ООО «Старт Импэкс» имеет возможность поставки грузовой автотехники КАМАЗ, а так же спецтехники на шасси КАМАЗ в лизинг. Продажа грузовой техники по лизинговым схемам имеет определенные выгоды для покупателя грузовика. Рассрочка платежа, а так же то обстоятельство, что грузовики до полной выплаты лизинговых платежей находятся на балансе лизингодателя, и соответственно покупатель автомобиля не платит налогов на имущество. Мы готовы предложить любые модели бортовых автомобилей, тягачей и самосвалов по самым выгодным лизинговым схемам.
Контактная информация.
г. Набережные Челны, Промкомзона-2, Автодорога №3, база «Партнер плюс».
Подключение реле напряжения - схема самостоятельного подключения реле регулятора напряжения в квартире, доме
Реле контроля напряжения (барьеры или регуляторы напряжения) необходимы для защиты проводки и бытовой техники от скачков напряжения. Установить регулятор напряжения дома или в квартире можно своими руками. Нужно лишь знать несколько правил и четко следовать инструкции. Но до начала работы необходимо узнать, как работает реле напряжения.
Принцип работы регулятора напряжения
Значения напряжения постоянно измеряются регулятором. Нижний порог напряжения регулируется левой кнопкой, верхний, соответственно, – правой. Максимально и минимально допустимые значения устанавливаются самостоятельно.
Когда уровень напряжения резко поднимается или опускается, реле размыкает силовой контакт и отключает фазу. Таким образом, регулятор разрывает связь между внутренней проводкой и внешнюю сетью, то есть, автоматически отключает питание. Регулятор напряжения срабатывает очень быстро – за 0,02 секунды.
К сожалению, реле напряжения не способны уберечь от удара молнии и предотвратить его последствия.
Виды регуляторов напряжения
Существует несколько видов реле напряжения. Классифицируются реле по нагрузке, которую они способны выдержать. Нагрузка составляет от 16 А до 80 А (чем больше сила этой нагрузки, тем мощнее реле). В доме или квартире своими руками лучше всего подключить регулятор с силой тока до 40 А.
Регуляторы напряжения можно подключить в одну розетку, а можно для всего дома. Наиболее выгодный и разумный вариант – это подключить реле своими руками для контроля электроэнергии всего дома или квартиры. Помните, что реле должно быть рассчитано на ток, который больше тока вводного автомата.
Устанавливаются регулятор напряжения в распределительный щит или вне его, но желательно, чтобы он находился вблизи счетчика. Подключение регулятора производится только после подключения счетчика.
Виды подключения реле напряжения для однофазных сетей; схемы подключения
Чаще всего в домах и квартирах используются такие виды схем подключения регулятора напряжения:
Схема 1 – нагрузкой управляют сами контакты, через них проходит весь ток, который потребляет подключенная к сети техника
Схема 2 – регулятор напряжения управляется обмоткой контактора, нагрузку необходимо подключить к сети через силовые контакты
Как подключить своими руками реле напряжения дома или в квартире
В комплекте с регулятором напряжения обязательно должны быть схема с инструкцией. Если их нет, то лучше не покупать такое реле.
При подключении реле своими руками в доме или квартире, помимо схемы и самого реле, вам нужны будут следующие инструменты:
провод с сечением 6 мм (также подойдет с сечением 4 мм)
железная пластина
саморезы
DIN-рейка
плоскогубцы
индикатор
отвертка
Для начала выключите все электроприборы в доме, а также выключите пробки. Затем вблизи автоматов необходимо будет прикрепить DIN-рейку, используя саморезы. На задней стенке реле находятся специальные защелки – этими защелками прикрепите регулятор к DIN-рейке. Найдите и измерьте индикатором фазу на контактах входящих автоматов и разрежьте фазный провод в том месте, где входной автомат соединяется с квартирой.
Идущий в дом провод соедините с контактом «IN» на реле напряжения, а к контакту «OUT» необходимо будет подключить часть кабеля, которая идет из дома. После этого возьмите маленький кусочек другого провода. Один его конец соедините с проводом «ноль» на автомате, а второй – с отверстием «N» на реле. После всего этого можно будет включить питание.
Работа с электросетями небезопасна. Если нет навыков работы с электропроводкой, лучше заказать услуги электрика через портал YouDo. Оформить заказ на сайте можно в считанные минуты, а специалисты Юду прибудут оперативно, работу выполнят профессионально и недорого.
remont.youdo.com
принцип работы, устройство, схема и замена
Величина электрического напряжения, вырабатываемого автомобильным генератором, не постоянна и зависит от количества оборотов коленчатого вала. Для того чтобы ее стабилизировать, предназначен специальный регулятор. О нем мы и поговорим в этой статье на примере автомобиля ВАЗ-2110.
Для чего нужен регулятор напряжения
Регулятор служит для поддержания напряжения в сети машины в заданных пределах, независимо от скорости вращения вала генератора, нагрузки, а также температуры воздуха. Кроме того, он обеспечивает стабильную зарядку автомобильного аккумулятора.
Схема подключения и принцип работы
Регулятор напряжения на большинстве автомобилей подключен к бортовой сети по нижеприведенной схеме.
Принцип работы регулятора напряжения (РН) такой же, как и у реле. Иными словами, он размыкает и замыкает электрическую цепь. Именно поэтому устройство еще называют реле-регулятором. Оно срабатывает при изменении заданной величины напряжения, поступающего с генератора.
Первые регуляторы имели электромагнитную конструкцию. Это были самые настоящие реле. Современные устройства изготавливаются на основе полупроводников. Они отличаются небольшими габаритами, а кроме того, работают намного точнее и эффективнее. Некоторые из них даже оснащены специальными сигнализаторами, которые позволяют водителю контролировать их работоспособность.
Регулятор напряжения ВАЗ-2110
РН «десятки» также имеет полупроводниковую конструкцию. Он интегрирован в генератор, что позволяет поддерживать необходимое напряжение непосредственно на выходе устройства.
Стоковый регулятор «десятки» выпускается под каталожным номером 1702.3702. Он может быть также использован в генераторах всех моделей «Самар».
На новых модификациях ВАЗ-2110 регулятор напряжения может иметь маркировку 1702.3702-01. Это новое поколение реле, которые изготавливаются по технологии MOSFET, позволяющей существенно снижать потери мощности на выходе. Кроме этого, эти устройства отличаются повышенной надежностью и устойчивостью к перегреву.
Технические характеристики РН ВАЗ-2110
Реле-регулятор напряжения генератора ВАЗ-2110 имеет следующие характеристики.
Напряжение регулирования с АКБ при температуре 25оС и нагрузке до 3А, В
14,4±2
Напряжение регулирования с АКБ при температуре 25оС и нагрузке более 3 А, В
14,4 ± 0,15
Диапазон рабочих температур, оС
-45...+100
Максимальная величина тока выходной цепи: стандарт/согласованная с производителем, А
5/8
Допустимое длительное воздействие высокого напряжения, В
18
Допустимое воздействие высокого напряжения длительностью до 5 мин., В
25
Признаки неисправности РН
В автомобилях ВАЗ-2110 регулятор напряжения ломается довольно редко, но если это случается, признаками его неисправности могут быть:
Выход из строя подсветки панели управления.
Превышение величины напряжения заряда АКБ.
Недостаточное напряжение заряда аккумулятора.
При поломке реле-регулятора напряжения ВАЗ-2110 возможно перегорание предохранителей, отвечающих за безопасность цепи питания панели приборов. Если лампы подсветки при включении зажигания не загорелись, существует вероятность того, что виновен в этом именно РН.
То же самое можно предположить, и когда стрелка вольтметра, показывающая уровень зарядки аккумулятора, отклоняется от своей привычной позиции, т. е. показывает больший или меньший вольтаж. Именно этот симптом чаще всего проявляется, когда реле-регулятор напряжения генератора ВАЗ-2110 выходит из строя. И если во втором случае он может стать причиной только разряда АКБ, то в первом это грозит закипанием электролита и разрушением пластин аккумулятора.
Как проверить РН на ВАЗ-2110, не снимая его
Обнаружив хоть один из перечисленных признаков, не поленитесь проверить на вашем ВАЗ-2110 регулятор напряжения. Эта процедура не займет более 10 минут. Для этого потребуется вольтметр или мультиметр, включенный в его режиме, а также помощник. Порядок проверки следующий:
Запускаем двигатель машины и прогреваем его до рабочей температуры.
Не выключая мотор, присоединяем один щуп вольтметра к клемме «B+» генератора, а второй – к «массе» устройства.
Просим помощника включить фары ближнего света и давить на педаль акселератора, удерживая обороты на уровне 2000-2500 тыс. об./мин.
Замеряем напряжение прибором.
У ВАЗ-2110 регулятор напряжения должен выдавать 13,2-14,7 В. Это норма. Если показатели вольтметра отличаются от приведенных, диагностические мероприятия следует продолжить.
Проверка снятого регулятора напряжения
Чтобы убедиться, что вышел из строя именно РН, а не сам генератор, его следует проверить отдельно. Для этого его потребуется отсоединить от основного устройства. Порядок действий таков:
Снимаем минусовую клемму с АКБ.
Находим место крепления РН к генератору. Откручиваем 2 винта его крепления.
Отсоединяем желтый провод, идущий от регулятора к генератору.
Демонтируем РН.
Для диагностики устройства потребуется блок питания с возможностью регулировки выходного напряжения, лампочка (12 В) с патроном и пара проводов. Алгоритм проверки следующий:
Собираем «контрольку» из лампы и проводов и подсоединяем ее к щеткам регулятора.
Устанавливаем напряжение на блоке питания на уровне 12 В.
К выводу «D+» регулятора подводим «плюс» от блока питания, а к его «массе» – «минус».
Смотрим на лампу: она должна гореть.
Увеличиваем напряжение на блоке питания до 15-16 В. При исправном регуляторе лампа должна погаснуть. Если этого не произошло – РН необходимо заменить.
Замена РН
Процесс замены регулятора напряжения особой сложностью не отличается. Все, что вам необходимо сделать, – это приобрести новое устройство, проверить его вышеописанным способом и установить на генератор, прикрутив двумя винтами. И не забудьте подключить желтый провод!
Трехуровневый регулятор напряжения ВАЗ-2110
А теперь вернемся немного назад. Обнаружив неисправность РН и решив его заменить, не спешите покупать стоковое устройство. Ему существует неплохая альтернатива – трехуровневый регулятор. Чем он отличается от обычного? Он позволяет регулировать величину напряжения на выходе в зависимости от температуры воздуха, тем самым оптимизируя нагрузку на аккумуляторную батарею.
Переключение режимов осуществляется тумблером в таких диапазонах:
13,6 В (минимум) – для работы при температурах свыше +20оС;
14,2 В (норма) – от 0оС до +20оС;
14,7 В (максимум) – для работы при температурах ниже 0оС.
Трехуровневый регулятор напряжения ВАЗ-2110 состоит из двух частей: самого РН и щеткодержателя. Последний устанавливается непосредственно на генератор и связан с первым при помощи провода. Регулятор, оснащенный тумблером, крепится к кузову автомобиля в моторном отсеке в удобном месте. Установить РН можно самостоятельно, используя инструкцию, идущую с ним в комплекте.
Доработка касается всех генераторов с регуляторами напряжения старого образца (РН 54.3702, РН 55.3702, РН 881.3702 и т.д.). Zver_042 с форума autolada.ru рассказывает, как установка дополнительного реле генератора позволит устранить просадки напряжения в бортовой сети при включении потребителей.
Регуляторы напряжения (далее просто РН) генераторов 372.3701, 9402.3701, 5102.3771 и им подобных имеют совмещённую цепь питания и измерения напряжения (вывод D+). Вся нагрузка бортовой сети автомобиля подключена к силовому выпрямителю (шпилька В+ или вывод 30) генератора. Когда напряжение в бортовой сети начинает проседать, РН не пытается удержать его в заданных пределах, т.к. он подключен к дополнительным диодам. В итоге имеем проблему просадки напряжения при нагрузки даже на исправном генераторе и РН. Решить проблему можно с помощью установки дополнительного реле:
Описание схемы: При включении зажигания через контрольную лампу напряжение подаётся на обмотку реле. Поскольку вход D+ теперь коммутируется через контакты реле, и от доп. диодов он оторван, то напряжение в точке D в момент включения зажигания будет порядка 8В. Этого достаточно чтобы реле включилось, и D+ РН оказался подключен к шпильке В+ (+АКБ). После запуска двигателя генератор гарантированно возбуждается, и в точке D, подключенной к доп. диодам моста появится напряжение, вырабатываемое генератором, которое и будет удерживать реле в замкнутом состоянии до тех пор, пока работает двигатель, лампа на приборке при этом гаснет.
Истории наших читателей
"Гребаный таз!!!"
Осипов Михаил, ВАЗ 2112, стаж вождения 11 лет.
Всем привет! Меня зовут Михаил, сейчас расскажу историю о том, как я вчера облажался. Еду домой с работы, подразогнался так нормально, уже практически доехал, как вдруг машину тряхнуло и двигатель погас. Как сейчас помню, открыл капот и побледнел от ужаса... как оказалось порвался ремень ГРМ. Ребята это П*3ДЕЦ... Нужен кап ремонт движка, денег нет, а работаю я таксистом, да-да я тот самый таксист, который приезжает к вам на развалюхе. Начал звонить по друзьям, чтобы одолжить денег на ремонт, но как это обычно бывает, именно в этот момент деньги у всех закончились, вот такие у меня друзья((
Ситуация казалось безвыходной, и выйти из нее мне помогла... не поверите, моя девушка. Нет, денег у нее тоже не было, но она посоветовала банк, который выдает до 15000 руб прямо на карту без всяких справок, документов и т.д. На ремонт движка мне не хватало около 8 тысяч. В общем оставил заявку на их сайте, и буквально через 15 мин деньги были у меня на карте сбера. Процент в этом банке совсем небольшой, относительно других, да и сам банк проверенный, в отличии других шарашкиных контор, которые разводят людей на бабки. Мало ли что, вдруг кому срочно понадобятся деньги, оставлю тут ссылку на этот банк. Машину отдал в ремонт, через пару дней будет как новенькая. Мне неделю потаксовать, чтобы вернуть долг, а вам советую вовремя менять ремень ГРМ, чтобы не попадать в такие ситуации как я.
Перейти на сайт банка>>
Преимещуства:
Простота схемы.
Можно запитать обмотку реле от любого провода, на котором появляется напряжение после включения зажигания. Дополнительная нагрузка в момент запуска, до возбуждения генератора, при этом составит около 180 мА (ток потребления обмотки).
Недостатки:
Лампа в приборке будет гореть в полнакала.
Если в приборке по цепи начального возбуждения стоит резистор на землю (его видно на фрагменте приборки в схеме), то вероятность включения реле при включении зажигания "под вопросом", так как обмотка будет шунтирована этим резистором.
Если реле залипнет, то после выключения зажигания РН (и обмотка ротора через него) останется подключен к +АКБ и будет потреблять ток в размере более 3А.
Как проверить наличие/отсутствие резистора в комбинации приборов? Нужно отсоединить от генератора колодку D (вывод 61 для генераторов 37 серии) и оставить его не подключенным. Если после включения зажигания контрольная лампа АКБ в приборной панеле загорится, значит резистор там есть, если гореть не будет, он отсутствует.
Описание схемы: При включении зажигания через контрольную лампу напряжение подаётся на НЗ (нормально замкнутые) контакты 88-30 реле, при этом РН получает начальное возбуждение почти по штатной схеме. Но так как вход D+ РН по схеме оторван от доп. диодов, то необходим ещё один диод между контактами реле 85-88 на схеме. Через него на время запуска генератора подключаются оторванные ранее доп. диоды, без этого генератор не возбудится на холостых оборотах. Этот диод и завершает картину запуска генератора по «штатной схеме», однако это не единственное его назначение.
После запуска двигателя генератор возбуждается, и в точке D, подключенной к доп. диодам моста появится напряжение, вырабатываемое генератором, которое включит и будет удерживать реле в замкнутом состоянии до тех пор, пока работает двигатель, лампа на приборке при этом гаснет за счёт установленного дополнительного диода. При этом контакт D+ РН будет подключен уже через НР (нормально разомкнутые) контакты реле 87-30 к шпильке В+ (+АКБ).
Преимущества:
Запуск генератора происходит по штатной схеме, то есть даже при наличии резистора на землю в приборке, генератор возбудится.
Лампа на приборке будет работать в штатном режиме, то есть если ей положено будет гореть, то гореть она будет с той же яркостью, как и в штатной схеме.
Недостатки:
Более сложная схема. Дополнительный диод (например, Шоттки на 1А в SMD исполнении, но лучше на 3А) удобнее ставить в колодке реле.
Если реле залипнет, то после выключения зажигания РН (и обмотка ротора через него) останется подключен к +АКБ и будет потреблять ток в размере более 3А.
Пример, как подключить регулятор напряжения с реле
На представленных фото показан пример, как установить дополнительное реле в составе генератора 5102.3771 Прамо. «Трёхуровневый» РН висит резервным. «Ренато» вынесен к правой фаре рядом с «трёхуровневым». В генераторе установлен только щёточный узел. Проводка выполнена с разъёмными колодками, что позволяет открыв капот переключиться с одного РН на другой в течении 10 секунд просто переподключением разъёма. Щёточный узел так же оканчивается колодками и может быть заменён в полевых условиях, запасной такой же лежит в багажнике.
Заключение
Чтобы оценить напряжение, выдаваемого генератором, замеры следует производить только на клеммах аккумулятора или генератора. Бортовой компьютер откалиброван по точному измерительному прибору, подключен на +АКБ через предохранитель, провод 1,5 квадрата, поэтому его показаниям можно доверять. Фото сделаны для того, чтобы показать, как ведёт себя напряжение на АКБ в зависимости от нагрузки. Вольтметр в левом нижнем углу дисплея:Кстати, а Вы знаете, как еще можно доработать генератор? Наши читатели рекомендуют!
Для того, чтобы избавиться от постоянных штрафов с камер, многие наши читатели успешно используют Специальную Нано Пленку на номера. Легальный и 100% надежный способ защиты от штрафов. Ознокомившись и внимательно изучив данный метод мы решили предложить его и Вам.
Наши читатели рекомендуют!
Для того, чтобы избавиться от постоянных штрафов с камер, многие наши читатели успешно используют Специальную Нано Пленку на номера. Легальный и 100% надежный способ защиты от штрафов. Ознокомившись и внимательно изучив данный метод мы решили предложить его и Вам.
Я установил доп реле генератора и..
Источник фото:Ключевые слова:
xn--2111-43da1a8c.xn--p1ai
Самодельный регулятор напряжения — Статьи
Как я делал Реле-Регулятор (Реле зарядки) для мотоцикла.Для начала отмечу, что нижеследующий текст является популистским и предназначен для людей, слабо разбирающихся в электронике, поэтому изобилует не совсем корректными сравнениями и упрощениями. Не надо тыкать мне в лицо учебником электротехники и учить меня законам Кирхгофа. Началось все с того, что ребята из дружественного мото-сервиса попросили меня срочно решить "проблемку с РР". Отказать ребятам было нельзя - свои, и я принялся изучать вопрос. Сначала выяснилось, что мотоциклетное РР - это совсем не то, что автомобильное. Отличий два и все они очень серьёзны. 1) Авто - это стабилизатор. Мото - это выпрямитель + стабилизатор . 2) Авто - регулирует напряжение на обмотке возбуждения генератора . Мото - регулирует выходное напряжение генератора . Есть мотоциклы с генераторами автомобильного типа, но их немного. Вот тут надо сделать небольшое отступление на тему "что такое сила тока, напряжение, и стабилизатор напряжения". Электрический ток, как известно из школьного курса физики, это "направленное движение электронов". Вдаваться в подробности сейчас не будем, важно уяснить главное - у электрического тока есть множество параметров, но нам наиболее важны два из них - сила тока и напряжение. Ток измеряется в Амперах, а напряжение измеряется в Вольтах. Чтобы понять что это такое, представьте, что ваш провод это канал, а ток - вода текущая по нему. Так вот сила тока это скорость потока воды, а напряжение - уровень воды в канале. Для понимания дальнейшего текста этого хватит. Теперь о стабилизаторах. Заморачиваться на выпрямителях мы пока не будем - диод он диод и есть. Задача любого стабилизатора напряжения - получить напряжение, понизить его до заданного уровня и удерживать на этом уровне. По принципу действия стабилизаторы делятся на импульсные, линейные и шунтирующие. Шунтирующий стабилизатор "пускает лишнее напряжение мимо потребителя". Простейший шунтирующий стабилизатор собирается из двух деталей - резистора и стабилитрона. Стабилитрон, это такой забавный штук, который, когда напряжение меньше чем нужно, прикидывается что его (стабилитрона) нет (то есть якобы провод оборван), а когда напряжение больше, чем нужно, прикидывается проволочкой (то есть начинает свободно проводить ток). Представьте себе клапан с пружиной, вот принцип тот же. Работает это так. Вот напряжение, меньше чем нужно, стабилитрон ток не проводит, весь ток уходит потребителю. Воды мало, клапан закрыт. Вот напряжение почему-то повысилось и стало больше чем нужно. Стабилитрон начинает проводить ток, и все лишнее "проваливается" мимо потребителя через стабилитрон на массу. Воды много, клапан открылся и слил лишнюю воду. Таким образом, наше напряжение, наш "уровень воды" все время находится примерно на одном значении. Все бы ничего, но не бывает стабилитронов на большие токи. Этот клапан может быть только маленького диаметра. Поэтому сделать стабилизатор для большой силы тока только на стабилитроне - невозможно. Как с этим справляются расскажу позже. Линейный стабилизатор действует по принципу: "при повышении напряжения ему создаются дополнительные трудности для прохождения". Лучшее сравнение - унитазный бачок. Уровень в бачке маленький - клапан открыт - вода наливается, уровень поднимается - поплавок тащит вверх, клапан закрывается, отверстие всё уже, уже, уже.... Уровень достиг нужного - клапан закрылся. Спустили воду - уровень упал - вода полилась, и всё по новой. Только быстро. Приделываем к нашему стабилитрону транзистор. Транзистор это и есть тот самый клапан в бачке. Напряжение маленькое - стабилитрон отключен (говорится "закрыт") - ток открывает транзистор - ток идет через транзистор к потребителю, напряжение повысилось - стабилитрон открылся - ток слился на массу - транзистор открывать уже нечем - он закрылся - отключил источник от потребителя. Ваша любимая "КРЕНка" и есть такой вот линейный стабилизатор, только схема внутри нее посложнее. И все бы ничего но, сам принцип линейного стабилизатора подразумевает "преобразование лишнего тока в тепло". Шунтирующий стабилизатор "пропускает через себя только лишнее". А линейный - всё. Поэтому греется он гораздо больше. И если заставить его стабилизировать большие токи, то греться он будет быстрее чем остывать. И быстро сгорит. И никакие радиаторы не помогут. А в мотоциклах очень большие токи (я говорю о японцах). Поэтому тот кто советует "сделать РР для мотоцикла на КРЕНке" - бредит. Импульсный стабилизатор действует по похожему принципу, только у него нет промежуточных состояний. Он либо подключает, либо отключает источник от потребителя. Подробности в википедии. Теперь вернёмся к нашим мотоциклам. Итак для начала я попробовал собрать классический линейный стабилизатор. Да, да, я наступил на все грабли, на которые можно было наступить. 20-ти амперный тошибовский транзистор шарахнул так, что слышно было на улице. Тогда вместо классического "биполярного" транзистора я применил так называемый "полевой". Полевые транзисторы свободно оперируют большими токами не особо при этом нагреваясь. Моя первая схема имела следующий вид. Транзистор VT0 выполняет функцию "чем больше напряжение питания, тем меньше напряжение он выдаёт", микросхема DA1 - "дёргает напряжение, управляющее полевым транзистором, чем меньше напряжение на входе, тем реже дёргает" микросхема DA2 - усиливает напряжение, управляющее полевым тразистором, а то ему с DA1 мало, ну а полевой транзистор VT1 уже выполняет роль того самого клапана в бачке унитаза и питает весь мотоцикл. И ничего. Не перегревается. Эту схему я изготовил в единственном экземпляре, и она работала. О дальнейшей ее судьбе мне ничего не известно. Но судя по тому, что рекламаций мне не высказали, наверно работала она удовлетворительно. Однако это получается импульсный стабилизатор. И у него есть главный недостаток импульсного стабилизатора - большие пульсации. Грубо говоря, напряжение на его выходе не 13 вольт, как надо, а "то много, то мало, а в среднем то что надо". Если мой друг Вася выпил при мне две бутылки пива, а мне не дал ни одной, то теоретически, мы вместе выпили по бутылке пива каждый, а практически Васе пора бить морду. Я показал эту схему лишь для того, чтобы обозначить "этапы большого пути". Но эту схему собирать не надо. Именно из-за пульсаций. Мой коллега предложил аналогичную схему с меньшим количеством деталей, но работающую по тому же принципу. Её тоже сделали. И она тоже работала. Но и это импульсный стабилизатор со всеми своими пульсациями, поэтому от этой схемы так же отказались. Что ж, я стал искать дальше. Очень скоро я обнаружил, что производители японских мотоциклов используют шунтирующие стабилизаторы, но ревностно хранят тайну их устройства. Вот все что мне удалось найти, листая официальную документацию. Содержимое "Integrated Circuit" остаётся загадкой. Однако главный принцип ясен - роль шунтирующего стабилизатора (то есть "клапана, сливающего лишнюю воду"), выполняет деталь под названием "тиристор". Это мощный электронный "клапан", который открывается, если на его управляющий контакт пустить ток, а закрывается когда ток через него падает до нуля(почти). Именно этим и занимается Integrated Circuit, осталось додуматься что же у него внутри? Поискав еще, я обнаружил, что не один я заморачиваюсь этой проблемой, и, в общем повторяю путь других людей. Вот только большинство людей остановились на одном и том же этапе - прицепили к тиристору стабилитрон. Попутно изыскатели еще и наделали других ошибок. Так что я продолжаю показывать схемы, которые собирать не надо : В этой схеме к стабилитрону зачем-то прилеплен конденсатор большой ёмкости. Конденсатор большой ёмкости замедляет процесс "переключения напряжения туда-сюда", в линейном стабилизаторе он нужен, здесь же он только мешает стабилитрону нормально работать. Кроме того в этой схеме есть та же проблема, что и в следующей. В этой схеме на первый взгляд все неплохо. Но тут уже начинается физика с математикой. Как я уже говорил раньше "стабилитрон это клапан который не может быть слишком большим". Добавлю: слишком маленьким тоже. То есть - вот у вас стабилитрон который должен открываться при напряжении 13 вольт. Но кроме напряжения у нас есть понятие силы тока. Так вот у любого стабилитрона есть минимальный ток, меньше которого он еще не работает, и максимальный ток, больше которого он уже горит. Такой же параметр есть и у тиристора. И они не совпадают. Среднестатистический стабилитрон начинает работать с 5-ти миллиампер и сгорает, если ток выше 30-ти миллиампер. А тиристору, чтоб открыться нужно миллиампер 15. Одному. Но генератор мотоцикла трёхфазный - выдаёт ток с трёх точек. Поэтому тиристоров-то у нас три! А в этой схеме вообще применены "более другие клапана" под названием "симистор". Симистору, чтоб открыться, в зависимости от модели, нужно от 30-ти до 70-ти миллиампер. Одному. Дальше все зависит от резистора под стабилитроном - если он маленький - стабилитрон сгорит. Если большой - тиристоры не будут нормально открываться. Есть стабилитроны которые держат до 100 миллиампер. Но они начинают работать только с 50-ти. Дело в том, что мотоциклетный генератор выдаёт очень большой разброс напряжений. На холостых это вольт 10, зато на полном газу - 60 вольт не предел. Вспоминаем закон ома "чем больше напряжение, тем больше сила тока". Считаем. 10 вольт генератора делим на 330 ом резистора - получаем 30 миллиампер тока. Обычный стабилитрон уже на пределе. Мощный еще даже не приготовился работать. 60 вольт генератора делим на те же 330 ом - получаем 180 миллиампер. Оно конечно, тиристоры сразу же, за микросекунду "уронят" напряжение обратно, но все же... все же... Может увеличить сопротивление ? Давайте попробуем. 60 / 1200 = 50 миллиампер. Вроде нормально. Но 10 / 1200 = ? То-то и оно. Кроме того в этой схеме есть лишние детали. Следующую схему помещаю просто для коллекции - в ней та же проблема. К тому же на ней честно написано "Не для сборки !" А вот эта схема на первый взгляд лишена всех вышеперечисленных недостатков. Тиристору надо 20 миллиампер ? Стабилитрон работает в разбросе 5-30? Пожалуйста - каждому тиристору свой стабилитрон. Все довольны. Но только вот какая засада - даже если детали сделаны на одном заводе, в один день и на одном станке, они все равно чуть-чуть разные. Вы купите три стабилитрона на 13 вольт, а реально получите один на 12.9 второй на 13 третий на 13.1 вольт. Та же история будет с резисторами - их сопротивление будет отличаться ом на 5-10 в разные стороны. Кроме того генератор изготовлен тоже людьми. И поэтому выдает не абсолютно одинаковые напряжения на каждой точке а чуть-чуть да разные. В итоге какой-то из трёх стабилитронов будет открываться чуть раньше остальных. И открывать тиристор. И на этот тиристор ляжет основная нагрузка. Большая часть "лишнего" напряжения будет "сливаться" через один тиристор и он быстро сдохнет от перенагрузки. То есть эта схема вполне работоспособна при условии максимальной одинаковости деталей. Иначе она будет сильно греться и быстро сгорит. Делаем вывод - стабилитрон должен быть один, общий, и рулить всеми тремя тиристорами одновременно, но между ним и тиристорами должно быть что-то еще, усиливающее ток. Через некоторое время я нашел вот эту схему. В принципе ее можно делать. Она будет работать как надо. Но я ее делать не стал. Я перфекционист. Транзисторы, предлагаемые тут, держат ток 100 миллиампер, причём тиристорами-симисторами управляет только один из них - правый - Q2. Если использовать симисторы - 90 миллиампер "съедаться" ими, еще немного уходит на взаимодействие со вторым транзистором, сколько остаётся запаса? Не люблю я так, чтоб впритык. А если взять транзисторы по мощнее, то стабилитрон их "не раскачает" как следует. Опять же - деталей в схеме много, паять ее долго и муторно. Надо двигаться дальше. Надо сказать что тогда я много спорил с автором одной из выше расположенных схем - Dingosobak-ой именно на счёт стабилитрона, и вот я, плюнув на всё, начинаю разрисовывать свой собственный вариант, но тут, Dingosobaka присылает мне схему которую получил от GogiII Здесь все нормально, за исключением некоторых номиналов резисторов - резисторы R1 и R2 надо уменьшить килоОМ так до трёх, а то на опять-таки многострадальный стабилитрон идёт слишком маленький ток. (Схема требует пересчета многих номиналов, но ввиду её невостребованности делать это никто не собирается - поэтому относитесь к ней как к экспонату в музее). В этой схеме маленький стабилитрон "качает" маленький транзистор, маленький транзистор "качает" транзистор побольше, а большой транзистор "рулит" мощными симисторами - он свободно держит ток в 1000 миллиампер. То есть 1 ампер. Вот это я называю "запас" ! К тому времени схем накопилось много и надо было их как-то друг от друга отличать. Этой схеме я присвоил название исходная . Эту схему я делал. Она работает. Её делали и другие люди. И она у них работает. На этом бы успокоиться, но - нет. Схема-то, для тех, кто "не в теме", сложная. И я стал искать пути упростить изготовление схемы без потери функциональности. Сначала я вознамерился приспособить автомобильное РР к мотоциклу. Исходил я из того что автомобильное РР по сути выполняет ту же функцию, что и Integrated Circuit, с той лишь разницей, что автомобильное РР управляет обмоткой возбуждения, а мотоциклетное - тиристорами-симисторами. Вот что в итоге у меня получилось: Сначала собираем блок тиристоров-симисторов. Затем берем автомобильное РР, выкусываем детальки, зачёркнутые крестиками, и впаиваем новые, отмеченные синим. Внимание ! Нужно реле зарядки под названием 121.3702 . Всяческие 121.3702 -01 , 121.3702 -02 и 121.3702 -03 не годятся ! В зависимости от типа применяемых тиристоров-симисторов придётся подобрать тот резистор, что справа (как считать-подбирать резистор написано в конце статьи). По сути, мы просто собираем предыдущую схему GogiII-Dingosobaka, только с минимальными трудозатратами и максимальным использованием готовых изделий. Настроение было игривое, поэтому эта схема получила название брутальная . Эту схему я делал. Она работает. Её делали и другие люди. И она у них работает. Дальше я стал делать ту же схему но задался целью найти готовый Integrated Circuit не в виде "РР от жигулей", а в виде готовой законченной микросхемы. И нашёл. Аж три штуки. Схема приобрела вот такой вид. За красоту и аккуратность схема получила название гламурная. Эту схему я делал. Она работает. Её делали и другие люди. И она у них работает. Но тут-то и возник парадокс. Почти у каждого из вас есть дома такая микросхема. В музыкальном центре. Она управляет светодиодными индикаторами. Но кто-нибудь хоть раз видел магнитофон у которого сдох светодиодный индикатор ? Ну не горит она, эта микросхема. Не с чего ей гореть. А раз не горит, значит ее не покупают. А раз не покупают, значит не везут ! Копеечную микросхему купить практически невозможно ее нет в магазинах. Но именно эту схему я собрал себе как запасную. Родное РР у меня пока (тьху-тьху-тьху) живо. И я стал думать дальше. Во всех предыдущих схемах используются тиристоры. Можно использовать и симисторы. Но именно можно а не обязательно. Напомню принцип работы тиристора - на "палочку" подключили массу, на "треугольничек" - плюс, если на управляющий контакт подать плюс - тиристор откроется, если минус - закроется. Только так и никак иначе. Поэтому я не могу использовать с тиристорами очень распространённую микросхему TL431 (она же КРЕН19) - тиристоры, чтобы открыть их, надо подключать к плюсу, а TL431 подключает к минусу. Сначала я пошёл по проторённому пути, и воткнул между TL431 и тиристорами переходной транзистор. Продолжая модную тогда тему "падонкаффскаго езыка" я назвал схему готичная. Эту схему я делал. Она работает. Её делали и другие люди. И она у них работает. Но (!) больше я этого делать не буду. Смысл ? Опять много деталей. Меняем шило на мыло. Ну раньше было два транзистора, теперь одна трёхногая микросхема и один транзистор. Разницы-то? Хотя в этой схеме можно вместо стабилитрона с резистором поставить один переменный резистор, тогда появится возможность плавно регулировать напряжение, но переменный резистор это ненадёжная деталь. Особенно в условиях мотоцикла. Спустя почти год (я сделал эту схему в июле 2007-го) ребята из Саратова практически повторили эту схему, применив хоть и другие, но аналогичные детали. Схема хороша, но сохраняет главный недостаток - много деталей. Микросхема, которую применили саратовчане (так называемый "супервайзер")держит совсем уж мизерный ток, поэтому они усилили ее дополнительным транзистором. (Вот что непонятно - неужели в Саратове микросхема TL431 это большая проблема чем применённая ими PST529 ?) Когда я начинал, я смотрел в сторону PST529 и подобных, но отказался от них потому что они требуют большого количества дополнительных деталей. А моя задача была - свести количество деталей к минимуму, сохранив достойную функциональность. Вот тут видно как мне предлагают микросхему типа "супервайзер" а я от неё отказываюсь. Через несколько лет Dyn предложил свой вариант "готичной": И успешно её изготовил. Деталей опять много, но ему было не лень.(да, чего уж там - на две три детали то больше... Если кого то интересует изготовление этой схемы - по ссылке выше описание и там же указаны номиналы деталей. Только я немного ошибся - R6 R7 надо поменять местами. Dyn) Ну а пока я, с подачи Dyn-a, стал изучать симисторы. И обнаружил принципиальное их отличие от тиристоров. А именно - им совершенно не обязательно "на палочку подключили массу, на треугольничек - плюс, открывать плюсом". Им вообще пофиг какая полярность куда подключена. Это резко меняло дело и открывало новые горизонты. Еще раз напомню - все предыдущие схемы рассчитаны под тиристоры . В них можно использовать симисторы, но не обязательно. А я сделал схему, которая будет работать только с симисторами. И в ней симисторы работают в удобном для себя режиме. В итоге схема приняла такой вид. В уже сложившейся традиции схема была названа зач0тная. Ещё раз отмечу - с этим вариантом Integrated circuit можно использовать только симисторы, тиристоры использовать нельзя ! И включаются эти симисторы не так как на всех предыдущих схемах. То есть взять эту схемку и пришпилить к ней "силовой блок" из прeдыдущих схем - нельзя! Запас по току правда не очень велик - TL431 держит всего 150 миллиампер, но все же это вполне допустимо. Но, как уже отмечалось, я - перфекционист и всё люблю делать с запасом, поэтому я заменил TL431 на классический нижний ключ ULN2003. (Так же можно использовать аналог TD62083). Эта микросхема есть в продаже, работает в этой схеме в своём нормальном режиме и держит ток 500 миллиампер. C этой деталью схема упростилась уже до полного безобразия, а так как принцип не поменялся, получила название зач0тная-2. Эти схемы я делал и делаю до сих пор. И они работают. Их делают и другие люди. И у них эти схемы так же работают. Некоторое время назад товарищ Poner предложил использовать вместо ключа оптореле. Собраный им образец показал свою работоспособность, хотя и чуть худшие характеристики. От себя добавлю, что не вижу причин, почему бы не использовать в качестве ключа любой подходящий полевой МОП транзистор (MOSFET) . После прочтения всей этой моей писанины, у вас наверняка накопились вопросы. Постараюсь на них ответить. Многие спрашивают, почему я пишу "тиристоры" а на схемах рисую симисторы BTA26 ? Причина проста - из-за лени. Большинство тиристоров-симисторов нельзя использовать без прокладок и неметаллических винтов! А вот симисторы BTA16-24-26-41 - можно. Если же использовать другие тиристоры-симисторы (25TTS, BT152, BT225 и т. д.) то приходится ставить каждый на прокладку, да прикручивать его неметаллическим винтом, да следить, чтоб не замкнуло, это так лениво. Так же многие спрашивают какие можно еще применять тиристоры-симисторы. Да в общем-то любые, рассчитанные на ток не меньше 20-ти ампер. Вот прям прийти в магазин и сказать "дайте мне три тиристора или симистора ампер на двадцать." Вообще-то можно и меньше (10-15 ампер), но как уже отмечалось - лично я люблю все делать с запасом. Кроме того, чем на меньше ампер рассчитан тиристор-симистор тем больше он будет греться. Только если использовать симисторы, то для схем "исходная", "гламурная", "брутальная" и "готичная" годятся не любые симисторы а только четырёхквадрантные (4Q). Ещё бывают трёхквадрантные (3Q или hi-com) и они для вышеназванных схем не годятся. А вот для схем "зач0тная" и "зач0тная-2" не только подходят любые симисторы - и 4Q и 3Q, но 3Q даже предпочтительнее, так как будут меньше нагреваться. Но самый лучший симистор для наших целей это конечно BTA26 (он же ВТА24 в другом корпусе). Он подходит ко всем схемам, надёжен и недорог. К тому же выпускается в двух вариантах BTA26бла-бла-бла B это 4Q, а BTA26бла-бла-бла W это 3Q. Кроме того, под неизвестно-какие тиристоры-симисторы потребуется пересчитать номиналы резисторов, иначе тиристоры-симисторы будут сильно греться и в итоге сгорят. Разберём этот момент на примере симисторов BTA140. Открываем даташыт (ссылка) Ищем в таблицах параметр I GT (Gate Trigger Current) видим максимальное значение 35 миллиампер. Чуть-чуть "откатываемся назад" от максимального значения, чтобы не грузить симистор, и считаем: 14 вольт / 0.03 ампер = 470 ом. То есть в управляющем контакте одного симистора BTA140 должно быть 470 ом. То есть если взять схему "зачотная", то все резисторы между микросхемой и симисторами должны быть по 470 ом. Если взять схему "брутальная" - по 360 а общий резистор в переделанном РР от жигулей - 110 ом. Единственно чего нельзя делать - это ставить один общий резистор на все три тиристора-симистора, а их управляющие контакты собирать в один пучок. Тогда между тиристорами-симисторами возникнут паразитные связи и всё пойдёт в разнос. У каждого тиристора-симистора должен быть свой "персональный" резистор хотя бы ом на 70, а остальное может быть общим. Короче, купив тиристоры-симисторы, уточняйте все эти моменты по документации на сайте оллдаташыт ! Часто меня спрашивают какой стабилитрон нужно применять в схеме. Стабилитронов много, и многие годятся, но нужно учитывать следующие моменты: Стабилитрон нужен на правильный ток. То есть минимальный ток стабилитрона должен быть не больше 5-ти миллиампер, а максимальный - не меньше 15-ти. Причём эти токи взаимосвязаны, рабочий участок стабилитрона обычно равен 20-30 миллиампер, то есть если у стабилитрона максимальный ток 50 миллиампер, то его минимальный ток будет миллиампер 50-30=20, то есть такой стабилитрон не годится. В магазинах частенько обозначают стабилитроны по мощности, например "13 вольт 0.5 ватта". Это значит, что максимальный ток стабилитрона 0.5W / 13v = 30 миллиампер. Значит у этого стабилитрона минимальный ток будет около 1 миллиампера, и такой стабилитрон подойдёт. Стабилитрон нужен на правильное напряжение, то есть на 14 вольт. Вольт туда - вольт сюда на стабилитроне, аукнется полутора вольтами на выходе схемы. Если стабилитрона на 14 вольт под руками нет, можно набрать его из нескольких стабилитронов в сумме (7+7 6+8) или добавить нужное количество любых маломощных кремниевых диодов в прямом включении, из расчёта, что 1 диод добавляет к стабилитрону 0.7 вольта. Например к стабилитрону на 13 вольт нужен 1 диод вроде 1N400*, КД521 , КД522 , КД509 , КД510 итд. C тем же успехом вместо диода можно использовать второй такой же стабилитрон. С точки зрения сборки это даже предпочтительнее - взял два стабилитрона на 13 вольт, спаял метками друг к другу, воткнул в схему любой стороной, и вопрос закрыт. Теперь пару слов о той части мотоциклетного РР о которой мы еще не говорили - о выпрямительной. Токи потребляемые мотоциклом исчисляются десятками ампер, поэтому диоды надо применять мощные. Если объем двигателя кубиков 400-600, то вполне хватит 30-ти амперных диодов. Я обычно применяю готовый 36-ти амперный диодный мост (сборка на 6 диодов) 36MT. Но если объём двигателя большой - 36МТ не справится. Зависимость проста - большой двигатель труднее крутить стартером, значит стартер ставится более мощный, чтоб его крутить нужен мощный аккумулятор, значит он потребляет большой ток при зарядке. Для того чтоб не рисковать надо использовать 40-ка а то и 50-ти амперные диоды. Например 40CTQ 50HQ 52CPQ и т. д. Вот например вариант "зач0тной-2" на трёх 50-ти амперных мостах KBPC5006 (они же MB506) и трёх симисторах BTA41 (все резисторы по 300 ом). Про себя я называю этот вариант Ever Est что в переводе с латыни означает "вечный". Еще одно замечание - по той же причине (большие токи) провода, которые используются, должны быть очень толстыми. Иначе будет "чота я спаял а оно не работает". Я использую провода сечением 2-3 миллиметра. Ещё один важный момент - радиатор. Лучший радиатор - крышка канализационного люка прикрученная на траверсу. Радиатор от старой РР не годится - он маленький. В родных РР бескорпусные детали приварены к радиатору, этим достигается лучший тепловой контакт. Прикручивая обычные детали к неровной поверхности "родного" радиатора вы не добьётесь такого же хорошего теплового контакта. Поэтому радиатор должен быть большой (я использую примерно 8см на 10см с высотой рёбер 2см) и иметь хотя бы одну идеально ровную поверхность (туда вы прикрутите детали). Ну и о проверке - проверять схему можно только полностью подключенной! Если вы прицепите три провода от генератора, а плюс и минус никуда не подключив будете мерить тестером - вы ничего не увидите. Схема работает только в полном подключении (впрочем так же себя ведут и "родные" РР). Если вы боитесь за мотоцикл то проверяйте на заменителе (аккумулятор плюс лампочка). Никогда, ни при каких обстоятельствах, категорически НЕЛЬЗЯ сдёргивать клемму с аккумулятора на работающем мотоцикле ! Это верный способ убить мозг! (если вы это уже делали и мозг до сих пор жив, вам просто повезло) Пара фоток как это выглядит в реале: (Но я вас умоляю - не надо делать РР по фоткам ! РР надо делать по схемам. А фотки я помещаю исключительно для подтверждения, что всё написанное выше не теоретические измышлизмы, а вполне реальная практика) После сборки и проверки обязательно залить эпоксидкой! Иначе от вибрации у деталей поотваливаются "ножки". Причем быстро. В течение дня-двух. Вот собственно и всё. Если будут вопросы - задавайте в разделе ниже, тот который "обсуждения". P.S. Как вы заметили, я постоянно обновляю этот постинг. Дело в том, что некоторые подробности, которые я сперва не описывал, для меня само-собой разумеющееся, а вот для многих читателей оказались непонятны. Поэтому как только я получаю вопрос - ответ на него я вношу в этот постинг. Так что не стесняйтесь, спрашивайте. Часто задается вопрос родной регулятор мотоцикла шести контактный, все схемы пятиконтактные - как поступить? В некоторых мотоциклах сделано так, что управляющая схема регулятора запитывается от замка зажигания. То есть при выключенном замке зажигания нет утечки тока через регулятор и аккумулятор через него не разряжается. Таким образом на регулятор приходит шесть проводов. Три фазы (обычно желтых) из генератора. Минус (он же корпус мотоцикла). Плюс аккумулятора и плюс с замка зажигания. Варианта два. Либо плюнуть на все умности и оставить провод с замка зажигания не при делах. Только его изолировать от реальности тщательно. И поставить пятиконтактный регулятор. Это на случай , например, установки не родного регулятора. Либо если вы сами собрали схему, то руководствуясь приложенным рисунком сделать разрыв между точками А и В. Точку А подать на провод идущий к замку зажигания. Точку В подать на провод идущий к аккумулятору. Если же вас интересует обратный процес - установка шестиконтактного регулятора (купленного по случаю) в мотоцикл где на регулятор приходит лишь пять проводов, тогда все так же три фазы на генератор, затем найдите минус (прозвоните тестером - минус звонится на корпус регулятора накоротко),остальные два провода скрутить и на плюс. Еще часто бывает что выходные провода дублируются. из регулятора выходит два минуса и два плюса. Это легко понять по одинаковому цвету пар проводов. Это другая история - не перепутайте.
Источник: moto-electro.ru Для правильного восприятия текст отредактирован. Орфография и пунктуация сохранены. Все оригинальные ссылки сохранены. Фото перенесены на сервер.
motoregulator.com
Установка трехуровневого регулятора напряжения генератора ВАЗ
Включение дополнительных нагрузок (обогрева заднего стекла, фар, печки и др.) приводит к разряду аккумулятора даже при работающем двигателе с исправным штатным регулятором напряжения. Все эти проблемы решаются установкой трехуровневых регуляторов напряжения.
Комплект:
Коробка
Инструкция
Регулятор, соединенный проводом со щеткодержателем.
Что сразу бросилось в глаза - увеличенного размера щетки
Понадобится инструмент:
Истории наших читателей
"Гребаный таз!!!"
Осипов Михаил, ВАЗ 2112, стаж вождения 11 лет.
Всем привет! Меня зовут Михаил, сейчас расскажу историю о том, как я вчера облажался. Еду домой с работы, подразогнался так нормально, уже практически доехал, как вдруг машину тряхнуло и двигатель погас. Как сейчас помню, открыл капот и побледнел от ужаса... как оказалось порвался ремень ГРМ. Ребята это П*3ДЕЦ... Нужен кап ремонт движка, денег нет, а работаю я таксистом, да-да я тот самый таксист, который приезжает к вам на развалюхе. Начал звонить по друзьям, чтобы одолжить денег на ремонт, но как это обычно бывает, именно в этот момент деньги у всех закончились, вот такие у меня друзья((
Ситуация казалось безвыходной, и выйти из нее мне помогла... не поверите, моя девушка. Нет, денег у нее тоже не было, но она посоветовала банк, который выдает до 15000 руб прямо на карту без всяких справок, документов и т.д. На ремонт движка мне не хватало около 8 тысяч. В общем оставил заявку на их сайте, и буквально через 15 мин деньги были у меня на карте сбера. Процент в этом банке совсем небольшой, относительно других, да и сам банк проверенный, в отличии других шарашкиных контор, которые разводят людей на бабки. Мало ли что, вдруг кому срочно понадобятся деньги, оставлю тут ссылку на этот банк. Машину отдал в ремонт, через пару дней будет как новенькая. Мне неделю потаксовать, чтобы вернуть долг, а вам советую вовремя менять ремень ГРМ, чтобы не попадать в такие ситуации как я.
Перейти на сайт банка>>
Ключ рожково-накидной S10
Отвертка крестовая
Нож
Возможно тестер
Щипцы для обжима клемм.
Порядок действий:1 - Окручиваем и снимаем минусовую клемму с аккумулятора2 - Ключиком S10 окручиваем гаечку М6 на генераторе и отводим в сторону провода.3 - Сдергиваем колодку типа "мама" и поддев три защелки снимаем пластиковый кожух генератора.4 - Откручиваем два винта крепления регулятора и сняв штекер снимаем его.5 - Попутно, открутив гаечка М6 немного доработаем на напильнике торцы дистанционной втулки - для лучшего контакта к диодному мосту 6 - Ставим щеткодержатель на место регулятора, немного уплотнив отверстие входа проводов герметиком 7 - Доработав пластиковый кожух генератора, устанавливаем его на место 8 - Проложив провод вдоль штатной проводки к возможному месту установки регулятора, закрепляем его пластиковыми хомутикамиНужно обязательно добиться хорошего контакта регулятора с "массой", а лучше сделать шунт, соединив им корпуса генератора и регулятора.9 - Прикручиваем остальные провода и запустив двигатель проверяем работу нового регулятора при полной нагрузке(фары, печка, обогрев стекла и т.д.):
минимум
норма
максимум
Из старого регулятора напряжения со сломанной щеткой решил сделать просто выносной регулятор, реагирующий на температуру подкапотного пространства, а не генератора. Для этого ножовкой по металлу отпиливаем и удаляем "не нужные нам детали". В отверстие одной из щеток продеваем провод и припаиваем к ножкам регулятора. Теперь соединив с щеткодержателем проверяем работу.
Кстати, есть и другие способы доработать генератор. Наши читатели рекомендуют!
Для того, чтобы избавиться от постоянных штрафов с камер, многие наши читатели успешно используют Специальную Нано Пленку на номера. Легальный и 100% надежный способ защиты от штрафов. Ознокомившись и внимательно изучив данный метод мы решили предложить его и Вам.
Наши читатели рекомендуют!
Для того, чтобы избавиться от постоянных штрафов с камер, многие наши читатели успешно используют Специальную Нано Пленку на номера. Легальный и 100% надежный способ защиты от штрафов. Ознокомившись и внимательно изучив данный метод мы решили предложить его и Вам.
Трехуровневый регулятор напряжения..
Источник фото:Ключевые слова:
Добавить комментарий
xn--2111-43da1a8c.xn--p1ai
Реле регулятора напряжения генератора - как проверить, схема и принцип действия
Для того чтобы стабилизировать напряжение в бортовой сети автомобиля, используют специальное устройство, регулятор. Его работоспособность оказывает существенное влияние не только на отдельные характеристики автомобиля, но и на долговечность электронных и механических компонентов.
Электронные реле регуляторы
Как работает реле регулятор
Генератор создает напряжение, которое повышается при увеличении скорости вращения ротора. Его уровень зависит также от величины тока, который проходит через подключенную нагрузку и от параметров магнитного поля, образованного обмоткой возбуждения.
Чтобы обеспечить автоматическую настройку, необходимо выполнять измерение напряжения на выходе генератора. Для этого оно преобразуется в измерительный сигнал, который будет сравниваться с образцовым параметром. При обнаружении изменений, сравнивающий блок должен образовать сигнал управления, изменяющий определенным образом силу тока в обмотке возбуждения, что в итоге позволит оказать необходимое влияние на уровень выходного напряжения.
Общие принципы понятны. Но их реализация была разной, в зависимости от уровня технологического развития. В самых первых схемах использовались разные решения, вплоть до механических сил, которые приводили в действие пружинные узлы в реле. Разумеется, подобные конструкции отличались невысокой надежностью. В местах прерывания контактов под действием электрических разрядов повреждались защитные покрытия. Со временем приходили в негодность движущиеся узлы.
Ниже будут рассмотрены более совершенные схемы, соответствующие нынешнему уровню развития. Но для понимания процессов вполне достаточно рассмотреть простейший вариант, с реле в цепях защиты и управления. Подобные устройства до сих пор используются в грузовых автомобилях:
Электронные реле регуляторы
В этой несложной схеме используется единственный транзистор. Здесь он выполняет функцию ключа. Если генератор вращается медленно, напряжение на выходе сравнительно невелико. В этих условиях контакты реле управления (Рн) разомкнуты, а транзистор находится в открытом состоянии. При повышении напряжения выше определенного уровня, реле замыкает цепь. Полупроводниковый переход в транзисторе закрывается. Далее ток проходит не по пути коллектор-эмиттер, а через резисторы (Rд) и (Rу). Обмотка возбуждения создает магнитное поле с меньшей энергией, что снижает скорость вращения ротора. Уровень напряжения на выходе снижается.
На рис. ниже изображены изменения электрических параметров в обмотке. Ниже приведены пояснения:
Регулятор напряжения, созданный с использованием комбинированной схемы
Величины (n1) и (n2) – это разные скорости вращения ротора, на которых были произведены соответствующие измерения (частота n2 больше, чем n1).
Видно, что tвкл (время включения обмотки) на верхнем графике больше, а на нижнем – меньше. Таким образом, при увеличении скорости вращения обмотка меньше времени создает магнитное поле.
Параметр tвыкл (время, в течение которого происходит выключение) поясняет смысл второй стадии процесса. При ускорении вращения и повышении напряжения в обмотке уменьшается ток. Этот процесс обеспечивает необходимый результат, снижение выходного напряжения.
Особенности регуляторов разных типов
Схема стандартного изделия вибрационного типа изображена на следующем рисунке:
Изменение электрических параметров
В этом перечне приведены основные части конструкции:
Понятно, что многочисленные механические контакты и движущиеся части снижают надежность. Такое реле регулятор напряжения генератора обладает большим весом и внушительными размерами.
Ниже изображена принципиальная схема одного из регуляторов BOSCH, в которой используется только электронная элементная база:
Такое решение существенно повышает надежность. Для размещения компактного изделия не требуется много места. Это устройство при соблюдении производственных технологий обладает высокой устойчивостью к вибрациям, перепадам температур.
В некоторых вариантах исполнения плата заливается компаундом, что еще больше повышает защитные свойства, продлевает срок службы при эксплуатации в самых тяжелых условиях.
Ниже рассмотрены особенности отдельных элементов:
На правой стороне рисунка (часть 2) изображена схема генератора с выпрямительными диодами. Вверху – лампочка, сигнализирующая включение устройства.
В левой стороне (часть 1) расположена электрическая схема регулятора.
(VT2) и (VT3) – это обозначение транзисторов, включенных по классической схеме для повышения коэффициента усиления.
Как правило, в подобных устройствах используют электронный элемент, созданный в едином корпусе и даже на одном кремниевом кристалле.
Стабилитрон обозначен символами (VD1). Этот прибор не пропускает ток до уровня, который определяет напряжение стабилизации. Как только пороговое значение пробито – ток начинает проходить по соответствующей цепи.
Даная принципиальная схема выполняет свои функции следующим образом:
С помощью резисторов (R1) и (R2), напряжение с выхода генератора делится в нужной пропорции и подается на стабилитрон.
Пока скорость вращения ротора невелика, его уровень недостаточен для пробития полупроводникового перехода стабилитрона. В такой ситуации ток не может проходить по соответствующей цепи. Он не поступает на базу (VT1). Поэтому транзистор закрыт.
В базу (VT2) ток проходит по другому пути, через (R6). Этот сдвоенный транзистор открыт. В таком состоянии обмотка подключена к цепи питания и создает магнитное поле.
По мере увеличения оборотов, или при определенном изменении сопротивления в нагрузке, напряжение на выходе генератора увеличивается. Если превышен определенный порог, будет пробит полупроводниковый переход стабилитрона.
После этого ток поступит на базу (VT1) и откроет его. Путь прохождения тока по пути коллектор-эмиттер на точку заземления будет открыт. Полупроводниковый переход составного транзистора закроется, что разорвет цепь питания обмотки.
При снижении уровня тока возбуждения скорость вращения ротора замедляется, уровень напряжения падает, переход стабилитрона закрывается.
Проверка работоспособности
Последовательное развитие технологий открывает новые возможности для улучшения потребительских параметров электроники при одновременном снижении веса и уменьшении размеров. В современных автомобилях даже последняя схема, из рассмотренных выше вариантов, будет выглядеть анахронизмом.
Современные регуляторы – это более сложные устройства. Они отличаются повышенной точностью контроля и стабилизации напряжения генератора. Их создают в герметичных корпусах, заливают компаундными смесями, которые после застывания создают надежную защиту от проникновения влаги, других внешних воздействий. Эти конструкции являются неразборными, поэтому при поломке их заменяют полностью.
Можно констатировать, что на практике ремонт отсутствует не только в специализированных мастерских. Частным мастерам и любителям сделать все самому приходится отправляться в специализированный магазин для приобретения необходимого узла в сборе. Таким образом, первоочередное значение приобретает не умение выпаивать отдельные элементы и разбираться в их работоспособности, а общая диагностика. Для ее проведения понадобится тестер и щупы, лампочка на 12 V и набор соединительных проводов, зарядное устройство.
Регулятор, установленный на корпусе генератора
Ниже приведен алгоритм действий, который поможет локализовать неисправность. Эти рекомендации – общие. Поэтому необходимо учитывать особые рекомендации производителя для правильного демонтажа регулятора напряжения и других узлов:
При выключенном двигателе замеряют напряжение на выводах аккумуляторной батареи (норма – в пределах от 11,9 до 12,7 V).
После запуска силового агрегата фиксируют новый уровень напряжения, который должен повыситься от первоначального уровня на 0,9-1,1 V.
Постепенно увеличивают обороты двигателя. Для удобства эту процедуру лучше выполнять с напарником. На средних – напряжение возрастает до 13,8-14,1 V. На самых высоких – до 14,4-14,5 V.
Если ускорение вращения ротора генератора никак не влияет на уровень напряжения, то возможна поломка регулятора.
Для более точной диагностики понадобится его демонтировать и подключить по следующей схеме:
Схема проверки регулятора
При включении зарядного устройства и постепенном повышении уровня до 14,4-14,5 V лампа будет гореть. Как только этот порог будет превышен, она погаснет. При снижении напряжения лампа загорится вновь. О неисправности свидетельствует не только отсутствие описанных реакций, но и срабатывание устройства при более высоком уровне напряжения. В таких условиях аккумулятор будет перезаряжаться, что снизит его срок службы. После завершения диагностики можно принимать решение о замене испорченного регулятора.
Видео. Проверка регулятора напряжения.
Чтобы своевременно использовать приведенную технологию, надо обращать внимание на отклонения от нормы заряда аккумуляторной батареи. Перед тем как демонтировать регулятор, следует убедиться в отсутствии загрязнений окислов в местах электрических контактов. В некоторых ситуациях обычная очистка соединений позволит устранить неполадки. Для предотвращения появления подобных проблем в будущем рекомендуется использовать специальные средства для защиты контактов.
Оцените статью:
elquanta.ru
РЕГУЛЯТОР ПЕРЕМЕННОГО НАПРЯЖЕНИЯ
Всем привет! В прошлой статье я расказывал, как сделать регулятор напряжения для постоянного тока. Сегодня мы сделаем регулятор напряжения для переменного тока 220в. Конструкция довольно-таки проста для повторения даже начинающими. Но при этом регулятор может брать на себя нагрузку даже в 1 киловатт! Для изготовления данного регулятора нам понадобится несколько компонентов:
1. Резистор 4.7кОм млт-0.5 (пойдет даже 0.25 ватт). 2. Перменный резистор 500кОм-1мОм, с 500ком будет регулировать довольно плавно, но только в диапазоне 220в-120в. С 1 мОм - будет регулировать более жестко, тоесть будет регулировать промежутком в 5-10вольт, но зато диапазон возрастет, возможно регулировать от 220 до 60 вольт! Резистор желательно ставить со встроеным выключателем (хотя можно обойтись и без него, просто поставив перемычку). 3. Динистор DB3. Взять такой можно из ЛСД экономичных ламп. (Можно заменить на отечественный Kh202). 4. Диод FR104 или 1N4007, такие диоды встречаются практически в любой импортной радиотехнике. 5. Экономичные по току светодиоды. 6. Симистор BT136-600B или BT138-600. 7. Винтовые клемники. (обйтись можно и без них, просто припаяв провода к плате). 8. Небольшой радиатор (до 0,5кВт он не нужен). 9. Пленочный конденсатор на 400вольт, от 0.1 микрофарадп, до 0.47 микрофарад.
Схема регулятора переменного напряжения:
Приступим к сборке устройства. Для начало вытравим и пролудим плату. Печатная плата - её рисунок в LAY, находится в архиве. Более компактный вариант, представленный товарищем sergei - тут. Далее припаяем симистор, и переменный резистор. Затем паяем конденастор. На фото конднесатор со стороны лужения, т.к у моего экземпляра конденсатора были слишком коротки ножки. Паяем динистор. У динистора полярности нет, так-что вставляем его как вам угодно. Припаиваем диод, резистор, светодиод, перемычку и винтовой клемник. Выглядит оно примерно так: И в конце концов последний этап - это ставим на симистор радиатор. А вот фото готового устройства уже в корпусе. Регулятор какой-нибуть дополнительно настройки не требует. Видео работы данного устройства: Хочу заметить, что ставить его можно не только в сеть 220В на обычные приборы и электроинструменты, но и на любой другой источник переменного тока с напряжением от 20 до 500В (ограничивается предельными параметрами радиоэлементов схемы). С вами был [PC]Boil-:D