Камаз 44108 тягач В наличии!
Тягач КАМАЗ 44108-6030-24
евро3, новый, дв.КАМАЗ 740.55-300л.с., КПП ZF9, ТНВД ЯЗДА, 6х6, нагрузка на седло 12т, бак 210+350л, МКБ, МОБ
 
карта сервера
«ООО Старт Импэкс» продажа грузовых автомобилей камаз по выгодным ценам
+7 (8552) 31-97-24
+7 (904) 6654712
8 800 1005894
звонок бесплатный

Наши сотрудники:
Виталий
+7 (8552) 31-97-24

[email protected]

 

Екатерина - специалист по продаже а/м КАМАЗ
+7 (904) 6654712

[email protected]

 

Фото техники

20 тонный, 20 кубовый самосвал КАМАЗ 6520-029 в наличии
15-тонный строительный самосвал КАМАЗ 65115 на стоянке. Техника в наличии
Традиционно КАМАЗ побеждает в дакаре

тел.8 800 100 58 94

Техника в наличии

тягач КАМАЗ-44108
Тягач КАМАЗ 44108-6030-24
2014г, 6х6, Евро3, дв.КАМАЗ 300 л.с., КПП ZF9, бак 210л+350л, МКБ,МОБ,рестайлинг.
цена 2 220 000 руб.,
 
КАМАЗ-4308
КАМАЗ 4308-6063-28(R4)
4х2,дв. Cummins ISB6.7e4 245л.с. (Е-4),КПП ZF6S1000, V кузова=39,7куб.м., спальное место, бак 210л, шк-пет,МКБ, ТНВД BOSCH, система нейтрализ. ОГ(AdBlue), тент, каркас, рестайлинг, внутр. размеры платформы 6112х2470х730 мм
цена 1 950 000 руб.,
КАМАЗ-6520
Самосвал КАМАЗ 6520-057
2014г, 6х4,Евро3, дв.КАМАЗ 320 л.с., КПП ZF16, ТНВД ЯЗДА, бак 350л, г/п 20 тонн, V кузова =20 куб.м.,МКБ,МОБ, со спальным местом.
цена 2 700 000 руб.,
 
КАМАЗ-6522
Самосвал 6522-027
2014, 6х6, дв.КАМАЗ 740.51,320 л.с., КПП ZF16,бак 350л, г/п 19 тонн,V кузова 12куб.м.,МКБ,МОБ,задняя разгрузка,обогрев платформы.
цена 3 190 000 руб.,

СУПЕР ЦЕНА

на АВТОМОБИЛИ КАМАЗ
43118-010-10 (дв.740.30-260 л.с.) 2 220 000
43118-6033-24 (дв.740.55-300 л.с.) 2 300 000
65117-029 (дв.740.30-260 л.с.) 2 200 000
65117-6010-62 (дв.740.62-280 л.с.) 2 350 000
44108 (дв.740.30-260 л.с.) 2 160 000
44108-6030-24 (дв.740.55,рест.) 2 200 000
65116-010-62 (дв.740.62-280 л.с.) 1 880 000
6460 (дв.740.50-360 л.с.) 2 180 000
45143-011-15 (дв.740.13-260л.с) 2 180 000
65115 (дв.740.62-280 л.с.,рест.) 2 190 000
65115 (дв.740.62-280 л.с.,3-х стор) 2 295 000
6520 (дв.740.51-320 л.с.) 2 610 000
6520 (дв.740.51-320 л.с.,сп.место) 2 700 000
6522-027 (дв.740.51-320 л.с.,6х6) 3 190 000


Перегон грузовых автомобилей
Перегон грузовых автомобилей
подробнее про услугу перегона можно прочесть здесь.


Самосвал Форд Нужны самосвалы? Обратите внимание на Ford-65513-02.

КАМАЗы в лизинг

ООО «Старт Импэкс» имеет возможность поставки грузовой автотехники КАМАЗ, а так же спецтехники на шасси КАМАЗ в лизинг. Продажа грузовой техники по лизинговым схемам имеет определенные выгоды для покупателя грузовика. Рассрочка платежа, а так же то обстоятельство, что грузовики до полной выплаты лизинговых платежей находятся на балансе лизингодателя, и соответственно покупатель автомобиля не платит налогов на имущество. Мы готовы предложить любые модели бортовых автомобилей, тягачей и самосвалов по самым выгодным лизинговым схемам.

Контактная информация.

г. Набережные Челны, Промкомзона-2, Автодорога №3, база «Партнер плюс».

тел/факс (8552) 388373.
Схема проезда



3.8. Временное крепление конструкции при монтаже. Выверка конструкций, визуальный и инструментальный контроль. Схема закрепления колонны


Расчетная длина колонны (стены) - Доктор Лом. Первая помощь при ремонте

Теоретически все выглядит до смешного просто: чтобы определить расчетную длину, нужно умножить высоту (реальную длину) колонны, стойки или рассчитываемого участка стены на коэффициент μ, учитывающий способ закрепления на опорах:

lef = μl (233.1.1)

или

lo = μH (233.1.2)

При расчете металлических конструкций принято обозначение расчетной длины lef, при расчете каменных и армокаменных конструкций расчетная длина обозначается как lo, да и высота колонны может обозначаться как угодно, сути дела это не меняет. В любом случае для дальнейших расчетов нужно определить значение коэффициента μ. Если ситуация с закреплением на опорах пока не известна или нет большого желания разбираться в тонкостях различий, то лучше принять значение μ = 2 и смело считать дальше. Это практически максимальное возможное значение коэффициента и самое страшное, что может случиться с Вашей конструкцией в этом случае - это относительно небольшой запас по прочности.

Если же Вы чувствуете в себе силы разобраться в нюансах закрепления, то милости просим. Проще всего это сделать по следующей таблице:

Таблица 233.1. Значение коэффициента μ при нагрузке, приложенной к верху (оголовку) колонны, стойки, стены.

значение коэффициента, учитывающего способ закрепления на опорах

Примечания:

1* - Рекомендованные значения для расчетов деревянных конструкций

2** - Если защемление на опоре недостаточно жесткое или опоры не являются чисто шарнирными.

3. При действии только равномерно распределенной нагрузки по всей длине колонны - от собственного веса колонны или от листов зашивки каркаса стены - значение коэффициента μ уменьшается в связи со смещением точки приложения сосредоточенной нагрузки.

При шарнирных опорах:

  • Для деревянных конструкций рекомендуется использовать понижающий коэффициент 0.73
  • для каменных и армокаменных конструкций - 0.75
  • для стальных и железобетонных конструкций - 0.725.

При жестком защемлении только на верхней опоре:

  • для деревянных и железобетонных конструкций используется коэффициент μ = 1.2,
  • для каменных и армокаменных конструкций - μ = 1.5
  • для стальных конструкций - μ = 1.12.

Как видим, теоретическая простота на деле распыляется на несколько вариантов. Даже при наличии всего двух вариантов вероятность выбора наугад правильного варианта составляет около 50%. При 7 представленных вариантах вероятность отгадывания правильного варианта падает значительно, поэтому мы не будем полагаться на волю случая, а более подробно рассмотрим указанные варианты.

Любая сжимаемая колонна или стойка или стена будет деформироваться, причем чем более неоднородным будет материал конструкции, чем сильнее его центральная ось будет отклонена от прямой линии и чем больше при этом соотношение длины конструкции к ширине или высоте поперечного сечения, тем больше вероятность того, что конструкция не сожмется как пружина, а выгнется как палка, на которую давишь, впрочем и очень длинную пружину тоже равномерно сжать не удастся и она тоже выгнется.

В таблице изменение положения центральной оси стержня показано пунктиром. Это изменение, описываемое прогибом f, приведет к появлению эксцентриситета приложения нагрузки, а значит и внутренние напряжения в рассматриваемом сечении изогнутой конструкции будут больше, чем в прямолинейной, так как появится момент от эксцентриситета приложения нагрузки. В свою очередь этот момент будет вызывать дополнительный прогиб и увеличение нормальных напряжений, дополнительный прогиб - еще дополнительный момент и так до бесконечности или до тех пор, пока колонна не разрушится или не потеряет устойчивость (более подробно и наглядно данный процесс рассматривается отдельно). Причем потеря устойчивости скорее всего произойдет относительно той оси, относительно которой соотношение длины к конструкции к одному из размеров поперечного сечения наибольшее. И хотя в данной статье рассматриваются некие стержни без привязки к каким-либо осям, но помнить об этом все-таки нужно.

Наиболее опасным с точки зрения потери устойчивости для стержней на двух шарнирных опорах постоянного по всей длине сечения является поперечное сечение посредине длины стержня. В этом рассчитываемые на сжатие стержни похожи на симметрично или равномерно загруженные балки. В принципе если исхитриться и наклонить голову на 90 градусов и посмотреть на таблицу, то колонну от балки не отличишь. Как и для балки, для сжатой стойки или колонны очень важной характеристикой является величина прогиба, ведь чем больше прогиб, тем меньше несущая способность конструкции. Вот только как быстро определить этот прогиб? Ведь эпюры прогиба, характеризующие изменение положения центров тяжести поперечных сечений относительно центральной оси, при различных способах закрепления на опорах разные. И тогда какой-то умный человек, фамилии которого я не знаю (возможно это был математик Эйлер, впервые рассчитавший значение критической сжимающей силы, но утверждать не буду), придумал способ приведения различных расчетных схем к единому знаменателю, реализованный в таблице 233.1. Суть этого способа сводится к тому, чтобы одно из возможных закреплений балки взять за основу, а все остальные варианты закрепления стержней на опорах привести к основному использованием соответствующего коэффициента.

В таблице 233.1 такой основой является колонна с шарнирными опорами (№1.1), однако использовать такую расчетную длину можно только для стоек ферм или для колонн имеющих диагональные связи в плоскости расчета или для колонн каркаса имеющего соответствующую диафрагму жесткости. Во всех остальных случаях значение расчетной длины будет больше и виной тому странное желание человека строить здания прямоугольной формы. Как известно, каркас, представляющий собой прямоугольник - штука очень ненадежная - геометрической неизменяемостью не обладает, а потому может запросто сложиться, как детская игрушка и потому в каркасных зданиях диагональные связи между колоннами или диафрагмы жесткости обязательны. В домах с несущими стенами эти самые несущие стены и выполняют дополнительно функцию диафрагм жесткости, поэтому любой дом, имеющий 4 стены некоторой определенной толщины намного прочнее, чем отдельно стоящая стена такой же толщины. Поэтому при определении коэффициента μ (или расчетной длины) эту особенность нужно учитывать. В связи с этим

Наиболее заслуживающей доверия расчетной схемой является расчетная схема для колонны с жестким защемлением на нижней опоре (№1.2). Такая расчетная схема подходит для всех отдельно стоящих колонн, а также может применяться при колонн однопролетного и даже двухпролетного каркаса при соблюдении условий указанных для схемы №1.6. 

Расчетная схема №1.3 - самый лакомый кусок для начинающего проектировщика, так как позволяет уменьшить расчетную длину в четыре раза по сравнению с расчетной схемой №1.2. Однако применять эту схему можно лишь для сварных металлоконструкций и железобетонных конструкций, в которых опорные узлы отдельно просчитываются на нагрузки, или для отдельных участков колонн или стен, изготовленных из других материалов, поэтому на эту расчетную схему лучше вообще не смотреть. К тому же даже незначительная подвижность жесткой опоры В (расчетная схема 1.5) в плоскости, перпендикулярной оси стержня сразу вдвое увеличивает расчетную длину.

Расчетная схема №1.4 - это более реальный вариант. Такая схема применима для кирпичных и каменных стен, а также для колонн, имеющих диафрагмы жесткости в двух плоскостях. Если Вы на 100% не уверены в том, что верхняя опора будет абсолютно неподвижной, то можно принимать расчетную длину по расчетной схеме №1.5. Впрочем при расчете каменных стен следует среди прочего учитывать этажность и вид перекрытий.

Для колонн из древесины, металла и других материалов, на которые будут опираться балки перекрытия, на которые в свою очередь будет монтироваться перекрытие лучше использовать расчетные схемы №1.6 и №1.7.

Для стальных колонн - вертикальных элементов рам, при отсутствии диафрагм жесткости значение коэффициента μ следует определять согласно таблицы 17.а СНиП II-23-81*(1990) "Стальные конструкции".

Вот в принципе и все.

doctorlom.com

4 Расчет сквозной центрально-сжатой колонны

Центрально-сжатые колонны воспринимают вертикальную продольную силу, приложенную по оси колонны, поэтому все поперечное сечение колонны испытывает равномерное сжатие.

Колонна состоит из трех основных частей: оголовка, стержня и базы. При проектировании центрально-сжатых колонн требуется обеспечить устойчивость колонны относительно главных осей ее сечения.

4.1 Выбор расчетной схемы и типа сечения колоны

Расчетная схема колонны определяется способом закрепления ее в фундаменте и способом прикрепления балок, передающих нагрузку на колонну.

Расчетную длину колонны принимаем равной

, (4.1)

где  - коэффициент, учитывающий способ закрепления концов колонны; принимаем по таблице 5.1 [7] ;

l - геометрическая длина колонны; принимается равной расстоянию от верха перекрытия до верха фундамента;

, (4.2)

где hn - отметка верха настила; согласно задания м;

h2 = 0.15 м - заглубление базы колонны ниже отметки чистого пола;

hp - строительная высота перекрытия; при сопряжении балок настила с главной балкой в одном уровне см,

где h - высота главной балки;

hb - высота балки настила;

t - толщина настила;

м.

4.2 Подбор сечения стержня колонны

Стержень сквозной колонны состоит, из двух прокатных двутавров, соединенных между собой планками. Равноустойчивость колонны в обеих плоскостях (х - х и y - y) обеспечиваем раздвижкой ветвей на такое расстояние, чтобы приведенная гибкость ef по свободной оси была не более гибкости колонны по материальной оси (efx). Расчет сечения сквозной колонны ведем относительно материальной оси, а расстояние между ветвями определяем относительно свободной оси. Требуемую площадь сечения центрально - сжатой колонны (при условии обеспечения устойчивости относительно главных осей ее сечения) определим по формуле [2]

, (4.3)

где N - сила, действующая на колонну, кН;

 - коэффициент продольного изгиба, определяемый в зависимости от гибкости колонны.

Принимаем  = 40 [1]. .

см2.

Требуемый радиус инерции сечения стержня колонны относительно материальной оси i определяем из формулы ; при этом учитываем, что гибкость относительно материальной оси равна расчетной гибкости

см.

По полученным значениям (площадь сечения и требуемый радиус инерции) по сортаменту (таблица 3.1) [7] принимаем подходящий профиль проката.

Принимаем два двутавра № 50: см2; см;см;см4; см;см;см.

Проверку устойчивости принятого стержня ведем по формуле

, (4.4)

где x – коэффициент, определяемый по действительной гибкости ; .

кН/см2кН/см2 – условие выполняется, следовательно принимаем двутавр №50.

Недонапряжение составляет , что вполне допустимо.

4.3 Расчет колонны относительно свободной оси

Определяем расстояние между ветвями колонны из условий равноустойчивости колонны в двух плоскостях . Принимаем гибкость ветви 1 = 30.

Требуемое значение гибкости относительно свободной оси

. (4.5)

.

Соответствующий полученной гибкости радиус инерции см. Требуемое расстояние между ветвями см, где - Коэффициент зависящий от типа сечения ветвей [5]; =0,60 – для сечения из двух двутавров. Принимаем см (полученное расстояние должно быть не менее двойной ширины полок двутавров плюс зазор, необходимый для оправки внутренних поверхностей стержня).

studfiles.net

СНиП II-23-81 стр.25 Условия закрепления верхнего конца колонны

 

Условия закрепления верхнего конца колонны

Значение коэффициентов

mm1

mm2

mm3

по рис. 26,а

по рис. 26, б

по рис. 26, в

Свободный

mm1 = 2,0

mm2 = 2,0

mm3 = m1

(m1 – по табл. 67 при

)

Закрепленной только от поворота

mm1 = m1

mm2 = m1

mm3 = m1

(m1 – по табл. 68 при a1 = 0)

(m1 – по табл. 68 при

)

Неподвижный шарнирно-опертый

mm1 = m11

mm2 = m11

mm3 = m12

(m11 – по табл. 69)

(m12 – по табл. 69)

Неподвижный закрепленный от поворота

mm1 = mm11

mm2 = m11

mm3 = m12

(m11 – по табл. 70)

(m12 – по табл. 70)

 

Таблица 71, а.

 

Коэффициенты m для определения расчетных длин колонн и стоек постоянного сечения

 

Схема закрепления и вид нагрузки

m

1,0

0,7

0,5

2,0

1,0

2,0

0,725

1,12

 

Таблица 72.

 

Коэффициенты j продольного изгиба центрально-сжатых элементов

 

Гибкость

l

Коэффициенты j для элементов из стали с расчетным сопротивлением Ry, МПа (кгс/см2)

200 (2050)

240 (2450)

280 (2850)

320 (3250)

360 (3650)

400 (4100)

440 (4500)

480 (4900)

520 (5300)

560 (5700)

600 (6100)

640 (6550)

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

988

967

939

906

869

827

782

734

665

599

537

479

425

376

328

290

259

233

210

191

174

160

987

962

931

894

852

805

754

686

612

542

478

419

364

315

276

244

218

196

177

161

147

135

985

959

924

883

836

785

724

641

565

493

427

366

313

272

239

212

189

170

154

140

128

118

984

955

917

873

822

766

687

602

522

448

381

321

276

240

211

187

167

150

136

124

113

104

983

952

911

863

809

749

654

566

483

408

338

287

247

215

189

167

150

135

122

111

102

094

982

949

905

854

796

721

623

532

447

369

306

260

223

195

171

152

136

123

111

101

093

086

981

946

900

846

785

696

595

501

413

335

280

237

204

178

157

139

125

112

102

093

085

077

980

943

895

839

775

672

568

471

380

309

258

219

189

164

145

129

115

104

094

086

079

073

979

941

891

832

764

650

542

442

349

286

239

203

175

153

134

120

107

097

088

080

074

068

978

938

887

825

746

628

518

414

326

267

223

190

163

143

126

112

100

091

082

075

069

064

977

936

883

820

729

608

494

386

305

250

209

178

153

134

118

105

094

085

077

071

065

060

977

934

879

814

712

588

470

359

287

235

197

167

145

126

111

099

089

081

073

067

062

057

Примечание. Значение коэффициентов j в таблице увеличены в 1000 раз.

 

 

текст целиком

stroyka-ip.ru

7. Расчетные схемы центрально-сжатых колонн. Определение расчетной длины. Подбор сечений и расчет сквозной колонны.

РАСЧЕТНАЯ СХЕМА КОЛОННЫ

Представляет собой схематизированное изображение стержня в виде

сплошной осевой линии с идеализированными условиями закрепления его

концов

Результат принятия расчетной схемы – установление

численного значения коэффициентов расчетной длины µ и определение

Сопряжение колонны с фундаментом может быть шарнирным или

жестким и не имеет свободы смещения в горизонтальной плоскости, чему

препятствует грунт, окружающий фундамент. Это находит отражение в

расчетных схемах рис.3.2. Сопряжение оголовка колонны при опирании балок

сверху - шарнирное. При этом, если не принять специальных мер, оголовок

имеет возможность смещения в горизонтальной плоскости. На схемах 1,2,4,5

рис.3.2 препятствиями для смещения оголовка колонны служат узлы крепления

вертикальных связей: рамной в продольном и крестовой в поперечном

направлениях. Поэтому в расчетных схемах в оголовках колонн введены

горизонтальные стержни, закрепляющие оголовок от смещений в направлении

поставленных связей. Следует отметить необходимость постановки

вертикальных связей по каждому ряду колонн, обеспечивающих

геометрическую неизменяемость (при шарнирном сопряжении вверху и внизу)

и необходимую жесткость, воспринимающих и передающих на фундаменты

Расчетную (эффективную) длину рекомендуется принимать для расчета, главным образом, стержневых конструкций при проверке несущей способности их отдельных стержней.

Использование понятия расчетной длины предполагает разделение стержневых систем на отдельные элементы, при этом необходимо учитывать взаимодействие рассматриваемого элемента с основанием и другими элементами (в первую очередь, примыкающими к нему в узлах).

Расчетные длины сжатых, внецентренно-сжатых и сжато-изгибаемых элементов стержневых и рамных систем необходимо устанавливать в случаях, когда выполнить расчет конструкций как единых систем по деформированной схеме с учетом пластических деформаций не представляется возможным.

Под расчетной длиной стержня обычно понимают условную длину однопролетного стержня, критическая сила которого при шарнирном закреплении его концов такая же, как для заданного стержня [18].

По физическому смыслу расчетная длина стержня с произвольными закреплениями концов является наибольшим расстоянием между двумя точками перегиба изогнутой оси, определяемым из расчета этого стержня на устойчивость по методу Эйлера.

Согласно этому определению для установления расчетной длины необходимо применять метод расчета на устойчивость систем с прямыми стержнями при приложении нагрузок в узлах в предположении упругих деформаций [19]. При этом следует учитывать продольные усилия в стержнях и, как правило, исключать из рассмотрения поперечные нагрузки и эксцентриситеты, вызывающие изгиб стержней.

При проектировании расчетную длину стержня lef обычно определяют по формуле

lef = mI,                                                                                                      (50)

где m - коэффициент расчетной длины, зависящий от условий закрепления концов стержня и вида нагрузки;

l - геометрическая длина рассматриваемого стержня.

Как и в сплошных колоннах, подбор сечения стержня сквозной колонны начинают с определения необходимой площади сечения, исходя из расчетной нагрузки и расчетного сопротивления материала. Для этого предварительно задаются величиной коэффициента φ = 0,7 / 0,9. После этого определяют требуемую площадь сечения одной ветви по формуле

По найденной площади подбирают по сортаменту ближайший номер швеллера или двутавра и определяют его гибкость относительно материальной оси х — х. Затем поформуле (1.VIII) проверяют расчетное напряжение в колонне при выбранном сечении, исходя из гибкости относительно материальной оси х — х. Далее переходят к компоновке сечения и проверке его относительно свободной оси. Необходимо так расставить ветви сечения и законструировать решетку, чтобы удовлетворялось условие

studfiles.net

3.8. Временное крепление конструкции при монтаже. Выверка конструкций, визуальный и инструментальный контроль.

С целью установки конструкции в заданное проектное положение необходимо в узлах соединения конструкции выполнять временное закрепление.

В стр-ве для временного закрепления монтируемых элементов применяют индивидуальные (клинья, расчалки, подкосы, распорки, кондукторы, фиксаторы итп) и групповые (закрепление нескольких статически неустойчивых монтажных элементов) монтажные приспособления и устройтсва.

Для МК временное закрепление осущ. монтажными болтами.

  1. Колонны. Установленную в стакан фундамента колонну выверяют и временно закрепляют с помощью клиньев, разводных клиньев, клиновых вкладышей, расчалок или подкосов, раздельных одиночных или пространственных кондукторов. При Нк≤7.2 м - используем бетонные, ж/б, стальные или дубовые клинья. Целесообразно применять бетонные, ж/б клинья, которые оставляют в фундаментных стаканах. Деревянные клинья должны быть сухими, иначе при их усушке произойдет отклонение колонны от вертикали. При Нк > 7.2, но Нк≤9.6 м – колонны закрепляются с помощью кондукторов. Тяжелые колонны большой длины Нк> 9.6 м необходимо кроме клиньев или кондукторов укреплять расчалками или жесткими раскосами. Верхние элементы сборных ж/б колонн крепят к нижним монтажной сваркой. Временное крепление колонн осуществляется до набора проектной прочности стыков сопрягаемых конструкций.

2.Фермы и балки. Ж/б балки при отношении их высоты к ширине до 4:1 укладывают на горизонтальные опоры без временного крепления; при большем отношении высоты к ширине монтируемые балки скрепляют распорками и стяжками с другими прочно устанавливаемыми конструкциями. При установке ферм их оси совмещают с рисками на колоннах и закрепляют на анкерных болтах. Первую ферму крепят расчалками, привязывая смежные с коньком узлы верхнего пояса к неподвижным частям сооружения или к специальным якорям; последующие фермы скрепляют по коньку инвентарной винтовой распоркой с ранее установленными распорками. Временные крепления ферм снимают после создания жесткой системы из групп ферм и уложенных на них элементов покрытия. Для временного крепления и выверки стропильных ферм с шагом 6 или 12 м может быть применен кондуктор-распорка.

3.Подкрановые балки. Требует временного крепления, если их высота свыше 1 м.

4. В многоэтажных зданиях при соединении колонн друг с другом могут быть использованы групповые кондукторы (на 4 и более колонн).

3.9. Технологические операции монтажа сборных ж/б колонн.

Колонны - тяжелые конструкции, кот. целесообразно монтировать с транспортных средств: с колонновозов. Если дальность транспортировки превышает 20 км, то необходимо устраивать склад приобъектный, а монтаж осуществлять с предварительной раскладкой.

Тяж. колонны свыше 5 т. раскл-ем основанием к фун-ту и монтаж осущ-ся способом поворота. Легк. колонны монтируем способом скольжения и раскл-аем головой к фун-ту

Стропуем колонну с использованием траверсы (фрикционный захват или проушенный).

Все колонны до момента монтажа должны быть проверены на соответствие техпаспорта.

На колонны наносятся риски

До монтажа колонны проверяем отметки дна стакана и составляем акт на скрытые работы.

Кондукторы устанавливаем до монтажа колонн.

Схема монтажа:

- стропуем

-приподнимаем конструкцию до полного натяжения строп

-поднимаем колонну и приостанавливаем на высоте 0.5 – 1 м от проектной отметки

-два монтажника поворачивают колонну в плане до совпадения рисок с фундаментом

-медленно опускаем колонну в стакан

-В стакане должен быть подстилающий слой из ц/п раствора 20-25 мм.

-после установки колонны стык заделываем бетоном марки не ниже сопрягаемых конструкций.

-Уплотняем бетонную смесь в стакане глубинным вибратором.

При соединении колонны с колонной бетонная смесь в стык вдавливается поршнем.

После заделки стыка нагружать конструкции можно при достижении бетона проектной прочности (Летом – min40%, зимой – 100%)

При выполнении работ составляем акт на скрытые работы.

studfiles.net

Типовая технологическая карта (ттк) монтаж колонн в фундаменты стаканного типа

1. Область применения

    Типовая технологическая карта разработана на монтаж колонн в фундаменты стаканного типа.          

Установка колонн в стаканы фундаментов

         Установка колонн подземной части здания в стаканы фундаментов производится с помощью шарнирно-связевых кондукторов (РШИ), если последние применяются для возведения каркаса наземной части здания.          Если при возведении каркаса наземной части здания используются одиночные кондукторы, при монтаже колонн в стаканы фундаментов применяются инвентарные клиновые вкладыши конструкции ЦНИИОМТП, деревянные, стальные или железобетонные клинья, кондукторы.          Установка шарнирно-связевых кондукторов производится на верхние обрезы фундаментов с помощью специально предусмотренных в конструкции баз консольных опор. Конструкция консольных опор позволяет устанавливать кондукторы при наличии неспланированного грунта между блоками.          Установка и выверка кондукторов осуществляется в той же последовательности, что и при монтаже конструкций наземной части здания. Верх колонн приводится в проектное положение с помощью угловых упоров, имеющихся на верхних шарнирных рамах кондукторов. По вертикали колонны устанавливаются в проектное положение путем перемещения низа до совмещения рисок осей колони, нанесенных на их гранях в уровне верхнего обреза фундамента, с рисками осей колонн в уровне верхнего сечения.          Точность совмещения рисок колонн контролируется с помощью теодолитов в двух направлениях.          При достаточно высокой точности изготовления шарнирно-связевых кондукторов (отклонение расстояния между угловыми упорами не более 2 мм) установку низа колонн можно производить совмещением рисок осей колонн в нижнем сечении с рисками разбивочных осей, размеченными в верхних обрезах фундаментов. При этом контроль за точностью совмещения рисок может производиться визуально с помощью шаблона.          Перемещение низа колонн в процессе выверки производится до расстроповки с помощью ломиков, домкратов или клиньев. Последовательность монтажа остальных элементов такая же, как при возведении наземной части здания.          Деревянные, стальные или железобетонные клинья, устанавливаемые в зазоры между стаканом и телом колонны, являются простейшими приспособлениями для выверки и временного закрепления колонн. Наиболее удобны клиновые вкладыши, разработанные ЦНИИОМТП, снабженные винтами, обеспечивающими механическое извлечение вкладышей из фундаментов после замоноличивания. Толщина клиньев определяется по размерам зазоров, уклон - по проектному наклону внутренней поверхности стенок стакана, ширина 150-200 мм. Длина клиньев ориентировочно принимается равной половине глубины стакана.          Клинья изготовляют из твердых пород дерева. Так как, древесина по сравнению с бетоном имеет меньшую прочность и подвержена гниению, деревянные клинья не могут быть оставлены в фундаменте постоянно. Поэтому замоноличивание колонны, закрепленной в фундаменте, производят в два приема: сначала зазоры, свободные от клиньев, затем после затвердения уложенной бетонной смеси вынимают клинья и замоноличивают окончательно.          Стальные клинья изготовляют из обрезков угловой стали, срезанных на конус и сваренных между собой для образования замкнутого прямоугольного сечения. Удаление стальных клиньев так же затруднительно, как и деревянных, и для его выполнения требуется вести замоноличивание в два приема. Поэтому стальные клинья зачастую оставляют в теле фундамента, замоноличивая колонну сразу до верха стакана фундамента.          Более экономично применение железобетонных клиньев, они также остаются в теле фундамента.          Работа звена организуется следующим образом. Подготовка конструкции к подъему и подготовка необходимых для монтажа вспомогательных материалов и приспособлений производится двумя монтажниками 4 и 3-го разряда.          Колонну и закладные детали монтажники очищают от грязи и наледи, восстанавливают риски, проверяют основные размеры колонны, а также наличие и правильность расположения закладных деталей. При выполнении этих операций используются стальные щетки, скребки, стальная рулетка с миллиметровыми делениями, складной метр, чертилки, краска и кисть.          Подготовка фундамента производится монтажниками 5 (звеньевой), 3 и 2-го разряда. Они очищают дно стакана, восстанавливают на нем риски и отметки, укладывают выравнивающий слой (если эта операция не была выполнена заранее). При подготовке фундаментов применяются теодолит, нивелир, шланг, подключенный к сети сжатого воздуха (или к баллону), для выдувания сухого мусора из стакана, шланг от водопроводной сети и ручной насос для удаления грязи и промывки стакана, лопата, мастерок, скребки, стальные щетки и ветошь, краска и кисти, ведро, ящик для бетонной смеси, ручная трамбовка.          После подготовки фундамента монтажники 5, 3 и 2-го разряда приступают к подготовке подъема и к строповке колонны. Если на установке колонн применяется стреловой кран на гусеничном или пневмоколесном ходу, монтажники устраивают при необходимости шпальные клетки под выносные опоры, готовят путь для перегонки крана на новую рабочую стоянку. На крюк крана навешивается строповочное устройство и конструкция стропится. Убедившись в правильности и надежности строповки, звеньевой разрешает начать подъем.          Когда колонна поднята и находится в вертикальном положении над фундаментом, монтажники (двое или трое в зависимости от веса конструкций) заводят колонну в стакан фундамента, приводят ее низ в проектное положение по осевым рискам на колонне и на фундаменте. При наводке низа колонны пользуются монтажными ломиками.          Затем монтажники 4 и 3-го разряда закрепляют колонну клиньями или расчалками, полиспаст крана при этом слегка ослабляется.          Вертикальность колонны выверяется по отвесу или с помощью теодолитов, установленных по двум осям колонны в двух взаимно перпендикулярных плоскостях. Выверку теодолитами производит мастер (геодезист) или звеньевой; монтажники 4 и 3-го разряда по указанию звеньевого добивают клинья.          Колонна после выверки закрепляется монтажными приспособлениями в проектном положении. Затем производится ее расстроповка и монтажный кран освобождается.          Сдача смонтированных колонн под замоноличивание и их замоноличивание производятся партиями по 4-10 колонн.          Замоноличивание колонн и последующий уход за бетоном осуществляет звено бетонщиков.          Монтаж колонн длиной более 12 м производится с применением растяжек или подкосов. ЦНИИОМТП разработал комплект монтажной оснастки для установки многоэтажных колонн в стаканы фундаментов, который состоит из клиновых вкладышей, опорных балок, хомутов и подкосов, балансирного или рамочного захватов.          Последовательность сборки каркаса зависит от высоты крепления подкосов к колоннам и расположения ригелей в здании.          На рис.1 приведена последовательность сборки каркаса при поперечном расположении ригелей в здании и креплении подкосов к колоннам ниже уровня перекрытия первого этажа.

Рис.1. Последовательность сборки каркаса с многоэтажными колоннами, устанавливаемыми в стаканы фундаментов: a - схема закрепления колонн с помощью подкосов; б - установка колонн; в - укладка ригелей; г - укладка плит перекрытия; 1 - фундамент; 2 - балка; 3 - колонна; 4 - хомут; 5 - подкос; 6 - клиновой вкладыш; 7 - монтажная площадка; 8 - ригель; 9 - плита перекрытия

              До установки колонн на захватке укладывают опорные балки и крепят их к петлям фундаментов с помощью анкерных устройств. Предварительно на складе к колонне крепят хомут и навешивают на него подкосы, после чего приступают к строповке колонны.          Колонну краном устанавливают в стакан фундамента и временно крепят с помощью клиновых вкладышей и двух подкосов. Далее ее расстроповывают и приступают к выверке. Контролируют точность приведения колонны в вертикальное положение с помощью теодолита по двум осям. Замоноличивают стыки колонн с фундаментами вслед за их установкой.          После установки колонн приступают к укладке ригелей первого этажа, а затем связевых плит перекрытия и после их сварки - рядовых плит.          Диафрагмы жесткости с полками устанавливают по ходу укладки ригелей, а диафрагмы без полок - до укладки перекрывающих их связевых плит.          В такой же последовательности монтируют конструкции второго этажа.          Снимают подкосы только после раскрепления колонн ригелями и плитами в уровне двух нижних этажей.          При сборке каркаса с поперечным расположением ригелей и креплением колонны подкосом выше уровня перекрытия первого этажа (при наличии в здании технического этажа) обеспечивают возможность укладки ригелей первого и второго этажей. Нижние концы подкосов, удерживающие колонны по продольной оси, крайней от крана, крепят к якорям. Колонны, расположенные по продольной оси здания, ближайшей к крану, крепят в направлении поперечных осей при помощи горизонтальных связей, прикрепляемых к ранее смонтированным колоннам. Сборка каркаса на первой захватке производится в следующем порядке:          - устанавливают колонны, выверяют и временно крепят их при помощи клиновых вкладышей, подкосов и горизонтальных связей;          - укладывают ригели первого этажа в двух крайних ячейках и сваривают их с колоннами;          - затем в этих же ячейках укладывают плиты перекрытия;          - укладывают ригели второго этажа и сваривают их с колоннами;          - далее укладывают плиты перекрытия второго этажа в порядке, указанном выше;          - снимают подкосы, удерживающие колонны, и в этом месте связевые плиты укладывают на высоту двух этажей;          - укладывают ригели первого этажа в двух ближайших к крану ячейках, сняв предварительно подкосы, которые расположены в направлении поперечных осей;          - сварив ригели с колоннами, снимают горизонтальные связи, удерживающие установленные колонны;          - укладывают на высоту двух этажей плиты перекрытия за исключением связевых плит, удерживаемых подкосами;          - после укладки плит перекрытия в рассматриваемых ячейках на высоте двух этажей подкосы снимают и укладывают связевые плиты.          Далее монтируют каркас в той же последовательности, что и ранее.          При продольном расположении ригелей горизонтальные связи не применяются. С помощью якорей крепят колонны, устанавливаемые только по крайней поперечной оси. Сборку каркаса в данном случае производят в следующем порядке:          - устанавливают на захватке колонны, выверяют и временно крепят их при помощи клиньев и подкосов;          - укладывают в ячейках между крайними поперечными осями ригели первого этажа и сваривают их с колоннами, затем в этих осях укладывают плиты перекрытия первого этажа за исключением связевых плит в местах, где установлены подкосы, далее укладывают ригели и плиты перекрытия второго этажа;          - снимают подкосы и в этом месте укладывают связевые плиты двух этажей;          - укладывают ригели и рядовые плиты перекрытия первого этажа в смежных ячейках;          - снимают следующие подкосы и в этом месте укладывают связевые плиты;          - укладывают в монтируемой ячейке ригели и плиты перекрытия второго этажа;          - после установки и временного крепления колонн на второй захватке приступают к укладке ригелей первого этажа в следующей ячейке, а затем рядовых плит перекрытия;          - снимают подкосы, удерживающие колонны и укладывают связевые плиты.          Далее каркас собирают в последовательности, аналогичной приведенной выше.          

studfiles.net

Расчетные длины колонн (стоек) — КиберПедия

10.3.1 Расчетные длины lеfколонн (стоек) постоянного сечения или отдельных участков ступенчатых колонн следует определять по формуле

(140)

где l - длина колонны, отдельного участка ее или высота этажа;

μ - коэффициент расчетной длины.

10.3.2 При определении коэффициентов расчетной длины колонн (стоек) значения продольных сил в элементах системы следует принимать, как правило, для того сочетания нагрузок, для которого выполняется проверка устойчивости колонн (стоек) согласно разделам 7 и 9.

Допускается определять коэффициенты расчетной длины колонн постоянного сечения и отдельных участков ступенчатых колонн лишь для сочетания нагрузок, дающего наибольшие значения продольных сил в колоннах и на отдельных участках, и полученные значения коэффициентов μ использовать для участков с другими сочетаниями нагрузок.

При этом необходимо различать несвободные (раскрепленные) рамы, у которых узлы крепления ригелей к колоннам не имеют свободы перемещения в направлении, перпендикулярном оси колонны в плоскости рамы, и свободные (нераскрепленные) рамы, у которых такие перемещения возможны (см. рисунок 1).

10.3.3 Коэффициенты расчетной длины μ колонн (стоек) постоянного сечения следует определять в зависимости от условий закрепления их концов и вида нагрузки. Для некоторых случаев закрепления концов и вида нагрузки значения μ приведены в таблице 30.

Таблица 30

Коэффициенты расчетной длины колонн (стоек) постоянного сечения с упругим закреплением концов следует определять по формулам, приведенным в таблицах И.1 и И.2 приложения И.

10.3.4 Коэффициенты расчетной длины μ колонн постоянного сечения в плоскости свободных или несвободных рам при жестком креплении ригелей к колоннам и при одинаковом нагружении узлов, расположенных в одном уровне, следует определять по формулам таблицы 31.

10.3.5 При отношении Н/В ≥ 6 (где Н - полная высота свободной многоэтажной рамы, В - ширина рамы) должна быть проверена общая устойчивость рамы в целом как составного стержня, защемленного в основании и свободного вверху.

10.3.6 При неравномерном нагружении верхних узлов колонн в свободной одноэтажной раме и наличии жесткого диска покрытия или продольных связей по верху всех колонн коэффициент расчетной длины μеfнаиболее нагруженной колонны в плоскости рамы следует определять по формуле

(146)

где μ - коэффициент расчетной длины проверяемой колонны, вычисленный по формулам (141) и (142) таблицы 31;

Ic, Nc - момент инерции сечения и усилие в наиболее нагруженной колонне рассматриваемой рамы соответственно;

ΣNi, ΣIi - сумма расчетных усилий и моментов инерции сечений всех колонн рассматриваемой рамы и четырех соседних рам (по две с каждой стороны) соответственно; все усилия следует находить при том же сочетании нагрузок, которое вызывает усилие Ncв проверяемой колонне.

Таблица 31

Схема рамы Параметры Коэффициент расчетной длины
р п
Свободные рамы (141)
р = 0
р = ∞ (142)
Beрхний этаж (143)
Средний этаж
Нижний этаж (144)
Частные случаи
р = 0 От 0,03 до 0,2
Св. 0,2
0,03 ≤ p ≤ 50
р = ∞ От 0,03 до 0,2
Св. 0,2
Несвободные рамы (145)
Верхний этаж
0,5(p1+p2) п1+п2
Средний этаж
0,5(p1+p2) 0,5 (n1+п2)
Нижний этаж
(p1+p2) 0,5 (n1+п2)
Частные случаи
р = 0
р = ∞
Обозначения, принятые в таблице 31: Is1, Is2 и Ii1, Ii2 - моменты инерции сечения ригелей, примыкающих соответственно к верхнему и-нижнему концам проверяемой колонны; Iс, lс - соответственно момент инерции сечения и длина проверяемой колонны; l, l1, l2 - пролеты рамы; k - число пролетов; Примечание - Для крайней колонны свободной многопролетной рамы коэффициент μ следует определять при значениях р и п как для колонн однопролетной рамы.

10.3.7 Коэффициенты расчетной длины μ отдельных участков ступенчатых колонн в плоскости рамы следует определять согласно приложению И.

При определении коэффициентов расчетной длины μ для ступенчатых колонн рам одноэтажных производственных зданий допускается:

не учитывать влияние степени загружения и жесткости соседних колонн; для многопролетных рам (с числом пролетов два и более) при наличии жесткого диска покрытия или продольных связей, связывающих поверху все колонны и обеспечивающих пространственную работу сооружения, определять расчетные длины колонн как для стоек, неподвижно закрепленных на уровне ригелей.

10.3.8 Коэффициенты расчетной длины μ, определенные для колонн свободных одноэтажных (при отсутствии жесткого диска покрытия) и многоэтажных рам, допускается уменьшать умножением на коэффициент ψ, определяемый по формуле

(147)

где α = 0,65 - 0,9β + 0,25β2;

Здесь обозначено

- условная гибкость колонны, вычисленная с учетом требований 7.3.2 и 7.3.3.

Расчетные значения продольной силы N и изгибающего момента М в рассчитываемой свободной раме следует определять согласно требованиям 9.2.3.

Значение изгибающего момента М1следует определять для того же сочетания нагрузок в том же сечении колонны, где действует момент М, рассматривая раму в данном расчетном случае как несвободную.

10.3.9 Расчетные длины колонн в направлении вдоль здания (из плоскости рамы), как правило, следует принимать равными расстояниям между закрепленными от смещения из плоскости рамы точками (опорами колонн, подкрановых балок и подстропильных ферм, узлами крепления связей и ригелей и т.п.). Расчетные длины допускается определять на основе расчетной схемы, учитывающей фактические условия закрепления концов колонн.

10.3.10 Расчетную длину ветвей плоских опор транспортерных галерей следует принимать равной:

в продольном направлении галереи - высоте опоры (от низа базы до оси нижнего пояса фермы или балки), умноженной на коэффициент μ, определяемый как для стоек постоянного сечения в зависимости от условий закрепления их концов;

в поперечном направлении (в плоскости опоры) - расстоянию между центрами узлов; при этом должна быть проверена общая устойчивость опоры в целом как составного стержня, защемленного в основании и свободного вверху.

cyberpedia.su


© 2007—2018
423800, Набережные Челны , база Партнер Плюс, тел. 8 800 100-58-94 (звонок бесплатный)