Камаз 44108 тягач В наличии!
Тягач КАМАЗ 44108-6030-24
евро3, новый, дв.КАМАЗ 740.55-300л.с., КПП ZF9, ТНВД ЯЗДА, 6х6, нагрузка на седло 12т, бак 210+350л, МКБ, МОБ
 
карта сервера
«ООО Старт Импэкс» продажа грузовых автомобилей камаз по выгодным ценам
+7 (8552) 31-97-24
+7 (904) 6654712
8 800 1005894
звонок бесплатный

Наши сотрудники:
Виталий
+7 (8552) 31-97-24

[email protected]

 

Екатерина - специалист по продаже а/м КАМАЗ
+7 (904) 6654712

[email protected]

 

Фото техники

20 тонный, 20 кубовый самосвал КАМАЗ 6520-029 в наличии
15-тонный строительный самосвал КАМАЗ 65115 на стоянке. Техника в наличии
Традиционно КАМАЗ побеждает в дакаре

тел.8 800 100 58 94

Техника в наличии

тягач КАМАЗ-44108
Тягач КАМАЗ 44108-6030-24
2014г, 6х6, Евро3, дв.КАМАЗ 300 л.с., КПП ZF9, бак 210л+350л, МКБ,МОБ,рестайлинг.
цена 2 220 000 руб.,
 
КАМАЗ-4308
КАМАЗ 4308-6063-28(R4)
4х2,дв. Cummins ISB6.7e4 245л.с. (Е-4),КПП ZF6S1000, V кузова=39,7куб.м., спальное место, бак 210л, шк-пет,МКБ, ТНВД BOSCH, система нейтрализ. ОГ(AdBlue), тент, каркас, рестайлинг, внутр. размеры платформы 6112х2470х730 мм
цена 1 950 000 руб.,
КАМАЗ-6520
Самосвал КАМАЗ 6520-057
2014г, 6х4,Евро3, дв.КАМАЗ 320 л.с., КПП ZF16, ТНВД ЯЗДА, бак 350л, г/п 20 тонн, V кузова =20 куб.м.,МКБ,МОБ, со спальным местом.
цена 2 700 000 руб.,
 
КАМАЗ-6522
Самосвал 6522-027
2014, 6х6, дв.КАМАЗ 740.51,320 л.с., КПП ZF16,бак 350л, г/п 19 тонн,V кузова 12куб.м.,МКБ,МОБ,задняя разгрузка,обогрев платформы.
цена 3 190 000 руб.,

СУПЕР ЦЕНА

на АВТОМОБИЛИ КАМАЗ
43118-010-10 (дв.740.30-260 л.с.) 2 220 000
43118-6033-24 (дв.740.55-300 л.с.) 2 300 000
65117-029 (дв.740.30-260 л.с.) 2 200 000
65117-6010-62 (дв.740.62-280 л.с.) 2 350 000
44108 (дв.740.30-260 л.с.) 2 160 000
44108-6030-24 (дв.740.55,рест.) 2 200 000
65116-010-62 (дв.740.62-280 л.с.) 1 880 000
6460 (дв.740.50-360 л.с.) 2 180 000
45143-011-15 (дв.740.13-260л.с) 2 180 000
65115 (дв.740.62-280 л.с.,рест.) 2 190 000
65115 (дв.740.62-280 л.с.,3-х стор) 2 295 000
6520 (дв.740.51-320 л.с.) 2 610 000
6520 (дв.740.51-320 л.с.,сп.место) 2 700 000
6522-027 (дв.740.51-320 л.с.,6х6) 3 190 000


Перегон грузовых автомобилей
Перегон грузовых автомобилей
подробнее про услугу перегона можно прочесть здесь.


Самосвал Форд Нужны самосвалы? Обратите внимание на Ford-65513-02.

КАМАЗы в лизинг

ООО «Старт Импэкс» имеет возможность поставки грузовой автотехники КАМАЗ, а так же спецтехники на шасси КАМАЗ в лизинг. Продажа грузовой техники по лизинговым схемам имеет определенные выгоды для покупателя грузовика. Рассрочка платежа, а так же то обстоятельство, что грузовики до полной выплаты лизинговых платежей находятся на балансе лизингодателя, и соответственно покупатель автомобиля не платит налогов на имущество. Мы готовы предложить любые модели бортовых автомобилей, тягачей и самосвалов по самым выгодным лизинговым схемам.

Контактная информация.

г. Набережные Челны, Промкомзона-2, Автодорога №3, база «Партнер плюс».

тел/факс (8552) 388373.
Схема проезда



Общие сведения о металлах и сплавах. Общие сведения о сплавах и металлах


ОСНОВНЫЕ СВЕДЕНИЯ О МЕТАЛЛАХ И СПЛАВАХ — Студопедия.Нет

Стр 1 из 10Следующая ⇒

Раздел первый ОСНОВЫ МЕТАЛЛОВЕДЕНИЯ

Глава I ОСНОВНЫЕ СВЕДЕНИЯ

О МЕТАЛЛАХ И ИХ СПЛАВАХ

Общие сведения о металлах и их сплавах

В настоящее время известно 107 химических элементов (см. Периодическую систему элементов Д. И. Менделеева), которые делятся на две основные группы: металлы и неметаллы (метал­лоиды). Большинство элементов (83) — металлы, отличитель­ными признаками которых являются непрозрачность, специфи­ческий блеск, высокая теплопроводность и электропроводность, ковкость и др. При обычной температуре все металлы, кроме ртути, находятся в твердом состоянии. Металлоиды не имеют таких свойств.

Перечисленными выше свойствами металлы обладают в раз­личной степени, что и определяет их различное практическое использование. Наиболее широкое применение в промышленно­сти получили железо, медь, алюминий, магний, свинец, цинк и олово.

В земной коре металлы занимают небольшое место (около 15% по массе), остальную часть составляют кислород (49%), кремний (26%) и другие металлоиды. Самыми распространен­ными металлами являются алюминий (7%) и железо (5%), реже встречаются кальций, натрий, магний и калий. Содержа­ние урана, золота, платины и других редких металлов опреде­ляется миллионными и миллиардными долями процента.

В технике слово «металлы» объединяет чистые металлы и сплавы. Чистыми металлами называют химические элементы обычно с небольшими добавками других элементов (примесей). Например, техническая медь содержит примеси свинца, вис­мута, сурьмы, железа, мышьяка, олова и других элементов.

Сплавы — это сложные материалы, образующиеся путем сое­динения двух и более элементов (в том числе и неметаллов).

Чистые металлы имеют заданные природой свойства. Спла­вам можно придать необходимые свойства, поэтому они и полу­чили наибольшее распространение.

В промышленности металлы обычно делят на две группы: черные и цветные. Черные металлы — это железо и его сплавы с углеродом (сталь и чугун). Цветные металлы — это медь, алюминий, магний, никель, цинк, олово, свинец и др. и их сплавы. Наиболее распространены черные металлы (на их долю приходится более 90% общей массы металлов). Из металлои­дов широко применяют углерод и кремний.

Металлы получают из металлических руд, которые пред­ставляют собой скопление химических элементов в виде про­стых веществ или соединений. Добычей руд из недр земли за­нимается горнодобывающая промышленность, получением ме­таллов и сплавов из руд — металлургическая. В соответствии с делением металлов на черные и цветные металлургия делится также на черную и цветную.

В настоящее время выплавляют около 75 металлов и огром­ное количество сплавов.

§ 2. Внутреннее строение металлов и их сплавов

Все вещества состоят из атомов, а атом — из положительно заряженного ядра и вращающихся вокруг него отрицательно заряженных электронов (рис. 1). В ядре находятся положи­тельно заряженные частицы — протоны. Количество протонов при обычном состоянии атома равно количеству электронов, т. е. атом электрически нейтрален. Число электронов, обозна­ченное порядковым номером в периодической системе элементов Д. И. Менделеева, для каждого элемента различно. Атом при определенных условиях может терять и приобретать электроны. Если электронов станет больше, чем протонов, то он будет за­ряжен отрицательно, а если меньше, то положительно. Такой электрически заряженный атом называется попом.

Электроны вращаются вокруг ядра по орбитам, число кото­рых определяется номером периода элемента в периодической, системе.

У металлов на внешней орбите находятся один, два или три электрона, слабо связанных с ядром, поэтому под воздействием положительно заряженных атомов они могут отрываться от своего атома, превращая его в положительно заряженный ион. Электроны, свободно переходящие от одного атома к другому, называются свободными.

Атомы металлоидов при определенных условиях стремятся заполнить внешнюю оболочку, т. е. присоединить электроны и превратиться в отрицательно заряженные ноны.

ОСНОВНЫЕ СВЕДЕНИЯ О МЕТАЛЛАХ И СПЛАВАХ

Используемые в технике металлические материалы разделяют на простые и сложные металлы (сплавы).

Простые металлы состоят из одного основного элемен­та и незначительного количества примесей других элемен­тов. Например, технически чистая медь содержит от 0,1 до 1 % примесей свинца, висмута, сурьмы и других эле­ментов.

Сплавы — это сложные металлы, представляющие со­четание какого-либо простого металла (основы сплава) с другими металлами или неметаллами. Например, ла­тунь — сплав меди с цинком. Здесь основу сплава состав­ляет медь.

Химический элемент, входящий в состав металла или сплава, называется компонентом. По числу компонентов сплавы делятся на двухкомпонентные (двойные), трех-компонентные (тройные) и т. д.

Большинство сплавов получают сплавлением компо­нентов в жидком состоянии.

Сплавы превосходят простые металлы по прочности, твердости, обрабатываемости и т. д. Вот почему они применяются в технике значительно шире простых метал­лов. Например, железо — мягкий металл, почти не при­меняющийся в чистом виде. Зато самое широкое приме­нение в технике имеют сплавы железа с углеродом — ста­ли и чугуны.

Все применяемые в технике металлы и сплавы делят ся на черные и цветные.

К черным металлам относятся железо и его сплавь (сталь и чугун). Все остальные металлы и сплавы состав представляют группу цветных металлов.

Наибольшее распространение в технике получили черные металлы. Это обусловлено большими запасами железных руд в земной коре, сравнительной простотой технологии выплавки черных металлов, их высокой прочностью.

Цветные металлы применяются в технике реже, чем черные. Это объясняется незначительным содержанием многих цветных металлов в земной коре, сложностью процесса их выплавки из руд, недостаточной проч­ностью. Цветные металлы дороже черных. Во всех слу­чаях, когда это возможно, их заменяют черными метал­лами, пластмассами и другими материалами.

Из большого числа цветных металлов и сплавов в сельскохозяйственной технике наибольшее распростра­нение получили сплавы алюминия, меди, а также под­шипниковые сплавы.

Все металлы и сплавы в твердом состоянии имеют

 кристаллическое строение, т. е. их атомы (ионы) распо­ложены в строго определенном порядке. Этим кристалли­ческие тела отличаются от аморфных тел, у которых атомы  расположены хаотично. Аморфными телами являются стекло, клей, воск и др.

 
Если атомы металла мысленно соединить прямыми линиями, то получится правильная геометрическая систе­ма, называемая пространственной кристаллической ре­шеткой. Из  кристаллической решетки можно выделить элементарную кристаллическую ячейку, представляющую комплекс атомов, повторением которого в трех измерениях можно построить всю решетку. Наибо­лее распространены три типа элементарных кристалли­ческих ячеек металлов (рис. 1): кубическая объемно-центрированная (такую решетку имеют хром, вольфрам, молибден и др.), кубическая гранецентрированная (алю­миний, медь, свинец и др.) и гексагональная (цинк, маг­ний и др.).

В узлах кристаллических решеток металлов располо­жены положительно заряженные ионы, удерживаемые на определенном расстоянии друг от друга свободными электронами. Такое внутреннее строение обусловливает характерные признаки металлов, такие, как высокая элек­тро- и теплопроводность, пластичность (ковкость) и др.

Свойства металлов и сплавов зависят от природы их атомов, типа кристаллической решетки и от расстояния между атомами в решетке.

Все свойства металлов делятся на физические, хими­ческие, механические и технологические.

Физические свойстваметаллов и сплавов определя­ются цветом, плотностью, температурой плавления, теп­ловым расширением, тепло- и электропроводностью, а также магнитными свойствами (табл. 1). Плотность металла — величина, определяемая отно­шением массы металла к занимаемому им объему. Она измеряется в кг/м3. Для снижения массы изделия необ­ходимо использовать материалы с небольшой плотностью (сплавы магния, алюминия и титана).

Температура плавления — температура, при которой металл переходит из твердого состояния в жидкое. Знание температуры плавления металлов и сплавов необхо­димо в металлургии, в литейном производстве, при горя­чей обработке металлов давлением, при сварке, пайке и других процессах, сопровождающихся нагреванием ме­таллических материалов.                   

 
Тепловое расширение - изменение линейных разме­ров иобъема металлического материала при нагревани. Неодинаковость величины теплового линейного расшире­ния материалов характеризуется коэффициентом линей­ного расширения а, который показывает, на какую долю первоначальной длины при 0 °С удлинилось тело вслед­ствие нагревания его на 1 °С. Тепловое расширение металлов необходимо учитывать при изготовлении и эксплуатации точных, сложностью приборов и инструментов, изготовлении литейных форм, Прокладке железнодорожных рельс и т. д.

Теплопроводность — способность металлов передавать' Теплоту от более нагретых частей тела к менее нагретым. Среди металлических материалов лучшей теплопровод­ностью обладают серебро, медь, алюминий.

Электропроводность — способность металлов прово­пить электрический ток. Она оценивается на практике Величиной удельного электросопротивления р. Чем мень­ше электросопротивление, тем более электропроводен металлический материал. Высокой электропроводностью Обладают те металлы, которые хорошо проводят электри­ческий ток (серебро, медь, алюминий). 

Способность металлов намагничиваться под действием магнитного поля/называют магнитной проницаемостью. Сильно выраженными магнитными свойствами обладают железо, никель, кобальт и их сплавы. Эти металлы назы­вают ферромагнитными

Механическими свойствамиметаллов называется со­вокупность свойств, характеризующих способность ме­таллических материалов сопротивляться воздействию внешних усилий (нагрузок).

К механическим свойствам металлов. относятся:

прочность — способность материала сопротивляться действий внешних сил без разрушения; упругость — способность материала восстанавливать свою первоначальную форму и размеры после прекраще­ния действия внешних сил, вызвавших деформацию;

пластичность — способность материала изменять свою форму и размеры под действием внешних сил, не разру­шаясь, и сохранять полученные деформации после пре­кращения действия внешних сил;

твердость — способность материала оказывать сопротивление проникновению в него другого, более твердого тела; 

вязкость — способность, металлических материалов оказывать сопротивление быстро возрастающим (ударным) нагрузкам; хрупкость — свойство, обратное вязко­сти;

1 ползучесть — свойство металлических материалов медленно и непрерывно пластически деформироваться при длительной нагрузке и высоких температурах; усталость — процесс постепенного накопления повреждений материала под действием повторно-переменных напряжений, приводящих к уменьшению долговечности, образованию трещин и разрушению. Способность метал­лических материалов противостоять усталости называет­ся выносливостью.

Механические свойства являются основной характери­стикой металлов и сплавов, поэтому на заводах созданы специальные лаборатории, где производятся различные испытания с целью определения этих свойств.

Механические испытания можно разделить на:

статические, при которых нагрузка, действующая на металлический образец или деталь, остается постоянной или возрастает крайне медленно;

динамические (ударные), при которых нагрузка воз­растает быстро и действует в течение незначительного времени;

испытание при повторных или знакопеременных на­грузках — нагрузках, изменяющихся многократно по ве­личине или по величине и направлению.

Рассмотрим основные виды испытаний металлов с целью определения их механических свойств.

Технологические свойства характеризуют способность металлов поддаваться различным видам технологической обработки для получения определенной формы, размеров и свойств: Они имеют большое значение при выборе металлических материалов для изготовления деталей ма­шин и конструкций. Из технологических свойств наиболь­шее значение имеют обрабатываемость резанием, свариваемость, ковкость, прокаливаемость, литейные свойства.

Обрабатываемостью резанием называется способность металлов подвергаться обработке режущими инструмен­тами для придания деталям определенной формы, разме­ров (с необходимой точностью) и чистоты поверхности.  Обрабатываемость резанием определяется по скорости резания, усилию резания и по шероховатости обрабатываемой поверхности. При разных методах обработки (то­чении, сверлении, фрезеровании и т. д.) обрабатывае­мость одного и того же металла может быть различной. Для улучшения обрабатываемости сталей в них допу­скается повышенное содержание серы, а также вводятся свинец, селен и другие элементы.

Свариваемостью называется свойство металла или сплава образовывать при установленной технологии сварки соединения, отвечающие требованиям, обусловленным конструкцией и эксплуатацией изделия. Свариваемость углеродистых сталей ухудшается с по-вышением содержания в них углерода. Ковкостью называется способность металла без раз­рушения поддаваться обработке давлением (ковке, штам­повке, прокатке и т. д.). Ковкость металла зависит от его пластичности. Чем металл более пластичен, тем лучше он поддается обработке давлением.

Металлы обладают ковкостью как в холодном, так и в нагретом состоянии. В холодном состоянии хорошо ку­ются латуни и сплавы алюминия, сталь — в нагретом • состоянии. Чугун из-за повышенной хрупкости обработке давлением не подвергается.

Прокаливаемость— способность стали воспринимать закалку на определенную глубину от поверхности. Про­каливаемость стали определяется по виду излома, по измерению твердости в различных точках сечения образ­ца, а также методом торцовой закалки.

 Литейные свойства металлов определяются жидкоте-кучестью, усадкой и склонностью к ликвации. Жидкоте кучесть — это способность расплавленного металла за­полнять форму и давать плотные отливки с точной конфи­гурацией. Усадка — сокращение объема расплавленного металла при затвердении и последующем охлаждении. Ликвация — неоднородность химического состава твердо­го металла в разных частях отливки. .

При выборе литейных материалов учитывают, что чу­гун обладает высокими литейными свойствами: хорошей жидкотекучестью, небольшой усадкой и незначительной склонностью к ликвации. Литейные свойства стали хуже, чем чугуна.

Химические свойства металлов

Химическим свойством называется способность металлов под действием окружающей среды превращаться в другие вещества и изменять свои свойства.

К химическим свойствам относится способность металлов корродировать, т. е. окисляться под действием кислорода воз­духа и воды, разрушаться под действием кислот и щелочей, об­разовывать окалину при нагреве в окислительной среде.

Коррозии(лат. corrosia — разъедание) подвергаются почти все металлы. Например, железо на воздухе ржавеет, медь по­крывается зеленым слоем окиси, алюминий — белым слоем окиси и т. д.

Металлы, не поддающиеся коррозии, называются благород­ными. К ним относятся золото и платина. Они разрушаются только в смеси соляной и азотной кислот, называемой «царской водкой».

Высокой коррозионной стойкостью обладают хром, никель и их сплавы, а титан и его сплавы по коррозионной стойкости приближаются к благородным металлам.

[Химическая коррозия возникает вследствие химического взаимодействия металла со средами, не являющимися провод­никами электрического тока (сухие газы, нефть, бензин, керо-син, масла). При этом металлы вступают в химическое взаимо­действие с активными веществами внешней среды, обычно с кислородом, в результате чего на поверхности металлов по­являются окисные пленки и изделие начинает разрушаться.

Типичным примером химической коррозии является газовая коррозия, которая наблюдается при нагреве заготовок для ковки и термической обработки, деталей топок и дымоходов котлов, проточных частей газовых турбин, выхлопных труб дви­гателей и т. д. На судах химической коррозии подвергаются внутренние поверхности цистерн с керосином или бензином, танки с нефтью и другими подобными продуктами.

Электрохимическая коррозия возникает при взаимодействии металла с электролитом, т. е. со средами, проводящими элект­рический ток (щелочи, растворы солей и кислот, вода и воздух). Коррозию металлов в атмосфере воздуха обычно называют ржавлением.

Явления при электрохимической коррозии по своей природе не отличаются от тех, которые происходят в гальванических элементах. Известно, что при работе гальванического элемента положительно заряженные ионы анода переходят в раствор." При этом анод заряжается отрицательно, а раствор (электролит), приобретая эти ионы, заряжается положительно. Таким образом, возникает разность потенциалов. Чем она больше, тем быстрее переходят ионы с анода в раствор и, следовательно, тем быстрее анод разрушается.

Разность потенциалов, возникающая на поверхности ме­талла, соприкасающегося с электролитом, называется электрод­ным потенциалом. Значения электродных потенциалов элемен­тов измеряют по отношению к водороду, потенциал которого принят равным нулю (табл. 4). Металлы, расположенные выше водорода, электроположительны, а ниже — электроотрица­тельны.

Если построить гальванический элемент из двух разнород­ных металлов, то разрушаться будет тот, который в таблице расположен ниже. Так, если в электролит поместить пластинки цинка и железа, то разрушаться будет цинк. Каждый металл будет анодом по отношению к металлу, расположенному выше него в таблице, и катодом — ко всем нижерасположенным. Поэтому нельзя допускать в конструкциях, работающих в корро­зионных средах, соединения металлов, разных по активности, например железа с алюминием или медью, меди с алюминием. Возникновению коррозии на металле способствует неодно­родность их строения, наличие загрязнений и примесей.

Металлические изделия подвергаются коррозии как в процессе эксплуатации, так и хранения.

 
По характеру воздействия на металл коррозию можно раз­делить на сплошную (равномерную), местную и межкристаллитиую.

 

Сплошная (равномерная) коррозия равномерно распространяется по всей поверхности металла.

Местная коррозия вызывает разрушение отдельных участков поверхности металла в виде язв, пятен и точек. По­этому ее иногда называют язвенной, пятнистой, точечной. Она возникает обычно в местах дефектов металла: царапин, рисок, забоин, следов обработки и т. д.

Межкристалли тная  коррозия развивается (воз­никает) по границам кристаллов, не вызывая заметных измене­ний поверхности металла. Этот вид коррозии наиболее опасный. Он приводит к мгновенной поломке деталей при эксплуатации

Интенсивность (скорость) коррозии зависит от химического состава и структуры металла, состояния его поверхности, наличия внутренних и наружных дефектов, окружающей среды (ее состава, температуры, скорости движения) и т. д. Металл с де­фектами имеет более высокий электродный потенциал, чем чи­стый. Дефекты способствуют образованию гальванических мик­роэлементов и, следовательно, разрушению основного металла. Чем меньше металл имеет дефектов, тем выше его коррозион­ная стойкость, и наоборот.Химический состав металла значительно влияет на его кор­розионную стойкость. При увеличении содержания углерода со­противляемость металла коррозии уменьшается, и наоборот. Содержание в металлах таких элементов, как хром, никель, ти­тан, медь, повышает их коррозионную стойкость. Ниобий и ти­тан повышают стойкость металлов к межкристаллитной корро­зии. Коррозия стали усиливается в кислых растворах и умень­шается в щелочных средах.

Часто одновременно с коррозией металлов происходит эрозия. Эрозией называется механическое разрушение поверхности металла ударами частиц твердых тел, воды, газа, пара, воздуха и т. д. Совместная коррозия и эрозия значительно быстрее раз­рушают металл.        

Около 10 % всех наплавленных металлов, воплощенных в различные изделия, конструкции и машины, ежегодно разру­шается от коррозии. Поэтому борьба с коррозией является важнейшей народнохозяйственной задачей. Знание химических свойств металлов позволяет правильно выбрать нужный для из­готовления изделий или конструкций, работающих в коррозион­ных средах.

Коррозия судовых конструкций

Судовые конструкции работают в чрезвычайно неблагоприятных условиях. Детали двигателей внутреннего сгорания и газовых турбин, топки и дымоходы паровых котлов, нагревае­мые при обработке судостроительные заготовки подвергаются газовой коррозии, судовые конструкции, соприкасающиеся с нефтью, бензином, керосином, маслами,— химической корро­зии, судовые конструкции, находящиеся в воде и влажной ат­мосфере,— электрохимической коррозии. Многие судовые кон­струкции (корпус судна, гребные винты, рули, вращающиеся детали турбин и насосов, трубы большинства судовых систем и т. д.) подвергаются также эрозии. В результате потери ме­талла от коррозии в судостроении довольно высоки.

Основной коррозионной средой судовых конструкций явля­ется морская вода, в которой содержатся растворы различных солей. Соленость океанов составляет примерно 35 промилле, морей — не более 25, рек и озер — не более 0,3 промилле. Чем выше концентрация солей в воде, тем выше электропроводность и, следовательно, тем выше ее коррозионная активность. Рас­творенные в морской воде кислород, йод, бром также способ­ствуют ее коррозионной активности.

Наиболее подвержены коррозии в морской воде углероди­стая сталь и чугун. Чем больше примесей (серы и фосфора) содержит металл, тем ниже его коррозионная стойкость. Нержа­веющие стали и особенно сплавы на основе титана, циркония и тантала устойчивы против коррозии.

Коррозионная стойкость цветных металлов колеблется в ши­роких пределах. Высокую коррозионную стойкость имеет медь и ее сплавы (латунь и бронза). Но простые латуни подвержены в морской воде обесцинкованию. Обесцинкование — это вид из­бирательной коррозии, при которой цинк растворяется, а медь выделяется на поверхности в виде рыхлых образований.

Алюминий и его сплавы устойчивы против коррозии в прес­ной воде, а сплавы алюминия с магнием устойчивы и в морской воде, если они имеют дополнительную защиту. Магний и его сплавы мало устойчивы против коррозии в морской воде, а ти­тан и его сплавы — практически абсолютно устойчивы против коррозии, поэтому являются ценным материалом для изготов-ления судовых конструкций.

Увеличение скорости движения воды повышает электрохими­ческую коррозию, а при определенных условиях вызывает кор­розионную эрозию, прежде всего судовых конструкций в кормо­вой части корпуса судна: гребных винтов, внутренних поверх­ностей судовых трубопроводов и др.

Коррозионная стойкость судовых конструкций зависит в зна­чительной степени от чистоты их обработки. Бугорчатая поверх­ность сварных швов, выступающие головки заклепок и других крепежных деталей могут быть причинами интенсивной местной коррозии. Ускоряет коррозию наличие окалины на поверхности судовых конструкций, даже находящейся под слоем краски.

Особенно интенсивно происходит электрохимическая корро­зия конструкций, в которых сочетаются различные металлы, например сталь с алюминиевыми или медными сплавами. Од­нако при постройке судов без таких материалов невозможно обойтись.

Подводная часть судов (обычно до грузовой ватерлинии) во время плавания и особенно стоянки обрастает различными жи­вотными или растительными организмами, которые повреждают покрытие корпуса судна, что способствует возникновению мест­ной коррозии. В процессе жизнедеятельности эти организмы вы­деляют вредные химические соединения: сернистый водород, уг­лекислый газ, различные кислоты и кислород, что также спо­собствует повышению скорости коррозии.

При очистке подводной части крупнотоннажных судов в до­ках снимают до 200 т продуктов обрастания, которое не только способствует возникновению коррозии, но и снижению скорости движения судов, увеличению расхода топлива, ускорению сро­ков докования.

Дата добавления: 2018-04-05; просмотров: 26; ЗАКАЗАТЬ РАБОТУ

studopedia.net

Общие сведения о сплавах

Количество просмотров публикации Общие сведения о сплавах - 997

Металлы — кристаллические вещества, характеризующиеся высокими электро- и теплопроводностью, ковкостью, способностью хорошо отражать электромагнитные волны и другими специфическими свойствами. Свойства металлов обусловлены их строением: в их кристаллической решетке есть не связанные с атомами электроны, которые могут свободно перемещаться.

В технике обычно применяют не чистые металлы, а сплавы, что связано с трудностью получения чистых веществ, а также с крайне важно стью придания металлам требуемых свойств.

Сплавы — это системы, состоящие из нескольких металлов или металлов и неметаллов. Сплавы обладают всœеми характерными свойствами металлов. В строительстве применяют сплавы желœеза с углеродом (сталь, чугун), меди и олова (бронза) и меди и цинка (латунь) и др. Размещено на реф.рфНа практике термин ʼʼметаллыʼʼ распространяют и на сплавы, в связи с этим далее он относится и к металлическим сплавам.

Применяемые в строительстве металлы делят на две группы: черные и цветные.

К черным металлам относятся желœезо и сплавы на его базе (чугун и сталь).

Сталь — сплав желœеза с углеродом (до 2,14%) и другими элементами. По химическому составу различают стали

углеродистые и легированные, а по назначению — конструкционные, инструментальные и специальные.

Чугун — сплав желœеза с углеродом (более 2,14%), некоторым количеством марганца (до 2%), кремния (до 5%), а иногда и других элементов. Учитывая зависимость отстроения и состава чугун бывает белый, серый и ковкий.

К цветным металлам относятся всœе металлы и сплавы на базе алюминия, меди, цинка, титана и др.

Широкое использование металлов в строительстве и других отраслях экономики объясняется сочетанием у них высоких физико-механических свойств с технологичностью.

Металлы обладают высокой прочностью, причем прочность на изгиб и растяжение у них практически такая же, как и на сжатие (у каменных материалов прочность на изгиб и растяжение в 10… 15 раз ниже прочности на сжатие). Так, прочность стали более чем в 10 раз превышает прочность бетона на сжатие и в 100…200 раз прочность на изгиб и растяжение; в связи с этим, несмотря на то, что плотность стали (7850 кг/м) в 3 раза выше плотности конструкционного бетона (2400 + 50 кг/м), металлические конструкции при той же несущей способности значительно легче и компактнее бетонных. Этому способствует также высокий модуль упругости стали (в 10 раз выше, чем у бетона и других каменных материалов). Еще более эффективны конструкции из легких сплавов.

Металлы очень технологичны: во-первых, изделия из них можно получать различными индустриальными методами (прокатом, волочением, штамповкой и т.п.), во-вторых, металлические изделия и конструкции легко соединяются друг с другом с помощью болтов, заклепок и сварки.

При этом с точки зрения строителя металлы имеют и недостатки. Высокая теплопроводность металлов требует устройства тепловой изоляции металлоконструкций зданий. Хотя металлы негорючи, но металлические конструкции зданий крайне важно специально защищать от действия огня. Это объясняется тем, что при нагревании прочность металлов резко снижается, и металлоконструкции теряют устойчивость и деформируются. Большой ущерб экономике наносит коррозия металлов. Металлы широко применяют в других отраслях промышленности, в связи с этим их использование в строительстве должно быть обосновано экономически.

Организация рабочего места слесаря

Рабочим местом принято называть определœенный участок производственной площади цеха, мастерской, закрепленный за данным рабочим (или бригадой рабочих), предназначенный для выполнения определœенной работы и оснащенный в соответствии с характером этой работы оборудованием, приспособлениями и материалом.

Организацией рабочего места является важнейшее звено организации труда. Правильный выбор и размещение оборудования, инструментов и материалов на рабочем месте создают наиболее благоприятные условия работы.

В целях экономии движения на рабочем месте предметы делят на предметы постоянного и временного пользования, за которым постоянно закреплены места хранения и расположения. На рабочем месте должны находиться только те предметы, которые необходимы для выполнения донного задания. Предметы, которыми рабочие пользуются чаще, кладут ближе на площади. Предметы, которыми рабочие пользуются реже, кладут дальше, но не дальше чем в пределах площади. По возможности избегают такого размещения предметов, которые при выполнении работ поворотов и особенно колебания корпуса, а также перекладывания предметов из одной руки в другую. Приспособления, материалы и готовые детали располагают в специальные ящики (тару), находящиеся на отведенных для них местах. Измерительные инструменты хранят в специальных футлярах или в деревянных коробках. Режущие инструменты (напильники, метчики, сверло, отвертки и многое другое), хранят на деревянных подставках. После окончания работы, использованные инструменты и приспособления очищают от грязи и масла и протирают. Поверхность верстака очищают от стружки и мусора. Рабочие места должны иметь хорошее индивидуальное освещение. Свет должен падать на обрабатываемые предметы, а не на лицо рабочего. Свет должен быть рассеянным и не создавать бликов, мешающих работать.

Слесарный верстак является основным видом оборудования рабочего места для выполнения трудных работ и представляет собой специальный стол, для выполнения слесарных работ. Он должен быть прочным и устойчивым, каркас верстака сварной конструкции из чугунных и стальных труб, стального профиля. Крышку верстаков изготовляют из досок толщиной 50-60 мм. Столешницу покрывают листовым желœезом толщиной 1-2 мм, линолеумом или фанерой. Кругом окантовывают бортиком, чтобы не скатывались детали. Под столешницей верстака находятся выдвижные ящики, разделённые на ряд ячеек для хранения в определённом порядке инструментов, мелких деталей и документаций. При малом росте рабочего используют специальные регулируемые по высоте подставки под ноги. Для выполнения работ механизированным инструментом к верстаку подводится силовая электрическая линия. Одноместные слесарные верстаки имеют длину 1200-1500 мм, ширину 700-800 мм, высоту 800-900 мм, а многоместные длину 2400-3600 мм или 3000-4500 мм, ширину ту же, что и одноместные верстаки. Когда слесарю приходится перемещаться, он пользуется переносным инструментным ящиком или сумкой.

referatwork.ru

Общие сведения о металлах и сплавах

Строительные материалы и изделия

Металлы, применяемые в строительстве, разделяются на две группы: черные и цветные.

• Черные металлы представляют собой сплав железа с угле­родом. Кроме углерода черные металлы в небольшом количе­стве могут содержать кремний, марганец, фосфор, серу и другие химические элементы. Для придания черным металлам специфи­ческих свойств к ним добавляют некоторые так называемые ле­гирующие вещества — медь, никель, хром и др. Черные металлы в зависимости от содержания углерода подразделяют на чугуны и стали.

Чугун представляет собой сплав железа и углерода 2...4,3%. В специальных чугунах — ферросплавах — количество углерода может достигать 5% и более. Присутствующие в чугуне крем­ний, марганец, фосфор и сера существенно влияют на его свой­ства: сера и фосфор повышают хрупкость чугуна, а специальная присадка хрома, никеля, магния, алюминия и кремния придает чугуну более высокие жаростойкость, износостойкость, повышен - vlo сопротивляемость коррозии. Чугуны с добавкой указанных ^ществ называются легированными. В зависимости от формы, в которой углерод находится в чугуне, различают чугуны серые (литейные) и белые (передельные). В серых чугунах углерод находится в свободном состоянии в виде графита, а в белом — в связанном состоянии в виде цемента. Пластинки графита, перерезающие металлическую структуру чугуна, понижают его прочность. Модифицированный серый чугун имеет более высокие механические свойства благодаря шаровидной и раздробленной форме графита.

Сталь содержит углерода до 2%. В отличие от чугуна — хруп­кого металла — сталь пластична, упруга и обладает высокими технологическими свойствами (способностью обрабатываться). В зависимости от назначения различают стали конструкцион­ные, содержащие 0,02...0,85% углерода, и инструментальные — 0,65...1,4%. Конструкционные стали, применяемые для строитель­ных конструкций и арматуры железобетона, а также в машино­строении, обладают хорошей пластичностью, низкой хрупкостью. Повышение же углерода в инструментальных сталях придает им высокую твердость и хрупкость.

Механические и физические свойства сталей (жаростой­кость, износостойкость, коррозионная стойкость) повышаются добавкой к ним никеля, хрома, вольфрама, молибдена, кобальта, меди, алюминия и др., называемых легирующими веществами, а стали — легированными. В зависимости от величины легирую­щих добавок различают стали низколегированные, содержащие до 2% легирующих веществ, среднелегированные — 2...10% и высоколегированные — более 10%. Строители широко приме­няют низколегированную сталь. Нержавеющая сталь является высоколегированной.

• Цветные металлы и сплавы подразделяются по плотности на легкие и тяжелые. К легким относятся сплавы на основе алюминия, магния, а к тяжелым — на основе меди, никеля, олова, свинца. За последние годы в технологии металлургии внедрены новые усовершенствования: освоен эффективный метод вакуумной обработки живой стали; получены новые виды высо­копрочных сталей и чугунов; разработана эффективная техно­логия получения алюминия из нефелинов; освоены новые виды облегченного проката, гнутого из лент и полос, диффузионный метод сварки металлов в вакууме, легирование с вакуумной обработкой, широко развивается порошковая металлургия.

В двенадцатой пятилетке будет ускоренно развиваться про­изводство холоднокатаного листа, проката с упрочняющей тер­мической обработкой и из низколегированных сталей, листа и жести, фасонных и высокопрочных профилей проката, эконо­мичных и специальных видов стальных труб и арматуры из низ­колегированной стали и др.

• Строение металлов и их свойства. Металлы и металлические сплавы представляют собой кристаллические тела, состоящие из

Бесчисленного множества кристаллических образований, груППи рующихся в виде отдельных прочно связанных между Собой зерен. Большинство их имеет кубическую объемно центриро ванную (хром, ванадий, молибден, вольфрам и некоторые дру" гие) и кубическую гранецентрированную решетки (алюминий медь, никель, свинец, ЗОЛОТО И серебро). Железо может быть в нескольких кристаллических формах с различным расположе-' нием атомов. Это явление называется аллотропией. Аллотропи­ческие превращения железа наблюдаются при изменении темпе­ратуры. Железо из расплавленной массы кристаллизуется в форме решетки объемно центрированного куба (рис. 9.1, 1) __ б-модификация железа; при охлаждении до температуры 1390°С она перекристаллизовывается в решетку гранецентрированного куба (рис. 9.1,2) — Y-модификация железа, а при 898°С снова образует решетку объемно центрированного куба и а-моди - фикации. Аллотропия железа имеет большое значение в процес­сах горячей механической и термической обработки чугуна и стали. Главную роль при этом играют а и ^модификации желе­за. Регулируя закалкой, отжигом и другими способами содер­жание этих модификаций в сталях, придают им заданные меха­нические свойства.

При затвердевании расплава металла вначале образуются мельчайшие кристаллы правильной формы, затем, по мере охлаждения, они увеличиваются в размерах и срастаются между собой в виде деформированных неправильной внешней формы кристаллов, называемых кристаллитами. Их хорошо видно под микроскопом.

Физические свойства металлов и сплавов характеризуются цветом, плотностью, температурой плавления, теплопроводно­стью, коэффициентом температурного расширения.

Плотность большинства металлов превышает 7000 кг/м3, а плотность легких металлов (алюминия, бериллия, магния) менее 3000 кг/м3. Чем меньше плотность металла, тем легче и эффективнее оказываются строительные конструкции из него. Вот почему конструкции из сплавов на основе алюминия все шире применяются в строительстве.

Температуру плавления металлов важно знать для выбора режима горячей обработки металлов и получения изделий литьем. Температура плавления металла изменяется при добавке к нему других веществ. Большинство сплавов, например на

Рис. 9.1. Кристаллические решетки

Черных металлов: / — кубическая объемно-центрированиая; 2 — кубическая гракецектрированиая

Снове железа, имеют температуру плавления ниже, чем входя­че в их состав металлы. Однако некоторые сплавы цветных металлов, например никеля и алюминия, имеют более высокую температуру плавления, чем чистый никель и алюминий. Изме - нецие температуры плавления металла от содержания в нем дру - гйх веществ характеризуется диаграммой состояния.

Расширение металлов при нагревании характеризуется коэффициентом линейного и объемного расширения. Это свой­ство металла необходимо учитывать при проектировании метал­лических строительных конструкций, так как последние под действием изменяющейся температуры могут вызвать разруше­ние сооружения. Важно учитывать это свойство металла при сварке, так как в результате местного нагрева свариваемых деталей может произойти образование трещин. Способность металла удлиняться при нагревании эффективно используется при производстве предварительно напряженных железобетонных изделий способом электротермического натяжения арматуры.

Механические свойства металлов характеризуются их проч­ностью, твердостью, ударной вязкостью, усталостью и ползу­честью.

Прочность — это способность металла или сплава сопротив­ляться действию внешних сил. В зависимости от характера этих сил различают прочность при растяжении, сжатии, изгибе, кру­чении. Характеризуются они соответствующим пределом проч­ности, т. е. условным напряжением, при котором испытуемый образец металла разрушается. Универсально испытание на рас­тяжение, применяемое для всех металлов и сплавов. Специфи­ческим, например, для серого чугуна, является испытание при сжатии и изгибе.

При испытании металлов при растяжении определяют пре­дел текучести — напряжение, при котором растяжение образца происходит без увеличения растягивающей нагрузки. Этот пока­затель служит основным при расчете металлических конструкций.

На усталость, или выносливость, испытывают образцы из Стали и цветных тяжелых и легких сплавов, детали из которых работают в условиях повторно-переменных растягивающих, изгибающих, сжимающих, крутящих и других нагрузок.

На ползучесть, т. е. способность деформироваться под пос­тоянной нагрузкой, испытывают металлы, непрерывно работаю­щие под напряжением. В результате ползучести могут увеличи­ваться прогибы строительных конструкций, произойти потеря устойчивости. Особенно опасна ползучесть арматурной стали в предварительно напряженных железобетонных конструкциях. Как результат ее, могут произойти потеря предварительного напряжения арматуры, образование трещин в бетоне и разруше­ние конструкции.

Твердость металла определяет противодействие его при вдав­ливании в него твердого стального шарика (метод Бринелля), алмазного корпуса или алмазной пирамиды.

Вязкость различают статическую и ударную (динамическую) Статическая вязкость характеризуется относительным удлине нием (в процентах длины образца при разрыве) к его первона чальной длине, а ударная вязкость — количеством работы потребной для разрушения образца ударной нагрузкой.

Технологические свойства характеризуют способность метал - ла подвергаться обработке. К ним относятся: пластичность, поз­воляющая получать металлические изделия ковкой, прокаткой волочением; обрабатываемость резанием; свариваемость, харак­теризуемая способностью металла давать прочные соединения путем их местного нагрева до пластичного или жидкого сос­тояния.

Лакокрасочные материалы (ЛКМ) используются для получе­ния защитных и декоративных покрытий на изделиях. ЛКМ после нанесения на поверхность отвердевают, образуя непроницаемую пленку, которая прочно сцепляется с основанием. Толщина плен­ки может составлять …

Геосинтетические материалы — это материалы на основе по­лимерных волокон, проволоки, пленки, тканей, сеток, сотовых каркасов и т. д. Их применяют в гидротехническом строительстве; при строи­тельстве дорог и аэродромов; сооружении хвостохранилищ, …

Полимербетон отличается от других видов бетона тем, что свя­зующим веществом в нем являются термореактивные смолы (по­лиэфирные, фенольные, фурановые, карбамидные, реже — по­лиуретановые и эпоксидные). Термопластичные полимеры также могут быть использованы, …

msd.com.ua

Общие сведения о металлах и сплавах

Общие сведения о металлах и сплавах позволяют более обширное использование в строительстве разнообразную номенклатуру металлургической промышленности в виде стали и чугуна.

 

Из металлов в строительстве наиболее широко применяют стали и чугуны. Из стального проката возводят каркасы промышленных и гражданских зданий, мосты, изготовляют арматуру для железобетона, кровельную сталь, трубы, а также различные металлические изделия, заклепки, болты, гвозди.Широкому использованию металла в строительстве способствует ряд ценных технических свойств: высокая прочность, пластичность, повышенная теплопроводность, электропроводность и свариваемость. Наряду с этим металлы обладают и недостатками; при действии различных газов и влаги сильно корродируют, а с повышением температуры деформируются.Широкому использованию металлов в строительстве способствовало быстрое развитие металлургической промышленности.

Металлы, применяемые в строительстве, разделяются на две группы: черные и цветные. Черные металлы представляют собой сплав железа с углеродом. Кроме углерода черные металлы в небольшом количестве могут содержать кремний, марганец, фосфор, серу и другие химические элементы. Для придания черным металлам специфических свойств к ним добавляют некоторые так называемые легирующие вещества — медь, никель, хром и др.

Черные металлы в зависимости от содержания углерода подразделяют на чугуны и стали. Чугун представляет собой сплав железа и углерода 2…4,3%. В специальных чугунах — ферросплавах — количество углерода может достигать 5% и более. Присутствующие в чугуне кремний, марганец, фосфор и сера существенно влияют на его свойства: сера и фосфор повышают хрупкость чугуна, а специальная присадка хрома, никеля, магния, алюминия и кремния придает чугуну более высокие жаростойкость, износостойкость, повышенную сопротивляемость коррозии.

Чугуны с добавкой указанных веществ называются легированными. В зависимости от формы, в которой углерод находится в чугуне, различают чугуны серые (литейные) и белые (передельные). В серых чугунах углерод находится в свободном состоянии в виде графита, а в белом — в связанном состоянии в виде цемента. Пластинки графита, перерезающие металлическую структуру чугуна, понижают его прочность. Модифицированный серый чугун имеет более высокие механические свойства благодаря шаровидной и раздробленной форме графита.

Сталь содержит углерода до 2%. В отличие от чугуна — хрупкого металла — сталь пластична, упруга и обладает высокими технологическими свойствами (способностью обрабатываться). В зависимости от назначения различают стали конструкционные, содержащие 0,02…0,85% углерода, и инструментальные — 0,65…1,4%. Конструкционные стали, применяемые для строительных конструкций и арматуры железобетона, а также в машиностроении, обладают хорошей пластичностью, низкой хрупкостью. Повышение же углерода в инструментальных сталях придает им высокую твердость и хрупкость.

Механические и физические свойства сталей (жаростойкость, износостойкость, коррозионная стойкость) повышаются добавкой к ним никеля, хрома, вольфрама, молибдена, кобальта, меди, алюминия и др., называемых легирующими веществами, а стали — легированными. В зависимости от величины легирующих добавок различают стали низколегированные, содержащие до 2% легирующих веществ, среднелегированные — 2…10% и высоколегированные — более 10%. Строители широко применяют низколегированную сталь. Нержавеющая сталь является высоколегированной.Цветные металлы и сплавы подразделяются по плотности на легкие и тяжелые.

К легким относятся сплавы на основе алюминия, магния, а к тяжелым — на основе меди, никеля, олова, свинца. За последние годы в технологии металлургии внедрены новые усовершенствования: освоен эффективный метод вакуумной обработки живой стали; получены новые виды высо копрочных сталей и чугунов; разработана эффективная технология получения алюминия из нефелинов; освоены новые виды облегченного проката, гнутого из лент и полос, диффузионный метод сварки металлов в вакууме, легирование с вакуумной обработкой, широко развивается порошковая металлургия.

Ускоренными темпами развивается производство холоднокатаного листа, проката с упрочняющей термической обработкой и из низколегированных сталей, листа и жести, фасонных и высокопрочных профилей проката, экономичных и специальных видов стальных труб и арматуры из низколегированной стали и др.

Строение металлов и их свойства.

Металлы и металлические сплавы представляют собой кристаллические тела, состоящие из бесчисленного множества кристаллических образований, группирующихся в виде отдельных прочно связанных между собой зерен. Большинство их имеет кубическую объемно центрированную (хром, ванадий, молибден, вольфрам и некоторые другие) и кубическую гранецентрированную решетки (алюминий, медь, никель, свинец, золото и серебро). Железо может быть в нескольких кристаллических формах с различным расположением атомов.

Рисунок-1. Кристаллические решетки черных металлов:

Кристаллические решетки черных металлов

1-кубическая объемно-центрированная; 2-кубическая гранецентрированная.

Это явление называется аллотропией. Аллотропические превращения железа наблюдаются при изменении температуры. Железо из расплавленной массы кристаллизуется в форме решетки объемно центрированного куба (рис. 1, 1) — β- модификация железа; при охлаждении до температуры 1390°С она перекристаллизовывается в решетку гранецентрированного куба (рис. 1,2) — γ-модификацияжелеза, а при 898°С снова образует решетку объемно центрированного куба β- иα-моди-фикации.Аллотропия железа имеет большое значение в процессах горячей механической и термической обработки чугуна и стали. Главную роль при этом играют α иγ-модификациижелеза. Регулируя закалкой, отжигом и другими способами содержание этих модификаций в сталях, придают им заданные механические свойства.

При затвердевании расплава металла вначале образуются мельчайшие кристаллы правильной формы, затем, по мере охлаждения, они увеличиваются в размерах и срастаются между собой в виде деформированных неправильной внешней формы кристаллов, называемых кристаллитами. Их хорошо видно под микроскопом.

Физические свойства металлов

 

Физические свойства металлов и сплавов характеризуются цветом, плотностью, температурой плавления, теплопроводностью, коэффициентом температурного расширения. Плотность большинства металлов превышает 7000 кг/м3, а плотность легких металлов (алюминия, бериллия, магния) менее 3000 кг/м³.

Чем меньше плотность металла, тем легче и эффективнее оказываются строительные конструкции из него. Вот почему конструкции из сплавов на основе алюминия все шире применяются в строительстве. Температуру плавления металлов важно знать для выбора режима горячей обработки металлов и получения изделий литьем. Температура плавления металла изменяется при добавке к нему других веществ.

Большинство сплавов, например на основе железа, имеют температуру плавления ниже, чем входящие в их состав металлы. Однако некоторые сплавы цветных металлов, например никеля и алюминия, имеют более высокую температуру плавления, чем чистый никель и алюминий. Изменение температуры плавления металла от содержания в нем других веществ характеризуется диаграммой состояния.

Расширение металлов при нагревании характеризуется коэффициентом линейного и объемного расширения. Это свойство металла необходимо учитывать при проектировании металлических строительных конструкций, так как последние под действием изменяющейся температуры могут вызвать разрушение сооружения.

Важно учитывать это свойство металла при сварке, так как в результате местного нагрева свариваемых деталей может произойти образование трещин. Способность металла удлиняться при нагревании эффективно используется при производстве предварительно напряженных железобетонных изделий способом электротермического натяжения арматуры.

Механические свойства металлов

 

Механические свойства металлов характеризуются их прочностью, твердостью, ударной вязкостью, усталостью и ползучестью. Прочность — это способность металла или сплава сопротивляться действию внешних сил. В зависимости от характера этих сил различают прочность при растяжении, сжатии, изгибе, кручении. Характеризуются они соответствующим пределом прочности, т. е. условным напряжением, при котором испытуемый образец металла разрушается. Универсально испытание на растяжение, применяемое для всех металлов и сплавов. Специфическим, например, для серого чугуна, является испытание при сжатии и изгибе.

При испытании металлов при растяжении определяют предел текучести — напряжение, при котором растяжение образца происходит без увеличения растягивающей нагрузки. Этот показатель служит основным при расчете металлических конструкций. На усталость, или выносливость, испытывают образцы из Стали и цветных тяжелых и легких сплавов, детали из которых работают в условиях повторно-переменных растягивающих, изгибающих, сжимающих, крутящих и других нагрузок.

На ползучесть, т. е. способность деформироваться под постоянной нагрузкой, испытывают металлы, непрерывно работающие под напряжением. В результате ползучести могут увеличиваться прогибы строительных конструкций, произойти потеря устойчивости. Особенно опасна ползучесть арматурной стали в предварительно напряженных железобетонных конструкциях. Как результат ее, могут произойти потеря предварительного напряжения арматуры, образование трещин в бетоне и разрушение конструкции.

Твердость металла определяет противодействие его при вдавливании в него твердого стального шарика (метод Бринелля), алмазного корпуса или алмазной пирамиды.Вязкость различают статическую и ударную (динамическую). Статическая вязкость характеризуется относительным удлинением (в процентах длины образца при разрыве) к его первоначальной длине, а ударная вязкость — количеством работы, потребной для разрушения образца ударной нагрузкой.

Технологические свойства характеризуют способность металла подвергаться обработке. К ним относятся: пластичность, позволяющая получать металлические изделия ковкой, прокаткой, волочением; обрабатываемость резанием; свариваемость, характеризуемая способностью металла давать прочные соединения путем их местного нагрева до пластичного или жидкого состояния.

Просмотров: 39

РЕКОМЕНДУЕМ выполнить перепост статьи в соцсетях!

stroivagon.ru

Основные сведения о металлах и их свойствах

Строительные машины и оборудование, справочник

Категория:

   Техническое обслуживание автомобилей

Основные сведения о металлах и их свойствах

Для изготовления инструментов, деталей машин, сооружений применяются различные металлы и их сплавы.

Металлы, применяемые в технике, разделяются на черные и цветные. К черным металлам относятся железо и его сплавы с углеродом, т. е. чугун, сталь; к цветным — алюминий, медь, серебро, никель, золото и др.

Сплавы представляют собой вещество, состоящее из нескольких металлов и неметаллических простых веществ. Широкое применение сплавов объясняется тем, что они по сравнению с чистыми металлами обладают лучшими механическими и технологическими свойствами: способностью подвергаться термической обработке, пониженной температурой плавления.

Различают следующие основные свойства металлов и сплавов: физические, механические, химические и технологические.

К физическим свойствам относятся блеск, цвет, плотность, температура плавления, температура кипения, теплопроводность, электропроводность и др.

Химические свойства характеризуют способность металлов и сплавов вступать в химические реакции с различными веществами.

Основными механическими свойствами металлов и сплавов являются твердость, пластичность, прочность.

Твердость — это свойство металла или сплава оказывать сопротивление проникновению постороннего тела внутрь, а также царапающему действию посторонних тел.

Пластичность — это свойство металла или сплава принимать ту или иную форму под влиянием давления и сохранять эту форму, когда давление прекращается.

Прочность — свойство металла или сплава оказывать сопротивление действию сил, стремящихся нарушить связь между частицами металла или сплава при его растяжении, сжатии, изгибе, срезе или скручивании.

К технологическим свойствам относятся свойства, характеризующие способность металлов и сплавов поддаваться различным видам обработки. К технологическим свойствам относятся, например, способность металлов и сплавов легко плавиться и заполнять форму, свариваться, коваться.

Основы

Определение механических свойств металлов. Чтобы получить характеристику механических свойств того или иного материала, последний подвергают механическим испытаниям. Одним из способов определения прочности материала является испытание на растяжение.

Рис. 78. Образцы для испытания металла на разрыв: а — до испытания, б — после испытания

Для испытания металлов на растяжение изготовляют специальные образцы круглого или прямоугольного сечения (рис. 78, а, б), которые испытывают на разрывных машинах. По результатам испытания определяют одну из характеристик прочности материала образца. Контроль качества изделий, подвергавшихся термической или химико-термической обработке, осуще

ствляют главным образом испытанием их на твердость. Испытывать на твердость можно различными методами: вдавливанием, царапанием и др. Наибольшее распространение получил метод вдавливания в поверхность испытываемого металла алмазного конуса, пирамиды или закаленного стального шарика.

Испытание металлов на твердость производят на прессе Бринелля (рис. 79), прессе Роквелла (рис. 80), а также на приборе Виккерса.

Рис. 79. Схема устройства пресса Бринелля:1 — кнопка для включения электродвигателя. 2 — маховик, 3 — регулирующий винт, 4 — предметный столик, 5 — шарик, Ь — рычаги передачи нагрузки, 7 — электродвигатель

Рис. 80. Схема устройства пресса Роквелла:1 — грузы, 2 — рычаг для передачи нагрузки. 3 — рукоятка для стопорения рычагов, 4 — индикатор, 5 — алмазный конус: (или стальной шарик), S — предметный столик, 7 — маховик

Определение твердости по Бринеллю осуществляют вдавливанием в металл стального закаленного шарика. В зависимости от твердости испытываемого материала и его толщины применяют шарики различных диаметров (2,5; 5 и 10 мм). Поверхность образца материала предварительно гладко зачищают напильником или наждачным кругом. После этого образец располагают на предметном столике и вдавливают стальной закаленный шарик под определенной нагрузкой. Через 10—30 сек, а для некоторых цветных металлов и через 60 сек нагрузку снимают.

Под действием нагрузки шарик на поверхности металла оставляет отпечаток з виде лунки со сферической поверхностью. Диаметр отпечатка измеряют специальной лупой. По известным диаметру отпечатка, диаметру шарика и величине нагрузки определяют число твердости по Бринеллю, пользуясь специальными таблицами.

Твердость по Бринеллю условно обозначается НВ. При испытании металлов, твердость которых выше 450 единиц, прессом Бринелля пользоваться нельзя, так как при этом будет деформироваться сам шарик. Также нельзя определять твердость изделий, подвергавшихся химико-термической обработке, так как толщина твердого поверхностного слоя обычно не превышает 1—2 мм и шарик продавливает его. В таких случаях твердость определяют на прессе Роквелла.

Определение твердости по Роквеллу заключается в том, что в металл вдавливается алмазный конус с углом при вершине 120° или закаленный стальной шарик диаметром 1,588 мм. Стальной шарик применяется для испытания мягких металлов, алмазный конус — для твердых металлов.

Число твердости определяют сразу по шкале индикатора, имеющегося на прессе. Твердость по Роквеллу обозначается HR с добавлением букв А, В или С, в зависимости от типа наконечника, и нагрузки, при которой производились испытания. Так, при испытаниях алмазным конусом под нагрузкой 1470 н [150 кГ] число твердости обозначается HRC, под нагрузкой 588 н [60 кГ] — HRA. При испытании стальным шариком под нагрузкой 980 н [100 кГ] число твердости обозначается HRB.

Определение технологических свойств. Для определения пригодности материала к какому-либо виду обработки пользуются простейшими способами испытания металлов Такие способы, дающие приблизительные оценки, называют тех нологическими пробами. В практике применяют следующие тех нологические пробы: на загиб, осадку, перегиб, выдавливание, навивание проволоки.

Читать далее: Термическая и химико-термическая обработка стали

Категория: - Техническое обслуживание автомобилей

Главная → Справочник → Статьи → Форум

stroy-technics.ru

Понятие о металлах и сплавах кратко

Понятие о металлах и сплавах кратко

Металлургия — совокупность связанных между собой отраслей и стадий производственного процесса от добычи сырья до выпуска готовой продукции — черных и цветных и их сплавов. К черным относят железо, марганец и хром. Все остальные — цветные. По физическим свойствам и назначению цветные условно делят на тяжелые (медь, свинец, цинк, олово, никель) и легкие (алюминий, титан, магний). Большая часть металлов присутствует в природе в виде руд и соединений.

Общие сведения о металлах и изделиях из них

находят широкое применение в производстве товаров хозяйственного назначения, транспортных средств, мебели, строительных материалов.

Это объясняется их высокими технологическими и эксплуатационными показателями.

К основным представителям металлохозяйственных товаров относятся металлическая посуда, ножевые изделия и столовые приборы, ручные инструменты, приборы для окон и дверей.

Применение металлов и сплавов

Карбид вольфрама WC — очень твердое и химически инертное вещество, температура плавления которого составляет около 2800 °С.

Оно используется для производства сверхтвердого сплава — победита, состоящего из карбидов вольфрама и кобальта. Из этого сплава производят наконечники сверл для сверления твердых материалов (победитовые сверла). Нихром благодаря высокой жаростойкости применяют для изготовления электрических нагревательных элементов.

Катушка с большим числом витков тонкой проволоки (рис.

9.1) приводилась в быстрое вращение вокруг своей оси.

Концы катушки с помощью гибких проводов были присоединены к чувствительному баллистическому гальванометру.Раскрученная катушка резко тормозилась, и в цепи возникал кратковременных ток, обусловленный инерцией носителей заряда. Полный заряд, протекающий по цепи, измерялся гальванометром.

Общие свойства металлов

2) познакомить с металлической связью, типами кристаллических решеток металлов и на основании этого выяснить причину особых физических свойств металлов; Основные понятия: окислитель, восстановитель, элемент, простое вещество, степень окисления, период, ряд, группа, подгруппа, типы химической связи, металлическая связь, кристаллические решетки металлов. План урока: Организационный момент. Металл – химический элемент.

Понятие о сплавах

Сплав – это вещество, полученное сплавлением, спеканием, электролизом, возгонкой двух или более элементов.

Сплав, приготовленный из или имеющий металлическую основу и обладающий металлическими свойствами называется металлическим сплавом (МС). МС более сложное вещество, чем чистый металл, МС обладают более высокими прочностными и другими меха- ническими свойствами по сравнению с чистыми.

ЦВЕТНЫЕ МЕТАЛЛЫ это

Одним из крупных потребителей Ц. м. является жел.-дор. тр-т, на котором их применяют как материал для нержавеющих деталей паровозов, тепловых и электр.

двигателей и в качестве сплавов для покрытия железных изделий (оцинкование, освинцование, полуда).

Технический железнодорожный словарь.

— М. Государственное транспортное железнодорожное издательство.

Н. Н. Васильев, О. Н. Исаакян, Н.

Интересные и нужные сведения о строительных материалах и технологиях

Черные металлы представляют собой сплав железа с углеродом.

Кроме углерода черные в небольшом количестве могут содержать кремний, марганец, фосфор, серу и другие химические элементы. Для придания черным металлам специфических свойств к ним добавляют некоторые так называемые легирующие вещества — медь, никель, хром и др.

Черные металлы в зависимости от содержания углерода подразделяют на чугуны и стали. Чугун представляет собой сплав железа и углерода 2.

Свариваемость металлов (реферат)

Общие понятия о свариваемости Процесс сварки – это комплекс нескольких одновременно протекающих процессов, основными из которых являются: тепловое воздействие на в околошовных участках, плавление, металлургические процессы, кристаллизация шва и взаимная кристаллизация в зоне сплавления. Под свариваемостью, следовательно, необходимо понимать отношение металлов к этим основным процессам.

Металлы и их свойства

На уроке будет раскрыта тема «Металлы и их свойства.

Щелочные металлы. Щелочноземельные.

Алюминий». Вы узнаете общие свойства и закономерности щелочных и щелочноземельных элементов, изучите по отдельности химические свойства щелочных и щелочноземельных металлов и их соединения. С помощью химических уравнений будет рассмотрено такое понятие, как жесткость воды.

Познакомитесь с алюминием, его свойствами и сплавами.

vigor24.ru

Общие сведения о металлах и сплавах

Строительные материалы и изделия

Металлы, применяемые в строительстве, разделяются на две группы: черные и цветные.

• Черные металлы представляют собой сплав железа с угле­родом. Кроме углерода черные металлы в небольшом количе­стве могут содержать кремний, марганец, фосфор, серу и другие химические элементы. Для придания черным металлам специфи­ческих свойств к ним добавляют некоторые так называемые ле­гирующие вещества — медь, никель, хром и др. Черные металлы в зависимости от содержания углерода подразделяют на чугуны и стали.

Чугун представляет собой сплав железа и углерода 2...4,3%. В специальных чугунах — ферросплавах — количество углерода может достигать 5% и более. Присутствующие в чугуне крем­ний, марганец, фосфор и сера существенно влияют на его свой­ства: сера и фосфор повышают хрупкость чугуна, а специальная присадка хрома, никеля, магния, алюминия и кремния придает чугуну более высокие жаростойкость, износостойкость, повышен-

ю сопротивляемость коррозии. Чугуны с добавкой указанных еществ называются легированными. В зависимости от формы, в которой углерод находится в чугуне, различают чугуны серые (литейные) и белые (передельные). В серых чугунах углерод находится в свободном состоянии в виде графита, а в белом — в связанном состоянии в виде цемента. Пластинки графита, перерезающие металлическую структуру чугуна, понижают его прочность. Модифицированный серый чугун имеет более высокие механические свойства благодаря шаровидной и раздробленной форме графита.

Сталь содержит углерода до 2%. В отличие от чугуна — хруп­кого металла — сталь пластична, упруга и обладает высокими технологическими свойствами (способностью обрабатываться). В зависимости от назначения различают стали конструкцион­ные, содержащие 0,02...0,85% углерода, и инструментальные — 0,65...1,4%. Конструкционные стали, применяемые для строитель­ных конструкций и арматуры железобетона, а также в машино­строении, обладают хорошей пластичностью, низкой хрупкостью. Повышение же углерода в инструментальных сталях придает им высокую твердость и хрупкость.

Механические и физические свойства сталей (жаростой­кость, износостойкость, коррозионная стойкость) повышаются добавкой к ним никеля, хрома, вольфрама, молибдена, кобальта, меди, алюминия и др., называемых легирующими веществами, а стали — легированными. В зависимости от величины легирую­щих добавок различают стали низколегированные, содержащие до 2% легирующих веществ, среднелегированные — 2...10% и высоколегированные — более 10%. Строители широко приме­няют низколегированную сталь. Нержавеющая сталь является высоколегированной.

• Цветные металлы и сплавы подразделяются по плотности на легкие и тяжелые. К легким относятся сплавы на основе алюминия, магния, а к тяжелым — на основе меди, никеля, олова, свинца. За последние годы в технологии металлургии внедрены новые усовершенствования: освоен эффективный метод вакуумной обработки живой стали; получены новые виды высо­копрочных сталей и чугунов; разработана эффективная техно­логия получения алюминия из нефелинов; освоены новые виды облегченного проката, гнутого из лент и полос, диффузионный метод сварки металлов в вакууме, легирование с вакуумной обработкой, широко развивается порошковая металлургия.

В двенадцатой пятилетке будет ускоренно развиваться про­изводство холоднокатаного листа, проката с упрочняющей тер­мической обработкой и из низколегированных сталей, листа и жести, фасонных и высокопрочных профилей проката, эконо­мичных и специальных видов стальных труб и арматуры из низ­колегированной стали и др.

• Строение металлов и их свойства. Металлы и металлические сплавы представляют собой кристаллические тела, состоящие избесчисленного множества кристаллических образований, груцПи рующихся В виде отдельных прочно связанных между собой зерен. Большинство ИХ имеет кубическую объемно центриро ванную (хром, ванадий, молибден, вольфрам и некоторые дру' гие) и кубическую гранецентрированную решетки (алюминий медь, никель, свинец, ЗОЛОТО И серебро). Железо может быть в нескольких кристаллических формах с различным расположе­нием атомов. Это явление называется аллотропией. Аллотропи­ческие превращения железа наблюдаются при изменении темпе­ратуры. Железо из расплавленной массы кристаллизуется в форме решетки объемно центрированного куба (рис. 9.1, /) 6-модификация железа; при охлаждении до температуры 1390°С она перекристаллизовывается в решетку гранецентрированного куба (рис. 9.1,2) —ум°Дификация железа, а при 898°С снова образует решетку объемно центрированного куба [5- и а-моди - фикации. Аллотропия железа имеет большое значение в процес­сах горячей механической и термической обработки чугуна и стали. Главную роль при этом играют а и ^-модификации желе­за. Регулируя закалкой, отжигом и другими способами содер­жание этих модификаций в сталях, придают им заданные меха­нические свойства.

При затвердевании расплава металла вначале образуются мельчайшие кристаллы правильной формы, затем, по мере охлаждения, они увеличиваются в размерах и срастаются между собой в виде деформированных неправильной внешней формы кристаллов, называемых кристаллитами. Их хорошо видно под микроскопом.

Физические свойства металлов и сплавов характеризуются цветом, плотностью, температурой плавления, теплопроводно­стью, коэффициентом температурного расширения.

Плотность большинства металлов превышает 7000 кг/м3, а плотность легких металлов (алюминия, бериллия, магния) менее 3000 кг/м3. Чем меньше плотность металла, тем легче и эффективнее оказываются строительные конструкции из него. Вот почему конструкции из сплавов на основе алюминия все шире применяются в строительстве.

Рис. 9.1. Кристаллические решетки черных металлов:

/ — кубическая объемно-центрированиая; 2 — кубическая гранецентрированиая

Температуру плавления металлов важно знать для выбора режима горячей обработки металлов и получения изделий литьем. Температура плавления металла изменяется при добавке к нему других веществ. Большинство сплавов, например наоснове железа, имеют температуру плавления ниже, чем входя­че в их состав металлы. Однако некоторые сплавы цветных металлов, например никеля и алюминия, имеют более высокую температуру плавления, чем чистый никель и алюминий. Изме­нение температуры плавления металла от содержания в нем дру­гих веществ характеризуется диаграммой состояния.

Расширение металлов при нагревании характеризуется коэффициентом линейного и объемного расширения. Это свой­ство металла необходимо учитывать при проектировании метал­лических строительных конструкций, так как последние под действием изменяющейся температуры могут вызвать разруше­ние сооружения. Важно учитывать это свойство металла при сварке, так как в результате местного нагрева свариваемых деталей может произойти образование трещин. Способность металла удлиняться при нагревании эффективно используется при производстве предварительно напряженных железобетонных изделий способом электротермического натяжения арматуры.

Механические свойства металлов характеризуются их проч­ностью, твердостью, ударной вязкостью, усталостью и ползу­честью.

Прочность — это способность металла или сплава сопротив­ляться действию внешних сил. В зависимости от характера этих сил различают прочность при растяжении, сжатии, изгибе, кру­чении. Характеризуются они соответствующим пределом проч­ности, т. е. условным напряжением, при котором испытуемый образец металла разрушается. Универсально испытание на рас­тяжение, применяемое для всех металлов и сплавов. Специфи­ческим, например, для серого чугуна, является испытание при сжатии и изгибе.

При испытании металлов при растяжении определяют пре­дел текучести — напряжение, при котором растяжение образца происходит без увеличения растягивающей нагрузки. Этот пока­затель служит основным при расчете металлических конструкций.

На усталость, или выносливость, испытывают образцы из бтали и цветных тяжелых и легких сплавов, детали из которых работают в условиях повторно-переменных растягивающих, изгибающих, сжимающих, крутящих и других нагрузок.

На ползучесть, т. е. способность деформироваться под пос­тоянной нагрузкой, испытывают металлы, непрерывно работаю­щие под напряжением. В результате ползучести могут увеличи­ваться прогибы строительных конструкций, произойти потеря устойчивости. Особенно опасна ползучесть арматурной стали в предварительно напряженных железобетонных конструкциях. Как результат ее, могут произойти потеря предварительного напряжения арматуры, образование трещин в бетоне и разруше­ние конструкции.

Твердость металла определяет противодействие его при вдав­ливании в него твердого стального шарика (метод Бринелля), алмазного корпуса или алмазной пирамиды.

Вязкость различают статическую и ударную (динамическую! Статическая вязкость характеризуется относительным удлине нием (в процентах длины образца при разрыве) к его первона чальной длине, а ударная вязкость — количеством работы потребной для разрушения образца ударной нагрузкой.

Технологические свойства характеризуют способность метал­ла подвергаться обработке. К ним относятся: пластичность, поз­воляющая получать металлические изделия ковкой, прокаткой волочением; обрабатываемость резанием; свариваемость, харак­теризуемая способностью металла давать прочные соединения путем их местного нагрева до пластичного или жидкого сос­тояния.

Лакокрасочные материалы (ЛКМ) используются для получе­ния защитных и декоративных покрытий на изделиях. ЛКМ после нанесения на поверхность отвердевают, образуя непроницаемую пленку, которая прочно сцепляется с основанием. Толщина плен­ки может составлять …

Геосинтетические материалы — это материалы на основе по­лимерных волокон, проволоки, пленки, тканей, сеток, сотовых каркасов и т. д. Их применяют в гидротехническом строительстве; при строи­тельстве дорог и аэродромов; сооружении хвостохранилищ, …

Полимербетон отличается от других видов бетона тем, что свя­зующим веществом в нем являются термореактивные смолы (по­лиэфирные, фенольные, фурановые, карбамидные, реже — по­лиуретановые и эпоксидные). Термопластичные полимеры также могут быть использованы, …

msd.com.ua


© 2007—2018
423800, Набережные Челны , база Партнер Плюс, тел. 8 800 100-58-94 (звонок бесплатный)