Камаз 44108 тягач В наличии!
Тягач КАМАЗ 44108-6030-24
евро3, новый, дв.КАМАЗ 740.55-300л.с., КПП ZF9, ТНВД ЯЗДА, 6х6, нагрузка на седло 12т, бак 210+350л, МКБ, МОБ
 
карта сервера
«ООО Старт Импэкс» продажа грузовых автомобилей камаз по выгодным ценам
+7 (8552) 31-97-24
+7 (904) 6654712
8 800 1005894
звонок бесплатный

Наши сотрудники:
Виталий
+7 (8552) 31-97-24

[email protected]

 

Екатерина - специалист по продаже а/м КАМАЗ
+7 (904) 6654712

[email protected]

 

Фото техники

20 тонный, 20 кубовый самосвал КАМАЗ 6520-029 в наличии
15-тонный строительный самосвал КАМАЗ 65115 на стоянке. Техника в наличии
Традиционно КАМАЗ побеждает в дакаре

тел.8 800 100 58 94

Техника в наличии

тягач КАМАЗ-44108
Тягач КАМАЗ 44108-6030-24
2014г, 6х6, Евро3, дв.КАМАЗ 300 л.с., КПП ZF9, бак 210л+350л, МКБ,МОБ,рестайлинг.
цена 2 220 000 руб.,
 
КАМАЗ-4308
КАМАЗ 4308-6063-28(R4)
4х2,дв. Cummins ISB6.7e4 245л.с. (Е-4),КПП ZF6S1000, V кузова=39,7куб.м., спальное место, бак 210л, шк-пет,МКБ, ТНВД BOSCH, система нейтрализ. ОГ(AdBlue), тент, каркас, рестайлинг, внутр. размеры платформы 6112х2470х730 мм
цена 1 950 000 руб.,
КАМАЗ-6520
Самосвал КАМАЗ 6520-057
2014г, 6х4,Евро3, дв.КАМАЗ 320 л.с., КПП ZF16, ТНВД ЯЗДА, бак 350л, г/п 20 тонн, V кузова =20 куб.м.,МКБ,МОБ, со спальным местом.
цена 2 700 000 руб.,
 
КАМАЗ-6522
Самосвал 6522-027
2014, 6х6, дв.КАМАЗ 740.51,320 л.с., КПП ZF16,бак 350л, г/п 19 тонн,V кузова 12куб.м.,МКБ,МОБ,задняя разгрузка,обогрев платформы.
цена 3 190 000 руб.,

СУПЕР ЦЕНА

на АВТОМОБИЛИ КАМАЗ
43118-010-10 (дв.740.30-260 л.с.) 2 220 000
43118-6033-24 (дв.740.55-300 л.с.) 2 300 000
65117-029 (дв.740.30-260 л.с.) 2 200 000
65117-6010-62 (дв.740.62-280 л.с.) 2 350 000
44108 (дв.740.30-260 л.с.) 2 160 000
44108-6030-24 (дв.740.55,рест.) 2 200 000
65116-010-62 (дв.740.62-280 л.с.) 1 880 000
6460 (дв.740.50-360 л.с.) 2 180 000
45143-011-15 (дв.740.13-260л.с) 2 180 000
65115 (дв.740.62-280 л.с.,рест.) 2 190 000
65115 (дв.740.62-280 л.с.,3-х стор) 2 295 000
6520 (дв.740.51-320 л.с.) 2 610 000
6520 (дв.740.51-320 л.с.,сп.место) 2 700 000
6522-027 (дв.740.51-320 л.с.,6х6) 3 190 000


Перегон грузовых автомобилей
Перегон грузовых автомобилей
подробнее про услугу перегона можно прочесть здесь.


Самосвал Форд Нужны самосвалы? Обратите внимание на Ford-65513-02.

КАМАЗы в лизинг

ООО «Старт Импэкс» имеет возможность поставки грузовой автотехники КАМАЗ, а так же спецтехники на шасси КАМАЗ в лизинг. Продажа грузовой техники по лизинговым схемам имеет определенные выгоды для покупателя грузовика. Рассрочка платежа, а так же то обстоятельство, что грузовики до полной выплаты лизинговых платежей находятся на балансе лизингодателя, и соответственно покупатель автомобиля не платит налогов на имущество. Мы готовы предложить любые модели бортовых автомобилей, тягачей и самосвалов по самым выгодным лизинговым схемам.

Контактная информация.

г. Набережные Челны, Промкомзона-2, Автодорога №3, база «Партнер плюс».

тел/факс (8552) 388373.
Схема проезда



Альтернативные источники энергии: виды и использование. Какие существуют виды энергии


традиционная и альтернативная. Энергия будущего

Все существующие направления энергетики можно условно разделить на зрелые, развивающиеся и находящиеся в стадии теоретической проработки. Одни технологии доступны для реализации даже в условиях частного хозяйства, а другие могут использоваться только в рамках промышленного обеспечения. Рассматривать и оценивать современные виды энергетики можно с разных позиций, однако принципиальное значение имеют универсальные критерии экономической целесообразности и производственной эффективности. Во многом по этим параметрам сегодня расходятся концепции применения традиционных и альтернативных технологий генерации энергии.

Традиционная энергетика

Это широкий пласт сформировавшихся отраслей тепло- и электроэнергетики, обеспечивающей порядка 95% мировых потребителей энергии. Генерация ресурса происходит на специальных станциях – это объекты ТЭС, ГЭС, АЭС и т. д. Они работают с готовой сырьевой базой, в процессе переработки которой происходит выработка целевой энергии. Выделяют следующие стадии производства энергии:

  • Изготовление, подготовка и доставка исходного сырья на объект выработки того или иного вида энергии. Это могут быть процессы добычи и обогащения топлива, сжигание нефтепродуктов и т. д.
  • Передача сырья к узлам и агрегатам, непосредственно преобразующим энергию.
  • Процессы преобразования энергии из первичной во вторичную. Эти циклы присутствуют не на всех станциях, но, к примеру, для удобства доставки и последующего распределения энергии могут использоваться разные ее формы – в основном тепло и электричество.
  • Обслуживание готовой преобразованной энергии, ее передача и распределение.

На завершающем этапе ресурс отправляется конечным потребителям, в качестве которых могут выступать и отрасли народного хозяйства, и рядовые домовладельцы.

Атомная энергетика

Тепловая электроэнергетика

Самая распространенная отрасль энергетики в России. Тепловые электростанции в стране производят более 1000 МВт, используя в качестве перерабатываемого сырья уголь, газ, нефтепродукты, сланцевые залежи и торф. Вырабатываемая первичная энергия в дальнейшем преобразуется в электричество. Технологически у таких станций масса преимуществ, которые и обуславливают их популярность. К ним можно отнести нетребовательность к условиям эксплуатации и легкость технической организации рабочего процесса.

Объекты тепловой энергетики в виде конденсационных сооружений и теплоэлектроцентралей могут возводиться прямо в районах добычи расходного ресурса или местах нахождения потребителя. Сезонные колебания никак не влияют на стабильность функционирования станций, что делает такие источники энергии надежными. Но есть и недостатки у ТЭС, к которым можно отнести применение исчерпаемых топливных ресурсов, загрязнение окружающей среды, необходимость подключения больших объемов трудовых ресурсов и др.

Гидроэнергетика

Гидротехнические электростанции

Гидротехнические сооружения в виде энергетических подстанций предназначены для выработки электричества в результате преобразования энергии потока воды. То есть, технологический процесс генерации обеспечивается сочетанием искусственных и природных явлений. В ходе работы станция создает достаточный напор воды, которая в дальнейшем направляется к турбинным лопастям и активизирует электрогенераторы. Гидрологические виды энергетики различаются по типу используемых агрегатов, конфигурации взаимодействия оборудования с естественными потоками воды и т. д. По рабочим показателям можно выделить следующие разновидности гидростанций:

  • Малые – вырабатывают до 5 МВт.
  • Средние – до 25 МВт.
  • Мощные – более 25 МВт.

Также применяется классификация в зависимости от силы напора воды:

  • Низконапорные станции – до 25 м.
  • Средненапорные – от 25 м.
  • Высоконапорные – выше 60 м.

К достоинствам гидроэлектростанций относят экологическую чистоту, экономическую доступность (бесплатная энергия), неисчерпаемость рабочего ресурса. В то же время гидротехнические сооружения требуют больших начальных затрат на техническую организацию аккумулирующей инфраструктуры, а также имеют ограничения по географическому размещению станций – только там, где реки обеспечивают достаточный напор воды.

Атомная энергетика

В некотором смысле это подвид тепловой энергетики, но практически производственные показатели работы ядерных станций на порядок выше ТЭС. В России используют полные циклы выработки атомной электроэнергии, что позволяет генерировать большие объемы энергетического ресурса, но имеют место и огромные риски использования технологий обработки урановой руды. Обсуждением вопросов безопасности и популяризации задач данной отрасли, в частности, занимается АНО «Информационный центр атомной энергетики», имеющий представительства в 17 регионах России.

Ключевую роль в исполнении процессов генерации ядерной энергии играет реактор. Это агрегат, предназначенный для поддержания реакций деления атомов, которые, в свою очередь, сопровождаются выделением тепловой энергии. Существуют разные типы реакторов, отличающиеся применяемым видом топлива и теплоносителем. Чаще используется конфигурация с легководным реактором, использующим в качестве теплоносителя обычную воду. Основным ресурсом переработки в ядерной атомной энергетике выступает урановая руда. По этой причине АЭС обычно проектируются с расчетом на размещение реакторов вблизи от месторождений урана. На сегодняшний день в России действует 37 реакторов, совокупная мощность выработки которых составляет около 190 млрд кВт*ч/год.

Характеристика альтернативной энергетики

Биомассовая энергия

Практически все источники альтернативной энергии выгодно отличаются финансовой доступностью и экологической чистотой. По сути, в данном случае происходит замена перерабатываемого ресурса (нефти, газа, угля и т. д.) на природную энергию. Это может быть солнечный свет, потоки ветра, тепло земли и другие естественные источники энергии за исключением гидрологических ресурсов, которые сегодня рассматриваются как традиционные. Концепции альтернативной энергетики существуют давно, однако по сей день они занимают небольшую долю в общем мировом энергообеспечении. Задержки в развитии данных отраслей связаны с проблемами технологической организации процессов выработки электричества.

Но чем обусловлено активное развитие альтернативной энергетики в наши дни? В немалой степени необходимостью снижения темпов загрязнения окружающей среды и в целом проблемами экологии. Также в скором будущем человечество может столкнуться с истощением традиционных ресурсов, используемых в производстве энергии. Поэтому, даже несмотря на организационные и экономические препятствия, все больше внимания уделяется проектам развития альтернативных форм энергетики.

Геотермальная энергетика

Один из самых распространенных способов получения энергии в бытовых условиях. Геотермальная энергия вырабатывается в процессе аккумуляции, передачи и преобразования внутреннего тепла Земли. В промышленных масштабах обслуживаются подземные породы на глубинах до 2-3 км, где температура может превышать 100°С. Что касается индивидуального применения геотермальных систем, то чаще задействуются поверхностные аккумуляторы, располагаемые не в скважинах на глубине, а горизонтально. В отличие от других подходов к выработке альтернативной энергии, практически все геотермальные виды энергетики в производственном цикле обходятся без этапа преобразования. То есть первичная тепловая энергия в этой же форме и поставляется конечному потребителю. Поэтому используется такое понятие, как геотермальные системы отопления.

Геотермальные источники энергии

Солнечная энергетика

Одна из старейших концепций альтернативной энергетики, задействующая в качестве аккумулятивного оборудования фотоэлектрические и термодинамические системы. Для реализации фотоэлектрического метода генерации используют преобразователи энергии световых фотонов (квантов) в электричество. Термодинамические установки более функциональны и за счет солнечных потоков могут вырабатывать как тепло с электричеством, так и механическую энергию для создания приводного усилия.

Схемы достаточно простые, но есть немало проблем при эксплуатации такого оборудования. Связано это с тем, что солнечная энергетика в принципе характеризуется целым рядом особенностей: нестабильностью из-за суточных и сезонных колебаний, зависимостью от погоды, низкой плотностью потоков света. Поэтому на этапе проектирования солнечных батарей и аккумуляторов много внимания уделяется исследованию метеорологических факторов.

Волновая энергетика

Волновая энергетика

Процесс выработки электричества из волн происходит в результате преобразования энергии прилива. В основе большинства электростанций такого типа находится бассейн, который организуется или в ходе отделения устья реки, или за счет перекрытия залива плотиной. В образованном барьере устраиваются водопропускные отверстия с гидротурбинами. По мере изменения уровня воды во время приливов происходит вращения турбинных лопастей, что и способствует выработке электричества. Отчасти этот вид энергетики схож с принципами работы гидроэлектростанциями, но сама механика взаимодействия с водным ресурсом имеет существенные отличия. Волновые станции могут использоваться на побережьях морей и океанов, где уровень воды поднимается до 4 м, позволяя вырабатывать мощность до 80 кВт/м. Недостаток таких сооружений связан с тем, что водопропускные сооружения нарушают обмен пресной и морской воды, а это негативно сказывается на жизни морских организмов.

Ветровая энергетика

Еще один доступный для применения в частном хозяйстве способ получения электричества, отличающийся технологической простотой и экономической доступностью. В качестве обрабатываемого ресурса выступает кинетическая энергия воздушных масс, а роль аккумулятора выполняет двигатель с вращающимися лопастями. Обычно в ветровой энергетике применяют генераторы электрического тока, которые активизируются в результате вращения вертикальных или горизонтальных роторов с пропеллерами. Средняя бытовая станция такого типа способна генерировать 2-3 кВт.

Ветровая энергетика

Энергетические технологии будущего

По оценкам экспертов, к 2100 г совокупная доля угля и нефти в мировом балансе составит около 3%, что должно отодвинуть термоядерную энергетику на роль второстепенного источника энергетических ресурсов. На первое же место должны встать солнечные станции, а также новые концепции преобразования космической энергии, основанной на беспроводных каналах передачи. Процессы становления энергии будущего должны начаться уже к 2030 г., когда наступит период отказа от углеводородных источников топлива и перехода к «чистым» и возобновляемым ресурсам.

Перспективы российской энергетики

Будущее отечественной энергетики преимущественно связывается с развитием традиционных способов преобразования природных ресурсов. Ключевое место в отрасли должна будет занять ядерная энергетика, но в комбинированном варианте. Инфраструктуру атомных станций должны будут дополнять элементы гидротехники и средства переработки экологически чистого биотоплива. Не последнее место в возможных перспективах развития отводится и солнечным батареям. В России и сегодня этот сегмент предлагает немало привлекательных идей – в частности, панели, которые могут работать даже в зимнее время. Аккумуляторы преобразуют энергию света как такового даже без тепловой нагрузки.

Солнечная энергия

Заключение

Современные проблемы энергетического обеспечения ставят крупнейшие государства перед выбором между мощностью и экологической чистотой выработки тепла и электричества. Большинство освоенных альтернативных источников энергии при всех своих плюсах не способны в полной мере заменить традиционные ресурсы, которые, в свою очередь, могут использоваться еще несколько десятилетий. Поэтому энергию будущего многие специалисты представляют как некий симбиоз различных концепций генерации энергоресурсов. Причем новые технологии ожидаются не только на промышленном уровне, но и в бытовом хозяйстве. В этой связи можно отметить градиент-температурные и биомассовые принципы энергетической выработки.

fb.ru

Разнообразные виды энергии

Дата публикации 04.02.2013 16:00

Энергия является величиной физической. Она подразумевает собой все разнообразие движения природных веществ. Разным формам материи соответствуют разные виды энергии.

В повседневной действительности наиболее часто можно наблюдать непосредственное движение и взаимодействие физических веществ и их частей. При этом происходит выделение механической энергии. Она известна человечеству с древнейших лет. Наиболее распространенными ее источниками служат ветер и речное течение, морские приливы и отливы, животные и человек. Виды энергии механического типа подразделяют на две группы. К ним относят кинетическую форму, которой обладают тела в движении, и потенциальную, которая содержится в покоящейся материи.

Разнообразные виды энергии, существующие в природе, включают в себя и световую форму. Она известна всем и сопровождает каждого на протяжении его жизненного периода. Виды источников энергии света известны с древности. Это Солнце и Луна, звезды, костры и факелы, а также растения и животные определенных хемилюминесцентных семейств. Все живые существа на нашей планете способны существовать только лишь благодаря энергии света. Основным его источником на Земле было и остается Солнце. Без этой звезды наша планета выглядела бы как безжизненное тело, закованное в огромной толщины ледяной панцирь. Лучи, посылаемые небесным светилом, способны аккумулироваться и в другие виды энергии. Так, разогревая слои атмосферы и поверхность Земли, Солнце является источником тепла. Этот вид энергии является первопричиной возникновения ветра. В свою очередь, данное природное явление служит источником механического движения. Благодаря солнечным лучам возникает энергия газовых, нефтяных и угольных месторождений, а также лесов, полей и лугов, называемая химической.

Огромной силой обладает и движение частиц воды. Энергия волны представляет собой постоянные переходы из кинетической формы в потенциальную. Каждый из этих видов движения способен передаваться со своей характерной скоростью. Первоисточником, который подпитывает энергию волн, в большинстве случаев является ветер, который возникает в результате нагрева земной поверхности.

В природе существует также движение звуковых волн. Энергия, передаваемая попеременно сжимаемыми и разряжаемыми слоями воздуха, распространяется в пространстве со скоростью звука. Движение волн электромагнитных полей в физике называют излучением. Энергия данного вида переносится аналогично звуковой и водной. Ее основными источниками служат космические излучения, магнитное поле нашей планеты, а также определенные виды рыб.

Когда речь заходит об использовании энергии, то ее классифицируют на свободную (механическую и электрическую, химическую и электромагнитную, а также ядерную) и на хаотическую (тепловую). Все типы движения не возникают из ничего и не уходят бесследно. Свободные виды энергии переходят в хаотическую, имеющую меньшую температуру, и могут быть использованы практически полностью.

В современном мире человечество применяет не только силу природных явлений. Оно научилось выделять ее из других форм: химической, механической и электромагнитной.

Первоисточником любого из видов энергии являются термоядерные реакции, происходящие на Солнце. В связи с этим, ученые нашей планеты поставили перед собой задачу, решение которой позволит получить искусственное светило. Новые виды энергии должны дать толчок к бурному развитию агропромышленного комплекса и промышленности. Если человечество будет обладать неиссякаемыми запасами термоядерного источника, то оно сможет осуществить любые свои мечты.

Опубликовано в Образование и наука

Добавить комментарий

www.vigivanie.com

Альтернативные источники энергии: виды и использование

альтернативные источники энергии

В связи с развитием производственных технологий и значительным ухудшением экологической ситуации во многих регионах земного шара, человечество столкнулось с проблемой поиска новых источников энергии. С одной стороны, количество добываемой энергии должно быть достаточным для развития производства, науки и коммунально-бытовой сферы, с другой стороны, добыча энергии не должна отрицательно сказываться на окружающей среде.

Данная постановка вопроса привела к поиску так называемых альтернативных источников энергии — источников, соответствующих вышеуказанным требованиям. Усилиями мировой науки было обнаружено множество таких источников, на данный момент большинство из них уже используется более или менее широко. Предлагаем вашему вниманию их краткий обзор:

Солнечная энергия

солнечная энергия

Солнечные электростанции активно используются более чем в 80 странах, они преобразуют солнечную энергию в электрическую. Существуют разные способы такого преобразования и, соответственно, различные типы солнечных электростанций. Наиболее распространены станции, использующие фотоэлектрические преобразователи (фотоэлементы), объединенные в солнечные батареи. Большинство крупнейших фотоэлектрических установок мира находятся в США.

Энергия ветра

энергия ветра

Ветроэнергетические установки (ветряные электростанции) широко используются в США, Китае, Индии, а также в некоторых западноевропейских странах (например в Дании, где 25% всей электроэнергии добывают именно таким способом). Ветроэнергетика является весьма перспективным источником альтернативной энергии, в настоящее время многие страны значительно расширяют использование электростанций данного типа.

Биотопливо

биотопливо

Главными преимуществами данного источника энергии перед другими видами топлива являются его экологичность и возобновляемость. К альтернативным источникам энергии относятся не все виды биотоплива: традиционные дрова тоже являются биотопливом, но не являются альтернативным источником энергии. Альтернативное биотопливо бывает твердым (торф, отходы деревообработки и сельского хозяйства), жидким (биодизель и биомазут, а также метанол, этанол, бутанол) и газообразное (водород, метан, биогаз).

Энергия приливов и волн

энергия приливов и волн

В отличие от традиционной гидроэнергетики, использующей энергию водного потока, альтернативная гидроэнергетика пока не получила широкого распространения. К главным минусам приливных электростанций относятся высокая стоимость их строительства и суточные изменения мощности, их за которых электростанции этого типа целесообразно использовать только в составе энергосистем, использующих также и другие источники энергии. Основные плюсы — высокая экологичность и низкая себестоимость получения энергии.

Тепловая энергия Земли

тепловая энергия Земли

Для разработки этого источника энергии используются геотермальные электростанции, использующие энергию высокотемпературных грунтовых вод, а также вулканов. На данный момент более распространенной является гидротермальная энергетика, использующая энергию горячих подземных источников. Петротермальная энергетика, основанная на использовании «сухого» тепла земных недр, на данный момент развита слабо; основной проблемой считается низкая рентабельность данного способа получения энергии.

Атмосферное электричество

атмосферное электричество

(Вспышки молний на поверхности Земли происходят практически одновременно в самых разных местах планеты)

Грозовая энергетика, основывающаяся на захвате и накоплении энергии молний, пока находится в стадии становления. Главными проблемами грозовой энергетики являются подвижность грозовых фронтов, а также быстрота атмосферных электрических разрядов (молний), затрудняющая накопление их энергии.

xn----8sbiecm6bhdx8i.xn--p1ai

работа, энергия и мощность —

Дата публикации: 1 февраля 2015

В текстах, публикуемых на этом сайте, часто встречаются различные термины, которые являются названиями физических величин. Многое мы изучали еще в школьном курсе физике, но знания имеют свойство забываться без постоянного употребления. В серии заметок, объединенных под общим заголовком «Вспоминаем физику» (можно было бы назвать «Снова в школу») мы постараемся напомнить вам, что означают основные термины, какие физические величины за этими терминами скрываются, как они связаны между собой, в каких величинах они измеряются. В общем, дать те основы, которые нужны для понимания публикуемых материалов.

Сайт нас в целом посвящен методам и технологиям получения энергии (конкретно, из возобновляемых источников). Энергия нужна людям для отопления и освещения собственных жилищ, для того, чтобы приводить в движение различные механизмы, которые совершают полезную для людей работу. То есть нам нужно получить в конечном итоге один из трех видов энергии — тепловую, механическую и энергию света. Как будет сказано ниже, в физике различают еще несколько видов энергии, но для нас важны в первую очередь эти три вида. Закончу с предисловиями и приведу те определения энергии, которые приняты в физике.

Работа и энергия

Еще из школьного курса физики (а школу я окончил 50 лет назад) я помню утверждение «Энергия является мерой способности физической системы совершить работу». Википедия дает менее понятное определение, утверждая, что

«Эне́ргия — скалярная физическая величина, являющаяся единой мерой различных форм движения и взаимодействия материи, мерой перехода движения материи из одних форм в другие. Введение понятия энергии удобно тем, что в случае, если физическая система является замкнутой, то её энергия сохраняется в этой системе на протяжении времени, в течение которого система будет являться замкнутой. Это утверждение носит название закона сохранения энергии.»

Энергия является скалярной величиной, для измерения которой применяются несколько разных единиц. Нам наиболее интересны джоуль и киловатт-час.

Джо́уль (русское обозначение: Дж; международное: J) — единица измерения работы, энергии и количества теплоты в Международной системе единиц (СИ). Джоуль равен работе, совершаемой при перемещении точки приложения силы, равной одному ньютону, на расстояние одного метра в направлении действия силы. В электричестве джоуль означает работу, которую совершают силы электрического поля за 1 секунду при напряжении в 1 вольт для поддержания силы тока в 1 ампер.

Впрочем, мы не будем углубляться в основы физики, выясняя, что такое сила и что такое один ньютон, просто примем понятие «энергия» за основу и запомним, что некое количество джоулей характеризует энергию, работу и количество теплоты. Еще одной величиной, с помощью которой измеряют количество энергии, является киловатт-час.

Килова́тт-час (кВт⋅ч) — внесистемная единица измерения количества произведенной или потреблённой энергии, а также выполненной работы. Используется преимущественно для измерения потребления электроэнергии в быту, народном хозяйстве и для измерения выработки электроэнергии в электроэнергетике.

Следует заметить, что правильно писать именно «кВт⋅ч» (мощность, умноженная на время). Написание «кВт/ч» (киловатт в час), часто употребляемое во многих СМИ и даже иногда в официальных документах, неправильно. Такое обозначение соответствует изменению мощности в единицу времени (что обычно никого не интересует), но никак не количеству энергии. Столь же распространённая ошибка — использовать «киловатт» (единицу мощности) вместо «киловатт-час».

В последующих статьях мы будем использовать джоуль и киловатт-час как единицы для оценки количества энергии или работы, имея в виду, что один киловатт-час равен 3,6·106 джоулей.

С точки зрения интересующих нас тем именно свойство энергии совершать работу является основополагающим. Мы не будем выяснять, как физика трактует понятие «работа», будем считать, что это понятие является первоначальным и не определяемым. Только еще раз подчеркнем, что количественно энергия и работа выражаются в одних единицах.

В зависимости от вида энергии или работы величина энергии рассчитывается разными способами:

В механике: сила, умноженная на длину E ~ F·l
В термодинамике: давление, умноженное на объём E ~ P·V
Импульс, умноженный на скорость E ~ p·v
Масса, умноженная на квадрат скорости E ~ m·v²
В электростатике: заряд, умноженный на напряжение E ~ q·U
Мощность, умноженная на время E ~ N·t

Формы и виды энергии

Поскольку энергия, как сказано выше, является только мерой различных форм движения и взаимодействия материи, мерой перехода движения материи из одних форм в другие, различные формы энергии выделяются в соответствии с различными формами движения материи. Таким образом, в зависимости от уровня проявления, мож­но выделить следующие формы энергии:

  • энергия макромира — гравитационная или энергия притяжения тел,
  • энергия взаимодействия тел — механическая,
  • энергия молекулярных взаимодействий — тепловая,
  • энергия атомных взаимодей­ствий — химическая,
  • энергия излучения — электромагнит­ная,
  • энергия, заключенную в ядрах атомов, — ядерная.

Гравитационная энергия — энергия системы тел (частиц), обусловленная их взаимным гравитационным тяготением. В земных условиях, это, например, энергия, «запасенная» телом, поднятым на опреде­ленную высоту над поверхностью Земли — энергия силы тя­жести. Таким образом, энергию, запасенную в водохранилищах гидроэлектростанций, можно отнести к гравитационной энергии.

Механическая энергия — проявляется при взаимодей­ствии, движении отдельных тел или частиц. К ней относят энергию движения или вращения тела, энер­гию деформации при сгибании, растяжении, закручивании, сжатии упругих тел (пружин). Эта энергия наиболее широко используется в различных машинах — транспортных и техно­логических.

Тепловая энергия — энергия неупорядоченного (хаотичес­кого) движения и взаимодействия молекул веществ. Тепловая энергия, получаемая чаще всего при сжигании различных видов топлива, широко применяется для отопле­ния, проведения многочисленных технологических процес­сов (нагревания, плавления, сушки, выпаривания, перегон­ки и т. д.).

Химическая энергия — это энергия, «запасенная» в атомах веществ, которая высвобождается или поглощается при хими­ческих реакциях между веществами. Химическая энергия либо выделяется в виде тепловой при проведении экзотермических реакций (например, горении топлива), либо преобразуется в электрическую в гальваничес­ких элементах и аккумуляторах. Эти источники энергии ха­рактеризуются высоким КПД (до 98 %), но низкой емкостью.

Электромагнитная энергия — это энергия, порождаемая взаимодействием электрического и магнитного по­лей. Ее подразделяют на электрическую и магнитную энергии. Электрическая энергия — энергия движущихся по элек­трической цепи электронов (электрического тока).

Электромагнитная энергия проявляется также в виде электромагнит­ных волн, то есть в виде излучения, включающего видимый свет, инфракрасные, ультрафио­летовые, рентгеновские лучи и радиоволны. Таким образом, один из видов электромагнитной энергии — это энергия излучения. Излучение переносит энергию в форме энергии электромагнитной волны. Когда излучение поглощается, его энергия преобразуется в другие формы, чаще всего в теплоту.

Ядерная энергия — энергия, локализованная в ядрах ато­мов так называемых радиоактивных веществ. Она высвобож­дается при делении тяжелых ядер (ядерная реакция) или син­тезе легких ядер (термоядерная реакция).

В эту классификацию несколько не укладываются известные нам со школы понятия потенциальной и кинетической энергии. Современная физика считает, что понятия кинетической и потенциальной энергий (а также энергии диссипации) это не формы, а виды энергии:

Кинетическая энергия — энергия, которой обладают тела вследствие своего движения. Более строго, кинетическая энергия есть разность между полной энергией системы и её энергией покоя; таким образом, кинетическая энергия — часть полной энергии, обусловленная движением. Когда тело не движется, кинетическая энергия равна нулю.

Потенциальная энергия — энергия, обусловленная взаимодействием различных тел или частей одного и того же тела. Потенциальная энергия всегда определяется положением тела относительно некоторого источника силы (силового поля).

Энергия диссипации (то есть рассеяния) — переход части энергии упорядоченных процессов в энергию неупорядоченных процессов, в конечном счёте — в теплоту.

Дело в том, что каждая из перечисленных выше форм энергии может проявляться в виде потенциальной и кинетической энергии. То есть виды энергии должны трактоваться в обобщенном смысле, ибо они относятся к любой форме движения и, следовательно, к любой форме энергии. Например, имеется кинетическая электрическая энергия, и это не то же самое, что кинетическая механическая энергия. Это кинетическая энергия движения электронов, а не кинетическая энергия механического движения тела. Точно так же потенциальная электрическая энергия это не то же самое, что потенциальная механическая энергия. А химическая энергия складывается из кинетической энергии движения электронов и электрической энергии их взаимодействия друг с другом и с атомными ядрами.

Вообще, насколько я понял при подготовке этого материала, пока не существует общепринятой классификации форм и видов энергии. Впрочем, возможно нам и не нужно до конца разбираться в этих физических понятиях. Важно только помнить, что энергия — это не какая-то реальная материальная субстанция, а только мера, предназначенная для оценки перемещения некоторых форм материи или преобразования одной формы материи в другую.

С понятием энергии и работы неразрывно связано понятие мощности.

Мощность

Мо́щность — физическая величина, равная в общем случае скорости изменения, преобразования, передачи или потребления энергии системы. В более узком смысле мощность равна отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.

В Международной системе единиц (СИ) единицей измерения мощности является ватт, равный одному джоулю, делённому на секунду.

Мощность характеризует способность того или иного устройства совершать работу или производить энергию в течение определенного промежутка времени. Связь между мощностью, энергией и временем выражается следующим соотношением:

Киловатт-час (напомним, что это единица измерения энергии) равен количеству энергии, потребляемой (производимой) устройством мощностью один киловатт (единица мощности) в течение одного часа (единица времени).

Отсюда и уже упомянутое выше равенство 1 кВт⋅ч = 1000 Вт ⋅ 3600 с = 3,6·106 Дж = 3,6 МДж.

Из трех рассмотренных на этой странице единиц именно мощность представляет для нас наибольший интерес, поскольку эта величина будет нам встречаться при рассмотрении и сравнении различных ветро- или гидро-генераторов и солнечных панелей. В этих случаях мощность характеризует способность этих устройств производить энергию. И наоборот, указание мощности на многих бытовых электроприборах характеризует потребление энергии этими приборами. Если мы хотим обеспечить некоторую совокупность бытовых приборов энергией, мы должны сопоставить суммарную потребляемую этими приборами мощность с суммарной мощностью, которую можем получить от производителей энергии.

Но подробнее о мощности мы поговорим в следующих статьях, посвященных конкретным видам энергии.  И начнем с электрической энергии, рассмотрим, какими величинами характеризуется электричество и в каких единицах оно измеряется.

altenergiya.ru

Виды, способы получения, преобразования и использования энергии. Энергия и ее виды. Назначение и использование

Энергия и ее виды. Назначение и использование

Энергия играет решающую роль в развитии человеческой цивилизации. Потребление энергии и накопление Информации имеют примерно одинаковый характер изменения во времени. Существует тесная связь между расходом энергии и объемом выпускаемой продукции.

Согласно представлениям физической науки энергия это способность тела или системы тел совершать работу. Существуют различные классификации видов и форм энергии. Назовем те ее виды, с которыми люди наиболее часто встречаются в своей повседневной жизни: механическая, Электрическая, электромагнитная и внутренняя. К внутренней энергии, относятся тепловая, химическая и внутриядерная (атомная). Внутренняя форма энергии обусловлена потенциальной энергией взаимодействия частиц, составляющих тело, или кинетической энергией их беспорядочного движения.

Если энергия результат изменения состояния движения материальных точек или тел, то она называется кинетической; к ней относят механическую энергию движения тел, тепловую энергию, обусловленную движением молекул.

Если энергия результат изменения взаимного расположения частей данной системы или ее положения по отношению к другим телам, то она называется потенциальной; к ней относят энергию масс, притягивающихся по закону всемирного тяготения, энергию положения однородных частиц, например, энергию упругого деформированного тела, химическую энергию.

Основной источник энергии это солнце. Под действием его лучей хлорофилл растений разлагает углекислоту, поглощаемую из воздуха, на кислород и углерод; последний накапливается в растениях. Уголь, подземный газ, торф, сланцы и дрова представляют собой запасы лучистой, энергии солнца, извлеченные хлорофиллом в виде химической энергии угля и углеводородов. Энергия воды также получается за счет солнечной энергии, испаряющей воду и поднимающей пар в высокие слои атмосферы. Ветер, используемый в ветряных двигателях, возникает в результате различного нагревания солнцем земли в разных местах. Огромные запасы энергии заключены в ядрах атомов химических элементов.

В Международной системе единиц СИ в качестве единицы измерения энергии принят джоуль. Если расчеты связаны с теплотой, биологической, электрической и многими другими видами энергии то в качестве единицы энергии применяется калория (кал) или килокалория (ккал).

1 кал = 4,18 Дж.

Для измерения электрической энергии пользуются такой единицей, как Ваттч (Втч, кВтч, МВтч).

1 Вт • ч = 3,6 МДж или 1 Дж = 1 Вт • с.

Для измерения механической энергии пользуются такой единицей, как кг • м.

1 кг • м = 9,8 Дж.

Энергия, которая содержится в природных источниках (энергоресурсах) и может быть преобразована в электрическую, механическую, химическую, называется первичной.

К традиционным видам первичной энергии, или энергоресурсам, относятся: органическое топливо (уголь, нефть, газ и др.), гидроэнергия рек и ядерное топливо (уран, торий и др.).

Энергия, получаемая человеком после преобразования первичной энергии на специальных установках станциях, называется вторичной (электрическая энергия, энергия пара, горячей воды и т. д.).

В настоящее время широко ведутся работы по применению нетрадиционных, возобновляемых источников энергии: солнечной, ветра, приливов, морских волн, теплоты земли. Эти источники, помимо того, что они возобновляемы, относятся к «чистым» видам энергии, т. к. их использование не приводит к загрязнению окружающей среды.

На рис. 10.1.1 приведена классификация первичной энергии. Выделены традиционные виды энергии, во все времена широко использовавшиеся человеком, и нетрадиционные, сравнительно мало использовавшиеся до последнего времени в силу отсутствия экономичных способов их промышленного преобразования, но особо актуальные сегодня ввиду их высокой экологичности.

Рис. 10.1.1. Схема классификации первичной энергии

На классификационной схеме невозобновляемые и возобновляемые виды энергии обозначены, соответственно, белыми и серыми прямоугольниками.

Потребление энергии необходимого вида и снабжение ею потребителей происходит в процессе энергетического производства, в котором можно выделить пять стадий: 1. Получение и Концентрация энергетических ресурсов: добыча и обогащение топлива, концентрация напора воды с помощью гидротехнических сооружений и т. д.

2. Передача энергетических ресурсов к установкам, преобразующим энергию; она осуществляется перевозками по суше и воде или перекачкой по трубопроводам воды, нефти, газа и т. д.

3. Преобразование первичной энергии во вторичную, имеющую наиболее удобную для распределения и потребления в данных условиях форму (обычно в электрическую и тепловую энергию).

4. Передача и распределение преобразованной энергии.

5. Потребление энергии, осуществляемое как в той форме, в которой она доставлена потребителю, так и в преобразованной.

Если общую энергию применяемых первичных энергоресурсов принять за 100%, то полезно используемая энергия составит только 35—40%, остальная часть теряется, причем большая часть в виде теплоты.

Преимущество электрической энергии

С далеких исторических времен развитие цивилизации и технический прогресс непосредственно связаны с количеством и качеством используемых энергоресурсов. Немногим более половины всей потребляемой Энергии используется в виде тепла для технических нужд, отопления, приготовления пищи, оставшаяся часть в виде механической, прежде всего в транспортных установках, и электрической энергии. Причем доля электрической энергии с каждым годом растет (рис. 10.2.1).

Рис. 10.2.1. Динамика потребления электрической энергии

Электрическая энергия является наиболее удобным видом энергии и по праву может считаться основой современной цивилизации. Подавляющее большинство технических средств механизации и автоматизации производственных процессов (оборудование, приборы, ЭВМ), замена человеческого труда машинным в быту имеют электрическую основу.

Почему же так быстро растет спрос именно на электрическую энергию, в чем ее преимущество?

Ее широкое использование обусловлено следующими факторами: возможностью выработки электроэнергии в больших количествах вблизи месторождений и водных истоков;

  1. возможностью транспортировки на дальние расстояния с относительно небольшими потерями;
  2. возможностью трансформации электроэнергии в другие виды энергии: механическую, химическую, тепловую, световую;
  3. отсутствием загрязнения окружающей среды;
  4. возможностью применения на основе электроэнергии принципиально новых прогрессивных технологических процессов с высокой степенью автоматизации.

ohrana-bgd.ru

Виды энергии и их характеристики

Строительные машины и оборудование, справочник

Категория:

   Передвижные электростанции

Виды энергии и их характеристики

Всем телам в природе присущи определенные формы движения. Количественной мерой выражения различных форм движения материи является энергия.

Различают следующие виды энергии: тепловую, механическую, электрическую, химическую, ядерную, акустическую и др.

Тепловой энергией называют хаотическое (беспорядочное) движение атомов и молекул. Это движение тесно связано с температурой вещества: чем больше скорость движения атомов и молекул, тем выше температура вещества.

Превращение одних видов движения тел в другие приводит к соответственному превращению энергии, которое подчиняется закону сохранения и превращения энергии. Согласно этому закону энергия может передаваться от одного тела к другому и превращаться из одного вида в другой, но не может быть уничтожена или создана вновь, так же как не может быть уничтожена и создана вновь материя.

Механическая энергия бывает кинетической и потенциальной. Под кинетической энергией понимают энергию механического движения тела, измеряемую работой, которую тело способно произвести при полной его остановке. Кинетическая энергия тела определяется произведением половины его массы на квадрат скорости движения.

Под потенциальной энергией тела понимают энергию покоя (положения), измеряемую работой, которую тело может совершить при передвижении из исходного положения в какое-либо другое положение, ниже первоначального. Потенциальная энергия заключается в поднятом теле, сжатом газе, заведенной часовой пружине и т. д.

Читать далее: Рабочее тело и основные параметры, определяющие его состояние

Категория: - Передвижные электростанции

Главная → Справочник → Статьи → Форум

stroy-technics.ru

Ответы@Mail.Ru: Какие бывают виды энергии?

кинетическая, потенциальная

Кинетическая, потенциальная, внутренняя, полная. По типу взаимодействий: гравитационная, электромагнитная, ядерная (сильное/слабое)

Атомная, химическая.. . Мускульная -это химическая энергия...

Кажется мы все мотанги и прищи сасунки.

Вы все любите жрать г*вно! Хуйня это энергия особино механический хyй 8==================================================э

Хуйня это энергия особино механический хyй 8===Э

touch.otvet.mail.ru


© 2007—2018
423800, Набережные Челны , база Партнер Плюс, тел. 8 800 100-58-94 (звонок бесплатный)