Камаз 44108 тягач В наличии!
Тягач КАМАЗ 44108-6030-24
евро3, новый, дв.КАМАЗ 740.55-300л.с., КПП ZF9, ТНВД ЯЗДА, 6х6, нагрузка на седло 12т, бак 210+350л, МКБ, МОБ
 
карта сервера
«ООО Старт Импэкс» продажа грузовых автомобилей камаз по выгодным ценам
+7 (8552) 31-97-24
+7 (904) 6654712
8 800 1005894
звонок бесплатный

Наши сотрудники:
Виталий
+7 (8552) 31-97-24

[email protected]

 

Екатерина - специалист по продаже а/м КАМАЗ
+7 (904) 6654712

[email protected]

 

Фото техники

20 тонный, 20 кубовый самосвал КАМАЗ 6520-029 в наличии
15-тонный строительный самосвал КАМАЗ 65115 на стоянке. Техника в наличии
Традиционно КАМАЗ побеждает в дакаре

тел.8 800 100 58 94

Техника в наличии

тягач КАМАЗ-44108
Тягач КАМАЗ 44108-6030-24
2014г, 6х6, Евро3, дв.КАМАЗ 300 л.с., КПП ZF9, бак 210л+350л, МКБ,МОБ,рестайлинг.
цена 2 220 000 руб.,
 
КАМАЗ-4308
КАМАЗ 4308-6063-28(R4)
4х2,дв. Cummins ISB6.7e4 245л.с. (Е-4),КПП ZF6S1000, V кузова=39,7куб.м., спальное место, бак 210л, шк-пет,МКБ, ТНВД BOSCH, система нейтрализ. ОГ(AdBlue), тент, каркас, рестайлинг, внутр. размеры платформы 6112х2470х730 мм
цена 1 950 000 руб.,
КАМАЗ-6520
Самосвал КАМАЗ 6520-057
2014г, 6х4,Евро3, дв.КАМАЗ 320 л.с., КПП ZF16, ТНВД ЯЗДА, бак 350л, г/п 20 тонн, V кузова =20 куб.м.,МКБ,МОБ, со спальным местом.
цена 2 700 000 руб.,
 
КАМАЗ-6522
Самосвал 6522-027
2014, 6х6, дв.КАМАЗ 740.51,320 л.с., КПП ZF16,бак 350л, г/п 19 тонн,V кузова 12куб.м.,МКБ,МОБ,задняя разгрузка,обогрев платформы.
цена 3 190 000 руб.,

СУПЕР ЦЕНА

на АВТОМОБИЛИ КАМАЗ
43118-010-10 (дв.740.30-260 л.с.) 2 220 000
43118-6033-24 (дв.740.55-300 л.с.) 2 300 000
65117-029 (дв.740.30-260 л.с.) 2 200 000
65117-6010-62 (дв.740.62-280 л.с.) 2 350 000
44108 (дв.740.30-260 л.с.) 2 160 000
44108-6030-24 (дв.740.55,рест.) 2 200 000
65116-010-62 (дв.740.62-280 л.с.) 1 880 000
6460 (дв.740.50-360 л.с.) 2 180 000
45143-011-15 (дв.740.13-260л.с) 2 180 000
65115 (дв.740.62-280 л.с.,рест.) 2 190 000
65115 (дв.740.62-280 л.с.,3-х стор) 2 295 000
6520 (дв.740.51-320 л.с.) 2 610 000
6520 (дв.740.51-320 л.с.,сп.место) 2 700 000
6522-027 (дв.740.51-320 л.с.,6х6) 3 190 000


Перегон грузовых автомобилей
Перегон грузовых автомобилей
подробнее про услугу перегона можно прочесть здесь.


Самосвал Форд Нужны самосвалы? Обратите внимание на Ford-65513-02.

КАМАЗы в лизинг

ООО «Старт Импэкс» имеет возможность поставки грузовой автотехники КАМАЗ, а так же спецтехники на шасси КАМАЗ в лизинг. Продажа грузовой техники по лизинговым схемам имеет определенные выгоды для покупателя грузовика. Рассрочка платежа, а так же то обстоятельство, что грузовики до полной выплаты лизинговых платежей находятся на балансе лизингодателя, и соответственно покупатель автомобиля не платит налогов на имущество. Мы готовы предложить любые модели бортовых автомобилей, тягачей и самосвалов по самым выгодным лизинговым схемам.

Контактная информация.

г. Набережные Челны, Промкомзона-2, Автодорога №3, база «Партнер плюс».

тел/факс (8552) 388373.
Схема проезда



Расчет теплообменника: пример. Расчет площади, мощности теплообменника. Мощность теплопередачи


Количество теплоты и тепловая мощность. Расчет в Excel.

Опубликовано 13 Окт 2013Рубрика: Теплотехника | 61 комментарий

Передача тепловой энергии от огня чайникуЧеловечеству известно немного видов энергии – механическая энергия (кинетическая и потенциальная), внутренняя энергия (тепловая), энергия полей (гравитационная, электромагнитная и ядерная), химическая. Отдельно стоит выделить энергию взрыва,...

...энергию вакуума и еще существующую только в теории – темную энергию. В этой статье, первой в рубрике «Теплотехника», я попытаюсь на простом и доступном языке, используя практический пример, рассказать о важнейшем виде энергии в жизни людей — о тепловой энергии и о рождающей ее во времени тепловой мощности.

Несколько слов для понимания места теплотехники, как раздела науки о получении, передаче и применении тепловой энергии. Современная теплотехника выделилась из общей термодинамики, которая в свою очередь является одним из разделов физики. Термодинамика – это дословно «теплый» плюс «силовой». Таким образом, термодинамика – это наука об «изменении температуры» системы.

Воздействие на систему извне, при котором изменяется ее внутренняя энергия, может являться результатом теплообмена. Тепловая энергия, которая приобретается или теряется системой в результате такого взаимодействия с окружающей средой, называется количеством теплоты и измеряется в системе СИ в Джоулях.

Если вы не инженер-теплотехник, и ежедневно не занимаетесь теплотехническими вопросами, то вам, столкнувшись с ними, иногда без опыта бывает очень трудно быстро в них разобраться. Трудно без наличия опыта представить даже размерность искомых значений количества теплоты и тепловой мощности. Сколько Джоулей энергии необходимо чтобы нагреть 1000 метров кубических воздуха от температуры -37˚С до +18˚С?.. Какая нужна мощность источника тепла, чтобы сделать это за 1 час?.. На эти не самые сложные вопросы способны сегодня ответить «сходу» далеко не все инженеры. Иногда специалисты даже помнят формулы, но применить их на практике могут лишь единицы!

Прочитав до конца эту статью, вы сможете легко решать реальные производственные и бытовые задачи, связанные с нагревом и охлаждением различных материалов.  Понимание физической сути процессов теплопередачи и знание простых основных формул – это главные блоки в фундаменте знаний по теплотехнике!

Количество теплоты при различных физических процессах.

Большинство известных веществ могут при разных температуре и давлении находиться в твердом, жидком, газообразном или плазменном состояниях. Переход из одного агрегатного состояния в другое происходит при постоянной температуре (при условии, что не меняются давление и другие параметры окружающей среды) и сопровождается поглощением или выделением тепловой энергии. Не смотря на то, что во Вселенной 99% вещества находится в состоянии плазмы, мы в этой статье не будем рассматривать это агрегатное состояние.

Рассмотрим график, представленный на рисунке. На нем изображена зависимость температуры вещества Т от количества теплоты Q, подведенного к некой закрытой системе, содержащей определенную массу какого-то конкретного вещества.

Зависимость температуры от количества подведенной теплоты

1. Твердое тело, имеющее температуру T1, нагреваем до температуры Tпл, затрачивая на этот процесс количество теплоты равное Q1.

2. Далее начинается процесс плавления, который происходит при постоянной температуре Тпл (температуре плавления). Для расплавления всей массы твердого тела необходимо затратить тепловой энергии в количестве Q2— Q1.

3. Далее жидкость, получившаяся в результате плавления твердого тела, нагреваем до температуры кипения (газообразования) Ткп, затрачивая на это количество теплоты равное Q3-Q2.

4. Теперь при неизменной температуре кипения Ткп жидкость кипит и испаряется, превращаясь в газ. Для перехода всей массы жидкости в газ необходимо затратить тепловую энергию в количестве Q4-Q3.

5. На последнем этапе происходит нагрев газа от температуры Ткп до некоторой температуры Т2. При этом затраты количества теплоты составят Q5-Q4. (Если нагреем газ до температуры ионизации, то газ превратится в плазму.)

Таким образом, нагревая исходное твердое тело от температуры Т1 до температуры Т2 мы затратили тепловую энергию в количестве Q5, переводя вещество через три агрегатных состояния.

Двигаясь в обратном направлении, мы отведем от вещества то же количество тепла Q5, пройдя этапы конденсации, кристаллизации и остывания от температуры Т2 до  температуры Т1. Разумеется, мы рассматриваем замкнутую систему без потерь энергии во внешнюю среду.

Заметим, что возможен переход из твердого состояния в газообразное состояние, минуя жидкую фазу. Такой процесс именуется возгонкой, а обратный ему процесс – десублимацией.

Итак, уяснили, что процессы переходов между агрегатными состояниями вещества характеризуются потреблением энергии при неизменной температуре. При нагреве вещества, находящегося в одном неизменном агрегатном состоянии, повышается температура и также расходуется тепловая энергия.

Главные формулы теплопередачи.

Формулы очень просты.

Количество теплоты Q в Дж рассчитывается по формулам:

1. Со стороны потребления тепла, то есть со стороны нагрузки:

1.1. При нагревании (охлаждении):

Q=m*c*(Т2-Т1)

Здесь и далее:

m – масса вещества в кг

с – удельная теплоемкость вещества в Дж/(кг*К)

1.2. При плавлении (замерзании):

Q=m*λ

λ – удельная теплота плавления и кристаллизации вещества в Дж/кг

1.3. При кипении, испарении (конденсации):

Q=m*r

r – удельная теплота газообразования и конденсации вещества в Дж/кг

2. Со стороны производства тепла, то есть со стороны источника:

2.1. При сгорании топлива:

Q=m*q

q – удельная теплота сгорания топлива в Дж/кг

2.2. При превращении электроэнергии в тепловую энергию (закон Джоуля — Ленца):

Q=t*I*U=t*R*I^2=(t/R)*U^2

t – время в с

I – действующее значение тока в А

U – действующее значение напряжения в В

R – сопротивление нагрузки в Ом

Делаем вывод – количество теплоты прямо пропорционально массе вещества при всех фазовых превращениях и при нагреве дополнительно прямо пропорционально разности температур. Коэффициенты пропорциональности (c, λ, r, q) для каждого вещества имеют свои значения и определены опытным путем (берутся из справочников).

Тепловая мощность N в Вт – это количество теплоты переданное системе за определенное время:

N=Q/t

Чем быстрее мы хотим нагреть тело до определенной температуры, тем большей мощности должен быть источник тепловой энергии – все логично.

Расчет в Excel прикладной задачи.

В жизни бывает часто необходимо сделать быстрый оценочный расчет, чтобы понять – имеет ли смысл продолжать изучение темы, делая проект и развернутые точные трудоемкие расчеты. Сделав за несколько минут расчет даже с точностью ±30%, можно принять важное управленческое решение, которое будет в 100 раз более дешевым и в 1000 раз более оперативным и в итоге в 100000 раз более эффективным, чем выполнение точного расчета в течение недели, а то и месяца, группой дорогостоящих специалистов…

Условия задачи:

В помещение цеха подготовки металлопроката размерами 24м х 15м х 7м завозим со склада на улице металлопрокат в количестве 3т. На металлопрокате есть лед общей массой 20кг. На улице -37˚С. Какое количество теплоты необходимо, чтобы нагреть металл до +18˚С; нагреть лед, растопить его и нагреть воду до +18˚С; нагреть весь объем воздуха в помещении, если предположить, что до этого отопление было полностью отключено? Какую мощность должна иметь система отопления, если все вышесказанное необходимо выполнить за 1час? (Очень жесткие и почти не реальные условия – особенно касающиеся воздуха!)

Расчет выполним в программе MS Excel или в программе OOo Calc.

С цветовым форматированием ячеек и шрифтов ознакомьтесь на странице «О блоге». 

Исходные данные:

1. Названия веществ пишем:

в ячейку D3: Сталь

в ячейку E3: Лед

в ячейку F3: Лед/вода

в ячейку G3: Вода

в ячейку G3: Воздух

2. Названия процессов заносим:

в ячейки D4, E4, G4, G4: нагрев

в ячейку F4: таяние

3. Удельную теплоемкость веществ c в Дж/(кг*К) пишем  для стали, льда, воды и воздуха соответственно

в ячейку D5: 460

в ячейку E5: 2110

в ячейку G5: 4190

в ячейку H5: 1005

4. Удельную теплоту плавления  льда λ в Дж/кг вписываем

в ячейку F6: 330000

5. Массу веществ m в кг вписываем соответственно для стали и льда

в ячейку D7: 3000

в ячейку E7: 20

Так как при превращении льда в воду масса не изменяется, то

в ячейках F7 и G7: =E7=20

Массу воздуха находим произведением объема помещения на удельный вес

в ячейке H7: =24*15*7*1,23=3100

6. Время процессов t в мин пишем только один раз для стали

в ячейку D8: 60

Значения времени для нагрева льда, его плавления и нагрева получившейся воды рассчитываются из условия, что все эти три процесса должны уложиться в сумме за такое же время, какое отведено на нагрев металла. Считываем соответственно

в ячейке E8: =E12/(($E$12+$F$12+$G$12)/D8)=9,7

в ячейке F8: =F12/(($E$12+$F$12+$G$12)/D8)=41,0

в ячейке G8: =G12/(($E$12+$F$12+$G$12)/D8)=9,4

Воздух также должен прогреться за это же самое отведенное время, читаем

в ячейке H8: =D8=60,0

7. Начальную температуру всех веществ T1 в ˚C заносим

в ячейку D9: -37

в ячейку E9: -37

в ячейку F9: 0

в ячейку G9: 0

в ячейку H9: -37

8. Конечную температуру всех веществ T2 в ˚C заносим

в ячейку D10: 18

в ячейку E10: 0

в ячейку F10: 0

в ячейку G10: 18

в ячейку h20: 18

Думаю, вопросов по п.7 и п.8 быть недолжно.

Программа расчета тепловой энергии и тепловой мощности в Excel

Результаты расчетов:

9. Количество теплоты Q в КДж, необходимое для каждого из процессов рассчитываем

для нагрева стали в ячейке D12: =D7*D5*(D10-D9)/1000=75900

для нагрева льда в ячейке E12: =E7*E5*(E10-E9)/1000= 1561

для плавления льда в ячейке F12: =F7*F6/1000= 6600

для нагрева воды в ячейке G12: =G7*G5*(G10-G9)/1000= 1508

для нагрева воздуха в ячейке h22: =H7*H5*(h20-H9)/1000= 171330

Общее количество необходимой для всех процессов тепловой энергии считываем

в объединенной ячейке D13E13F13G13h23: =СУММ(D12:h22) = 256900

В ячейках D14, E14, F14, G14, h24,  и объединенной ячейке D15E15F15G15h25 количество теплоты приведено в дугой единице измерения – в ГКал (в гигакалориях).

10. Тепловая мощность N в КВт, необходимая для каждого из процессов рассчитывается

для нагрева стали в ячейке D16: =D12/(D8*60)=21,083

для нагрева льда в ячейке E16: =E12/(E8*60)= 2,686

для плавления льда в ячейке F16: =F12/(F8*60)= 2,686

для нагрева воды в ячейке G16: =G12/(G8*60)= 2,686

для нагрева воздуха в ячейке h26: =h22/(H8*60)= 47,592

Суммарная тепловая мощность необходимая для выполнения всех процессов за время t рассчитывается

в объединенной ячейке D17E17F17G17h27: =D13/(D8*60) = 71,361

В ячейках D18, E18, F18, G18, h28,  и объединенной ячейке D19E19F19G19h29 тепловая мощность приведена в дугой единице измерения – в Гкал/час.

На этом расчет в Excel завершен.

Выводы:

Обратите внимание, что для нагрева воздуха необходимо более чем в два раза больше затратить энергии, чем для нагрева такой же массы стали.

При нагреве воды затраты энергии в два раза больше, чем при нагреве льда. Процесс плавления многократно больше потребляет энергии, чем процесс нагрева (при небольшой разности температур).

Нагрев воды в десять раз затрачивает больше тепловой энергии, чем нагрев стали и в четыре раза больше, чем нагрев воздуха.

Для получения информации о выходе новых статей и для скачивания рабочих файлов программ прошу вас подписаться на анонсы в окне, расположенном в конце статьи или в окне вверху страницы.

После ввода адреса своей электронной почты и нажатия на кнопку «Получать анонсы статей» НЕ ЗАБУДЬТЕ  ПОДТВЕРДИТЬ ПОДПИСКУ кликом по ссылке в письме, которое тут же придет к вам на указанную почту (иногда — в папку «Спам»)!

Мы вспомнили понятия «количество теплоты» и «тепловая мощность», рассмотрели фундаментальные формулы теплопередачи, разобрали практический пример. Надеюсь, что мой язык был прост, понятен и интересен.

Жду вопросы и комментарии на статью!

Прошу УВАЖАЮЩИХ труд автора скачать файл ПОСЛЕ ПОДПИСКИ на анонсы статей.

Ссылка на скачивание файла: raschet-teplovoy-moshchnosti (xls 19,5KB).

Другие статьи автора блога

На главную

Статьи с близкой тематикой

Отзывы

al-vo.ru

пример. Расчет площади, мощности теплообменника

Расчет теплообменника в настоящее время занимает не более пяти минут. Любая организация, производящая и продающая такое оборудование, как правило, предоставляет всем желающим свою собственную программу подбора. Ее можно бесплатно скачать с сайта компании, либо их технический специалист приедет к вам в офис и бесплатно её установит. Однако насколько корректен результат таких расчетов, можно ли ему доверять и не лукавит ли производитель, сражаясь в тендере со своими конкурентами? Проверка электронного калькулятора требует наличия знаний или как минимум понимания методики расчета современных теплообменников. Попробуем разобраться в деталях.

Что такое теплообменник

Прежде чем выполнять расчет теплообменника, давайте вспомним, а что же это за устройство такое? Тепломассообменный аппарат (он же теплообменник, он же теплообменный аппарат, или ТОА) - это устройство для передачи теплоты от одного теплоносителя другому. В процессе изменения температур теплоносителей меняются также их плотности и, соответственно, массовые показатели веществ. Именно поэтому такие процессы называют тепломассообменными.

расчет теплообменника

Виды теплообмена

Теперь поговорим о видах теплообмена - их всего три. Радиационный - передача теплоты за счет излучения. Как пример, можно вспомнить принятие солнечных ванн на пляже в теплый летний день. И такие теплообменники даже можно встретить на рынке (ламповые нагреватели воздуха). Однако чаще всего для обогрева жилых помещений, комнат в квартире мы покупаем масляные или электрические радиаторы. Это пример другого типа теплообмена - конвекционного. Конвекция бывает естественной, вынужденной (вытяжка, а в коробе стоит рекуператор) или с механическим побуждением (с вентилятором, например). Последний тип намного эффективнее.

Однако самый эффективный способ передачи теплоты - это теплопроводность, или, как её ещё называют, кондукция (от англ. conduction - "проводимость"). Любой инженер, собирающийся провести тепловой расчет теплообменника, прежде всего задумывается о том, чтобы выбрать эффективное оборудование в минимальных габаритах. И достичь этого удаётся именно за счет теплопроводности. Примером тому служат самые эффективные на сегодняшний день ТОА - пластинчатые теплообменники. Пластинчатый ТОА, согласно определению, - это теплообменный аппарат, передающий теплоту от одного теплоносителя другому через разделяющую их стенку. Максимально возможная площадь контакта между двумя средами в совокупности с верно подобранными материалами, профилем пластин и их толщиной позволяет минимизировать размеры выбираемого оборудования при сохранении исходных технических характеристик, необходимых в технологическом процессе.

Типы теплообменников

Прежде чем проводить расчет теплообменника, определяются с его типом. Все ТОА можно разделить на две большие группы: рекуперативные и регенеративные теплообменники. Основное отличие между ними заключается в следующем: в рекуперативных ТОА теплообмен происходит через разделяющую два теплоносителя стенку, а в регенеративных две среды имеют непосредственный контакт между собой, часто смешиваясь и требуя последующего разделения в специальных сепараторах. Регенеративные теплообменники подразделяются на смесительные и на теплообменники с насадкой (стационарной, падающей или промежуточной). Грубо говоря, ведро с горячей водой, выставленное на мороз, или стакан с горячим чаем, поставленный остужаться в холодильник (никогда так не делайте!) - это и есть пример такого смесительного ТОА. А наливая чай в блюдце и остужая его таким образом, мы получаем пример регенеративного теплообменника с насадкой (блюдце в этом примере играет роль насадки), которая сначала контактирует с окружающим воздухом и принимает его температуру, а потом отбирает часть теплоты от налитого в него горячего чая, стремясь привести обе среды в режим теплового равновесия. Однако, как мы уже выяснили ранее, эффективнее использовать теплопроводность для передачи теплоты от одной среды к другой, поэтому более полезные в плане теплопередачи (и широко используемые) ТОА на сегодняшний день – конечно же, рекуперативные.

расчет рекуперативного теплообменника

Тепловой и конструктивный расчет

Любой расчет рекуперативного теплообменника можно провести на основе результатов теплового, гидравлического и прочностного вычислений. Они являются основополагающими, обязательны при проектировании нового оборудования и ложатся в основу методики расчета последующих моделей линейки однотипных аппаратов. Главной задачей теплового расчета ТОА является определение необходимой площади теплообменной поверхности для устойчивой работы теплообменника и поддержания необходимых параметров сред на выходе. Довольно часто при таких расчетах инженеры задаются произвольными значениями массогабаритных характеристик будущего оборудования (материал, диаметр труб, размеры пластин, геометрия пучка, тип и материал оребрения и др.), поэтому после теплового обычно проводят конструктивный расчет теплообменника. Ведь если на первой стадии инженер посчитал необходимую площадь поверхности при заданном диаметре трубы, например, 60 мм, и длина теплообменника при этом получилась порядка шестидесяти метров, то логичнее предположить переход к многоходовому теплообменнику, либо к кожухотрубному типу, либо увеличить диаметр трубок.

расчет кожухотрубного теплообменника

Гидравлический расчет

Гидравлические или гидромеханические, а также аэродинамические расчеты проводят с целью определить и оптимизировать гидравлические (аэродинамические) потери давления в теплообменнике, а также подсчитать энергетические затраты на их преодоление. Расчет любого тракта, канала или трубы для прохода теплоносителя ставит перед человеком первостепенную задачу - интенсифицировать процесс теплообмена на данном участке. То есть одна среда должна передать, а другая получить как можно больше тепла на минимальном промежутке его течения. Для этого часто применяют дополнительную поверхность теплообмена, в виде развитого оребрения поверхности (для отрыва пограничного ламинарного подслоя и усиления турбулизации потока). Оптимальное балансовое соотношение гидравлических потерь, площади теплообменной поверхности, массогабаритных характеристик и снимаемой тепловой мощности является результатом совокупности теплового, гидравлического и конструктивного расчета ТОА.

Поверочный расчет

Поверочный расчет теплообменника проводят в случае, когда надо заложить запас по мощности либо по площади теплообменной поверхности. Поверхность резервируют по разным причинам и в разных ситуациях: если так требуется по техзаданию, если производитель решает внести дополнительный запас для того, чтобы быть точно уверенным в том, что такой теплообменник выйдет на режим, и минимизировать ошибки, допущенные при расчетах. В каких-то случаях резервирование требуется для округления результатов конструктивных размеров, в других же (испарители, экономайзеры) в расчет мощности теплообменника специально вводят запас по поверхности, на загрязнение компрессорным маслом, присутствующим в холодильном контуре. Да и низкое качество воды необходимо принимать во внимание. Через некоторое время бесперебойной работы теплообменников, особенно при высоких температурах, накипь оседает на теплообменной поверхности аппарата, снижая коэффициент теплопередачи и неминуемо приводя к паразитному снижению теплосъёма. Поэтому грамотный инженер, проводя расчет теплообменника «вода-вода», уделяет особое внимание дополнительному резервированию поверхности теплообмена. Поверочный расчет также проводят для того, чтобы посмотреть, как выбранное оборудование будет работать на иных, вторичных режимах. Например, в центральных кондиционерах (приточных установках) калориферы первого и второго подогрева, использующиеся в холодный период года, нередко задействуют и летом для охлаждения поступающего воздуха, подавая в трубки воздушного теплообменника холодную воду. Как они будут функционировать и какие будут выдавать параметры, позволяет оценить поверочный расчет.

тепловой расчет пластинчатого теплообменника

Исследовательские расчеты

Исследовательские расчеты ТОА проводят на основе полученных результатов теплового и поверочного расчетов. Они необходимы, как правило, для внесения последних поправок в конструкцию проектируемого аппарата. Их также проводят с целью корректировки каких-либо уравнений, закладываемых в реализуемой расчетной модели ТОА, полученной эмпирическим путём (по экспериментальным данным). Выполнение исследовательских расчетов предполагает проведение десятков, а иногда и сотен вычислений по специальному плану, разработанному и внедрённому на производстве согласно математической теории планирования экспериментов. По результатам выявляют влияние различных условий и физических величин на показатели эффективности ТОА.

Другие расчеты

Выполняя расчет площади теплообменника, не стоит забывать и о сопротивлении материалов. Прочностные расчеты ТОА включают проверку проектируемого агрегата на напряжение, на кручение, на прикладывание максимально допустимых рабочих моментов к деталям и узлам будущего теплообменника. При минимальных габаритах изделие должно быть прочным, устойчивым и гарантировать безопасную работу в различных, даже самых напряженных условиях эксплуатации.

Динамический расчет проводится с целью определения различных характеристик теплообменного аппарата на переменных режимах его работы.

конструктивный расчет теплообменника

Типы конструкции теплообменников

Рекуперативные ТОА по конструкции можно разделить на достаточно большое количество групп. Самые известные и широко применяемые – это пластинчатые теплообменники, воздушные (трубчатые оребрённые), кожухотрубные, теплообменники "труба в трубе", кожухо-пластинчатые и другие. Существуют и более экзотические и узкоспециализированные типы, например, спиральные (теплообменник-улитка) или скребковые, которые работают с вязкими или неньютоновскими жидкостями, а также многие другие типы.

Теплообменники «труба в трубе»

Рассмотрим самый простой расчет теплообменника «труба в трубе». Конструктивно данный тип ТОА максимально упрощен. Во внутреннюю трубу аппарата пускают, как правило, горячий теплоноситель, для минимизации потерь, а в кожух, или в наружную трубу, запускают охлаждающий теплоноситель. Задача инженера в этом случае сводится к определению длины такого теплообменника исходя из рассчитанной площади теплообменной поверхности и заданных диаметров.

расчет пластинчатого теплообменника

Здесь стоит добавить, что в термодинамике вводится понятие идеального теплообменника, то есть аппарата бесконечной длины, где теплоносители работают в противотоке, и между ними полностью срабатывается температурный напор. Конструкция «труба в трубе» ближе всего удовлетворяет этим требованиям. И если запустить теплоносители в противотоке, то это будет так называемый «реальный противоток» (а не перекрёстный, как в пластинчатых ТОА). Температурный напор максимально эффективно срабатывается при такой организации движения. Однако выполняя расчет теплообменника «труба в трубе», следует быть реалистами и не забывать о логистической составляющей, а также об удобстве монтажа. Длина еврофуры - 13,5 метров, да и не все технические помещения приспособлены к заносу и монтажу оборудования такой длины.

Кожухотрубные теплообменники

Поэтому очень часто расчет такого аппарата плавно перетекает в расчет кожухотрубного теплообменника. Это аппарат, в котором пучок труб находится в едином корпусе (кожухе), омываемым различными теплоносителями, в зависимости от назначения оборудования. В конденсаторах, например, хладагент запускают в кожух, а воду – в трубки. При таком способе движения сред удобнее и эффективнее контролировать работу аппарата. В испарителях, наоборот, хладагент кипит в трубках, а они при этом омываются охлаждаемой жидкостью (водой, рассолами, гликолями и др.). Поэтому расчет кожухотрубного теплообменника сводится к минимизации габаритов оборудования. Играя при этом диаметром кожуха, диаметром и количеством внутренних труб и длиной аппарата, инженер выходит на расчетное значение площади теплообменной поверхности.

тепловой расчет теплообменника

Воздушные теплообменники

Один из самых распространённых на сегодняшний день теплообменных аппаратов – это трубчатые оребрённые теплообменники. Их ещё называют змеевиками. Где их только не устанавливают, начиная от фанкойлов (от англ. fan + coil, т.е. "вентилятор" + "змеевик") во внутренних блоках сплит-систем и заканчивая гигантскими рекуператорами дымовых газов (отбор теплоты от горячего дымового газа и передача его на нужды отопления) в котельных установках на ТЭЦ. Вот почему расчет змеевикового теплообменника зависит от того применения, куда этот теплообменник пойдёт в эксплуатацию. Промышленные воздухоохладители (ВОПы), устанавливаемые в камерах шоковой заморозки мяса, в морозильных камерах низких температур и на других объектах пищевого холодоснабжения, требуют определённых конструктивных особенностей в своём исполнении. Расстояния между ламелями (оребрением) должно быть максимальным, для увеличения времени непрерывной работы между циклами оттайки. Испарители для ЦОДов (центров обработки данных), наоборот, делают как можно более компактными, зажимая межламельные расстояния до минимума. Такие теплообменники работают в «чистых зонах», окруженные фильтрами тонкой очистки (вплоть до класса HEPA), поэтому такой расчет трубчатого теплообменника проводят с упором на минимизацию габаритов.

Пластинчатые теплообменники

В настоящее время стабильным спросом пользуются пластинчатые теплообменники. По своему конструктивному исполнению они бывают полностью разборными и полусварными, меднопаяными и никельпаяными, сварными и спаянными диффузионным методом (без припоя). Тепловой расчет пластинчатого теплообменника достаточно гибок и не представляет особой сложности для инженера. В процессе подбора можно играть типом пластин, глубиной штамповки каналов, типом оребрения, толщиной стали, разными материалами, а самое главное – многочисленными типоразмерными моделями аппаратов разных габаритов. Такие теплообменники бывают низкими и широкими (для парового нагрева воды) или высокими и узкими (разделительные теплообменники для систем кондиционирования). Их часто используют и под среды с фазовым переходом, то есть в качестве конденсаторов, испарителей, пароохладителей, предконденсаторов и т. д. Выполнить тепловой расчет теплообменника, работающего по двухфазной схеме, немного сложнее, чем теплообменника типа «жидкость-жидкость», однако для опытного инженера эта задача разрешима и не представляет особой сложности. Для облегчения таких расчетов современные проектировщики используют инженерные компьютерные базы, где можно найти много нужной информации, в том числе диаграммы состояния любого хладагента в любой развёртке, например, программу CoolPack.

Пример расчета теплообменника

Основной целью проведения расчета является вычисление необходимой площади теплообменной поверхности. Тепловая (холодильная) мощность обычно задается в техзадании, однако в нашем примере мы рассчитаем и её, для, скажем так, проверки самого техзадания. Иногда бывает и так, что в исходные данные может закрасться ошибка. Одна из задач грамотного инженера - эту ошибку найти и исправить. В качестве примера выполним расчет пластинчатого теплообменника типа «жидкость - жидкость». Пусть это будет разделитель контуров (pressure breaker) в высотном здании. Для того чтобы разгрузить оборудование по давлению, при строительстве небоскрёбов очень часто применяется такой подход. С одной стороны теплообменника имеем воду с температурой входа Твх1 = 14 ᵒС и выхода Твых1 = 9 ᵒС, и с расходом G1 = 14 500 кг/ч, а с другой - тоже воду, но только вот с такими параметрами: Твх2 = 8 ᵒС, Твых2 = 12 ᵒС, G2 = 18 125 кг/ч.

конструктивный расчет теплообменника

Необходимую мощность (Q0) рассчитаем по формуле теплового баланса (см. рис. выше, формула 7.1), где Ср – удельная теплоёмкость (табличное значение). Для простоты расчетов возьмём приведённое значение теплоёмкости Срв = 4,187 [кДж/кг*ᵒС]. Считаем:

Q1 = 14 500 * (14 - 9) * 4,187 = 303557,5 [кДж/ч] = 84321,53 Вт = 84,3 кВт – по первой стороне и

Q2 = 18 125 * (12 - 8) * 4,187 = 303557,5 [кДж/ч] = 84321,53 Вт = 84,3 кВт – по второй стороне.

Обратите внимание, что, согласно формуле (7.1), Q0 = Q1 = Q2, независимо от того, по какой стороне проведён расчет.

Далее по основному уравнению теплопередачи (7.2) находим необходимую площадь поверхности (7.2.1), где k – коэффициент теплопередачи (принимаем равным 6350 [Вт/м2]), а ΔТср.лог. – среднелогарифмический температурный напор, считаемый по формуле (7.3):

ΔТ ср.лог. = (2 - 1) / ln (2 / 1) = 1 / ln2 = 1 / 0,6931 = 1,4428;

F то = 84321 / 6350 * 1,4428 = 9,2 м2.

В случае когда коэффициент теплопередачи неизвестен, расчет пластинчатого теплообменника немного усложняется. По формуле (7.4) считаем критерий Рейнольдса, где ρ – плотность, [кг/м3], η – динамическая вязкость, [Н*с/м2], v – скорость среды в канале, [м/с], d см – смачиваемый диаметр канала [м].

По таблице ищем необходимое нам значение критерия Прандтля [Pr] и по формуле (7.5) получаем критерий Нуссельта, где n = 0,4 – в условиях нагрева жидкости, и n = 0,3 – в условиях охлаждения жидкости.

Далее по формуле (7.6) вычисляется коэффициент теплоотдачи от каждого теплоносителя к стенке, а по формуле (7.7) считаем коэффициент теплопередачи, который и подставляем в формулу (7.2.1) для вычисления площади теплообменной поверхности.

В указанных формулах λ – коэффициент теплопроводности, ϭ – толщина стенки канала, α1 и α2 – коэффициенты теплоотдачи от каждого из теплоносителей стенке.

fb.ru

Средняя движущая сила теплопередачи

Движущей силой теплопередачи является разность температур теплоносителей, при наличии которой тепло переходит от теплоносителя с большей температурой к теплоносителю с меньшей температурой. При выводе уравнений теплопередачи в разделах 7.7.1 и 7.7.2 было принято, что температуры теплоносителей при теплообмене вдоль поверхности теплопередачи сохраняют свое постоянное значение. Однако это положение справедливо лишь в некоторых случаях (при кипении жидкостии конденсации паров). В общем же случае температура теплоносителей в процессе теплообмена изменяется – горячий охлаждается, а холодный нагревается. Поэтому в тепловых расчетах при применении уравнений теплопередачи необходимо пользоваться средней разностью температур теплоносителей, величина которой определяется при прочих равных условиях схемой движения потоков:

. (7.185)

Различают следующие основные схемы взаимного движения теплоносителей относительно поверхности теплообмена (рис. 7.23):

Рисунок 7.23 – Основные схемы движения потоков при теплообмене

1) прямоток или параллельный ток – оба потока движутся в одном направлении;

2) противоток – теплообменивающиеся потоки движутся в противоположных направлениях;

3) перекрестный ток, при котором потоки движутся взаимно перпендикулярно;

4) смешанный ток, при котором имеют место вышеупомянутые схемы одновременно в различных частях теплообменного аппарата.

Независимо от схемы движения температура горячего теплоносителя уменьшается от начального значения до конечного, а температура холодного теплоносителя увеличивается отдо. Количество тепла, переданного в единицу времени от первого теплоносителя ко второму на произвольно выделенном элементе теплообменной поверхности,согласно основномууравнениютеплопередачи

, (7.186)

где t1, иt2– температуры теплоносителей по обе стороны элементаdF.

В результате теплообмена на элементе поверхности температура первого теплоносителя понизится на , а второго теплоносителя повысится на, где,и,– расходы и удельные теплоемкости теплоносителей, соответственно.

При прямотоке(рис. 7.23а)

Поделив последние два уравнения друг на друга, получим:

,

откуда при К= const

(7.187)

Если обозначить наибольшую разность температур между теплоносителями и наименьшую, то соотношение (7.187) может быть представлено в виде

(7.188)

В результате сопоставления уравнений (7.188) и (7.185) можно получить соотношение для определения средней разности температур:

(7.189)

При противотоке(рис. 7.23,б)

По аналогии с прямотоком находим:

,

откуда

(7.190)

где ;.

Следовательно, при противотоке, как и при прямоточном движении теплоносителей,

Вывод уравнений для расчета средней движущей силы теплопередачи производился в предположении, что расход и теплоемкость теплоносителей, а также коэффициент теплопередачи вдоль поверхности нагрева остаются постоянными. Так как на практике эти условия выполняются лишь приближенно, то и уравнения (7.187)–(7.190) являются также приближенными.

При небольших изменениях температур теплоносителей, когда , среднюю разность температур вычисляют как среднеарифметическую:

(7.191)

так как ошибка в этом случае не превышает 4 %.

Выражение (7.189) упрощается также в случаях, когда один из теплоносителей сохраняет постоянную температуру вдоль всей поверхности теплообмена (конденсирующийся насыщенный пар, кипящая жидкость). Независимо от направления движения теплоносителей прямоток или противоток:

при

;

при

.

Противоток является наиболее совершенной схемой теплопередачи, так как позволяет получить наибольшую разность температур по сравнению с разностью при других схемах теплопередачи. Кроме того, при противотоке температура нагреваемого потока может значительно превышать конечную температуру нагревающего потока.

При перекрестном и смешанном токах(рис. 7.23, ви 7.23, г) теплоносителей задача об усреднении разности их температур значительно более сложная, чем при прямотоке или противотоке, и требует громоздких математических выкладок. Поэтому для наиболее часто встречающихся случаев результаты решения приводятся в справочной и специальной литературе.

Средняя движущая сила при перекрестном и смешанном токах ниже, чем при противотоке, но выше, чем при прямотоке. Это значит, что перекрестный и смешанный токи занимают промежуточное положение между противотоком и прямотоком. Наиболее часто среднюю разность температур для этих видов взаимного направления движения теплоносителей рассчитывают исходя из среднелогарифмической разности температур при противотоке:

, (7.192)

где – поправочный коэффициент;.

Коэффициент является функцией двух величин: отношения перепадов температур теплоносителейи степени нагрева более холодного теплоносителя, определяемой отношением его перепада температур к разности начальных температур обоих теплоносителей:.

По вычисленным значениям РиR, пользуясь графиками, приведенными в специальной литературе, можно найти численные значения коэффициентаи затем определить.

Для расчета средней разности температур при различных схемах движения потоков можно воспользоваться также уравнением Н.И. Белоконя:

,

где (7.193)

Разность средних температур потоков θ, не зависящая от схемы теплообмена,

. (7.194)

Характеристическая разность температур ΔТ

, (7.195)

где – разность температур соответствующего потока теплоносителя;p– индекс противоточности, характеризующий долю противотока в общем балансе теплообмена.

Величина индекса противоточности pзависит от схемы движения теплоносителей:

для прямотока p = 0;

для противотока p = 1;

для перекрестного тока при ,p = 0,58÷0,79;

для смешанного тока p = 0,5.

studfiles.net

Коэффициент теплопередачи, формула и примеры

Определение и формула коэффициента теплопередачи

Процесс теплопередачи можно разделить на теплоотдачу энергии горячим веществом стенке, процесс теплопроводности внутри стенки и теплоотдачу стенки энергии холодному веществу.

Поток тепла при стационарной теплопередаче величина постоянная, то есть не зависит от времени и координат.

Теплопередача через плоскую стенку

Рассмотрим плоскую стенку, через которую происходит теплопередача. Поток тепла через нее равен:

    \[Q=k\left(T_1-T_2\right)S\left(1\right),\]

где T_2 — температура холодного вещества (T_2=const), T_1=const — температура горячего вещества, S — площадь стенки, k — коэффициент теплопередачи.

Коэффициентом теплопередачи через плоскую стенку является физическая величина (k) равная:

    \[k=\frac{1}{\frac{1}{{\alpha }_1}+\frac{d}{\varkappa }+\frac{1}{{\alpha }_2}}\left(2\right),\]

где {\alpha }_1 — коэффициент теплоотдачи от первой среды к стенке, {\alpha }_2 — коэффициент теплоотдачи от стенки ко второй среде, d — толщина стенки, \varkappa — коэффициент теплопроводности стенки.

Теплопередача через цилиндрическую стенку

Поток тепла свозь стенку в виде цилиндра вычисляют при помощи формулы:

    \[Q=k_l\pi \left(T_1-T_2\right)l\left(3\right),\]

где k_l — линейный коэффициент теплопередачи, l — высота цилиндра.

Линейным коэффициентом теплопередачи через стенку в виде цилиндра является физическая величина (k_l) равная:

    \[k_l=\frac{1}{\frac{1}{\alpha_1d_1}+\frac{1}{2\varkappa}ln\frac{d_2}{d_1}+\frac{1}{\alpha_2d_2}}\left(4\right),\]

где d_1 — внутренний диаметр цилиндра, d_2 — внешний диаметр цилиндра. Для цилиндрических стенок, у которых d_2\le 2d_1 для расчета теплопередачи применяют формулы (1) и (2) для плоской стенки. Если цилиндр (труба) выполнен из материала с высокой теплопроводностью, то величина термического сопротивления (\frac{d}{\varkappa }) стенки стремится к нулю ( \frac{d}{\varkappa }\to 0), тогда коэффициент теплопроводности рассчитывают по формуле:

    \[k=\frac{1}{\frac{1}{{\alpha }_1}+\frac{1}{{\alpha }_2}}\left(5\right)\]

Теплопередача через шаровую стенку

Поток тепла через шаровую стенку с внутренним диаметром d_1 и наружным — d_2, которая разделяет две среды с постоянными температурами T_1 и T_2 равен:

    \[Q=k_{sh}\pi \left(T_1-T_2\right)\left(6\right),\]

Линейным коэффициентом теплопередачи через стенку в виде шара является физическая величина (k_{sh}) равная:

    \[k_{sh}=\frac{1}{\frac{1}{{\alpha }_1{d_1}^2}+\frac{1}{2\varkappa }(\frac{1}{d_1}-\frac{1}{d_2})+\frac{1}{{\alpha }_2{d_2}^2}}\left(7\right)\]

Единицы измерения коэффициента теплопередачи

Основной единицей измерения коэффициента теплопередачи в системе СИ является:

\left[k\right]=Вт/м2К

\left[k_l\right]=Вт/мК

\left[k_{sh}\right]=Вт/К

Примеры решения задач

ru.solverbook.com

Что такое теплопроводность и теплопередача. Теплопроводность металлов и других материалов.

• написать лс• профиль

5.0

Оценка статьи

Всего голосов: 1

Репутация автора

• повысить репутацию• история репутации

Тепло - это одна из форм энергии, которая заключена в движении атомов в веществе. Энергию этого движения мы и измеряем термометром, хоть и не напрямую. Как и все другие виды энергии, теплота может передаваться от тела к телу. Происходит это всегда, когда есть тела разной температуры. При этом им необязательно даже находиться в соприкосновении, так существует несколько способов передачи тепла. А именно:  Теплопроводность. Это передача тепла при непосредственном контакте двух тел. (Тело может быть и одно, если его части разной температуры.) При этом чем больше разность температур тел и чем больше площадь их контакта - тем больше тепла передаётся каждую секунду. Помимо этого, количество передаваемого тепла зависит от материала - например, большинство металлов хорошо проводят тепло, а дерево и пластик - гораздо хуже. Величину, характеризующую эту способность передавать тепло, тоже называют теплопроводностью (более корректно – коэффициент теплопроводности), что может приводить к некоторой путанице.   Если необходимо измерить теплопроводность какого-либо материала, то обычно это проводят в следующем эксперименте: изготовляется стержень из интересующего материала и один его конец поддерживается при одной температуре, а другой - при отличной, например более низкой, температуре. Пусть, например, холодный  конец будет помещён в воду со льдом - таким образом будет поддерживаться постоянная температура, а измеряя скорость таяния льда можно судить о количестве полученного тепла. Деля количество тепла (а вернее - мощность) на разность температур и поперечное сечение стержня и умножая на его длину, получаем коэффициент теплопроводности, измеряющийся, как следует из  вышенаписанного, в Дж*м/К*м2*с, то есть в Вт/К*м. Ниже вы видите таблицу теплопроводности некоторых материалов.  
Материал Теплопроводность, Вт/(м·K)
Алмаз 1001—2600
Серебро 430
Медь 401
Оксид бериллия 370
Золото 320
Алюминий 202—236
Кремний 150
Латунь 97—111
Хром 107
Железо 92
Платина 70
Олово 67
Оксид цинка 54
Сталь 47
Оксид алюминия 40
Кварц 8
Гранит 2,4
Бетон сплошной 1,75
Базальт 1,3
Стекло 1-1,15
Термопаста КПТ-8 0,7
Вода при нормальных условиях 0,6
Кирпич строительный 0,2—0,7
Древесина 0,15
Нефтяные масла 0,12
Свежий снег 0,10—0,15
Стекловата 0,032-0,041
Каменная вата 0,034-0,039
Воздух (300 K, 100 кПа) 0,022
  Как видно, теплопроводность различается на много порядков. Удивительно хорошо проводят тепло алмаз и оксиды некоторых металлов (по сравнению с другими диэлектриками), плохо проводят тепло воздух, снег и термопаста КПТ-8.   Но мы привыкли считать, что воздух хорошо проводит тепло, а вата - нет, хотя она может на 99% состоять из воздуха. Дело в конвекции. Горячий воздух легче холодного, и "всплывает" наверх, порождая постоянную циркуляцию воздуха вокруг нагретого или сильно охлаждённого тела. Конвекция на порядок улучшает теплопередачу: при её отсутствии было бы очень затруднительно вскипятить кастрюлю воды, не перемешивая её постоянно. А в диапазоне от 0°С до 4°С вода при нагревании сжимается, что приводит к конвекции в противоположном от привычного направлении. Это приводит к тому, что независимо от температуры воздуха, на дне глубоких озёр температура всегда устанавливается равной 4°C   Для уменьшения теплоотдачи из пространства между стенками термосов откачивают воздух.  Но надо отметить, что теплопроводность воздуха мало зависит от давления вплоть до 0,01мм рт.ст, то есть границы глубокого вакуума. Этот феномен объясняется теорией газов.   Ещё один способ теплопередачи - это излучение. Все тела излучают энергию в виде электромагнитных волн, но только достаточно сильно нагретые (~600°С) излучают в видимом нами диапазоне. Мощность излучения даже при комнатной температуре достаточно большая - порядка 40мВт с 1см2. В пересчёте на площадь поверхности человеческого тела (~1м2) это составит 400Вт. Спасает лишь то, что в привычном нам окружении все тела вокруг также излучают с примерно той же мощностью. Мощность излучения, кстати, сильно зависит от температуры (как T4) , согласно закону Стефана-Больцмана. Расчёты показывают, что, например, при 0°С мощность теплового излучения примерно в полтора раза слабее, чем при 27°С.   В отличие от теплопроводности, излучение может распространяться в полном вакууме - именно благодаря нему живые организмы на Земле получают энергию Солнца. Если теплопередача излучением нежелательна, то её минимизируют, ставя непрозрачные перегородки между холодным и горячим объектами, либо уменьшают поглощение излучения (и испускание, кстати, в ровно той же степени), покрывая поверхность тонким зеркальным слоем металла, например, серебра.      
  • Данные по теплопроводности взяты из Wikipedia, а туда они попали из справочников, таких, как:
  • «Физические величины» под ред.  И. С. Григорьева
  • CRC Handbook of Chemistry and Physics
  • Более строгое описание теплопроводности можно найти в учебнике по физике, например в «Общей физике» Д.В.Сивухина (Том 2). В 4 томе есть глава, посвящённая тепловому излучению (в т.ч. закону Стефана-Больцмана)

chemiday.com

Основы теплопередачи

Строительные машины и оборудование, справочник

Категория:

   Передвижные электростанции

Основы теплопередачи

Теплопередачей или теплообменом называется процесс переачи тепловой энергии (теплоты) как внутри тела от более нагретых его частиц к менее нагретым, так и от одних тел к другим. Теплопередача играет большую роль в работе теплосиловых установок и их агрегатов, паровых котлов и машин, двигателей внутреннего сгорания, радиаторов и др.

Теплообмен представляет собой сложный процесс и может осуществляться теплопроводностью, конвекцией и тепловым излучением.

Теплопроводностью называется передача тепловой энергии от одних соприкасающихся частиц или тел к другим. Этим способом теплота передается главным образом в твердых телах, но может передаваться в жидкостях и газах.

Молекулы, обладающие большой кинетической энергией, при столкновении с молекулами, имеющими меньшую кинетическую энергию, передают последним часть своей тепловой энергии.

В металлах теплота передается колебаниями мельчайших частиц, а в жидкостях и газах — перемешиванием.

Если нагревать воду или газ (в закрытом сосуде сверху), то теплота верхних слоев воды или газа будет передаваться холодным нижним слоям только в результате теплопроводности.

Конвекцией называется передача теплоты путем перемешивания между собой частиц газа или жидкости и перемещения их из области одних температур в область других температур. Передача теплоты совместным действием теплопроводности и конвекции называется конвективным теплообменом.

Конвективный теплообмен возможен между металлической стенкой и газом или жидкостью, омывающими эту стенку. Частицы газа или жидкости, соприкасающиеся с горячей стенкой, нагреваются в результате теплопроводности; вследствие разности плотностей нагретых и холодных частиц возникает подъемная сила, под действием которой нагретые частицы перемещаются вверх и переносят с собой некоторое количество теплоты. Такая передача теплоты называется естественной или свободной конвекцией.

При вынужденном перемещении частиц жидкости или газа (с помощью насоса или вентилятора) интенсивность теплообмена значительно увеличивается; такая теплопередача называется принудительной конвекцией.

Конвекция всегда сопровождается теплопроводностью, которая в неподвижном теплоносителе невелика, так как газы и жидкости -плохие проводники теплоты.

Примером конвективного теплообмена может служить нагревание воды в паровом котле: передача теплоты от нагретой стенки котла к воде осуществляется главным образом естественной конвекцией и лишь в незначительной части — теплопроводностью.

Тепловым излучением или лучеиспусканием называется передача тепловой энергии от одного тела к другому электромагнитными волнами. Часть тепловой энергии каждого-тела превращается в лучистую энергию, которая в виде электромагнитных волн распространяется во ‘все стороны. Встречая на> своем пути другие тела, лучистая энергия частично поглощается ими, превращаясь снова в тепловую энергию (теплоту).

В практических условиях теплообмен осуществляется не одним каким-либо способом, а одновременно всеми. Такой теплообмен принято называть сложным.

Теплопроводность. Рассмотрим часто встречающуюся на практике передачу теплоты теплопроводностью через плоскую стенку. Процесс передачи теплоты будем считать стационарным, т.е. температура в различных точках стенки с течением времени не изменяется.

Следовательно, коэффициент теплопроводности представляет собой количество теплоты, передаваемое через стенку толщиной 1 м и площадью 1 м2 при разности температур 1 °С в течение 1 ч.

Коэффициент теплопроводности зависит от структуры, удельного веса, влажности и температуры вещества. При расчетах значения коэффициентов теплопроводности берут из справочников.

Рис. 1. Схема передачи теплоты через однослойную, стенку

Конвекция. Рассмотрим теплообмен конвекцией между жидкостью и стенкой.

Коэффициент теплоотдачи а может быть определен только опытным путем. Так как коэффициент теплоотдачи зависит от значительного количества факторов, для его определения требуется проведение большого числа опытов.

Для сокращения количества опытов разработана так называемая «теория подобия». Теория подобия дает возможность проводить опыты не на самих аппаратах, для которых нужно определить коэффициент теплоотдачи, а «а уменьшенных и упрощенных моделях, что требует меньших затрат и может быть выполнено в более короткие сроки.

Тепловое излучение. Передача теплоты излучением не требует непосредственного соприкосновения тел и может происходить при значительном расстоянии между ними.

Каждое тело непрерывно излучает и поглощает лучистую энергию. Лучистая энергия является результатом сложных молекулярных и внутримолекулярных процессов, порождаемых энергией других видов. Источником теплового излучения является тепловая энергия. Количество возникающей лучистой энергии зависит от физических свойств и температуры излучающего тела.

Излучение тел представляет собой электромагнитные колебания с длиной волны от долей микрона до десятков километров: космические, рентгеновы, ультрафиолетовые, световые, инфракрасные и другие лучи. Свойства этих лучей различны; для теплотехники представляют интерес такие лучи, которые поглощаются телами и энергия которых снова превращается в тепловую. Такими свойствами обладают световые и инфракрасные лучи, длины волн которых колеблются от 0,4 до 40 мкм.

Попадая на какое-либо тело, лучистая энергия частично поглощается им, частично отражается от него и частично проходит сквозь тело. Тело, полностью поглощающее попадающую на него лучистую энергию, называется абсолютно черным, полностью отражающее — абсолютно белым. Тела, которые полностью пропускают через себя лучистую энергию, называются прозрачными (или диатермичными).

Абсолютно черных и абсолютно белых тел в природе не существует. Поэтому обычно принято называть тела серыми. К абсолютно черным телам близки бархат, черное сукно и сажа, которые поглощают до 95-98% теплового излучения. К абсолютно белым телам близки полированные медь и алюминий, которые поглощают только 2-4% теплового излучения. Приме-

В теплотехнике, как было указано выше, часто происходит сложный теплообмен: например, между продуктами сгорания топлива и стенкой (топка парового котла, камера сгорания и цилиндр дизеля). При этом теплообмен осуществляется конвекцией и излучением.

Теплообмен излучением наиболее интенсивно происходит при температурах выше 600 °С; при меньших температурах теплота передается в основном конвекцией и теплопроводностью.

Многоатомные газы также способны излучать и поглощать лучистую энергию. В продуктах сгорания топлива содержатся трехатомные газы СОг и НгО, а также двухатомные N2, Ог и СО.

Газы излучают и поглощают лучистую энергию в определенных интервалах длин волн.

Закономерности излучения различных газов различны. Однако для упрощения практических расчетов количество энергии, излучаемой газом, принято определять по закону Стефана-Больц-мана. Степень черноты газов берется из таблиц или графиков.

В теплотехнике наиболее часто передача тепла от одной среды (греющей) к другой (нагреваемой) осуществляется через однослойную или многослойную стенку. Такой общий процесс передачи тепла может быть расчленен на несколько простейших процессов.

Рассмотрим процесс передачи тепла от греющей среды к нагреваемой через плоскую трехслойную стенку (рис. 2). Будем считать, что тепловой поток направлен слева направо, температура греющей среды (жидкости или газа) tu а температура нагреваемой среды (жидкости или газа) t2.

От греющей среды к поверхности первого слоя стенки теплота передается только конвекцией или конвекцией и излучением, через трехслойную стенку — теплопроводностью и, наконец, от третьего слоя стенки к нагреваемой среде- конвекцией. На всех указанных этапах передачи теплоты от греющей среды к нагреваемой тепловой поток будет одинаковым.

Коэффициент теплопередачи выражает собой количество теплоты, которое передается от греющей среды к нагреваемой череа стенку площадью 1 м2 при разности температур 1°С в течение 1 ч. Значение коэффициента теплопередачи для трехслойной стенки определяют по формуле

Рис. 2. Схема теплопередачи через трехслойную стенку

Читать далее: Основные сведения о двигателях внутреннего сгорания

Категория: - Передвижные электростанции

Главная → Справочник → Статьи → Форум

stroy-technics.ru

Движущая сила - теплопередача - Большая Энциклопедия Нефти и Газа, статья, страница 1

Движущая сила - теплопередача

Cтраница 1

Движущая сила теплопередачи, выраженная разностью температур теплоносителей, усредненной по всей поверхности теплопередачи.  [1]

Движущая сила теплопередачи, выраженная разностью температур теплоносителей в случае, когда их температуры постоянны по всей поверхности теплопередачи.  [2]

Движущую силу теплопередачи А определяют по заданной температуре в слое tcj, и температуре хладагента ( теплоносителя) / хл. В кипящем слое благодаря перемешиванию наблюдается высокая интенсивность переноса теплоты of - зерен катализатора к поверхности теплообмена ( или в обратном направлении), в результате чего обеспечивается изотермически режим по высоте слоя и по его сечению.  [3]

Движущей силой теплопередачи является разность температур между горячим и холодным теплоносителем.  [5]

Известно, что движущая сила теплопередачи определяется как средняя логарифмическая начальной и конечной разности температур.  [6]

Высокая температура кислоты повышает движущую силу теплопередачи и поверхность холодильников уменьшается в 2 раза. Недостаток схемы заключается в тяжелых условиях работы насоса после промежуточного абсорбера.  [8]

В расчетной практике иногда удобно определять движущую силу мокрой теплопередачи по влагосодержанию насыщенного газа.  [9]

А - площадь поверхности теплообменника и ДГ - движущая сила теплопередачи, разница температур по обе стороны стенки, через которую происходит теплопередача.  [10]

Изложенные выше соображения позволяют сделать вывод о том, что движущей силой теплопередачи является разность температур. Следовательно, на данном этапе можно было бы попытаться определить тепло как переходную форму энергии, обусловленную разностью температур, как это и делают, по существу, многие авторы. Это соответствовало бы обратной логической последовательности по сравнению с принятой здесь, поскольку вначале ( разд.  [11]

Второй закон в приложении к мартеновской печи может быть сформулирован так: движущей силой теплопередачи является разность температур в теплообменной системе. На этом основании возможна интенсификация теплообмена в мартеновской печи, если поддерживать большую разность температур между факелом и поверхностью шихты или расплавов. Однако невозможно выплавить сталь, если температурный уровень ниже 1480 С, так как в этом случае не может быть использовано тепло на нагрев и плавление металла. Даже высококалорийное топливо, сжигаемое с холодным воздухом, выделяет столько тепла, что после нагрева продуктов сгорания до 1480 С остается четвертая часть для нагрева ванны и самой печи. Этого количества явно недостаточно. Если же воздух подогреть в регенераторах, то более 50 - 60 % тепла топлива используется полезно. При регенерировании тепла температурный уровень, считая его по температуре отходящих газов из мартеновской печи ( при переходе в вертикалы), достигает 1650 - 1700 С при динасовом своде и 1700 - 1750 С при основном.  [12]

Кинетический коэффициент в уравнении теплопередачи; численно равен мощности теплового потока через единицу площади поверхности теплообмена при движущей силе теплопередачи, равной одному градусу.  [13]

ДЯ, - тепло - - вой эффект химической реакции; xr i n - мольная доля i - ro химического компонента; ( ДГ) п - среднелогарифмичеокая движущая сила теплопередачи; Кг п - коэффициент теплопередачи; Лг п - поверхность теплообмена.  [14]

В приведенной технологической схеме контактного узла требуется большая поверхность теплообмена ( ЕА 5 8), обусловленная тем, что газ, поступающий на вторую ступень окисления, нагревают в одном теплообменнике, в котором движущая сила теплопередачи очень низка. Поверхность этого теплообменника составляет около 65 % общей теплообменной поверхности контактного узла.  [15]

Страницы:      1    2

www.ngpedia.ru


© 2007—2018
423800, Набережные Челны , база Партнер Плюс, тел. 8 800 100-58-94 (звонок бесплатный)