в отдельной статье.
При сборке генератора переменного тока очень важно выдерживать пропорции деталей, размер, величины зазоров, толщину проволочных жил.Собрать генератор переменного тока можно, если в вашем доме найдутся все необходимые детали и достаточное количество медной проволоки. Смастерить небольшой агрегат вполне реально. Или же для использования асинхронного двигателя как генератора существует подробная инструкция.
elektrik24.net
Вращающуюся часть машины называют ротором, а неподвижную часть – статором. В синхронных машинах переменного тока индуктором обычно является ротор, а в машинах постоянного тока – статор. В обоих случаях индуктор представляет собой обычно двух- или многополюсную электромагнитную систему, снабженную обмоткой возбуждения, питаемой постоянным током (током возбуждения), но встречаются и индукторы, состоящие из системы постоянных магнитов. В индукционных (асинхронных) генераторах переменного тока индуктор и якорь не могут четко (конструктивно) различаться друг от друга (можно сказать, что статор и ротор одновременно являются и индуктором и якорем).
Более 95 % электроэнергии на электростанциях мира производится при помощи синхронных генераторов переменного тока. При помощи вращающегося индуктора в этих генераторах создается вращающееся магнитное поле, наводящее в статорной (обычно трехфазной) обмотке переменную ЭДС, частота которой точно соответствует частоте вращения ротора (находится в синхронизме с частотой вращения индуктора). Если индуктор, например, имеет два полюса и вращается с частотой 3000 r/min (50 r/s), то в каждой фазе статорной обмотки индуцируется переменная ЭДС частотой 50 Hz. Конструктивное исполнение такого генератора упрощенно изображено на рис. 1.
Рис. 1. Принцип устройства двухполюсного синхронного генератора. 1 статор (якорь), 2 ротор (индуктор), 3 вал, 4 корпус. U-X, V-Y, W-Z – размещенные в пазах статора части обмоток трех фаз
Магнитная система статора представляет собой спрессованный пакет тонких стальных листов, в пазах которого располагается статорная обмотка. Обмотка состоит из трех фаз, сдвинутых в случае двухполюсной машины друг относительно друга на 1/3 периметра статора; в фазных обмотках индуцируются, следовательно, ЭДС, сдвинутые друг относительно друга на 120o. Обмотка каждой фазы, в свою очередь, состоит из многовитковых катушек, соединенных между собой последовательно или параллельно. Один из наиболее простых вариантов конструктивного исполнения такой трехфазной обмотки двухполюсного генератора упрощенно представлен на рис. 2 (обычно число катушек в каждой фазе больше, чем показано на этом рисунке). Те части катушек, которые находятся вне пазов, на лобовой поверхности статора, называются лобовыми соединениями.
Рис. 2. Простейший принцип устройства статорной обмотки трехфазного двухполюсного синхронного генератора в случае двух катушек в каждой фазе. 1 развертка поверхности магнитной системы статора, 2 катушки обмотки, U, V, W начала фазных обмоток, X, Y, Z концы фазных обмоток
Полюсов индуктора и, в соответствии с этим, полюсных делений статора, может быть и больше двух. Чем медленнее вращается ротор, тем больше должно быть при заданной частоте тока число полюсов. Если, например, ротор вращается с частотой 300 r/min, то число полюсов генератора, для получения частоты переменного тока 50 Hz, должно быть 20. Например, на одной из крупнейших гидроэлектростанций мира, ГЭС Итайпу (Itaipu, см. рис. 4) генераторы, работающие на частоте 50 Hz, исполнены 66-полюсными, а генераторы, работающие на частоте 60 Hz – 78-полюсными.
Обмотка возбуждения двух- или четырехполюсного генератора размещается, как показано на рис. 1, в пазах массивного стального сердечника ротора. Такая конструкция ротора необходима в случае быстроходных генераторов, работающих при частоте вращения в 3000 или 1500 r/min (особенно для турбогенераторов, предназначенных для соединения с паровыми турбинами), так как при такой скорости на обмотку ротора действуют большие центробежные силы. При большем числе полюсов каждый полюс имеет отдельную обмотку возбуждения (рис. 3.12.3). Такой явнополюсный принцип устройства применяется, в частности, в случае тихоходных генераторов, предназначенных для соединения с гидротурбинами (гидрогенераторов), работающих обычно при частоте вращения от 60 r/min до 600 r/min.
Очень часто такие генераторы, в соответствии с конструктивным исполнением мощных гидротурбин, выполняются с вертикальным валом.
Рис. 3. Принцип устройства ротора тихоходного синхронного генератора. 1 полюс, 2 обмотка возбуждения, 3 колесо крепления, 4 вал
Обмотку возбуждения синхронного генератора обычно питают постоянным током от внешнего источника через контактные кольца на валу ротора. Раньше для этого предусматривался специальный генератор постоянного тока (возбудитель), жестко связанный с валом генератора, а в настоящее время используются более простые и дешевые полупроводниковые выпрямители. Встречаются и системы возбуждения, встроенные в ротор, в которых ЭДС индуцируется статорной обмоткой. Если для создания магнитного поля вместо электромагнитной системы использовать постоянные магниты, то источник тока возбуждения отпадает и генератор становится значительно проще и надежнее, но в то же время и дороже. Поэтому постоянные магниты применяются обычно в относительно маломощных генераторах (мощностью до нескольких сотен киловатт).
Конструкция турбогенераторов, благодаря цилиндрическому ротору относительно малого диаметра, очень компактна. Их удельная масса составляет обычно 0,5…1 kg/kW, и их номинальная мощность можеь достигать 1600 MW. Устройство гидрогенераторов несколько сложнее, диаметр ротора велик и удельная масса их поэтому обычно 3,5…6 kg/kW. До настоящего времени они изготовлялись номинальной мощностью до 800 MW.
При работе генератора в нем возникают потери энергии, вызванные активным сопротивлением обмоток (потери в меди), вихревыми токами и гистерезисом в активных частях магнитной системы (потери в стали) и трением в подшипниках вращающихся частей (потери на трение). Несмотря на то, что суммарные потери обычно не превышают 1…2 % мощности генератора, отвод тепла, освобождающегося в результате потерь, может оказаться затруднительным. Если упрощенно считать, что масса генератора пропорциональна его мощности, то его линейные размеры пропорциональны кубическому корню мощности, а поверхностные размеры – мощности в степени 2/3. С увеличением мощности, следовательно, поверхность теплоотвода растет медленнее, чем номинальная мощность генератора. Если при мощностях порядка нескольких сотен киловатт достаточно применять естественное охлаждение, то при бoльших мощностях необходимо перейти на принудительную вентиляцию и, начиная приблизительно со 100 MW, использовать вместо воздуха водород. При еще больших мощностях (например, более 500 MW) необходимо дополнить водородное охлаждение водным. У крупных генераторах надо специально охлаждать и подшипники, обычно используя для этого циркуляцию масла.
Тепловыделение генератора можно значительно уменьшить путем применения сверхпроводящих обмоток возбуждения. Первый такой генератор (мощностью 4 MVA), предназначенный для применения на судах, изготовила в 2005 году немецкая электротехническая фирма Сименс (Siemens AG) [3.24]. Номинальное напряжение синхронных генераторов, в зависимости от мощности, находится обычно в пределах от 400 V до 24 kV. Использовались и более высокие номинальные напряжения (до 150 kV), но чрезвычайно редко. Кроме синхронных генераторов сетевой частоты (50 Hz или 60 Hz) выпускаются и высокочастотные генераторы (до 30 kHz) и генераторы пониженной частоты (16,67 Hz или 25 Hz), используемые на электрифицированных железных дорогах некоторых европейских стран. К синхронным генераторам относится, в принципе, и синхронный компенсатор, представляющий собой синхронный двигатель, работающий на холостом ходу и отдающий в высоковольтную распределительную сеть реактивную мощность. При помощи такой машины можно покрыть потребление реактивной мощности местных промышленных электропотребителей и освободить основную сеть энергосистемы от передачи реактивной мощности.
Кроме синхронных генераторов относительно редко и при относительно малых мощностях (до нескольких мегаватт) могут использоваться и асинхронные генераторы. В обмотке ротора такого генератора ток индуцируется магнитным полем статора, если ротор вращается быстрее, чем статорное вращающееся магнитное поле сетевой частоты. Необходимость в таких генераторах возникает обычно тогда, когда невозможно обеспечить неизменную скорость вращения первичного двигателя (например, ветряной турбины, некоторых малых гидротурбин и т. п.).
У генератора постоянного тока магнитные полюсы вместе с обмоткой возбуждения располагаются обычно в статоре, а обмотка якоря – в роторе. Так как в обмотке ротора при его вращении индуцируется переменная ЭДС, то якорь необходимо снабжать коллектором (коммутатором), при помощи которого на выходе генератора (на щетках коллектора) получают постоянную ЭДС. В настоящее время генераторы постоянного тока применяются редко, так как постоянный ток проще получать при помощи полупроводниковых выпрямителей.
К электромашинным генераторам относятся и электростатические генераторы, на вращающейся части которых путем трения (трибоэлектрически) создается электрический заряд высокого напряжения. Первый такой генератор (вращаемый вручную серный шар, который электризовался при трении об руку человека) изготовил в 1663 году мэр города Магдебурга (Magdeburg, Германия) Отто фон Гюрике (Otto von Guericke, 1602–1686). В ходе своего развития такие генераторы позволяли открывать многие электрические явления и закономерности. Они и сейчас не потеряли своего значения как средств проведения экспериментальных исследований по физике.
Первый магнитоэлектрический генератор изготовил 4 ноября 1831 года профессор Лондонского Королевского института (Royal Institution) Майкл Фарадей (Michael Faraday, 1791–1867). Генератор состоял из подковообразного постоянного магнита и медного диска, вращающегося между магнитными полюсами (рис. 3.12.4). При вращении диска между его осью и краем индуцировалась постоянная ЭДС. По такому же принципу устроены более совершенные униполярные генераторы, находящие применение (хотя относительно редко) и в настоящее время.
Рис. 4. Принцип устройства униполярного генератора Майкла Фарадея. 1 магнит, 2 вращающийся медный диск, 3 щетки. Рукоятка диска не показана
Майкл Фарадей родился в бедной семье и после начальной школы, в возрасте 13 лет, поступил учеником переплетчика книг. По книгам он самостоятельно продолжал свое образование, а по Британской энциклопедии ознакомился с электричеством, изготовил электростатический генератор и лейденскую банку. Для расширения своих знаний он начал посещать публичные лекции по химии директора Королевского института Гемфри Дэви (Humphrey Davy, 1778–1829), а в 1813 году получил должность его ассистента. В 1821 году он стал главным инспектором этого института, в 1824 году – членом Королевского общества (Royal Society) и в 1827 году – профессором химии Королевского института. В 1821 году он начал свои знаменитые опыты по электричеству, в ходе которых предложил принцип действия электродвигателя, открыл явление электромагнитной индукции, принцип устройства магнитоэлектрического генератора, закономерности электролиза и много других основополагающих физических явлений. Спустя год после вышеописанного опыта Фарадея, 3 сентября 1832 года, парижский механик Ипполит Пикси (Hippolyte Pixii, 1808–1835) изготовил по заказу и под руководством основоположника электродинамики Андре Мари Ампера (Andre Marie Ampere, 1775–1836) генератор с вращаемым вручную, как у Фарадея, магнитом (рис. 5). В якорной обмотке генератора Пикси индуцируется переменная ЭДС. Для выпрямления получаемого тока к генератору вначале пристроили открытый ртутный коммутатор, переключающий полярность ЭДС при каждом полуобороте ротора, но вскоре он был заменен более простым и безопасным цилиндрическим щеточным коллектором, изображенным на рис. 5.
Рис. 5. Принцип устройства магнитоэлектрического генератора Ипполита Пикси (a), график индуцируемой ЭДС (b) и график получаемой при помощи коллектора пульсирующей постоянной ЭДС (c). Рукоятка и конусная зубчатая передача не показаны
Генератор, построенный по принципу Пикси, впервые применил в 1842 году на своем заводе в Бирмингеме (Birmingham) для электропитания гальванических ванн английский промышленник Джон Стивен Вульрич (John Stephen Woolrich, 1790–1843), использовав в качестве приводного двигателя паровую машину мощностью 1 л. с. Напряжение его генератора составляло 3 V, номинальный ток – 25 A и кпд – около 10 %. Такие же, но более мощные генераторы быстро начали внедряться и на других гальванических предприятиях Европы. В 1851 году немецкий военный врач Вильгельм Йозеф Зинштеден (Wilhelm Josef Sinsteden, 1803–1891) предложил использовать в индукторе вместо постоянных магнитов электромагниты и питать их током от меньшего вспомогательного генератора; он же обнаружил, что кпд генератора увеличится, если стальной сердечник электромагнита изготовить не массивным, а из параллельных проволок. Однако идеи Зинштедена стал реально использовать только в 1863 году английский электротехник-самоучка Генри Уайльд (Henry Wilde, 1833–1919), который предложил, среди прочих нововведении, насадить машину-возбудитель (англ. exitatrice) на вал генератора. В 1865 году он изготовил генератор невиданной доселе мощности в 1 kW, при помощи которого он мог демонстрировать даже плавку и сварку металлов.
Важнейшим усовершенствованием генераторов постоянного тока стало их самовозбуждение, принцип которого запатентовал в 1854 году главный инженер государственных железных дорог Дании Сёрен Хьёрт (Soren Hjorth, 1801–1870), но не нашедшее в то время практического применения. В 1866 году этот принцип снова открыли независимо друг от друга несколько электротехников, в том числе уже упомянутый Г. Уайльд, но широко известным он стал в декабре 1866 года, когда немецкий промышленник Эрнст Вернер фон Сименс (Ernst Werner von Siemens, 1816–1892) применил его в своем компактном и высокоэффективном генераторе. 17 января 1867 года в Берлинской академии наук был прочитан его знаменитый доклад о динамоэлектрическом принципе (о самовозбуждении). Самовозбуждение позволило отказатьса от вспомогательных генераторов возбуждения (от возбудителей), что обусловило возможность выработки намного более дешевой электроэнергии в больших количествах. По этой причине год 1866 часто считают годом зарождения электротехники сильного тока. В первых самовозбуждающихся генераторах обмотку возбуждения включали, как у Сименса, последовательно (сериесно) с якорной обмоткой, но в феврале 1867 года английский электротехник Чарлз Уитстон (Charles Wheatstone, 1802–1875) предложил параллельное возбуждение, позволяющее лучше регулировать ЭДС генератора, к которому он пришел еще до сообщений о последовательном возбуждении, открытом Сименсом (рис. 6).
Рис. 6. Развитие систем возбуждения генераторов постоянного тока. a возбуждение при помощи постоянных магнитов (1831), b внешнее возбуждение (1851), c последовательное самовозбуждение (1866), d параллельное самовозбуждение (1867). 1 якорь, 2 обмотка возбуждения. Регулировочные реостаты тока возбуждения не показаны
Необходимость в генераторах переменного тока возникла в 1876 году, когда работающий в Париже русский электротехник Павел Яблочков (1847–1894) стал освещать городские улицы при помощи изготовляемых им дуговых ламп переменного тока (свечей Яблочкова). Первые необходимые для этого генераторы создал парижский изобретатель и промышленник Зеноб Теофиль Грамм (Zenobe Theophile Gramme, 1826–1901). С началом массового производства ламп накаливания в 1879 году переменный ток на некоторое время потерял свое значение, но снова обрел актуальность в связи с ростом дальности передачи электроэнергии в середине 1880-х годов. В 1888–1890 годах владелец собственной научно-исследовательской лаборатории Тесла-Электрик (Tesla-Electric Co., Нью-Йорк, США) эмигрировавший в США сербский электротехник Никола Тесла (Nikola Tesla, 1856–1943) и главный инженер фирмы АЭГ (AEG, Allgemeine Elektricitats-Gesellschaft) эмигрировавший в Германию русский электротехник Михаил Доливо-Добровольский (1862–1919) разработали трехфазную систему переменного тока. В результате началось производство все более мощных синхронных генераторов для сооружаемых тепло- и гидроэлектростанций.
Важным этапом в развитии турбогенераторов может считаться разработка в 1898 году цилиндрического ротора совладельцем швейцарского электротехнического завода Браун, Бовери и компания (Brown, Boveri & Cie., BBC) Чарлзом Эженом Ланселотом Брауном (Charles Eugen Lancelot Brown, 1863–1924). Первый генератор с водородным охлаждением (мощностью 25 MW) выпустила в 1937 году американская фирма Дженерал Электрик (General Electric), а с внутрипроводным водяным охлаждением – в 1956 году английская фирма Метрополитен Виккерс (Metropolitan Vickers).
www.eti.su
Генератор переменного тока – что это такое? Это электрическая машина, преобразующая энергию механического взаимодействия в электроэнергию. Как она работает? Закон электромагнитной индукции является основным в принципах работы такого устройства, как генератор переменного тока. Как известно из законов электромагнетизма, электродвижущая сила (ЭДС) может индуктироваться (создаваться) только в нескольких случаях: при изменении параметров магнитного потока вокруг самого проводника или же при движении проводника в магнитных полях. Магнитное поле – это материальная среда, которую можно обнаружить исключительно эмпирическим (опытным путем). То есть для выявления наличия или отсутствия такого силового поля в область его возможного действия необходимо внести проводник с током или намагниченное тело.
В таком устройстве, как генератор переменного тока, основную часть занимает электромагнит. Он состоит из ферримагнитного сердечника и катушки и предназначен для формирования магнитного потока. Есть набор основных требований, которые предъявляются к подобным машинам: диапазон вращения от 50 до 12000 оборотов за минуту, широчайший диапазон возможных мощностей (от нескольких ватт до сотен мегаватт), минимальные масса и габариты, высокая надежность и работоспособность.
Обычно такая машина бывает синхронной. Основная ее задача – преобразование любого вида энергии в электроэнергию. Традиционно, это механическая энергия. Почему генератор переменного тока называют синхронным? Это такая бесколлекторная машина, у которой скорость вращения постоянная и при заданной частоте определяется числом полюсов. Генератор переменного тока получил огромное распространение в производстве и в железнодорожном транспорте. Именно благодаря синхронности вращения его используют на рефрижераторных секциях и тепловозах.
Если вращать ротор и индуктор, то в обмотках статора начнет индуктироваться ЭДС. Именно это явление – основа для работы как трехфазных, так и однофазных машин. Благодаря широчайшему применению на тепловозах, первичным двигателем в таких тяговых синхронных генераторах может быть даже дизельный (двигатель внутреннего сгорания). Неподвижная часть у генератора переменного тока – статор, который состоит из сердечника и корпуса. В пазы статора вложена обмотка, благодаря которой индуктируется ЭДС. Сердечник набирают из спрессованных листов специальной электротехнической стали. Ротор – это вал, на котором закреплены сердечники генераторных полюсов. Существуют полюса ярко- и слабовыраженные. Обмотка выполняется из медных проводов, обычно круглого или же прямоугольного сечения. Концы обмотки выводят к контактным кольцам. С помощью установленных в щеткодержателях щеток, которые прижимаются к контактным поверхностям пружинами, осуществляется токосъём. Учитывая несложную конструкцию, вполне реально сделать генератор переменного тока своими руками. Принцип действия его крайне прост. Ротор вращается при помощи двигателя. Магнитное поле ротора вращается с ним вместе. Именно по этому принципу и работает генератор переменного тока.
www.syl.ru