Камаз 44108 тягач В наличии!
Тягач КАМАЗ 44108-6030-24
евро3, новый, дв.КАМАЗ 740.55-300л.с., КПП ZF9, ТНВД ЯЗДА, 6х6, нагрузка на седло 12т, бак 210+350л, МКБ, МОБ
 
карта сервера
«ООО Старт Импэкс» продажа грузовых автомобилей камаз по выгодным ценам
+7 (8552) 31-97-24
+7 (904) 6654712
8 800 1005894
звонок бесплатный

Наши сотрудники:
Виталий
+7 (8552) 31-97-24

[email protected]

 

Екатерина - специалист по продаже а/м КАМАЗ
+7 (904) 6654712

[email protected]

 

Фото техники

20 тонный, 20 кубовый самосвал КАМАЗ 6520-029 в наличии
15-тонный строительный самосвал КАМАЗ 65115 на стоянке. Техника в наличии
Традиционно КАМАЗ побеждает в дакаре

тел.8 800 100 58 94

Техника в наличии

тягач КАМАЗ-44108
Тягач КАМАЗ 44108-6030-24
2014г, 6х6, Евро3, дв.КАМАЗ 300 л.с., КПП ZF9, бак 210л+350л, МКБ,МОБ,рестайлинг.
цена 2 220 000 руб.,
 
КАМАЗ-4308
КАМАЗ 4308-6063-28(R4)
4х2,дв. Cummins ISB6.7e4 245л.с. (Е-4),КПП ZF6S1000, V кузова=39,7куб.м., спальное место, бак 210л, шк-пет,МКБ, ТНВД BOSCH, система нейтрализ. ОГ(AdBlue), тент, каркас, рестайлинг, внутр. размеры платформы 6112х2470х730 мм
цена 1 950 000 руб.,
КАМАЗ-6520
Самосвал КАМАЗ 6520-057
2014г, 6х4,Евро3, дв.КАМАЗ 320 л.с., КПП ZF16, ТНВД ЯЗДА, бак 350л, г/п 20 тонн, V кузова =20 куб.м.,МКБ,МОБ, со спальным местом.
цена 2 700 000 руб.,
 
КАМАЗ-6522
Самосвал 6522-027
2014, 6х6, дв.КАМАЗ 740.51,320 л.с., КПП ZF16,бак 350л, г/п 19 тонн,V кузова 12куб.м.,МКБ,МОБ,задняя разгрузка,обогрев платформы.
цена 3 190 000 руб.,

СУПЕР ЦЕНА

на АВТОМОБИЛИ КАМАЗ
43118-010-10 (дв.740.30-260 л.с.) 2 220 000
43118-6033-24 (дв.740.55-300 л.с.) 2 300 000
65117-029 (дв.740.30-260 л.с.) 2 200 000
65117-6010-62 (дв.740.62-280 л.с.) 2 350 000
44108 (дв.740.30-260 л.с.) 2 160 000
44108-6030-24 (дв.740.55,рест.) 2 200 000
65116-010-62 (дв.740.62-280 л.с.) 1 880 000
6460 (дв.740.50-360 л.с.) 2 180 000
45143-011-15 (дв.740.13-260л.с) 2 180 000
65115 (дв.740.62-280 л.с.,рест.) 2 190 000
65115 (дв.740.62-280 л.с.,3-х стор) 2 295 000
6520 (дв.740.51-320 л.с.) 2 610 000
6520 (дв.740.51-320 л.с.,сп.место) 2 700 000
6522-027 (дв.740.51-320 л.с.,6х6) 3 190 000


Перегон грузовых автомобилей
Перегон грузовых автомобилей
подробнее про услугу перегона можно прочесть здесь.


Самосвал Форд Нужны самосвалы? Обратите внимание на Ford-65513-02.

КАМАЗы в лизинг

ООО «Старт Импэкс» имеет возможность поставки грузовой автотехники КАМАЗ, а так же спецтехники на шасси КАМАЗ в лизинг. Продажа грузовой техники по лизинговым схемам имеет определенные выгоды для покупателя грузовика. Рассрочка платежа, а так же то обстоятельство, что грузовики до полной выплаты лизинговых платежей находятся на балансе лизингодателя, и соответственно покупатель автомобиля не платит налогов на имущество. Мы готовы предложить любые модели бортовых автомобилей, тягачей и самосвалов по самым выгодным лизинговым схемам.

Контактная информация.

г. Набережные Челны, Промкомзона-2, Автодорога №3, база «Партнер плюс».

тел/факс (8552) 388373.
Схема проезда



Схема, особенности, принцип действия и устройство генератора постоянного тока. Принцип действия генератора


Генератор переменного тока: устройство, принцип работы, назначение

Электрический ток является основным видом энергии, совершающим полезную работу во всех сферах человеческой жизни. Он приводит в движение разные механизмы, дает свет, обогревает дома и оживляет целое множество устройств, которые обеспечивают наше комфортное существование на планете. Поистине, этот вид энергии универсален. Из нее можно получить все что угодно, и даже большие разрушения при неумелом использовании.

Но было время, когда электрические эффекты все так же присутствовали в природе, но никак не помогали человеку. Что же изменилось с тех пор? Люди стали изучать физические явления и придумали интересные машины – преобразователи, которые, в общем, и сделали революционный скачок нашей цивилизации, позволив человеку получать одну энергию из другой.

Так люди научились вырабатывать электричество из обычного металла, магнитов и механического движения – только и всего. Были построены генераторы, способные выдавать колоссальные по мощности потоки энергии, исчисляемые мегаваттами. Но интересно, что принцип действия этих машин не так уж сложен и вполне может быть понятен даже подростку. Что же такое генератор электрического тока? Попробуем разобраться в этом вопросе.

генератор переменного тока устройство [

Эффект электромагнитной индукции

Основой появления в проводнике электрического тока является электродвижущая сила - ЭДС. Она способна заставить перемещаться заряженные частицы, которых много в любом металле. Эта сила появляется только в случае, если проводник испытывает на себе изменение интенсивности магнитного поля. Сам эффект получил название электромагнитной индукции. ЭДС тем больше, чем больше скорость изменения потока магнитных волн. То есть, можно возле постоянного магнита перемещать проводник, или на неподвижный провод влиять полем электромагнита, меняя его силу, эффект будет один и тот же – в проводнике появится электрический ток.

Над этим вопросом в первой половине XIX века работали ученые Эрстед и Фарадей. Они же и открыли это физическое явление. В последствии на основе электромагнитной индукции были созданы генераторы тока и электродвигатели. Интересно, что эти машины легко могут быть преобразованы друг в друга.

Как работают генераторы постоянного и переменного тока

Понятно, что генератор электрического тока – это электромеханическая машина, вырабатывающая ток. Но на самом деле она есть преобразователь энергии: ветра, воды, тепла, чего угодно в ЭДС, которая уже вызывает ток в проводнике. Устройство любого генератора принципиально ничем не отличается от замкнутого проводящего контура, который вращается между полюсами магнита, как в первых опытах ученых. Только намного больше величина магнитного потока, создаваемого мощными постоянными или чаще электрическими магнитами. Замкнутый контур имеет вид многовитковой обмотки, которых в современном генераторе не одна, а минимум три. Все это сделано для того, чтобы получить как можно большую ЭДС.

Стандартный электрический генератор переменного тока (или постоянного) состоит из:

  • Корпуса. Выполняет функцию рамы, внутри которой крепят статор с полюсами электромагнита. В нем установлены подшипники качения роторного вала. Его изготавливают из металла, он также защищает всю внутреннюю начинку машины.
  • Статора с магнитными полюсами. На нем закреплена обмотка возбуждения магнитного потока. Его выполняют из ферромагнитной стали.
  • Ротора или якоря. Это подвижная часть генератора, вал которой приводит во вращательное движение посторонняя сила. На сердечнике якоря располагают обмотку самовозбуждения, где и образуется электрический ток.
  • Узла коммутации. Этот элемент конструкции служит для отведения электричества с подвижного вала ротора. Он включает в себя проводящие кольца, которые подвижно соединены с графитовыми токосъемными контактами.

принцип работы генератора переменного тока

Создание постоянного тока

В генераторе, продуцирующем постоянный ток, проводящий контур вращается в пространстве магнитной насыщенности. Причем за определенный момент вращения каждая половина контура оказывается вблизи того или иного полюсника. Заряд в проводнике за этот полуоборот движется в одном направлении.

Чтобы получить съем частиц, сделан механизм отвода энергии. Его особенность в том, что каждая половина обмотки (рамки) соединена с токопроводящим полукольцом. Полукольца между собой не замкнуты, а закреплены на диэлектрическом материале. За период, когда одна часть обмотки начинает проходить определенный полюс, полукольцо замыкается в электрическую схему щеточными контактными группами. Получается, на каждую клемму приходит только одного вида потенциал.

Правильнее назвать энергию не постоянной, а пульсирующей, с неизменной полярностью. Пульсация вызвана тем, что магнитный поток на проводник при вращении оказывает как максимальное, так и минимальное влияние. Чтобы эту пульсацию выровнять, применяют несколько обмоток на роторе и мощные конденсаторы на входе схемы. Для уменьшения потерь магнитного потока зазор между якорем и статором делают минимальным.

генератор 220 в

Схема генератора переменного тока

Когда происходит вращение подвижной части генерирующего ток устройства, в проводниках рамки также наводится ЭДС, как и в генераторе постоянного тока. Но небольшая особенность – генератор переменного тока устройство коллекторного узла имеет другое. В нем каждый вывод соединен со своим токопроводящим кольцом.

Принцип работы генератора переменного тока следующий: когда половина обмотки проходит возле одного полюса (другая, соответственно, возле противоположного полюса), в цепи движется ток в одном направлении от минимума к наивысшему своему значению и снова к нулю. Как только обмотки меняют свое положение относительно полюсов, ток начинает свое движение в обратном направлении с той же закономерностью.

При этом на входе схемы получается форма сигнала в виде синусоиды с частотой полуволн, соответствующей периоду вращения вала ротора. Для того, чтобы получить на выходе стабильный сигнал, где частота генератора переменного тока постоянна, период вращения механической части должен быть неизменным.

электрический генератор переменного тока

Конструкции генераторов тока, где вместо металлической рамки как носитель зарядов используют токопроводящую плазму, жидкость или газ, получили название МГД-генераторов. Вещества под давлением прогоняют в поле магнитной напряженности. Под воздействием все той же ЭДС индукции заряженные частицы обретают направленное движение, создавая электрический ток. Величина тока прямо пропорциональна скорости прохождения через магнитный поток, а также его мощности.

Генераторы МГД имеют более простое конструктивное решение – в них отсутствует механизм вращения ротора. Такие источники питания способны выдавать большие мощности энергии в короткие промежутки времени. Их применяют в качестве резервных устройств и в условиях экстренных аварийных ситуаций. Коэффициент, определяющий полезное действие (КПД) этих машин выше, чем имеет электрический генератор переменного тока.

Генератор синхронный переменного тока

Существуют такие типы генераторов переменного тока:

  • Машины синхронные.
  • Машины асинхронные.

Синхронный генератор переменного тока имеет строгую физическую зависимость между вращательным движением ротора и генерируемой частотой электричества. В таких системах ротор – это электромагнит, собранный из сердечников, полюсов и возбуждающих обмоток. Последние запитываются от источника постоянного тока посредством щеток и кольцевых контактов. Статор же представляет собой катушки провода, соединенные между собой по принципу звезды с общей точкой – нолем. В них уже наводится ЭДС и вырабатывается ток.

Вал ротора приводится в движение посторонней силой, обычно турбинами, частота движения которых синхронизирована и постоянна. Электрическая цепь, подключаемая к такому генератору, представляет собой трехфазную схему, частота тока в отдельной линии которой смещена на фазу в 120 градусов относительно других линий. Чтобы получить правильную синусоиду, направление магнитного потока в просвете между статорной и роторной частью регулируют конструкцией последних.

Возбуждение генератора переменного тока реализуют двумя методами:

  1. Контактным.
  2. Бесконтактным.

В схеме контактного возбуждения на обмотки электромагнита через щеточную пару подают электроэнергию с другого генератора. Этот генератор может быть совмещен с валом основного. Он, как правило, имеет меньшую мощность, но достаточную, чтобы создать сильное магнитное поле.

Бесконтактный принцип предусматривает, что синхронный генератор переменного тока на валу имеет дополнительные трехфазные обмотки, в которых при вращении наводится ЭДС и вырабатывается электричество. Оно через выпрямляющую схему поступает на катушки возбуждения ротора. Конструктивно в такой системе отсутствуют подвижные контакты, что упрощает систему, делая ее более надежной.

синхронный генератор переменного тока

Асинхронный генератор

Существует асинхронный генератор переменного тока. Устройство его отличается от синхронного. В нем нет точной зависимости ЭДС от частоты с которой вал ротора вращается. Присутствует такое понятие как «скольжение S», которое характеризует эту разницу влияния. Величина скольжения определяется вычислением, так что неправильно думать, будто бы нет закономерности электромеханического процесса в асинхронном двигателе.

Если генератор, работающий вхолостую, нагрузить, то протекающий в обмотках ток будет создавать магнитный поток, препятствующий вращению ротора с заданной частотой. Так образуется скольжение, что, естественно, влияет на выработку ЭДС.

Современный асинхронный генератор переменного тока устройство подвижной части имеет в трех разных исполнениях:

  1. Полый ротор.
  2. Короткозамкнутый ротор.
  3. Фазный ротор.

Такие машины могут иметь само- и независимое возбуждение. Первая схема реализуется за счет включения в обмотку конденсаторов и полупроводниковых преобразователей. Возбуждение независимого типа создается дополнительным источником переменного тока.

Схемы включения генераторов

Все мощные источники питания линий электропередач вырабатывают трехфазный электрический ток. Они содержат в себе три обмотки, в которых образуются переменные токи со смещенной друг от друга фазой на 1/3 периода. Если рассматривать каждую отдельную обмотку такого источника питания, то получим однофазный переменный ток, идущий в линию. Напряжение в десятки тысяч вольт может вырабатывать генератор. 220 В потребитель получает с распределительного трансформатора.

Любой генератор переменного тока устройство обмоток имеет стандартное, но подключение к нагрузке бывает двух типов:

  • звездой;
  • треугольником.

Принцип работы генератора переменного тока, включенного звездой, предполагает объединение всех проводов (нулевых) в один, которые идут от нагрузки обратно к генератору. Это обусловлено тем, что сигнал (электрический ток) передается в основном через выходящий провод обмотки (линейный), который и называют фазой. На практике это очень удобно, ведь не нужно тянуть три дополнительных провода для подключения потребителя. Напряжение между линейными проводами и линейным и нулевым проводом будут отличаться.

Соединяя треугольником обмотки генератора, их замыкают друг с другом последовательно в один контур. Из точек их соединения выводят линии к потребителю. Тогда вообще не нужен нулевой провод, а напряжение на каждой линии будет одинаковым независимо от нагрузки.

Преимуществом трехфазного тока перед однофазным является его меньшая пульсация при выпрямлении. Это положительно сказывается на питаемых приборах, особенно двигателях постоянного напряжения. Также трехфазный ток создает вращающийся поток магнитного поля, который способен приводить в движение мощные асинхронные двигатели.

частота генератора переменного тока

Где применимы генераторы постоянного и переменного тока

Генераторы постоянного тока значительно меньше по размерам и массе, чем машины переменного напряжения. Имея более сложное конструктивное исполнение чем последние, они все же нашли применение во многих отраслях промышленности.

Основное распространение они получили в качестве высокооборотных приводов в машинах, где требуется регулирование частоты вращения, например, в металлообрабатывающих механизмах, подъемниках шахт, прокатных станах. В транспорте такие генераторы установлены на тепловозах, различных судах. Множество моделей ветрогенераторов собраны на базе источников постоянного напряжения.

Генераторы постоянного тока специального назначения применяют в сварке, для возбуждения обмоток генераторов синхронного типа, в качестве усилителей постоянного тока, для питания гальванических и электролизных установок.

Назначение генератора переменного тока - вырабатывать электроэнергию в промышленных масштабах. Такой вид энергии подарил человечеству Никола Тесла. Почему именно изменяющий полярность ток, а не постоянный нашел широкое применение? Это связано с тем, что при передаче постоянного напряжения идут большие потери в проводах. И чем длиннее провод, тем потери выше. Переменное напряжение можно транспортировать на огромные расстояния при гораздо меньших затратах. Причем легко можно преобразовывать переменное напряжение (понижая и повышая его), который выработал генератор 220 В.

 схема генератора переменного тока

Заключение

Человек до конца не познал природу магнетизма, который пронизывает все вокруг. И электрическая энергия – это лишь малая часть открытых тайн мироздания. Машины, которые мы называем генераторами энергии, по сути очень просты, но то, что они могут нам дать, просто поражает воображение. Все же настоящее чудо здесь не в технике, а в мысли человека, которая смогла проникнуть в неисчерпаемый резервуар идей, разлитых в пространстве!

fb.ru

Генератор переменного тока: принцип действия

Преобразование механической энергии в электрическую происходит при помощи генератора тока. В основном, практикуется использование вращающихся электромашинных генераторов. При вращении, в проводнике возникает электродвижущая сила под действием изменяющегося магнитного поля. Часть генератора, создающая магнитное поле, называется индуктором, а та часть, где образуется электродвижущая сила, носит название якоря.

Принцип действия

Вращающаяся часть генератора называется ротором, а его неподвижная часть является статором. Генератор переменного тока имеет статор и ротор, которые по своей конструкции могут быть одновременно якорем и индуктором.

Практически, всю электроэнергию на мировых электростанциях производят электрогенераторы переменного тока. При вращении индуктора, создается магнитное поле, которое вращается и наводит в обмотке статора переменную электродвижущую силу. Ее частота полностью совпадает с частотой вращения ротора.

Элементы генератора

В состав магнитной системы статора входят тонкие стальные листы, спрессованные в пакет. В пазах этого пакета размещается обмотка статора. Она включает в себя три фазы, сдвинутые относительно друг друга на одну третью часть периметра статора. Электродвижущие силы, индуцированные в обмотках фаз, так же сдвинуты между собой на 1200. Каждая фаза имеет обмотку, состоящую из катушек с множеством витков, соединяемых между собой параллельно или последовательно. Части катушек, выступающие из пазов, носят название лобовых соединений статора.

В индукторе и статоре, количество полюсов может быть и более двух. Количество полюсов полностью зависит от частоты вращения ротора. При замедлении вращения ротора может иметь возрастающее число полюсов.

Массивный стальной сердечник ротора содержит в себе обмотку возбуждения генератора. Данная конструкция применяется для электрогенераторов переменного тока, работающих с высокой частотой вращения. Это вызвано тем, что при высоких скоростях вращения, обмотка ротора подвержена действию больших центробежных сил. Большое количество полюсов предполагает наличие отдельной обмотки возбуждения у каждого полюса, что характерно для электрогенераторов, работающих на малых скоростях.

В гидротурбинах генераторы переменного тока могут иметь конструкцию с вертикальным расположением вала. При работе в зависимости от мощности, может применяться воздушное, водородное, водяное или масляное охлаждение.

electric-220.ru

устройство и принцип действия агрегата.

Генератор постоянного тока – это электрическая машина, производящая напряжение постоянной величины.

За этим вполне банальным определением кроется очень сложное устройство, являющееся практически совершенством технической мысли. Ведь с момента изобретения в конце XIX века устройство генератора постоянного тока не претерпело существенных изменений.

Никакая энергия не возникает просто так, ниоткуда. Она — всегда порождение другой силы. Это касается и электрического тока. Чтобы он возник, нужно магнитное поле, позволяющее использовать эффект электромагнитной индукции — возбуждение ЭДС во вращающемся проводнике.

Принцип работы генератора постоянного тока

устройство и принцип работы генератора постоянного токаЕсли к концам петли проводника, внутри которой вращается постоянный магнит, подключить нагрузку, то в ней потечет переменный ток. Произойдет это потому, что полюса магнита меняются местами. На этом эффекте основан принцип работы генераторов переменного тока, являющихся братьями-близнецами машин постоянного напряжения.

Вся хитрость, благодаря которой получаемый ток не меняет направления, заключается в том, чтобы успевать коммутировать точки подключения нагрузки с той же скоростью, с какой вращается магнит. Осуществить эту задачу может только коллектор – особое устройство, состоящее из нескольких токопроводящих секторов, разделенных диэлектрическими пластинами. Оно закрепляется на якоре электрической машины и вращается синхронно с ним.

Съем электрической энергии с якоря осуществляется щетками – кусочками графита, имеющего высокую электропроводность и низкий коэффициент трения скольжения. В тот момент, когда токопроводящие сектора коллектора меняются местами, индуцируемая ЭДС становится нулевой, но изменить знак она не успевает, поскольку щетка передана токосъемному сектору, подключенному к другому концу проводника.

как подключить генератор к сети домаЕсть несколько методов для решения вопроса: как подключить генератор к сети дома. Можно использовать перекидной или реверсивный рубильник, или же устанавливать агрегат с автоматической системой запуска.

Как находить возможные неисправности генераторов и чинить их — подскажет подробная инструкция.

В результате, на выходе устройства получается пульсирующее напряжение одной величины. Чтобы сгладить пульсацию напряжения используется несколько якорных обмоток. Чем их больше, тем меньше броски напряжения на выходе генератора.

Количество токосъемных секторов на коллекторе всегда в два раза больше, чем обмоток якоря.

Съем генерируемого напряжения с обмотки якоря, а не статора, является коренным отличием машины постоянного тока от переменного. Это же предопределило и их существенный недостаток: потери на трение между щетками и коллектором, искрение и нагрев.

Выясняем, как устроен агрегат

устройство генератора постоянного токаКак любая электрическая машина, генератор постоянного тока состоит из якоря и статора.

Якорь собирается из стальных пластин с углублениями, в которые укладываются обмотки. Их концы подсоединяются к коллектору, состоящему из медных пластин, разделенных диэлектриком. Коллектор, якорь с обмотками и вал электрической машины после сборки становятся единым целым.

Статор генератора является одновременно и его корпусом, на внутренней поверхности которого закрепляется несколько пар постоянных или электрических магнитов. Обычно используются электрические, сердечники которых могут быть отлиты вместе с корпусом (для машин малой мощности) или набраны из металлических пластин.

Также на корпусе предусматривается место для крепления токосъемных щеток.

В зависимости от количества полюсов магнитов на статоре меняется и количество графитовых элементов. Сколько пар полюсов, столько и щеток.

Типы подключения электрических магнитов статора

параллельная работа генераторов постоянного токаГенераторы постоянного тока различаются по типу подключения электрических магнитов статора. Они могут быть:

  • с независимым возбуждением;
  • параллельным;
  • последовательным.

При независимом возбуждении электрические магниты статора подключаются к автономному источнику постоянного тока. Обычно это делается через реостат. Достоинством такой схемы является возможность регулировки генерируемой электрической мощности в широких пределах. Недостатком – необходимость иметь дополнительный источник питания.

Остальные два способа являются частными случаями самовозбуждения генератора, которое возможно при небольшом остаточном магнетизме статора. При параллельной работе генератора постоянного тока электромагниты статора питаются частью генерируемого напряжения. Это самая распространенная схема.

регулятор мощности для паяльника своими рукамиДля выбора оптимальной температуры жала инструмента вполне возможно сделать регулятор мощности для паяльника своими руками. При этом существует несколько схем сборки, у которых есть свои преимущества и недостатки.

С принципами работы симисторов познакомит эта статья. Как на таких полупроводниках собрать регулятор мощности, можно узнать тут.

При последовательном возбуждении цепь электромагнитов включается последовательно с нагрузочной цепью якоря. Величина тока, протекающего по электромагнитам, существенно зависит от нагрузки генератора. Поэтому такая схема используется только для подключения тяговых двигателей постоянного тока, которые при торможении переходят в режим генерации.

Применяется и смешанная схема подключения обмотки возбуждения – параллельно-последовательная. Для этого на каждом полюсе электромагнита должно быть две изолированные обмотки (включаемая последовательно обычно состоит всего из двух–трех витков).

Такие электрические машины применяются в том случае, если требуется ограничить ток короткого замыкания в нагрузке. Например, в мобильных сварочных агрегатах.

Наличие коллекторно-щеточного узла существенно усложняет конструкцию электрической машины. Кроме того, передача генерируемой энергии через него осуществляется с большими потерями и физическими нагрузками. Поэтому, там где это возможно, машины постоянного тока заменяют асинхронными генераторами с выпрямительным мостом. Таковы, например, все автомобильные источники электроэнергии.

Устройство и принцип работы генератора постоянного тока на видео

elektrik24.net

Устройство и принцип действия генератора

Как работает и устроен генератор тока

Август 12, 2014

29718 просмотров

Генератор тока— это электрическая машина, которая преобразует механическую энергию в электрическую. Они могут генерировать как постоянный, так и переменный ток.

До второй половины XX века на автотранспорте применялись генераторы постоянного тока. Затем широкое распространение получили полупроводниковые диоды, которые позволяли выпрямить переменный ток или сделать его постоянным. Поэтому и в этой сферы генераторы постоянного тока заменили более надежные и компактные трехфазные генераторы переменного тока.

В прошлой статье Я подробно рассмотрел вопросы работы электродвигателя, сейчас будут изложены общие принципы работы  и устройства генератора тока. Я не буду подробно останавливаться на машинах постоянного тока, потому что в быту, гаражах и на автотранспорте они сегодня не применяются. Они лишь широко используются в городском электротранспорте: троллейбусах и трамваях .

Принцип действия генератора тока

Генератор работает на основе закона электромагнитной индукции Фарадея— электродвижущая сила (ЭДС) индуцируется в прямоугольном контуре (проволочной рамке), вращающимся в однородном вращающемся магнитном поле.

ЭДС также возникает в неподвижной прямоугольной рамке, если в ней вращать магнит.

Простейший генератор представляет собой прямоугольную рамку, размешенную между 2 магнитами с разными полюсами. Для того что бы снять с вращающейся рамки напряжение используются токосъемные кольца.На практике же используются электромагниты, которые представляют собой катушки индуктивности или обмотки из медного провода в электроизоляционном лаке. При прохождении  электрического тока по обмоткам, они начинают обладать электромагнитными свойствами. Для их возбуждения необходим дополнительный источник тока- в автомобилях это аккумуляторная батарея. В бытовых электростанциях возбуждение при заводке происходит в результате самовозбуждения или от дополнительного маломощного генератора постоянного тока, который приводится в движение валом генератора.

По принципу работы генераторы могут быть синхронными или асинхронными.

  1. Асинхронные генераторы конструктивно просто устроены и недороги в изготовлении, более устойчивы к токам короткого замыкания и перегрузок. Асинхронный электрогенератор идеально подходит для питания активной нагрузки: ламп накаливания, электронагревателей, электроники, электрических конфорок и т. д. Но даже кратковременная перегрузка для них недопустима, поэтому при подключении электродвигателей, не электронного типа сварочного аппарата, электроинструмента и других индуктивных нагрузок- запас по мощности должен быть минимум трехкратным, а лучше четырехкратным.
  2. Синхронный генератор прекрасно подойдет для индуктивных потребителей с высокими значениями пусковых токов. Они способны в течении одной секунды выдерживать пятикратную токовую перегрузку.

Устройство генератора переменного тока

Для примера рассмотрения устройства возьмем автомобильный трехфазный генератор.

Автомобильный генератор состоит из корпуса и двух крышек с отверстиями для вентиляции. Ротор вращается в 2 подшипниках и приводится в движение при помощи шкива. По своей сути ротор является электромагнитом, состоящий из одной обмотки. Ток на нее подается при помощи двух медных колец и графитовых щеток, которые соединены с электронным реле-регулятором. Оно отвечает за то, что бы выдаваемое напряжение генератором всегда было в допустимыми пределах 12 Вольт с допустимыми отклонениями и не зависело от частоты вращения шкива. Реле-регулятор может быть как встроено в корпус генератора, так и находится за его пределами.

Статор состоит из трех медных обмоток, соединенных между собой в треугольник. К точкам их соединения подключен выпрямительный мост из 6 полупроводниковых диодов, которые преобразуют напряжение из переменного в постоянное.

Бензиновый электрогенератор состоит из  двигателя и приводящего им в движение на прямую- генератора тока, который может быть как синхронного, так и асинхронного типа.

Двигатель оснащен системами: запуска, впрыска топлива, охлаждения, смазки, стабилизации оборотов. Вибрацию и шум поглощают глушитель, виброгасители и амортизаторы.

Блок автоматики и управления следит за работой электростанции и  при необходимости корректирует и защищает в аварийных ситуациях.

В более дешевых электростанциях происходит ручной запуск, а в более дорогих- автозапуск при помощи стартера и аккумуляторной батареи.

Более подробно об электростанциях Вы сможете узнать из нашей следующей статьи «Как выбрать электростанцию для дома или гаража».

jelektro.ru

Генератор переменного тока: устройство, принцип работы, назначение

Электрический ток является основным видом энергии, совершающим полезную работу во всех сферах человеческой жизни. Он приводит в движение разные механизмы, дает свет, обогревает дома и оживляет целое множество устройств, которые обеспечивают наше комфортное существование на планете. Поистине, этот вид энергии универсален. Из нее можно получить все что угодно, и даже большие разрушения при неумелом использовании.

Но было время, когда электрические эффекты все так же присутствовали в природе, но никак не помогали человеку. Что же изменилось с тех пор? Люди стали изучать физические явления и придумали интересные машины – преобразователи, которые, в общем, и сделали революционный скачок нашей цивилизации, позволив человеку получать одну энергию из другой.

Так люди научились вырабатывать электричество из обычного металла, магнитов и механического движения – только и всего. Были построены генераторы, способные выдавать колоссальные по мощности потоки энергии, исчисляемые мегаваттами. Но интересно, что принцип действия этих машин не так уж сложен и вполне может быть понятен даже подростку. Что же такое генератор электрического тока? Попробуем разобраться в этом вопросе.

Эффект электромагнитной индукции

Основой появления в проводнике электрического тока является электродвижущая сила - ЭДС. Она способна заставить перемещаться заряженные частицы, которых много в любом металле. Эта сила появляется только в случае, если проводник испытывает на себе изменение интенсивности магнитного поля. Сам эффект получил название электромагнитной индукции. ЭДС тем больше, чем больше скорость изменения потока магнитных волн. То есть, можно возле постоянного магнита перемещать проводник, или на неподвижный провод влиять полем электромагнита, меняя его силу, эффект будет один и тот же – в проводнике появится электрический ток.

Над этим вопросом в первой половине XIX века работали ученые Эрстед и Фарадей. Они же и открыли это физическое явление. В последствии на основе электромагнитной индукции были созданы генераторы тока и электродвигатели. Интересно, что эти машины легко могут быть преобразованы друг в друга.

Как работают генераторы постоянного и переменного тока

Понятно, что генератор электрического тока – это электромеханическая машина, вырабатывающая ток. Но на самом деле она есть преобразователь энергии: ветра, воды, тепла, чего угодно в ЭДС, которая уже вызывает ток в проводнике. Устройство любого генератора принципиально ничем не отличается от замкнутого проводящего контура, который вращается между полюсами магнита, как в первых опытах ученых. Только намного больше величина магнитного потока, создаваемого мощными постоянными или чаще электрическими магнитами. Замкнутый контур имеет вид многовитковой обмотки, которых в современном генераторе не одна, а минимум три. Все это сделано для того, чтобы получить как можно большую ЭДС.

Стандартный электрический генератор переменного тока (или постоянного) состоит из:

  • Корпуса. Выполняет функцию рамы, внутри которой крепят статор с полюсами электромагнита. В нем установлены подшипники качения роторного вала. Его изготавливают из металла, он также защищает всю внутреннюю начинку машины.
  • Статора с магнитными полюсами. На нем закреплена обмотка возбуждения магнитного потока. Его выполняют из ферромагнитной стали.
  • Ротора или якоря. Это подвижная часть генератора, вал которой приводит во вращательное движение посторонняя сила. На сердечнике якоря располагают обмотку самовозбуждения, где и образуется электрический ток.
  • Узла коммутации. Этот элемент конструкции служит для отведения электричества с подвижного вала ротора. Он включает в себя проводящие кольца, которые подвижно соединены с графитовыми токосъемными контактами.

Создание постоянного тока

В генераторе, продуцирующем постоянный ток, проводящий контур вращается в пространстве магнитной насыщенности. Причем за определенный момент вращения каждая половина контура оказывается вблизи того или иного полюсника. Заряд в проводнике за этот полуоборот движется в одном направлении.

Чтобы получить съем частиц, сделан механизм отвода энергии. Его особенность в том, что каждая половина обмотки (рамки) соединена с токопроводящим полукольцом. Полукольца между собой не замкнуты, а закреплены на диэлектрическом материале. За период, когда одна часть обмотки начинает проходить определенный полюс, полукольцо замыкается в электрическую схему щеточными контактными группами. Получается, на каждую клемму приходит только одного вида потенциал.

Правильнее назвать энергию не постоянной, а пульсирующей, с неизменной полярностью. Пульсация вызвана тем, что магнитный поток на проводник при вращении оказывает как максимальное, так и минимальное влияние. Чтобы эту пульсацию выровнять, применяют несколько обмоток на роторе и мощные конденсаторы на входе схемы. Для уменьшения потерь магнитного потока зазор между якорем и статором делают минимальным.

Схема генератора переменного тока

Когда происходит вращение подвижной части генерирующего ток устройства, в проводниках рамки также наводится ЭДС, как и в генераторе постоянного тока. Но небольшая особенность – генератор переменного тока устройство коллекторного узла имеет другое. В нем каждый вывод соединен со своим токопроводящим кольцом.

Принцип работы генератора переменного тока следующий: когда половина обмотки проходит возле одного полюса (другая, соответственно, возле противоположного полюса), в цепи движется ток в одном направлении от минимума к наивысшему своему значению и снова к нулю. Как только обмотки меняют свое положение относительно полюсов, ток начинает свое движение в обратном направлении с той же закономерностью.

При этом на входе схемы получается форма сигнала в виде синусоиды с частотой полуволн, соответствующей периоду вращения вала ротора. Для того, чтобы получить на выходе стабильный сигнал, где частота генератора переменного тока постоянна, период вращения механической части должен быть неизменным.

Магнитные генераторы газового типа

Конструкции генераторов тока, где вместо металлической рамки как носитель зарядов используют токопроводящую плазму, жидкость или газ, получили название МГД-генераторов. Вещества под давлением прогоняют в поле магнитной напряженности. Под воздействием все той же ЭДС индукции заряженные частицы обретают направленное движение, создавая электрический ток. Величина тока прямо пропорциональна скорости прохождения через магнитный поток, а также его мощности.

Генераторы МГД имеют более простое конструктивное решение – в них отсутствует механизм вращения ротора. Такие источники питания способны выдавать большие мощности энергии в короткие промежутки времени. Их применяют в качестве резервных устройств и в условиях экстренных аварийных ситуаций. Коэффициент, определяющий полезное действие (КПД) этих машин выше, чем имеет электрический генератор переменного тока.

Генератор синхронный переменного тока

Существуют такие типы генераторов переменного тока:

  • Машины синхронные.
  • Машины асинхронные.

Синхронный генератор переменного тока имеет строгую физическую зависимость между вращательным движением ротора и генерируемой частотой электричества. В таких системах ротор – это электромагнит, собранный из сердечников, полюсов и возбуждающих обмоток. Последние запитываются от источника постоянного тока посредством щеток и кольцевых контактов. Статор же представляет собой катушки провода, соединенные между собой по принципу звезды с общей точкой – нолем. В них уже наводится ЭДС и вырабатывается ток.

Вал ротора приводится в движение посторонней силой, обычно турбинами, частота движения которых синхронизирована и постоянна. Электрическая цепь, подключаемая к такому генератору, представляет собой трехфазную схему, частота тока в отдельной линии которой смещена на фазу в 120 градусов относительно других линий. Чтобы получить правильную синусоиду, направление магнитного потока в просвете между статорной и роторной частью регулируют конструкцией последних.

Возбуждение генератора переменного тока реализуют двумя методами:

  1. Контактным.
  2. Бесконтактным.

В схеме контактного возбуждения на обмотки электромагнита через щеточную пару подают электроэнергию с другого генератора. Этот генератор может быть совмещен с валом основного. Он, как правило, имеет меньшую мощность, но достаточную, чтобы создать сильное магнитное поле.

Бесконтактный принцип предусматривает, что синхронный генератор переменного тока на валу имеет дополнительные трехфазные обмотки, в которых при вращении наводится ЭДС и вырабатывается электричество. Оно через выпрямляющую схему поступает на катушки возбуждения ротора. Конструктивно в такой системе отсутствуют подвижные контакты, что упрощает систему, делая ее более надежной.

Асинхронный генератор

Существует асинхронный генератор переменного тока. Устройство его отличается от синхронного. В нем нет точной зависимости ЭДС от частоты с которой вал ротора вращается. Присутствует такое понятие как «скольжение S», которое характеризует эту разницу влияния. Величина скольжения определяется вычислением, так что неправильно думать, будто бы нет закономерности электромеханического процесса в асинхронном двигателе.

Если генератор, работающий вхолостую, нагрузить, то протекающий в обмотках ток будет создавать магнитный поток, препятствующий вращению ротора с заданной частотой. Так образуется скольжение, что, естественно, влияет на выработку ЭДС.

Современный асинхронный генератор переменного тока устройство подвижной части имеет в трех разных исполнениях:

  1. Полый ротор.
  2. Короткозамкнутый ротор.
  3. Фазный ротор.

Такие машины могут иметь само- и независимое возбуждение. Первая схема реализуется за счет включения в обмотку конденсаторов и полупроводниковых преобразователей. Возбуждение независимого типа создается дополнительным источником переменного тока.

Схемы включения генераторов

Все мощные источники питания линий электропередач вырабатывают трехфазный электрический ток. Они содержат в себе три обмотки, в которых образуются переменные токи со смещенной друг от друга фазой на 1/3 периода. Если рассматривать каждую отдельную обмотку такого источника питания, то получим однофазный переменный ток, идущий в линию. Напряжение в десятки тысяч вольт может вырабатывать генератор. 220 В потребитель получает с распределительного трансформатора.

Любой генератор переменного тока устройство обмоток имеет стандартное, но подключение к нагрузке бывает двух типов:

Принцип работы генератора переменного тока, включенного звездой, предполагает объединение всех проводов (нулевых) в один, которые идут от нагрузки обратно к генератору. Это обусловлено тем, что сигнал (электрический ток) передается в основном через выходящий провод обмотки (линейный), который и называют фазой. На практике это очень удобно, ведь не нужно тянуть три дополнительных провода для подключения потребителя. Напряжение между линейными проводами и линейным и нулевым проводом будут отличаться.

Соединяя треугольником обмотки генератора, их замыкают друг с другом последовательно в один контур. Из точек их соединения выводят линии к потребителю. Тогда вообще не нужен нулевой провод, а напряжение на каждой линии будет одинаковым независимо от нагрузки.

Преимуществом трехфазного тока перед однофазным является его меньшая пульсация при выпрямлении. Это положительно сказывается на питаемых приборах, особенно двигателях постоянного напряжения. Также трехфазный ток создает вращающийся поток магнитного поля, который способен приводить в движение мощные асинхронные двигатели.

Где применимы генераторы постоянного и переменного тока

Генераторы постоянного тока значительно меньше по размерам и массе, чем машины переменного напряжения. Имея более сложное конструктивное исполнение чем последние, они все же нашли применение во многих отраслях промышленности.

Основное распространение они получили в качестве высокооборотных приводов в машинах, где требуется регулирование частоты вращения, например, в металлообрабатывающих механизмах, подъемниках шахт, прокатных станах. В транспорте такие генераторы установлены на тепловозах, различных судах. Множество моделей ветрогенераторов собраны на базе источников постоянного напряжения.

Генераторы постоянного тока специального назначения применяют в сварке, для возбуждения обмоток генераторов синхронного типа, в качестве усилителей постоянного тока, для питания гальванических и электролизных установок.

Назначение генератора переменного тока - вырабатывать электроэнергию в промышленных масштабах. Такой вид энергии подарил человечеству Никола Тесла. Почему именно изменяющий полярность ток, а не постоянный нашел широкое применение? Это связано с тем, что при передаче постоянного напряжения идут большие потери в проводах. И чем длиннее провод, тем потери выше. Переменное напряжение можно транспортировать на огромные расстояния при гораздо меньших затратах. Причем легко можно преобразовывать переменное напряжение (понижая и повышая его), который выработал генератор 220 В.

Заключение

Человек до конца не познал природу магнетизма, который пронизывает все вокруг. И электрическая энергия – это лишь малая часть открытых тайн мироздания. Машины, которые мы называем генераторами энергии, по сути очень просты, но то, что они могут нам дать, просто поражает воображение. Все же настоящее чудо здесь не в технике, а в мысли человека, которая смогла проникнуть в неисчерпаемый резервуар идей, разлитых в пространстве!

fb.ru

В чем секрет работы генератора постоянного тока: устройство и его принцип действия?

Генератор постоянного тока – это электрическая машина, производящая напряжение постоянной величины.

За этим вполне банальным определением кроется очень сложное устройство, являющееся практически совершенством технической мысли. Ведь с момента изобретения в конце XIX века устройство генератора постоянного тока не претерпело существенных изменений.

Никакая энергия не возникает просто так, ниоткуда. Она — всегда порождение другой силы. Это касается и электрического тока. Чтобы он возник, нужно магнитное поле, позволяющее использовать эффект электромагнитной индукции — возбуждение ЭДС во вращающемся проводнике.

Принцип работы генератора постоянного тока

Если к концам петли проводника, внутри которой вращается постоянный магнит, подключить нагрузку, то в ней потечет переменный ток. Произойдет это потому, что полюса магнита меняются местами. На этом эффекте основан принцип работы генераторов переменного тока, являющихся братьями-близнецами машин постоянного напряжения.

Вся хитрость, благодаря которой получаемый ток не меняет направления, заключается в том, чтобы успевать коммутировать точки подключения нагрузки с той же скоростью, с какой вращается магнит. Осуществить эту задачу может только коллектор – особое устройство, состоящее из нескольких токопроводящих секторов, разделенных диэлектрическими пластинами. Оно закрепляется на якоре электрической машины и вращается синхронно с ним.

Съем электрической энергии с якоря осуществляется щетками – кусочками графита, имеющего высокую электропроводность и низкий коэффициент трения скольжения. В тот момент, когда токопроводящие сектора коллектора меняются местами, индуцируемая ЭДС становится нулевой, но изменить знак она не успевает, поскольку щетка передана токосъемному сектору, подключенному к другому концу проводника.

В результате, на выходе устройства получается пульсирующее напряжение одной величины. Чтобы сгладить пульсацию напряжения используется несколько якорных обмоток. Чем их больше, тем меньше броски напряжения на выходе генератора.

Количество токосъемных секторов на коллекторе всегда в два раза больше, чем обмоток якоря.

Съем генерируемого напряжения с обмотки якоря, а не статора, является коренным отличием машины постоянного тока от переменного. Это же предопределило и их существенный недостаток: потери на трение между щетками и коллектором, искрение и нагрев.

Выясняем, как устроен агрегат

Как любая электрическая машина, генератор постоянного тока состоит из якоря и статора.

Якорь собирается из стальных пластин с углублениями, в которые укладываются обмотки. Их концы подсоединяются к коллектору, состоящему из медных пластин, разделенных диэлектриком. Коллектор, якорь с обмотками и вал электрической машины после сборки становятся единым целым.

Статор генератора является одновременно и его корпусом, на внутренней поверхности которого закрепляется несколько пар постоянных или электрических магнитов. Обычно используются электрические, сердечники которых могут быть отлиты вместе с корпусом (для машин малой мощности) или набраны из металлических пластин.

Также на корпусе предусматривается место для крепления токосъемных щеток.

В зависимости от количества полюсов магнитов на статоре меняется и количество графитовых элементов. Сколько пар полюсов, столько и щеток.

Типы подключения электрических магнитов статора

Генераторы постоянного тока различаются по типу подключения электрических магнитов статора. Они могут быть:

  • с независимым возбуждением;
  • параллельным;
  • последовательным.

При независимом возбуждении электрические магниты статора подключаются к автономному источнику постоянного тока. Обычно это делается через реостат. Достоинством такой схемы является возможность регулировки генерируемой электрической мощности в широких пределах. Недостатком – необходимость иметь дополнительный источник питания.

Остальные два способа являются частными случаями самовозбуждения генератора, которое возможно при небольшом остаточном магнетизме статора. При параллельной работе генератора постоянного тока электромагниты статора питаются частью генерируемого напряжения. Это самая распространенная схема.

При последовательном возбуждении цепь электромагнитов включается последовательно с нагрузочной цепью якоря. Величина тока, протекающего по электромагнитам, существенно зависит от нагрузки генератора. Поэтому такая схема используется только для подключения тяговых двигателей постоянного тока, которые при торможении переходят в режим генерации.

Применяется и смешанная схема подключения обмотки возбуждения – параллельно-последовательная. Для этого на каждом полюсе электромагнита должно быть две изолированные обмотки (включаемая последовательно обычно состоит всего из двух–трех витков).

Такие электрические машины применяются в том случае, если требуется ограничить ток короткого замыкания в нагрузке. Например, в мобильных сварочных агрегатах.

Наличие коллекторно-щеточного узла существенно усложняет конструкцию электрической машины. Кроме того, передача генерируемой энергии через него осуществляется с большими потерями и физическими нагрузками. Поэтому, там где это возможно, машины постоянного тока заменяют асинхронными генераторами с выпрямительным мостом. Таковы, например, все автомобильные источники электроэнергии.

Устройство и принцип работы генератора постоянного тока на видео

Поделиться:

Нет комментариев

elektrik24.net

Синхронный генератор. Устройство генератора и принцип действия :

Синхронный генератор – машина (механизм) переменного тока, которая преобразовывает определенный тип энергии в электроэнергию. К таким устройствам относят электростатические машины, гальванические элементы, солнечные батареи, термобатареи и т. п. Использование каждого вида из перечисленных приборов определяется их техническими характеристиками.

Область применения

Применяют синхронные агрегаты как источники электроэнергии переменного тока: используют на мощных тепло-, гидро- и атомных станциях, на передвижных электрических станциях, транспортных системах (машинах, самолетах, тепловозах). Синхронный агрегат способен работать автономно – генератором, который питает подключаемую к ней какую-либо нагрузку, либо параллельно с сетью - в нее подключены иные генераторы.

Синхронный агрегат может включать устройства в тех местах, где нет центрального питания электрических сетей. Данные приборы можно применять в фермерских хозяйствах, которые расположены далеко от населенных пунктов.

Описание прибора

Устройство синхронного генератора обусловлено наличием таких элементов, как:

  • Ротор, или индуктор (подвижный, вращающийся), в который входит обмотка возбуждения.
  • Якорь, или статор (недвижимый), в который включается обмотка.
  • Обмотка агрегата.
  • Переключатель катушки статора.
  • Выпрямитель.
  • Несколько кабелей.
  • Структура электрического компаундирования.
  • Сварочный аппарат.
  • Катушка ротора.
  • Регулируемый поставщик постоянного электротока.

Синхронный генератор работает в качестве генераторов и моторов. Он может переходить от графика работы генератора к графику двигателя – это зависит от действия вращающей либо тормозящей силы прибора. В графике генератора в него входит механическая, а исходит электроэнергия. В графике двигателя в него входит электрическая, а исходит механическая энергия.

Прибор включается в цепь переменного тока разного типа нелинейных сопротивлений. Синхронные агрегаты являются генераторами переменного тока на электростанциях, а синхронные моторы используются тогда, когда необходим двигатель, что работает с постоянной крутящейся частотой.

Принцип работы агрегата

Работа синхронного генератора осуществляется по принципу электромагнитной индукции. Во время холостого движения якорная (статорная) катушка разомкнута, поэтому магнитное поле агрегата формируется одной обмоткой ротора. Когда ротор крутится от проводного мотора, у него присутствует постоянная частота, роторное магнитное поле перемещается через проводники обмоток фаз статора и осуществляет наводку повторяющихся переменных токов – электродвижущую силу (ЭДС). ЭДС носит синусоидальный, несинусоидальный либо пульсирующий характер.

Обмотка возбуждения предназначается для создания в генераторе первоначального магнитного поля, чтобы навести в катушку якоря электрическую движущую силу. В случае если якорь синхронного генератора приводят в движение путем вращения с определенной скоростью, затем возбуждают источником постоянных токов, то поток возбуждения переходит через проводники катушек статора, и в фазах катушки индуцируются переменные ЭДС.

Трехфазное устройство

Трехфазный синхронный генератор – устройство, имеющее трехфазную структуру переменного тока, которая имеет огромное практическое распространение. Крутящийся электромагнит способен образовывать магнитный поток (переменный), который перемещается через три фазы обмотки имеющегося статора. И результатом этого является то, что в фазах происходит переменная ЭДС однотипной частоты, сдвиг фаз осуществляется под углом, равным одной третьей периода вращения магнитных полей.

Трехфазный синхронный генератор оборудован так, что на его валу якорь является электромагнитом и питается от генератора. Когда вал вращается, к примеру, от турбины, генератор поставляет электроток, в то время как обмотка ротора питается поставляемым током. От этого якорь становится электрическим магнитом и, осуществляя обороты с тем же валом, доставляет вращающееся электромагнитное поле.

Благодаря синхронным трехфазным гидро- и турбогенераторам производится большая часть электроэнергии. Синхронные агрегаты применяются и в качестве электромоторов в таких устройствах, у которых мощность превышает 50 кВт. Во время работы синхронного агрегата в графике двигателя сам ротор соединяют с источником постоянных токов, статор же подключают к трехфазному кабелю.

Структуры возбуждения

Любые турбо-, гидро-, дизельные генераторы, синхронные компенсаторы, моторы, производимые на данный момент, оснащаются новейшими полупроводниковыми структурами, такими как возбуждение синхронных генераторов. В данных структурах применяется метод выпрямления трехфазных переменных токов возбудителей высокой или промышленной частоты либо напряжения возбуждаемого агрегата.

Устройство генератора таково, что структуры возбуждения могут обеспечить такие параметры работы агрегата, как:

  • Первая стадия возбуждения, то есть начальная.
  • Работа вхолостую.
  • Подключение к сети способом точной синхронизации либо самосинхронизации.
  • Работа в энергетической структуре с имеющимися нагрузками или перегрузками.
  • Возбуждение синхронных приборов может быть форсировано по таким критериям, как напряжение и ток, имеющими заданную кратность.
  • Электроторможение аппарата.

Конструкция генератора

На данный момент производится много видов индукционных приборов, но устройство генератора создано так, что в них присутствуют одинаковые части:

  • Электромагнит либо постоянный магнит, что производит магнитное поле.
  • Обмотка с индуцирующейся переменной ЭДС.

Чтобы получить наибольший магнитный поток, во всех генераторах используют специальную магнитную структуру, которая состоит из двух стальных сердечников.

Обмотки, что создают магнитное поле, установлены в пазах одного из сердечников, а обмотки, индуцируемые ЭДС – в пазах другого. Один из сердечников - внутренний - взаимодействует со своей обмоткой и крутится вокруг горизонтального либо вертикального стержня. Такой стержень называется ротором. Недвижимый сердечник с обмоткой называется якорем (статором).

Характеристики прибора

Для оценки функции синхронных генераторов применяются те же самые характеристики, какие применяются в генераторах постоянного тока. Только некоторые условия различаются и дополняются.

Главные характеристики синхронного генератора такие:

  • Холостой ход – это зависимость ЭДС прибора от токов возбуждения, одновременно является показателем намагничивания магнитных цепей машины.
  • Внешняя характеристика – это зависимость напряжения устройства от токов нагрузки. Напряжение агрегата меняется по-разному в зависимости от увеличения нагрузки при различных ее видах. Причины, что вызывают такие изменения, следующие:
  1. Падение значения напряжения на индуктивном и активном сопротивлении обмоток устройства. Увеличивается по мере того, как увеличивается нагрузка прибора, то есть его ток.
  2. Изменение ЭДС агрегата. Происходит в зависимости от реакции статора. При активных нагрузках уменьшение напряжения будет вызвано падением напряжения во всех обмотках, потому что реакция статора влечет за собой увеличение ЭДС генератора. При активно-емкостных видах нагрузки эффект намагничивания вызывает увеличение текущего значения напряжения по сравнению с номинальным показателем.
  • Регулировочные характеристики синхронного генератора – это зависимость токов возбуждения от токов нагрузки. В процессе работы синхронных агрегатов нужно поддерживать постоянное напряжение на их зажимах независимо от характера и величины нагрузок. Этого несложно достигнуть, если регулировать ЭДС генератора. Это можно сделать путем изменения токов воз­буждения автоматически в зависимости от изменений нагрузок, то есть при активно-емкостной нагрузке нужно уменьшать ток возбуждения для поддержания постоянного напряжения, а при активно-индуктивной и активной — увеличивать.

Мощность синхронного генератора определяется такими значениями:

  • Соответствующим напряжением в электросети.
  • Своей ЭДС.
  • Углом измерения.

Прибор переменного тока

Синхронный генератор переменного тока – это электромашина, что преобразует механическую вращательную энергию в электрическую энергию переменных токов. Мощные генераторы таких токов устанавливают:

  • гидрогенератор турбогенератор – на электростанциях;
  • приборы переменного тока сравнительно небольшой мощности - в системах автономного энергоснабжения (газотурбинная электростанция, дизельная электростанция) и в частотных преобразователях (двигатель-генератор).

В настоящее время выпускается множество типов таких приборов, но все они имеют общее устройство главных элементов:

  • якорь (статор) – неподвижный;
  • крутящийся вокруг оси ротор.

В промышленных генераторах больших размеров вращается электромагнит, являющийся ротором. Одновременно с этим обмотки с наводящимися ЭДС, уложенные в пазы статора, остаются неподвижными.

В таких устройствах, как маломощный синхронный генератор, магнитное поле создается вращающимся постоянным магнитом.

Виды синхронных агрегатов

Существуют следующие виды синхронных генераторов:

  1. Гидро – в нем ротор имеет отличие за счет присутствия явно выраженных полюсов, применяется при производстве электроэнергии, осуществляет работу на малых оборотах.
  2. Турбо – имеет отличия неявнополюсным строением генератора, производится от турбин разного вида, скорость оборотов довольно высокая, достигает порядка 6000 оборотов в минуту.
  3. Компенсатор синхронный – данный агрегат поставляет реактивную мощность, применяется для повышения качества электроэнергии, чтобы стабилизировать напряжение.
  4. Асинхронный агрегат двойного питания – устройство генератора такого типа заключается в том, что в нем подключается как роторная, так и статорная обмотки от поставщика токов с различной частотой. Создается асинхронный график работы. Также он отличается устойчивостью графика работы и тем, что преобразовывает разные токи фаз и используется для решения задач с узкой специализацией.
  5. Двухполюсный ударный агрегат – работает в графике короткого замыкания, воздействует кратковременно, в миллисекундах. Также испытывает аппараты с высоким напряжением.

Разновидности агрегатов

Синхронный генератор (мотор) подразделяется на несколько моделей, которые предназначены для разнообразных целей:

  • Шаговые (импульсные) – применяются для приводов механизмов с циклом работы старт-стоп или устройств непрерывного движения с импульсным управляющим сигналом (счетчиков, лентопротяжных устройств, приводов станков с ЧПУ и др.).
  • Безредукторные – для применения в автономных системах.
  • Бесконтактные – применяются для работы в качестве электростанций на судах морского и речного флота.
  • Гистерезисные – используются для счетчиков времени, в инерционных электроприводах, в системах автоматического управления;
  • Индукторные моторы – для снабжения электроустановок.

Разделение по виду ротора

По роду прибора ротора устройство генератора подразделяется на:

  • Явнополюсное – с выступающими либо с явно выраженными полюсами. Данные роторы применяются в генераторах с тихим ходом, у которых скорость вращения не превышает 1000 оборотов в минуту.
  • Неявнополюсное – это ротор с формами цилиндра, у которого нет выступающих полюсов. Данные якоря бывают двухполюсными и четырехполюсными.

В первом случае ротор состоит из крестовины, на которой закрепляют сердечники полюсов или обмотки возбуждения. Во-втором – быстроходные агрегаты с числом оборотов 1500 либо 3000. Ротор сделан в виде цилиндра из стали довольно высокого качества с пазами, в них устанавливают обмотку возбуждения, состоящую из отдельных обмоток различной ширины.

www.syl.ru

autofluids.ru

Принцип действия автомобильного генератора | Twokarburators.ru

На примере генератора 37.3701 автомобилей ВАЗ 2108, 2109, 21099.В основе работы генератора лежит преобразование механической энергии в электрическую, появляющуюся при вращении его ротора в постоянном магнитном поле статора (электромагнитная индукция).

Принцип действия генератора

  1. Подача напряжения на обмотку возбуждения генератора.

После поворота ключа в замке зажигания в положение «1» — «включено» запитывается обмотка возбуждения генератора расположенная на роторе. Электрический ток проходит по следующей цепи от плюса к минусу:

— «плюс» АКБ – вывод «30» генератора

— контакты 5, 6 колодки Ш8 монтажного блока

— контакт 6 колодки Ш1 монтажного блока

— контакты «30» и «87» реле зажигания

— контакт 3 колодки Ш1 монтажного блока

— предохранитель №5 монтажного блока

— дополнительные резисторы в монтажном блоке

— лампа заряда АКБ на панели приборов

— вывод «61» генератора

— вывод «В» регулятора напряжения

— обмотка возбуждения ротора генератора (через щетку щеточного узла)

— вывод «Ш» регулятора напряжения (через другую щетку)

— «масса»

Контрольная лампа заряда аккумуляторной батареи горит, сигнализируя, что обмотка возбуждения генератора запитана от АКБ и ее цепь исправна.

  1. Работа генератора после пуска двигателя.

После пуска двигателя автомобиля генератор приводится в движение ремнем от шкива на коленчатом валу двигателя, начинает вырабатывать электрический ток и подавать его на потребители (электрооборудование автомобиля). Происходит это следующим образом:

— Протекающий по обмотке возбуждения генератора электрический ток создает вокруг полюсов ротора магнитное поле.

— При вращении ротора его полюса попеременно проходят над каждым из зубцов статора генератора. При этом магнитный поток, проходящий через зубцы статора, меняется по величине и направлению. Он пересекает витки обмотки статора и создает в нем электродвижущую силу (ЭДС). Обмотка статора начинает выдавать электрический ток переменного напряжения.

— Переменный ток, вырабатываемый генератором, преобразуется в постоянный в выпрямительном блоке (диодном мосту) генератора и подается потребителям через вывод «30». Он же через дополнительные диоды (их общий вывод) питает обмотку возбуждения генератора.

— Контрольная лампа заряда АКБ гаснет, так как напряжение на выводе «30» и выводе дополнительных диодов «61» одинаково. Ток в этом случае через лампу не протекает и она не горит. Если контрольная  лампа не гаснет после пуска, то возможно генератор вообще не вырабатывет электрический ток, либо напряжение вырабатываемого тока ниже напряжения бортовой сети.

— Чем выше вращение ротора генератора, тем больше напряжение вырабатываемого генератором тока. При достижения порога 13,6 – 14,6 В (для генератора 37.3701) в работу вступает регулятор напряжения. Выходной транзистор в нем запирается, и ток через обмотку возбуждения прерывается. Когда напряжение падает ниже пороговых значений, транзистор отпирается. Такие циклы запирания-отпирания повторяются с большой частотой, поддерживая значение напряжения на выходе с регулятора в пределах 13,6 – 14,6  В.

— После выключения зажигания и остановки двигателя автомобиля генератор перестает вырабатывать электрический ток, питание потребителей происходит от аккумуляторной батареи.

Примечания и дополнения

— Электромагнитная индукция – явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока проходящего через него.

— Транзистор – полупроводниковый элемент с тремя выводами: подача сильного тока (коллектор), подача слабого управляющего тока (база), выход тока (эмиттер). При определенной величине управляющего тока транзистор меняет свое сопротивление и может либо запирать выход тока, либо, наоборот открывать.

Еще статьи по генератору автомобилей ВАЗ 2108, 2109. 21099

— Проверка диодного моста генератора без снятия его с двигателя

— «Кипит» аккумуляторная батарея, перезаряд, причины

— Проверка генератора автомобиля без снятия его с двигателя

twokarburators.ru

Как работает генератор и его принцип работы

Прежде чем начать разбираться в принципах работы любого генератора, следует понять, что же это такое. По принципу работы данный агрегат является производителем и представляет собой некую машину или устройство, которое и производит определенный тип продукта.

Чтобы понять, как работает генератор, нужно определиться, с каким типом устройства вы имеете дело.

Что такое генератор случайных чисел

В это трудно поверить, но практически в каждой отрасли человеческой жизни используются случайные числа. Например, подкидывание монетки или игра в лотерею. Также не стоит забывать и про придумывание компьютерных паролей. Без случайного набора чисел в современном мире просто не обойтись.

как работает генератор

Возникает вопрос: «Как работает генератор случайных чисел?» На самом деле это обычный алгоритм, генерирующий обычные числа в определенной последовательности. Работа такого механизма заключается в заранее придуманном алгоритме.

От чего зависят механизмы работы генератора случайных чисел

Любой алгоритм данной системы будет зависеть от вычислительной платформы и языка программирования. Достаточно задать внутреннюю функцию, которая и будет выбирать определенные значения в заранее заданном диапазоне.

На сегодняшний день такие генераторы очень популярные и востребованные. Например, довольно часто владельцы сайтов используют их для онлайн-покер-румов.

как проверить работает ли генератор

Еще одна отрасль, где генератор случайных чисел является незаменимым механизмом – это криптография. Ведь с их помощью можно создавать уникальные и неповторимые пароли, а также выполнять и другие не менее важные функции.

Что такое газовый генератор

На сегодняшний день во всем мире стоит глобальный вопрос о том, как же сделать электроэнергию более дешевой. Современные газогенераторы могут работать на таких компонентах, как дрова, ветки, брикеты или опилки. В этом случае электроэнергия будет стоить намного дешевле, чем обслуживание электростанции.

как работает генератор случайных чисел

Данное устройство обладает множеством преимуществ. Например, он не так вреден для атмосферы, так как значительно уменьшает количество выбрасываемых в атмосферу вредных составляющих. К тому же агрегат не только более выгоден при получении электроэнергии, но и способен адаптироваться под любые виды топлива.

Принцип работы

Если вас интересует, как работает газовый генератор, то вы с легкостью можете разобраться в принципах его действия. Для того чтобы образовался генераторный газ, необходимо ограничить доступ воздуха в результате неполного сгорания твердотопливного материала. Внутренняя область данного устройства разделена на четыре части, каждая из которых выполняет свою функцию.

как работает генератор тока

В верхней части агрегата происходит подсушка. Здесь температура не поднимается выше двухсот градусов по Цельсию. В средней части бункера производится сухая перегонка. Так как сюда воздух не поступает, то в результате обугливания твердого топлива выделяются смолы, кислоты и другие перегонные продукты.

Процесс горения происходит в поясе фурм. Здесь будет наблюдаться температура около 12000 С. Собственно здесь и образуется сам газ.

как работает газовый генератор

Последняя зона – это область восстановления. Она находится между зоной горения и колосниковой решеткой. Уже здесь углекислый газ проходит через раскаленный уголь и соединяется с углеродом. В итоге получается окись углерода.

Что такое сварочный генератор

Многие люди задаются вопросом о том, как работает генератор. Не является исключением и сварочный агрегат. Сварочный генератор – это дизельная или бензиновая электростанция, способная работать в довольно широком диапазоне нагрузок. Именно поэтому данное устройство очень часто применяется как главный источник питания для дуговой сварки.

Особенности работы

Нетрудно разобраться, как работает сварочный генератор. К тому же сделать это может не только опытный мастер, но и обычный любитель.

Электрический переменный ток возникает в области пересечения обмотки сварочного генератора и магнитных силовых линиях, которые размещены на полюсах статора. Ток, поступая к коллекторам, преобразуется из переменного в постоянный. И уже после этого он попадает на специальные зажимы, к которым и присоединяются сварочные провода.

как работает переменный генератор

Каждый сварочный генератор имеет в своем составе намагничивающуюся обмотку возбуждения. Сама обмотка может получать питание двумя методами:

- Благодаря самому генератору. В этом случае он является самовозбудимым.

- С помощью независимого источника. Такой генератор считается агрегатом с независимым возбуждением.

Обратите внимание на то, что любой сварочный генератор может работать в разных режимах. Для того чтобы поменять режим, необходимо очень плавно изменить ток намагничивания.

Еще одной важной особенностью данного агрегата является его последовательная обмотка возбуждения, которая характеризуется малым количеством витков. Такую обмотку нужно последовательно подключить к дуге, где и будет производиться питание током. Последовательная обмотка разделяется на отдельные секции, а это говорит о том, что она может работать не только в полном составе, но и частично.

Что такое автомобильный генератор

Многие автолюбители сравнивают своего железного друга с настоящим живым организмом, хоть и созданным руками человека. Так вот, сердцем такого мощного агрегата является двигатель, а его нервной системой – автомобильный генератор. Конечно, автомобиль может двигаться и без него, однако очень непродолжительный период времени. Это будет длиться до тех пор, пока аккумулятор полностью не разрядится.

Как работает генератор авто

Принцип работы генератора автомобиля заключается в процессах образования переменного напряжения. Такой процесс осуществляется в обмотках статора. Электрическое напряжение возникает как следствие влияния постоянного магнитного поля, которое образуется около сердечника.

На обмотку подается постоянное напряжение, которого хватает для создания хорошего магнитного потока. Неважно, какой автомобильный генератор вы захотите приобрести. Принцип работы у всех образцов абсолютно одинаковый.

Генератор тока

Прежде чем задаваться вопросом о том, как работает генератор тока, нужно разобраться, что же это такое.

Генератор тока – это особая электрическая машина, способная преобразовывать механическую энергию в электрическую. Такой агрегат может генерировать как переменный, так и постоянный ток. Стоит понимать, что во всем мире ни одна энергия не появляется просто так. Для ее генерирования нужно использовать другие силы. Это же относится и к электрическому току.

Принцип работы генератора постоянного тока

Чтобы понять, как работает генератор, нужно изучить его строение. К концам петли проводника, в которой постоянно вращается магнит, нужно подключить нагрузку, и в результате этого появится переменный ток. Это происходит потому, что полюса магнита меняют свои места. Самыми главными элементами данного устройства являются статор и ротор.

как работает сварочный генератор

Если сравнивать данный агрегат с генератором переменного тока, то для его работы необходим постоянный источник бесперебойного питания, позволяющий направлять энергию в обмотку якоря. Именно поэтому такие генераторы используются довольно редко. Являются энергетическим источником для электротранспорта в городах. Также могут быть использованы для электромобилей или мотоциклов.

Генератор переменного тока

Генератор переменного тока является электромеханическим устройством, которое предназначено для преобразования механической энергии в электрическую. Носит еще одно название – альтернатор. Как работает переменный генератор, можно прочитать ниже.

Принцип его работы заключается во вращении магнитного поля. На сегодняшний день современные агрегаты имеют довольно несложное строение, и при этом производят электроэнергию высокого напряжения. Очень популярными становятся электромеханические приборы вращающегося типа.

Действие приборов осуществляется благодаря электродвижущей силе, возникающей в проводнике. Каждый агрегат имеет в своем строении две основных части: якорь, генерирующий электродвижущую силу, и индуктор, собственно, в котором и возникает магнитное поле.

Генераторы переменного тока получили очень широкое распространение. Их можно найти в школах, детских садах, больницах, на складах и в офисах, где крайне необходимо поддержание стабильной электроэнергии. Очень удобно использовать данное оборудование для строительных объектов, а также подать электроэнергию в загородные дома.

Как изменить частоту тока

Чтобы узнать, как работает генератор частоты, нужно понять, что частота – это основная характеристика переменного тока. Измеряется она очень просто. Для этого можно использовать обычный тестер с определенными настройками. А вот для того, чтобы изменить частоту, нужно настроить сам генератор или же емкость и индуктивность в цепи.

Если вам нужно увеличить или уменьшить частоту переменного тока, то стоит изменить частоту вращения обмоток генератора. То есть если вы увеличите частоту вращения обмоток в несколько раз, то и частота переменного тока также увеличится в такое же количество раз.

Если же электрическая энергия находится в сети, то в этом случае для изменения частоты конденсатор и катушку индуктивности. Данные элементы нужно установить в сеть и соединить их параллельно.

Обратите внимание на то, что при таких махинациях может наступить явление резонанса. Это говорит о том, что сила тока увеличивается, и вся цепь может перегореть.

Проверка работоспособности генератора на автомобиле

У многих владельцев автомобилей возникает вопрос о том, как проверить, работает ли генератор. Очень просто это сделать с помощью вольтметра, который можно купить в любом автомагазине. Начните с проверки батареи аккумулятора. Если же она не заряжена, то вы не сможете провести запланированные измерения. Для проверки батареи вам нужно будет совершить такие действия: заглушить двигатель, открыть капот машины и правильно соединить контакты вольтметра и батареи.

После этого заведите мотор и увеличьте количество оборотов до 2000 RPM. Таким образом батарея включится в работу, и устройство перейдет на высокую передачу. Чтобы проверить, как работает генератор, оставьте двигатель работающим на несколько минут и проверьте батарею вольтметром еще раз. Если показатель ниже 13-14 В, это говорит о том, что генератор неисправен и требует срочного осмотра специалистами.

fb.ru

Схема, особенности, принцип действия и устройство генератора постоянного тока

Эпоха электрификации началась не так давно и за пару столетий полностью изменила наш образ жизни. Посмотрите вокруг, везде, где только падает глаз, обязательно увидите какой-нибудь электрический прибор. Люди настолько привыкли к разным машинам, которые выполняют за них практически всю работу, что возникает иллюзия, будто бы так было всегда. Но заглянем за сторону завесы, скрывающей от нас процесс жизнедеятельности электрических друзей. Разберем принцип действия и устройство генератора постоянного тока.

Немного истории

Электричество наблюдали еще древние греки. Было замечено свойство янтаря притягивать к себе разные частицы. Люди считали это магнетизмом, присущим смоле. Но позже заметили способность и других материалов приобретать магнетизм. Например, стекло при натирании тоже начинало привлекать к себе мелкие легкие элементы: частицы бумаги, волоски и пыль. Так стало понятным, что магнитный эффект возникает по какому-то закону.

Впоследствии, в XVIII веке, был создан прототип современного конденсатора, окрещенный по имени изобретателя «лейденской банкой». Этот несложный механизм умел накапливать заряд, который в то время считали своеобразной жидкостью, насыщающей твердые тела и способной перетекать от одного тела к другому с поразительной скоростью – на несколько миль за доли секунд.

Когда был открыт атом и его составляющие ядро и электрон, все стало на свои места. Люди поняли, что именно электроны и являются теми зарядами, которые создавали такие необъяснимые явления, как электрические разряды. Но пока это были лишь статические заряды. С опытов Фарадея и Эрстеда берет свое начало электричество, которое мы знаем сейчас. Они изобрели макет-генератор постоянного тока, устройство и принцип действия которого основаны на явлении электродвижущей силы ЭДС.

принцип действия и устройство генератора постоянного тока

Сила движения электричества

Как воды реки приводит в движение притяжение земли, так заряженные частицы в проводнике заставляет перемещаться ЭДС. Эта сила тесно связана с магнитным явлением, а именно появляется, как только меняется поток, создаваемый магнитом. ЭДС способна работать только в веществе, где всегда в наличии есть свободные заряды. Таким свойством обладают металлы и солевые растворы.

ЭДС тем больше, чем быстрее изменяется интенсивность магнитных волн. Как известно, магнит два полюса имеет всегда. В соответствии с тем, в каком направлении изменяется поток относительно проводника, ток в проводнике течет в ту или иную сторону. Положительные и отрицательные заряды сами создают между собой энергетическое поле, которое мы называем напряжением, оно тем больше, чем сильнее суммарный электрический заряд одноименного полюса.

Что такое электрический генератор?

Конструкция или машина, которая способна преобразовывать любую механическую силу в электрическую энергию, получила название генератора электричества. Принцип действия и устройство генератора постоянного тока связаны с магнетизмом. Если взять постоянный магнит и пересекать поле его напряженности проводником, то в последнем появляется сила, заставляющая двигаться в одном направлении заряженные частицы – появляется ток. То же самое будет происходить при неподвижном проводнике и движущемся магните.

Экспериментально учеными установлено, что величина тока тем больше, чем больше:

  • Величина магнитного потока между полюсами магнита.
  • Скорость пересечения линий напряженности.
  • Длина токоведущего провода.

Если же перемещать проводник параллельно тому, как идет поток, то индукции в нем не наблюдается. Из этого вывели закон правой руки, который помогает понять, в каком направлении движется ток. При расположении руки правой части тела ладонью так, чтобы в нее входили магнитные линии напряженного поля, а палец большой был отогнут и указывал туда, куда происходит движение проводника, оставшиеся четыре пальца покажут путь тока. В магните вектор движения поля направлен от севера к югу.

генератор постоянного тока устройство и принцип действия

Схема работы элементарного генератора

Принцип действия и устройство генератора постоянного тока простого типа следующие: рамка изготовлена из токоведущего материала, насажена на ось и производит вращение между полюсами магнита. Каждый свободный конец рамки подсоединен к своему контакту, имеющему вид дугообразной пластины. Вместе контакты составляют окружность, разорванную в двух точках (коллектор). Эти полукруглые контакты подвижно соединены с подпружиненными проводящими щетками. Они снимают ток.

В пространстве рамка относительно контактов ориентирована так, что при пересечении каждой ее половины участков наибольшей величины магнитного потока щетки замкнуты на контактах. Когда же элементы рамки проходят фазу движения вдоль линий – щеточные контакты разомкнуты с коллектором.

Если подключить осциллограф, видно, что генератор постоянного тока устройство и принцип действия имеет такой, что выдает чередование полуволн, находящихся по одну сторону координат и изменяющих свое значение от нулевого к наивысшему и снова к нулю. Частота следования их зависит от скорости поворота рамки. Это означает, что ток в такой системе движется в одном направлении (постоянный), но имеет пульсирующий вид.

генератор постоянного тока принцип действия схема

Принцип действия и устройство генератора постоянного тока

Реальный генератор тока постоянного устроен более сложно, хотя принцип его действия ничем не отличается от рассмотренного выше. Вместо одной рамки и пары полукруглых контактов он имеет множество рамок и контактов коллектора. Это, во-первых, повышает мощность такой машины, во-вторых, сглаживает пульсации тока, так как каждая рамка создает свою полуволну, которые, налаживаясь друг на друга, образуют суммарный ток. Такая вращающаяся система получила название якоря или ротора.

Магнит генератора тоже видоизменен. Его роль выполняет электромагнит, состоящий из обмотки и сердечника. Используя электромагниты, можно создавать большой магнитный поток, который не под силу для обычного постоянного. К тому же величину потока можно легко менять. Неподвижная часть генератора названа статором.

В зависимости от режима работы машины во время вращения вала, между статором и ротором наблюдаются следующие процессы:

  1. К генератору не подключена нагрузка. В случае такой холостой работы якорь производит вращение, в нем ЭДС наводится, но тока в обмотке нет, так как цепь не замкнута.
  2. Генератор постоянного тока, схема устройства которого подключена к цепи, работает в режиме нагрузки. В этом случае в якоре течет ток и появляется новая составляющая – магнитный поток, создаваемый якорем (реакция якоря). Этот поток движется в таком направлении, что противодействует основным силовым линиям, создаваемым электромагнитом. В результате реальная ЭДС будет ниже, то есть снижается мощность генератора. И чем больше нагрузка генератора, тем больше энергии тратится на преодоление реакции якоря при вращении вала.

Чтобы нивелировать магнитный поток якоря, в схему ротора вводят так называемые компенсационные обмотки, в которых образуется магнитный поток, ослабляющий реакцию якоря.

генератор постоянного тока схема устройства

Типы генераторов, вырабатывающих постоянное электричество

Принцип действия и устройство генераторов постоянного тока отличаются по исполнению схемы возбуждения. Они бывают:

  • Магнитоэлектрическими. В них для создания магнитного потока применяют постоянные магниты. Такие машины, обычно небольшой мощности, имеют высокий КПД, так как нет потерь в обмотках возбуждения. Недостаток устройств в сложности регулирования.
  • Генераторами с независимой схемой возбуждения. Это устройства, обмотка электромагнитов которых запитана от сторонних источников питания: аккумулятора или генератора.
  • Самовозбуждающимися генераторами постоянного тока. Такие устройства питают электромагниты от своего же якоря. Главным условием самовозбуждения является остаточный магнитный поток. Конструкция, принцип действия генераторов и схема их включения бывает компаундной, шунтовой и сериесной.

принцип действия и устройство генераторов

Принцип работы и устройство генератора из электродвигателя

Принцип обратимости электрических машин говорит о том, что любой электродвигатель может быть преобразован в генератор и наоборот. Ведь оба этих устройства используют ЭДС индукции, как основу своей работы. Только в двигателе на ротор подают электрический ток, который, создавая магнитный поток, отталкивается от полюсов магнита статора, совершая вращательное движение.

Если же вал двигателя вращать с определенной скоростью, в обмотках якоря начнет наводиться ЭДС индукции и потечет ток. Ограничение лишь в толщине провода обмотки якоря. Когда провод тонкий, то получить большую мощность у такого генератора не получится.

конструкция принцип действия генераторов

Где нашел применение источник постоянного тока?

Несмотря на то что постоянное электричество можно получить методом выпрямления переменного, широко используют генератор постоянного тока. Принцип действия, схема такой машины незаменимы на металлургических предприятиях, в мощных электролизных установках заводов. В транспортной промышленности агрегаты работают в электровозах, пароходных судах. Для питания возбуждающих обмоток генераторов переменного тока на электростанциях также применимы источники постоянного напряжения. Для бытовых целей разработаны динамо-машины тока постоянного. Их можно увидеть на велосипедах, где они питают осветительные фары.

принцип работы и устройство генератора

Заключение

Генераторы тока постоянной полярности хороши тем, что могут вырабатывать электричество при разной скорости вращения вала. В них не нужно выдерживать четкую частоту, как, например, у генераторов переменного тока, где она должна быть в 50 Гц. Такие машины очень удобно использовать в качестве альтернативных источников электричества, например в ветрогенераторах.

fb.ru


© 2007—2018
423800, Набережные Челны , база Партнер Плюс, тел. 8 800 100-58-94 (звонок бесплатный)