Камаз 44108 тягач В наличии!
Тягач КАМАЗ 44108-6030-24
евро3, новый, дв.КАМАЗ 740.55-300л.с., КПП ZF9, ТНВД ЯЗДА, 6х6, нагрузка на седло 12т, бак 210+350л, МКБ, МОБ
 
карта сервера
«ООО Старт Импэкс» продажа грузовых автомобилей камаз по выгодным ценам
+7 (8552) 31-97-24
+7 (904) 6654712
8 800 1005894
звонок бесплатный

Наши сотрудники:
Виталий
+7 (8552) 31-97-24

[email protected]

 

Екатерина - специалист по продаже а/м КАМАЗ
+7 (904) 6654712

[email protected]

 

Фото техники

20 тонный, 20 кубовый самосвал КАМАЗ 6520-029 в наличии
15-тонный строительный самосвал КАМАЗ 65115 на стоянке. Техника в наличии
Традиционно КАМАЗ побеждает в дакаре

тел.8 800 100 58 94

Техника в наличии

тягач КАМАЗ-44108
Тягач КАМАЗ 44108-6030-24
2014г, 6х6, Евро3, дв.КАМАЗ 300 л.с., КПП ZF9, бак 210л+350л, МКБ,МОБ,рестайлинг.
цена 2 220 000 руб.,
 
КАМАЗ-4308
КАМАЗ 4308-6063-28(R4)
4х2,дв. Cummins ISB6.7e4 245л.с. (Е-4),КПП ZF6S1000, V кузова=39,7куб.м., спальное место, бак 210л, шк-пет,МКБ, ТНВД BOSCH, система нейтрализ. ОГ(AdBlue), тент, каркас, рестайлинг, внутр. размеры платформы 6112х2470х730 мм
цена 1 950 000 руб.,
КАМАЗ-6520
Самосвал КАМАЗ 6520-057
2014г, 6х4,Евро3, дв.КАМАЗ 320 л.с., КПП ZF16, ТНВД ЯЗДА, бак 350л, г/п 20 тонн, V кузова =20 куб.м.,МКБ,МОБ, со спальным местом.
цена 2 700 000 руб.,
 
КАМАЗ-6522
Самосвал 6522-027
2014, 6х6, дв.КАМАЗ 740.51,320 л.с., КПП ZF16,бак 350л, г/п 19 тонн,V кузова 12куб.м.,МКБ,МОБ,задняя разгрузка,обогрев платформы.
цена 3 190 000 руб.,

СУПЕР ЦЕНА

на АВТОМОБИЛИ КАМАЗ
43118-010-10 (дв.740.30-260 л.с.) 2 220 000
43118-6033-24 (дв.740.55-300 л.с.) 2 300 000
65117-029 (дв.740.30-260 л.с.) 2 200 000
65117-6010-62 (дв.740.62-280 л.с.) 2 350 000
44108 (дв.740.30-260 л.с.) 2 160 000
44108-6030-24 (дв.740.55,рест.) 2 200 000
65116-010-62 (дв.740.62-280 л.с.) 1 880 000
6460 (дв.740.50-360 л.с.) 2 180 000
45143-011-15 (дв.740.13-260л.с) 2 180 000
65115 (дв.740.62-280 л.с.,рест.) 2 190 000
65115 (дв.740.62-280 л.с.,3-х стор) 2 295 000
6520 (дв.740.51-320 л.с.) 2 610 000
6520 (дв.740.51-320 л.с.,сп.место) 2 700 000
6522-027 (дв.740.51-320 л.с.,6х6) 3 190 000


Перегон грузовых автомобилей
Перегон грузовых автомобилей
подробнее про услугу перегона можно прочесть здесь.


Самосвал Форд Нужны самосвалы? Обратите внимание на Ford-65513-02.

КАМАЗы в лизинг

ООО «Старт Импэкс» имеет возможность поставки грузовой автотехники КАМАЗ, а так же спецтехники на шасси КАМАЗ в лизинг. Продажа грузовой техники по лизинговым схемам имеет определенные выгоды для покупателя грузовика. Рассрочка платежа, а так же то обстоятельство, что грузовики до полной выплаты лизинговых платежей находятся на балансе лизингодателя, и соответственно покупатель автомобиля не платит налогов на имущество. Мы готовы предложить любые модели бортовых автомобилей, тягачей и самосвалов по самым выгодным лизинговым схемам.

Контактная информация.

г. Набережные Челны, Промкомзона-2, Автодорога №3, база «Партнер плюс».

тел/факс (8552) 388373.
Схема проезда


Испарение - это... Что такое испарение: определение, примеры. Испарение бензина это физический или химический процесс


Кипение воды - это физическое или химическое явление

Характеристики явлений

Основным признаком всех физических явлений считается неизменность состава тел. Проще говоря, все вещества, которые участвовали в процессе, по его окончании сохраняют свой первоначальный состав. Изменяться может форма вещества или его агрегатное состояние. Например, состав воды остаётся одним и тем же, будь она в твёрдом, жидком либо парообразном состоянии. При понижении температуры вода может превратиться в лёд, а при повышении – снова перейти в жидкое состояние.

Во время химических реакций происходит превращение одних веществ в другие, и при этом приобретаются новые свойства.

Например, при сжигании бумаги, кроме золы, образуется некоторое количество влаги и углекислого газа. Причём получить бумагу обратно уже невозможно. Также сюда относится ржавление железа. Его реакция с кислородом, входящим в состав воздуха, ведёт к образованию оксида железа, который имеет совсем другие свойства, нежели первоначальный металл.

В отличие от физических явлений, химические протекают с изменением цвета, запаха, температуры, выделением различных газов. Каждое вещество имеет свой состав и обладает какими-то особенными свойствами. Одна из главных задач химии – изучение строения тел, а также особенностей их превращения во время реакций. Очень часто химические реакции осуществляются одновременно с физическими. Поэтому физические свойства тел зависят и от химических реакций, протекающих в них.

Что такое испарение

Процесс парообразования принято называть испарением. Объясняется оно таким образом. При ударах молекул друг о друга их скорость изменяется. Часто она увеличивается до такой степени, что превышает притяжение близлежащих молекул. Это позволяет молекуле, которая передвигается с большой скоростью, отрываться от поверхности. Следует сказать, что процесс парообразования является постоянным, независимо от температуры воздуха.

Молекулы, оторвавшиеся от поверхности, некоторое время находятся над ней в виде пара. Благодаря хаотичному движению определённое их количество может вернуться снова в воду. Поэтому на скорость испарения влияет ветер, который своей силой переносит пар в сторону. В закрытой ёмкости парообразование моментально прекращается, поскольку оторвавшиеся молекулы через определённое время снова попадают в воду.

Поскольку это явление не влияет на изменение состава, можно выразить сомнения относительно распространённого мнения, что испарение воды – это химический процесс. Скорость парообразования зависит также от следующих факторов:

  1. Если притяжение молекул в жидкости понижается, то интенсивность парообразования возрастает.
  2. С увеличением площади поверхности, занимаемой жидкостью, увеличивается и скорость испарения.
  3. Повышенная температура оказывает существенное влияние на скорость движения молекул, а, следовательно, и на интенсивность парообразования.

Что такое кипение

Очень интересно происходит также кипение воды. Какое это явление? Его суть заключается в интенсивном парообразовании, происходящем во время повышения температуры жидкости, появлении в ней пара в виде пузырьков, которые, всплывая на поверхность, разрываются. При кипении температура воды не меняется, и этот градус называют температурой кипения.

Поскольку никаких изменений в составе жидкости не происходит, подобное явление считается физическим. Во время парообразования молекулы, отделившиеся от воды, забирают определённое количество внутренней энергии. Это приводит к постепенному охлаждению жидкости.

Кипение воды при пониженном давлении: Видео

vseowode.ru

Бензин

АВТОМОБИЛЬНЫЕ БЕНЗИНЫ

Современные автомобильные и авиационные бензины должны удовлетворять ряду требований, обеспечивающих экономичную и надежную работу двигателя, и требованиям эксплуатации:
  • иметь хорошую испаряемость, позволяющую получить однородную топливовоздушную смесь оптимального состава при любых температурах;
  • иметь групповой углеводородный состав, обеспечивающий устойчивый, бездетонационный процесс сгорания на всех режимах работы двигателя;
  • не изменять своего состава и свойств при длительном хранении и не оказывать вредного влияния на детали топливной системы, резервуары, резинотехнические изделия;
  • иметь хорошие антидетонационные характеристики и др.
  • в последние годы экологические свойства топлива выдвигаются на первый план.

Испаряемость

Для обеспечения полного сгорания топлива в двигателе необходимо перевести его в короткий промежуток времени из жидкого состояния в парообразное и смешать с воздухом в определенном соотношении - 1:14 - т.е. создать рабочую смесь. К физико-химическим показателям, от которых зависит испаряемость бензинов, относят давление насыщенных паров, фракционный состав, скрытую теплоту испарения, коэффициент диффузии паров, вязкость, поверхностное натяжение, теплоемкость, плотность. Из перечисленных показателей важнейшими, определяющими испаряемость бензинов, являются давление насыщенных паров и фракционный состав. По вязкости, поверхностному натяжению, скрытой теплоте испарения, коэффициенту диффузии паров, теплоемкости бензины разного состава сравнительно мало различаются между собой, и эти различия нивелируются конструктивными особенностями двигателей. Давление насыщенных паров и фракционный состав являются функциями состава бензина, и эти показатели могут существенно различаться для разных бензинов. Эти два параметра определяют пусковые свойства бензинов, их склонность к образованию паровых пробок, физическую стабильность.

Давление насыщенных паров

Давление насыщенных паров зависит от температуры и от соотношения паровой и жидкой фаз и уменьшается с уменьшением температуры и увеличением отношения паровой фазы к жидкой. В лабораторных условиях давление насыщенных паров определяют при температуре 37,8°С и соотношении паровой и жидкой фаз (3,8-4,2):1 в "Бомбе Рейда" (ГОСТ 1756-52) или аппарате с механическим диспергированием типа "Вихрь" (ГОСТ 28781-90).

Фракционный состав

Фракционный состав бензинов определяют перегонкой на специальном приборе, при этом отмечают температуру начала перегонки, температуру выпаривания 10, 50, 90 % и конца кипения, или объем выпаривания при 70, 100 и 180°С. Требования к фракционному составу и давлению насыщенных паров бензинов определяются конструкцией автомобильного двигателя и климатическими условиями его эксплуатации.

1. С одной стороны, необходимо обеспечить запуск двигателя при низких температурах, с другой стороны - предотвратить нарушения в работе двигателя, связанные с образованием паровых пробок при высоких температурах. Пусковые свойства бензина зависят от содержания в нем легких фракций, которое может быть определено по давлению насыщенных паров и температуре перегонки 10 % или объему легких фракций, выкипающих при температуре до 70°С. Чем ниже температура окружающего воздуха, тем больше легких фракций требуется для запуска двигателя. Однако чрезмерное содержание низкокипящих фракций в составе бензинов может вызвать неполадки в работе прогретого двигателя, связанные с образованием паровых пробок в системе топливоподачи. Причиной образования паровых пробок в автомобильном двигателе является интенсивное испарение топлива вследствие его перегрева. В условиях жаркого климата это явление может иметь массовый характер. Образование паровых пробок зависит от испаряемости бензина, температуры и конструкции двигателя. Чем выше давление насыщенных паров бензина, ниже температуры начала кипения и перегонки 10 % и больше объем фракции, выкипающей при температуре до 70 °С, тем больше его склонность к образованию паровых пробок.

От содержания в бензине легкокипящих фракций зависит его физическая стабильность, т.е. склонность к потерям от испарения. Наибольшие потери от испарения имеют бензины, содержащие в своем составе низкокипящие углеводороды.

2. От фракционного состава зависят такие показатели как скорость прогрева двигателя, его приемистость, износ цилиндро-поршневой группы. Приемистость - способность бензинов к повышению детонационной стойкости при добавлении антидетонаторов. Наиболее существенное влияние на скорость прогрева двигателя и  его приемистость оказывает температура перегонки 50 % бензина. Температура выкипания 90 % бензина также влияет на эти характеристики, но в меньшей степени. Скорость прогрева двигателя, его приемистость зависят и от температуры окружающего воздуха. Чем ниже температура воздуха, тем ниже должна быть температура перегонки 50 % бензина для обеспечения быстрого прогрева и хорошей приемистости двигателя. При понижении температуры это влияние усиливается. Поэтому нормы на этот показатель также зависят от температурных условий эксплуатации и различаются по сезону и климатическим зонам.

3. Для нормальной работы двигателя большое значение имеет полнота испарения топлива, которая характеризуется температурой перегонки 90 % бензина и температурой конца кипения. При неполном испарении бензина во впускной системе часть его может поступать в камеру сгорания в жидком виде, смывая масло со стенок цилиндров. Жидкая пленка через зазоры поршневых колец может проникать в картер, при этом происходит разжижение масла. Это приводит к повышенным износам и отрицательно влияет на мощность и экономичность работы двигателя. Снижение температуры конца кипения бензинов может повысить их эксплуатационные свойства, однако это снижает ресурс бензинов. Температура конца  кипения (tк.к.)  бензинов также характеризует полноту сгорания бензинов и равномерность распределения рабочей смеси по цилиндрам двигателя; при tк.к. выше 220 оС происходит неполное сгорание бензинов, повышается его расход, а также увеличивается износ двигателя, снижаются его экономичность и мощность.

Как было указано выше, требования к испаряемости автомобильных бензинов в значительной мере зависят от температурных условий их применения. С учетом климатических особенностей нашей страны автомобильные бензины по фракционному составу и давлению насыщенных паров подразделяют на два вида: зимний и летний. Для обеспечения нормальной эксплуатации автомобилей и рационального использования бензинов введено пять классов испаряемости для применения в различных климатических районах. Наряду с определением температуры перегонки бензина при заданном объеме предусмотрено определение объема испарившегося бензина при заданной температуре 70, 100 и 180 °С (табл. 2).

Таблица 2

Характеристики испаряемости бензинов всех марок

Показатели

Класс

1

2

3

4

5

1. Давление насыщенных паров бензина, кПа

35-70

45-80

55-90

60-95

80-100

2. Фракционный состав: 

  температура начала перегонки, °С, не ниже

35

35

не нормир.

не нормир.

не нормир.

  пределы перегонки, °С, не выше: 

  - 10%

75

70

65

60

55

  - 50%

120

115

110

105

100

  - 90%

190

185

180

170

160

  конец кипения, °С,

  не выше

215

  объемная доля остатка в колбе, %

2

  остаток и потери, %

4

  объем испарившегося  бензина, %, при  температуре: 

  70 °С

10-45

15-45

15-47

15-50

15-50

  100 °С

35-65

40-70

40-70

40-70

40-70

  180 °С, не менее

85

85

85

85

85

3. Индекс испаряемости, не более

900

1000

1100

1200

1300

Детонационная стойкость

Этот показатель характеризует способность автомобильных бензинов противостоять самовоспламенению при сжатии. Высокая детонационная стойкость топлив обеспечивает их нормальное сгорание на всех режимах эксплуатации двигателя. Процесс горения топлива в двигателе носит радикальный характер. При сжатии рабочей смеси температура и давление повышаются и начинается окисление углеводородов, которое интенсифицируется после воспламенения смеси. Если углеводороды несгоревшей части топлива обладают недостаточной стойкостью к окислению, начинается интенсивное накапливание перекисных соединений, а затем их взрывной распад. При высокой концентрации перекисных соединений происходит тепловой взрыв, который вызывает самовоспламенение топлива. Самовоспламенение части рабочей смеси перед фронтом пламени приводит к взрывному горению оставшейся части топлива, к так называемому детонационному сгоранию. Детонация вызывает перегрев, повышенный износ или даже местные разрушения двигателя и сопровождается резким характерным звуком, падением мощности, увеличением дымности выхлопа. На возникновение детонации оказывает влияние состав применяемого бензина и конструктивные особенности двигателя.

Показателем детонационной стойкости автомобильных бензинов является октановое число.  Октановое число численно равно содержанию (% об.) изооктана (2,2,4,-триметилпентана) в его смеси с н - гептаном, которая по детонационной стойкости эквивалентна топливу, испытуемому на одноцилиндровом двигателе с переменной степенью сжатия в стандартных условиях на бедной рабочей смеси. В лабораторных условиях октановое число автомобильных бензинов и их компонентов определяют на одноцилиндровых моторных установках УИТ-85 или УИТ-65. Склонность исследуемого топлива к детонации оценивается сравнением его с эталонным топливом, детонационная стойкость которого известна. Октановое число на установках определяется двумя методами: моторным (по ГОСТ 511-82) и исследовательским (по ГОСТ 8226-82).

Методы отличаются условиями проведения испытаний. Испытания по моторному методу проводят при более напряженном режиме работы одноцилиндровой установки, чем по исследовательскому. Поэтому октановое число, определенное моторным методом, обычно ниже октанового числа, определенного исследовательским методом. Октановое число, полученное моторным методом в большей степени характеризует детонационную стойкость топлива при эксплуатации автомобиля в условиях повышенного теплового форсированного режима, октановое число, полученное исследовательским методом, больше характеризует бензин при работе на частичных нагрузках в условиях городской езды.

Детонационная стойкость автомобильных бензинов определяется их углеводородным составом. Наибольшей детонационной стойкостью обладают ароматические углеводороды. Самая низкая детонационная стойкость у парафиновых углеводородов нормального строения, причем она уменьшается с увеличением их молекулярной массы. Изопарафины и олефиновые углеводороды обладают более высокими антидетонационными свойствами по сравнению с нормальными парафинами. Увеличение степени разветвленности и снижение молекулярной массы повышает их детонационную стойкость. По детонационной стойкости нафтены превосходят парафиновые углеводороды, но уступают ароматическим углеводородам. Октановое число углеводородов снижается в следующем порядке:

ароматические >изопарафины  > олефины > нафтены > н-парафины.

Разницу между октановыми числами бензина, определенными двумя методами, называют чувствительностью бензина. Наибольшую чувствительность имеют олефиновые углеводороды. Чувствительность ароматических углеводородов несколько ниже. Для парафиновых углеводородов эта разница очень мала, а высокомолекулярные низкооктановые парафиновые углеводороды имеют отрицательную чувствительность. Соответственно   более по чувствительности (9-12 ед.) отличаются бензины каталитического крекинга и каталитического риформинга, содержащие непредельные и ароматические углеводороды. Менее чувствительны (1-2 ед.) к режиму работы двигателя алкилбензин и прямогонные бензины, состоящие из парафиновых и изопарафиновых углеводородов.

Для повышения октановых чисел товарных бензинов используют также специальные антидетонационные присадки и высокооктановые компоненты (этиловую жидкость, органические соединения марганца, железа, ароматические амины, метил-третбутиловый эфир).

Химическая стабильность

Этот показатель характеризует способность бензина сохранять свои свойства и состав при длительном хранении, перекачках, транспортировании или при нагревании впускной системы двигателя. Химические изменения в бензине, происходящие в условиях транспортирования или хранения, связаны с окислением входящих в его состав углеводородов. Следовательно, химическая стабильность бензинов определяется скоростью реакций окисления, которая зависит от условий процесса и строения окисляемых углеводородов.

При окислении бензинов происходит накопление в них смолистых веществ, образующихся в результате окислительной полимеризации и конденсации продуктов окисления. На начальных стадиях окисления содержание в бензине смолистых веществ невелико, и они полностью растворимы в нем. По мере углубления процесса окисления количество смолистых веществ увеличивается, и снижается их растворимость в бензине. Накопление в бензинах продуктов окисления резко ухудшает их эксплуатационные свойства. Смолянистые вещества могут выпадать из топлива, образуя отложения в резервуарах, трубопроводах и др. Окисление нестабильных бензинов при нагревании во впускной системе двигателя приводит к образованию отложений на ее элементах, а также увеличивает склонность к нагарообразованию на клапанах, в камере сгорания и на свечах зажигания.

Окисление топлив представляет собой сложный, многостадийный свободнорадикальный процесс, происходящий в присутствии кислорода воздуха. Скорость реакции окисления углеводородов резко возрастает с повышением температуры. Контакт с металлом оказывает каталитическое воздействие на процесс окисления. Низкую химическую стабильность имеют олефиновые углеводороды, особенно диолефины с сопряженными двойными связями. Высокой реакционной способностью обладают также ароматические углеводороды с двойной связью в боковой цепи. Наиболее устойчивы к окислению парафиновые углеводороды нормального строения и ароматические углеводороды. Химическая стабильность автомобильных бензинов определяется в основном их углеводородным составом.

Наибольшей склонностью к окислению обладают бензины термического крекинга, коксования, пиролиза, каталитического крекинга, которые в значительных количествах содержат олефиновые и диолефиновые углеводороды. Бензины каталитического риформинга, прямогонные бензины, алкилбензин химически стабильны.

Химическую стабильность товарных бензинов и их компонентов оценивают стандартными методами путем ускоренного окисления при температуре 100°С и давлении кислорода по ГОСТ 4039-88. Этим методом определяют индукционный период, т.е. время от начала испытания до начала процесса окисления бензина. Чем выше индукционный период, тем выше стойкость бензина к окислению при длительном хранении. По индукционным периодам бензины различных технологических процессов существенно различаются. Индукционные периоды бензинов термического крекинга составляют 50-250 мин; каталитического крекинга - 240-1000 мин; прямой перегонки - более 1200 мин; каталитического риформинга - более 1500 мин.

Установлено, что бензины, характеризующиеся индукционным периодом не менее 900 мин, могут сохранять свои свойства в течение гарантийного срока хранения (5 лет). Так как не все бензины предназначены для длительного хранения, в нормативно-технической документации нормы на индукционный период установлены от 360 до 1200 мин.

Химическая стабильность бензинов в определенной степени может быть охарактеризована йодным числом, которое является показателем наличия в бензине непредельных углеводородов.

Химическая стабильность этилированных бензинов зависит также от содержания в них этиловой жидкости, так как тетраэтилсвинец при хранении подвергается окислению с образованием нерастворимого осадка.

Для обеспечения требуемого уровня химической стабильности в автомобильные бензины, содержащие нестабильные компоненты, разрешается добавлять антиокислительные присадки Агидол-1 или Агидол-12.

Склонность к образованию отложений и нагарообразованию

Применение автомобильных бензинов, особенно этилированных, сопровождается образованием отложений во впускной системе двигателя, в топливном баке, на впускных клапанах и поршневых кольцах, а также нагара в камере сгорания. Наиболее интенсивное образование отложений происходит на деталях карбюратора. Образование отложений на указанных деталях приводит к нарушению регулировки карбюратора, уменьшению мощности и ухудшению экономичности работы двигателя, увеличению токсичности отработавших газов. Образование отложений в топливной системе частично зависит от содержания в бензинах смолистых веществ, нестабильных углеводородов, неуглеводородных примесей, от фракционного и группового состава, которые определяют моющие свойства бензина. Установлено, что повышенному нагарообразованию способствует высокое содержание в бензинах олефиновых и ароматических углеводородов, особенно высококипящих. Содержание ароматических и олефиновых углеводородов в товарных бензинах ограничивается соответственно 55 и 25 % (об.). Однако в большей степени этот процесс определяется конструктивными особенностями двигателя.

Наиболее эффективным способом борьбы с образованием отложений во впускной системе двигателя является применение специальных моющих или многофункциональных присадок. Такие присадки широко применяют за рубежом. В России также разработаны и допущены к применению присадки аналогичного назначения.

Эксплуатационные свойства

Автомобильные бензины должны быть химически нейтральными и не вызывать коррозию металлов и емкостей, а продукты их сгорания - коррозию деталей двигателя. Коррозионная активность бензинов и продуктов их сгорания зависит от содержания общей и меркаптановой серы, кислотности, содержания водорастворимых кислот и щелочей, присутствия воды. Эти показатели нормируются в нормативно-технической документации на бензины. Бензин должен выдерживать испытание на медной пластинке. Эффективным средством защиты от коррозии топливной аппаратуры является добавление в бензины специальных антикоррозионных или многофункциональных присадок.

nkparma.com

Испарение как физическое явление - HintFox

Научная теория позволяет не только понять, почему вещество может находиться в газообразном, жидком, и твердом состояниях, но и объяснить процесс перехода вещества из одного состояния в другое.

Испарение – это процесс, при котором жидкость постепенно переходит в воздух в форме пара или газа.

Все жидкости испаряются, но с разной скоростью.

Молекулы жидкости движутся беспорядочно.

На поверхности жидкости её молекулы движутся быстрее тех, что находятся внизу, и они могут улетать в воздух, преодолевая силы сцепления. Это и есть испарение.

Когда жидкость подогрета, испарение происходит быстрее – в теплой жидкости скорость движения молекул больше, больше молекул имеет шанс покинуть жидкость. Вылетевшая молекула принимает участие в беспорядочном тепловом движении газа. Беспорядочно двигаясь, она может навсегда удалиться от поверхности жидкости, находящийся в открытом сосуде, но может и вернуться снова в жидкость.

В закрытом сосуде испарение отсутствует, потому что пар быстро достигает точки насыщения, когда количество молекул, покидающих жидкость, равно количеству молекул вернувшихся в нее.

Если воздух над жидкостью движется, скорость испарения увеличивается, так как поток воздуха над сосудом уносит с собой образовавшиеся пары жидкости. Чем больше поверхность испаряющейся жидкости, тем быстрее происходит испарение. Вода в круглой сковородке испариться быстрее, чем в высоком кувшине.

При испарении жидкость покидают более быстрые молекулы, поэтому средняя кинетическая энергия молекул жидкости уменьшается. Это означает, что происходит понижение температуры жидкости. Смочив руку какой-нибудь быстро испаряющейся жидкостью (спирт, ацетон), можно почувствовать сильное охлаждение смоченного места. Охлаждение усилиться если на руку подуть.

Круговорот воды в природе

В сильную жару реки, пруды и озера мелеют, вода испаряется, то есть из жидкого состояния переходит в газообразное - превращается в невидимый пар. Содержание паров воды в воздухе называется влажностью воздуха. Она зависит от температуры. Так, воздух при температуре +20 градусов по Цельсию содержит в 4 раза больше воды, чем при 0 градусов по Цельсию. Тепло – вот причина этого явления. В течении дня, вода луж, прудов, озер, рек, морей, влага, содержащаяся в растениях нагревается Солнцем и испаряется причем тем скорее, чем сильнее нагрета. Можно заметить это, если две одинаковые тарелки наполнить разным количеством воды и одну из них выставить на солнцепек, а другую поместить в тень. Там где вода нагревается солнечными лучами, она будет испаряться заметно быстрее. Ускоряет испарение и ветер. Влажный лист бумаги на ветру высохнет быстрее, чем оставленный там, где воздух спокоен и неподвижен.

Испаряется вода быстрее и там, где суше окружающий воздух. В жаркие сухие дни человек потеет, но пот мало его беспокоит: он мгновенно высыхает. А когда стоит влажная жара, то от пота намокает даже одежда. Но если влага постоянно испаряется из морей, рек, озер, если она уходит из растений и исчезает в атмосфере, то почему же тогда Земля не высыхает?

Это не случается потому, что вода совершает постоянный круговорот. Испарившись, она поднимается вместе с нагретым воздухом, принимая форму мельчайших капелек.

Более 70% поверхности земного шара покрыто водами мирового океана. Но было время, когда морей не было вовсе. Ученые полагают, что около 3500 млн. лет назад наша Земля была очень горячей и ее окружали огромные клубы пара. Постепенно земля остывала, остывал и окружающий ее пар. Остывая, пар превращался в воду в атмосфере Земли и наполнял впадины в земной поверхности, образуя первые на земле моря.

Вода на Земле постоянно перемещается с одного места на другое:

1. С поверхности моря непрерывно улетучиваются крохотные частицы воды, невидимые невооруженным глазом. Они становятся частью окружающего нас воздуха в виде водяного пара.

2. Это процесс испарения. Вода превращается в водяной пар с поверхности водоемов практически в любую погоду. Но летом в жару, этот процесс идет значительно быстрее и интенсивнее.

3. Воздух, поднимаясь к верху становиться холоднее. Очутившись на большой высоте, водяной пар сгущается в крохотные капельки воды, которые зависают в воздухе в виде облаков.

4. Ветер переносит облака по небу.

5. Крохотные капельки, образующие облака, объединяются друг с другом – как именно это происходит, ученым пока неизвестно – и выпадают на землю в виде дождя.

6. Если воздух очень холодный, капельки в облаках замерзают и выпадают в виде снежинок.

7. На вершинах гор снег лежит круглый год. Оттуда по горным склонам стекают маленькие ручейки, подпитываемые тающим снегом.

8. Другие ручьи подпитываются дождевой водой. Все эти ручейки, ручьи со временем впадают в большие реки.

9. Реки стекают с гор и в конце концов впадают в море. Таким образом, вода, испарившаяся с поверхности нашей планеты, возвращается на нее.

Процесс испарения – это очень интересное физико-химическое явление, его интересно наблюдать и отмечать, как оно часто встречается в нашей жизни.

Я думаю, что наука еще не раз использует процесс испарения для пользы человека и нашей планеты.

Глава II «Практические опыты»

ОПЫТ № 1 «Зависимость скорости испарения от различных факторов»

1. Зависимость испарения от температуры

Оборудование:

▪ Спирт

▪ 2 стакана одного объема

▪ 2 блюдца разного диаметра

▪ 2 листа бумаги

▪ градусник для жидкостей

Ход опыта:

Нальем в два одинаковых стакана холодную и горячую воду. Отметим уровень воды в стаканах. Через 12 минут вода в горячем стакане испариться быстрее.

Вывод: Это происходит потому, что в подогретой жидкости молекулы увеличивают скорость под воздействием высокой температуры. Они толкают друг друга так сильно, что некоторые вырываются наружу и рассеиваются между молекулами воздуха в виде водяного пара.

2. Зависимость испарения от площади испаряемой поверхности, если температура жидкости одинакова.

Ход опыта:

Нальем горячую воду (для ускорения процесса опыта) в блюдца разного диаметра. Отметим уровень воды. Через 10 минут вода в большом блюдце испарилась быстрее (объем жидкости стал меньше).

Вывод: Чем больше поверхность испаряющийся жидкости, тем быстрее происходит испарение, так как количество испаряющихся молекул будет больше на большей площади.

3. Зависимость испарения от ветра.

Ход опыта:

Намочим два одинаковых листа бумаги водой. Один оставим высыхать на воздухе, а на другой с помощью фена направим струю холодного воздуха. Через 10 минут лист стал сухим, другой же оставался влажным еще часов.

Вывод: Если воздух над жидкостью движется, скорость испарения увеличивается, так как поток воздуха помогает молекулам жидкости оторваться от поверхности и перейти в парообразное состояние. Горячий воздух ускорит этот процесс.

4. Зависимость испарения от рода вещества.

Ход опыта:

Намочим два листа бумаги разными жидкостями: водой и спиртом. Через 3 минуты спирт с листа полностью испарился, лист, увлажненный водой, оставался сырым 20 минут.

Вывод: Процесс испарения веществ не одинаков. Это зависит от сил удерживающих молекулы этого вещества.

Скорость испарения можно изменять, зная факторы, влияющие на этот процесс!

ОПЫТ № 2 «Выделение вещества из раствора. Кристаллизация сахара».

Требуется:

▪ Чашка

▪ Стакан

▪ Горячая вода

▪ Сахар

▪ Чайная ложка

▪ Толстая хлопчатобумажная нить длиной 10 см.

▪ Скрепка

▪ Карандаш

Ход опыта:

1. Налить в чашку горячей воды и, помешивая ложечкой, добавлять сахар до тех пор, пока он не перестанет растворяться. Делать надо быстро, чтобы вода не успела остыть и растворила больше сахара.

2. Вылить раствор в стакан.

3. Привязать один конец к середине карандаша, а другой к скрепке.

4. Положить карандаш на стакан так, чтобы нить погрузилась в раствор, оставаясь натянутой.

5. Поставить стакан в холодное место и оставить его на день.

Результат: На нити образовались кристаллы сахара.

Вывод: Горячая вода помогла создать перенасыщенный раствор. Когда вода остыла, она не смогла удержать такое количество сахара, и его излишки образовали кристаллы. Когда перенасыщенный раствор остывает, часть растворенного вещества выделяется из растворителя (вода) в виде кристаллов. Вода является превосходным растворителем, но есть много растворов, в которых растворителем является спирт: духи, лаки, клеи. Достоинства этих продуктов (аромат духов, непроницаемость лаков, связующая способность клеев) связаны с тем, что спирт быстро испаряется, оставляя на поверхности растворенные вещества.

Испарение позволяет выделить вещества из раствора!

Заключение

Работая над темой испарение, я нашел ответы на свои вопросы. Я узнал, как происходит испарение, что скорость испарения веществ различна. Люди активно используют процесс испарения в своей жизни, применяют его в производстве различных механизмов и машин, используют в быту. В природе этот процесс происходит вне зависимости от деятельности человека и задача людей – не нарушать этот процесс. Для этого необходимо любить природу и любить нашу Землю! Опыты, которые я провел, были очень интересными, и я думаю, что можно провести еще много других опытов по этой теме. Сейчас, когда я смотрю «Дискавери» или читаю книги, я всегда обращаю внимание на испарение, происходящее в природе или в жизни человека, и я рад, что уже так много знаю о нем!

www.hintfox.com

Испаряемость автомобильных бензинов и их фракционный состав.

Испаряемостью жидкостей называется способность их переходить из жидкого состояния в парообразное. Автомобильные бензины должны обладать определенной испаряемостью, обеспечивающей: легкий пуск двигателя, быстрый его прогрев, полное сгорание бензина после прогрева двигателя, невозможность образования паровых пробок в топливной системе. Испаряемость характеризуется в основном фракционным составом топлива (температурными пределами выкипания отдельных фракций топлива) и давлением насыщенных паров (давление пара , находящегося в равновесии с жидкостью при определенной температуре). Фракционный состав является показателем испаряемости бензина и устанавливает зависимость между объемом бензина и температурой, при которой он перегоняется.

При определении фракционного состава любого топлива отмечаются температуры начала (НР) и конца (КР) разгонки. По температуре перегонки заданный объем бензина подразделяется на фракции: начальные, составляющие по объему до 10 % и выкипающие при достижении температуры 50-70º С; средние, составляющие по объему до 50 % и выкипающие при температуре до 100-115º С; конечные, составляющие по объему до 90 % и выкипающие при температуре 185-195º С.

Температуры выкипания названных фракций бензина оказывают непосредственное влияние на его эксплуатационные показатели и на работу двигателя. Температуры выкипания начальных (t10%) фракций определяют легкость пуска холодного двигателя и скорость его прогрева на холостом ходу. Чем ниже эта температура, тем легче и быстрее можно пустить холодный двигатель, так как большее количество бензина будет попадать в цилиндры в паровой фазе. Однако, если бензин имеет слишком низкие температуры начала перегонки и перегонки 10 %, то при горячем двигателе и особенно в жаркое время в системе питания могут испаряться наиболее низкокипящие углеводороды, образуя пары, объем которых в 150-200 раз больше объема бензина. При этом горючая смесь обедняется, что вызывает перебои в работе двигателя или его остановку. Это явление получило название «паровой пробки».

Температура выкипания средних (t50%) фракций влияет на приемистость двигателя (интенсивность разгона) и устойчивость работы на малой частоте вращения коленчатого вала. Чем ниже эта температура, тем легче испаряются средние фракции бензина, обеспечивая поступление в непрогретый еще двигатель горючей смеси необходимого состава. Если t50% оказывается чрезмерно высокой, то испарение бензина происходит медленно, топливовоздушная смесь образуется обедненной, а поэтому прогрев двигателя получается длительным и приемистость его заметно ухудшается.

По температуре перегонки 90 % и температуре конца перегонки судят о наличии в бензине тяжелых трудноиспаряемых фракций, об интенсивности и полноте сгорания рабочей смеси, о мощности, развиваемой двигателем, и количестве расходуемого топлива, об износах двигателя. Чем выше t90%, КР, тем вероятнее неполное испарение и сгорание бензина попадающего в цилиндр. Неполное сгорание топлива ведет к увеличению его расхода и снижению мощности двигателя. Еще большая опасность возникает оттого, что несгоревшие фракции бензина, оседая на стенках цилиндра, смывают с них масло и, стекая в картер, разжижают масло.

Бензин считается удовлетворяющим требованиям нормальной работы двигателя, если составляющие его фракции находятся в пределах температур перегонки. при отклонении фракционного состава от заданных температур ухудшаются пусковые свойства, возрастает расход топлива и уменьшается развиваемая двигателем мощность.

Еще одним параметром характеризующим фракционный состав является величина потерь бензина при перегонке. По данному показателю судят о склонности бензина к испарению при транспортировке и хранении.

 

Давление насыщенных паров характеризует испаряемость начальных (головных) фракций бензинов и прежде всего их пусковые качества. Чем больше в бензине легких фракций, тем выше давление его насыщенных паров и тем лучше его пусковые свойства. Однако с повышением давления насыщенных паров бензина возрастает склонность к образованию им паровых пробок, и увеличиваются потери от испарения его на складах и топливных баках. Для бензинов летнего вида давление насыщенных паров не должно превышать 500 мм рт. ст., а для зимнего вида оно должно быть в пределах 500-700 мм рт. ст. Летний бензин предназначен для использования с 1 апреля по 1 октября и имеет испаряемость фракций ниже, чем зимний (с 1 октября по 1 апреля).

 

Механические примесив бензине не допускаются. Они приводят к засорению топливных фильтров, топливопроводов, жиклеров, что нарушает нормальную работу двигателя. Пир попадание механических примесей в двигатель увеличивается износ цилиндров и поршневых колец.

Вода в бензине не допускается так как при температурах ниже 0º С замерзает, образуя кристаллы льда, которые могут предотвратить доступ бензина в цилиндры двигателя. Кроме того, вода способствует осмолению бензина, так как в ней растворяется ингибитор, а так же является основным источником коррозии стальных деталей системы питания.

Растворимость воды в бензинах и других нефтепродуктах невелика и составляет при обычных условиях сотые доли процента. Такая концентрация воды в бензине не вносит осложнений в практику эксплуатации автомобилей.

 

Виды сгорания рабочей смеси в двигателе с воспламенением от искры.

Развиваемая двигателем мощность в большой степени зависит от характера сгорания бензино-воздушной смеси: скорости сгорания, полноты сгорания, моментов начала и конца сгорания.

Сгорание рабочей смеси может быть нормальное, в результате самовоспламенения (калильное зажигание) и детонационное.

Нормальное сгорание. Сгорание смеси называется нормальным, если она полностью сгорает в цилиндрах двигателя при средних скоростях распространения фронта пламени, укладывающихся в пределы от 15 до 30 м/с. При нормальном сгорании смесь сжатая до 10-16 кгс/см2 и нагретая теплом сжатия до 350-380º С, воспламеняется от искры свечи зажигания. Длительность основной фазы сгорания составляет 25-30º угла поворота коленчатого вала или примерно 0,0025 с при 2000 об/мин.

В случае возникновения калильного зажигания (самовоспламенения) часть смеси воспламеняется не от искры свечи зажигания, а самопроизвольно от перегретых деталей или раскаленных частиц нагара на стенках камеры сгорания.

Характерный внешний признак самовоспламенения в карбюраторном двигателе - это продолжение работы двигателя с очень низкой частотой вращения коленчатого вала (200-300 об/мин) после выключения зажигания.

Самовоспламенение может являться причиной возникновения детонации.

 

Детонационное сгорание.

Детонациейназывается ненормальная работа двигателя с воспламенением от искры, вызванная взрывным сгоранием части горючей смеси и сопровождающаяся металлическими стуками, появлением в отработавших газах черного дыма, падением мощности, перегревом двигателя и другими вредными последствиями вплоть до механического повреждения отдельных деталей двигателя.

Детонационное сгорание рабочей смеси происходит в результате цепных реакций образования и самопроизвольного распада углеводородных перекисей под воздействием высоких температур и давлений, которым подвергается рабочая смесь, сгорающая в последнюю очередь.

Первоначально воспламенение рабочей смеси происходит от искры свечи зажигания и фронт пламени распространяется по камере сгорания с нормальными скоростями. При этом температура пламени достигает 2000-2500º С. Условия для детонации наиболее благоприятны в той части камеры сгорания, где выше температура и больше время пребывания смеси. При нормальном протекании процесса сгорания для самовоспламенения (и последующей детонации) рабочей смеси не хватает времени. Если же очаги воспламенения возникают в рабочей смеси до подхода фронта пламени вызванного искрой свечи зажигания, то такое сгорание, как и давление в цилиндре, распространяется со скоростью звука и приобретает взрывной характер. В цилиндре возникают и распространяются ударные волны, которые при столкновении со стенками вызывают сильные динамические нагрузки и сопровождаются звонким «металлическим» стуком. При детонации скорость распространения пламени в камере сгорания достигает 2000-2500 м/с, а температура сгоревшей смеси повышается до 2500-3000º С.

На появление детонации влияют детонационная стойкость бензина, состав рабочей смеси, режим работы двигателя. Для подавления детонации при эксплуатации карбюраторных двигателей автомобилей можно использовать уменьшение опережения зажигания, прикрытие дросселя и увеличение скорости вращения коленчатого вала.

 

Методы оценки детонационной стойкости бензинов.

Детонационная стойкость бензинов оценивается октановыми числами, определяемыми по моторному и исследовательскому методам. Показатель октанового числа входит в маркировку бензина.

Октановое число определяется на одноцилиндровой установке определенной конструкции (установка ИТ9-2м – моторный метод – ГОСТ 511-82, установка ИТ9-6 – исследовательский метод – ГОСТ 8226-82) с переменной степенью сжатия в эталонных условиях на обедненной смеси. Величину октанового числа находят сравнением исследуемого топлива с эталонным топливом. В качестве эталонного топлива применяют смеси с различным содержанием по объему двух углеводородов – изооктана (С8Н18),чья детонационная стойкость принята за 100, и нормального гептана (С7Н16), детонационная стойкость которого принята за нуль.

Октановое число жидкого топлива (бензина) численно равно процентному содержанию изооктана в такой смеси с нормальным гептаном эталонных топлив, которая по детонационной стойкости равноценна испытуемому бензину.

Испытания по исследовательскому методу проводят при менее напряженном режиме, чем по моторному: смесь за карбюратором не подогревают, тогда, как во втором случае температуру подогрева смеси поддерживают на уровне 150º С. Поэтому моторный метод точнее оценивает детонационные свойства автомобильного бензина на форсированных режимах езды, а исследовательский - на ограниченной мощности с частыми остановками и при меньшей тепловой напряженности.

Октановые числа определенные по моторному методу, обычно на 4-10 меньше октанового числа, определенного исследовательским методом. Чем выше степень сжатия карбюраторного двигателя (двигателя с внешним смесеобразованием), тем с большим октановым числом должно применяться топливо.

 

Методы повышения октанового числа бензинов.

Повышение октанового числа бензинов в основном достигается двумя способами, а именно воздействием на их химический состав и введением в них специальных присадок – антидетонаторов. Углеводороды, входящие в состав бензинов, различаются по детонационной стойкости. Наименьшей детонационной стойкостью обладают нормальные парафиновые углеводороды, наибольшей -ароматические.

Варьируя углеводородным составом, получают бензины с различной детонационной стойкостью. Практически это осуществляется при каталитическом крекинге и риформинге, а также путем добавки к бензинам высокооктановых компонентов, синтезированных из газообразных углеводородов.

Наибольшее распространение получил второй метод повышения детонационной стойкости - с помощью антидетонаторов.

Антидетонаторами называют такие вещества, которые при добавлении к бензину в относительно небольших количествах резко повышают его детонационную стойкость. К их числу относятся металлоорганические соединения. Наиболее эффективным антидетонатором, является тетраэтилсвинец (ТЭС). ТЭС (Pb(C2H5)4) – бесцветная прозрачная жидкость плотностью 1,65. В воде ТЭС не растворяется, но хорошо растворяется в бензине и других органических растворителях. Механизм действия антидетонаторов, и в частности тетраэтилсвинца, объясняется перекисной теорией детонации и цепных реакций. При высоких температурах в камере сгорания (500-600º С) ТЭС полностью разлагается c образованием металлического свинца

 

Pb(C2H5)4 4C2H5 + Pb

 

Образующийся свинец окисляется с образованием диоксида свинца,

Pb + О2 PbО2

 

который вступает в реакцию с пероксидами (перекисями) и разрушает их. При этом образуются малоактивные продукты окисления углеводородов и оксид свинца, способный реагировать с новой молекулой переоксида. Таким образом, один атом свинца, восстанавливаясь и окисляясь, способен разрушить большое количество пероксидных молекул. В чистом виде антидетонационные присадки к бензинам использовать не удается, так как продукты сгорания в виде нагара откладываются и накапливаются в камере сгорания. В связи с этим ТЭС добавляют в бензин в смеси с веществами – выносителями, образующими со свинцом и его оксидами при сгорании летучие вещества, которые удаляются из двигателя с отработавшими газами. В качестве выносителей применяют вещества, содержащие бром, и в меньшей степени хлор. Смесь ТЭС и выносителя, которая применяется как антидетонатор, называется этиловой жидкостью. Автомобильные бензины, содержащие этиловую жидкость, называются этилированными.

Этиловая жидкость Р-9 представляет собой смесь тетраэтилсвинца с этилбромидом и хлорнафталином. Этиловая жидкость П.-2 – смесь тетраэтилсвинца с дибромпропаном и хлорнафталином.

В связи с ужесточением норм на выбросы вредных веществ с отработавшими газами этилированные бензины заменяются неэтилированными.

В последнее время в качестве антидетонатора применяется (особенно за рубежом) марганцевый антидетонатор (ЦТМ), равноценный по эффективности ТЭС.

ЦТМ (циклопентадиенилтрикарбонил марганца) С5Н5Mn(CO)3 представляет собой кристаллическое вещество, хорошо растворяющееся в бензине. К антидетонатору ЦТМ добавляется выноситель (бисэтилксантоген) и антинагарная присадка (трикрезилфосфат). Бензин, содержащий ЦТМ, по токсичности приближается к чистому бензину. Недостатком ЦТМ является интенсивное образование окиси марганца на электродах свечей, быстро приводящее к замыканию искрового промежутка и, следовательно, к остановке двигателя.

В качестве высокооктановой добавки к бензинам используют метилтретбутиловый эфир (МТБЭ). Физико-химические свойства МТБЭ близки к свойствам бензина. Добавка 10 % МТБЭ в бензин повышает октановое число на 5-6 единиц.

Повысить октановое число бензина можно введением в его состав ароматических аминов (до 2 %). Например, высокоэффективной добавкой к бензинам является экстралин, представляющий собой смесь производных ароматических соединений.

 

Стабильность бензинов.

Физическая стабильность.

Наиболее глубокие изменения свойств бензина происходят в результате двух физических процессов: нарушение однородности бензина вследствие выпадения кристаллов высокоплавких углеводородов и испарения его легких фракций.

Кристаллизация углеводородов в отечественных автомобильных бензинах происходит при очень низких температурах (ниже -60º С), поэтому при эксплуатации автомобилей даже в суровых зимних условиях не нарушается работа двигателей и их систем питания. При транспортировании, и хранении бензина происходит испарение легких фракций бензина, что заметно сказывается на пусковых качествах топлива, а именно на начальных точках разгонки и особенно на давлении насыщенных паров, которое от испарения 3-4 % бензина может снизиться в 2-2,5 раза. Из выше сказанного следует, что бензины должны храниться в герметичной таре по возможности при низкой и малоизменяющейся температуре, лучше всего в подземных хранилищах.

Химическая стабильность.

Изменение свойств бензина может произойти от химических превращений его компонентов и в первую очередь от окисления непредельных углеводородов. Склонность топлив к окислению и смолообразованию при их длительном хранении характеризуют индукционным периодом.

Индукционным периодом называется выраженное в минутах время, в течении которого испытуемый бензин в среде чистого кислорода под давлением 0,7 МПа и при температуре 100ºС практически не подвергается изменению.

Чем больше индукционный период, тем стабильнее бензин и тем дольше его можно хранить.

На повышенное содержания смол и органических кислот в бензине, указывает изменение цвета бензина. При осмолении бензин приобретает желтый цвет иногда с коричневатым оттенком.

Процесс окисления является самоускоряющимся. Каталитически ускоряющее на образование смол действует ржавчина и загрязнение тары, в которой хранится топливо. Попадание воды в бензин так же нежелательно, так как она растворяет ингибиторы и снижает их эффективность. В качестве присадок к бензинам препятствующих их осмолению, используют древесно-смолистый антиокислитель в количестве 0,050-0,015 % и антиокислитель ФЧ-16 в количестве 0,03-0,10 %.

Коррозионное воздействие бензинов на металлы.

Бензины как и другие нефтепродукты, должны обладать минимальным коррозионным воздействием на металлы. Коррозия металлов, из которых изготовлены детали системы питания, может появиться только в том случае, если в бензинах будут присутствовать следующие соединения: минеральные кислоты, щелочи, органические кислоты, сера и сернистые соединения.

Водорастворимые кислоты и щелочиобладают сильным коррозионным воздействием на металлы, вызывают интенсивный износ деталей двигателя и элементов системы питания. Водорастворимые кислоты оказывают воздействие, как на черные так и на цветные металлы, щелочи активно корродируют цветные металлы. По этой причине стандартами на автомобильные бензины не допускается содержание в них хотя бы следов водорастворимых кислот и щелочей.

Отсутствие в бензинах водорастворимых кислот и щелочей определяется по величине рН водной вытяжки бензина, для этого 50 мл бензина тщательно перемешивают с таким же объемом дистиллированной воды и полученную водную вытяжку испытывают на наличие кислот водным раствором метилоранжа, а щелочей - спиртовым раствором фенолфталеина.

Нейтральность водной вытяжки свидетельствует об отсутствии в нефтепродукте минеральных кислот и щелочей.

 

Органические кислоты. Стандартами допускается наличие в бензинах ограниченного количества органических (нафтеновых) кислот. Это объясняется тем , что органические кислоты обладают значительно меньшим коррозионным воздействием на металлы, чем минеральные. Однако они представляют опасность для цветных металлов (свинец, цинк), особенно в присутствии воды. Количество органических кислот в бензине постоянно возрастает вследствие окисления непредельных углеводородов.

Содержание органических кислот в топливах принято характеризовать кислотностью, под которой понимают количество щелочи КОН, выраженное в миллиграммах и потребное для нейтрализации всех нафтеновых кислот в 100 мл топлива.

Кислотность – количественная характеристика содержащихся в нефтепродукте органических кислот.

 

Сера и сернистые соединения.

Активные сернистые соединения отличаются особой коррозионной агрессивностью по этой причине их присутствие в топливах недопустимо.

Наличие активных сернистых соединений качественно обнаруживается испытанием на медную пластинку. Медную пластинку тщательно очищают и выдерживают в бензине (дизельном топливе) 3 часа при температуре 50º С. Если по истечении трех часов на поверхности медной пластины не появились черные, темно-коричневые или серо-стальные пятна, то нефтепродукт считается выдержавшим испытание. Отрицательная проба на коррозию медной пластинки указывает на то, что содержание сероводорода в бензине не более 0,0003, а элементарной серы не более 0,0015 %.

Неактивные сернистые соединения практически не корродируют металлы, однако, вызывают коррозию при сгорании топлива в цилиндрах двигателя. Стандартом на бензины допускается содержание в топливах ограниченного количества неактивных сернистых соединений.

 

Марки бензинов.

Каждая марка бензина имеет условное обозначение, в которое входят буквы и цифры. Буква А означает, что бензин является автомобильным, буква И показывает, что определение детонационной стойкости произведено по исследовательскому методу, а цифры, следующие после дефиса, - минимальное октановое число, например АИ-93. Если октановое число определено по моторному методу, маркировка бензина содержит только букву А, и цифра - обозначает октановое число, например А-76.

Сейчас в Российской Федерации действует стандарт «Бензины для автомобильного транспорта», который включает в себя следующие марки бензинов: А-72(нэ), А-76(э), А-76(нэ), АИ-80(нэ), АИ-91(нэ), АИ-92(нэ), АИ-95(нэ), АИ-96(нэ), АИ-98(нэ).

ГОСТом не предусмотрен бензин АИ-93, вместо него предлагается АИ-91.

Бензины А-72, А-76, АИ-91, АИ-93 и АИ-95 изготавливаются зимнего и летнего видов.

С января 1999 г. в России введен новый государственный стандарт на бензины. Но не на все, а только на неэтилированные. Новый стандарт регламентирует четыре марки бензина: Normal – 80, Regular – 91, Premium – 95, Super – 98. Первый из них заменяет бензины А-76 и АИ-80. Экологические требования к ним (по ГОСТ Р 51105-95) жестче: содержание ТЭС не более 0,010 г/л, полностью запрещено использование железосодержащих антидетонаторов, содержание марганца ограничено на уровне 0,5 г/л для бензина Normal-80 и 0,18 г/л для Regular-91. Выпуск этилированных бензинов в России после 2003 г. резко сокращен.

 

Похожие статьи:

poznayka.org

Испарение - бензин - Большая Энциклопедия Нефти и Газа, статья, страница 1

Испарение - бензин

Cтраница 1

Испарение бензина начинается с момента выхода его из каналов карбюратора в поток воздуха в диффузоре. Под действием кинетической энергии движущегося воздуха вытекающая струя бензина дробится на отдельные кашш. Мелкие капли успевают испариться в смесительной камере карбюратора. Более крупные капли увлекаются потоком воздуха и испаряются при движении смеси по впускному тракту и в цилиндрах двигателя. Наиболее крупные капли топлива оседают на стенках смесительной камеры и впускного трубопровода, образуя жидкую топливную пленку. Паровоздушный поток увлекает пленку по стенкам впускного трубопровода в направлении камер сгорания.  [2]

Испарение бензина во впускной системе двигателя сопровождается понижением температуры топливно-воздушнои смеси вследствие того, что тепло, необходимое для испарения бензина ( теплота испарения), отнимается от воздуха, в котором происходит испарение, и от металлических деталей впускной системы. Отмечено, например, что при температуре окружающего воздуха 7 5 С температура дроссельной заслонки через две минуты после пуска двигателя снижается до - 14 С.  [4]

Испарение бензина начинается с момента выхода его из распылителя и продолжается в потоке воздуха, движущемся с большой скоростью. При этом часть бензина испаряется во впускном трубопроводе, а часть - в цилиндре двигателя.  [5]

Испарение бензина во впускной системе двигателя сопровождается понижением температуры топливо-воздушной смеси вследствие того, что тепло, необходимое для испарения бензина ( теплота испарения), отнимается от воздуха, в котором происходит испарение, и. Отмечено, например, что при температуре окружающего воздуха 7 5 С температура дроссельной заслонки через-2 мин после пуска двигателя снижается до - 14 С.  [7]

Испарение бензина происходит при всех операциях ( заполнение, хранение, заправка), величина потерь зависит от организации работ, технической оснащенности и состояния оборудования.  [8]

Испарение бензина тесно связано с упругостью паров. Чем меньше упругость паров, тем медленнее испаряется бензин, и наоборот. Вместе с этим в стандарте на бензин ограничивается наиболее допустимая упругость паров, которая не должна превышать 500 мм ртутного столба.  [9]

Испарение бензина из маслосистемы самолета в полете с маслобаками, имеющими циркуляционные колодцы, происходит еще быстрее.  [11]

Испарение бензина является фактором, который необходимо учитывать при организации перевозочного процесса. Помимо того, что насыщение парами бензина пространства цистерны или резервуаров опасно в пожарном отношении и в отношении взрывов, испарение бензина меняет его качественный состав. Кроме того, испарение бензина является причиной потерь его при перевозках.  [12]

Испарение бензина происходит тем интенсивнее, чем выше температура среды. Поэтому при хранении и перевозке бензина прибегают к ряду мероприятий, уменьшающих степень испаряемости при повышении окружающей температуры. В целях уменьшения испарения бензиновые цистерны и резервуары для хранения бензина окрашивают в светлый цвет.  [13]

Испарение бензина во впускном трубопроводе сопровождается разделением бензина на фракции. В процессе впуска испаряются в основном низкокипящие фракции. Они, образуя паровоздушную смесь, поступают в цилиндр. Высококипящие фракции оседают на стенке впускного трубопровода в виде жидкой пленки, которая, постепенно испаряясь, движется по впускному тракту. При применении высокооктановых бензинов в результате такого протекания процесса смесеобразования во время впуска ( особенно на неустановившихся режимах) в цилиндр прежде всего поступают низкокипящие фракции со сравнительно меньшим октановым числом. Это может привести к возникновению детонации. Наибольшее влияние на распределение по цилиндрам бензина, имеющего различную детонационную стойкость, оказывает этилирование бензина, что связано с неравномерностью распределения тетраэтнлсшшца при выкипании отдельных фракции.  [14]

Испарение бензина во впускной системе двигателя сопровождается понижением температуры топливо-воздушной смеси вследствие того, что тепло, необходимое для испарения бензина ( теплота испарения), отнимается от воздуха, в котором происходит испарение, и от металлических деталей впускной системы. Отмечено, например, что при температуре окружающего воздуха 7 5 С температура дроссельной заслонки через 2 мин после пуска двигателя снижается до - 14 С.  [15]

Страницы:      1    2    3    4

www.ngpedia.ru

Испарение - бензин - Большая Энциклопедия Нефти и Газа, статья, страница 3

Испарение - бензин

Cтраница 3

Условия испарения бензина в такте сжатия значительно отличаются от условий испарения в такте всасывания.  [31]

Полнота испарения бензина в двигателе характеризуется температурами перегонки 90 % бензина и конца его кипения. При высоких значениях этих температур тяжелые фракции бензина не испаряются во впускном трубопроводе двигателя и поступают в цилиндры в жидком виде. Жидкая часть бензина испаряется в камере сгорания не полностью, а неиспарившаяся часть протекает через замки поршневых колец в картер двигателя. При этом смазка смывается со стенок цилиндров и разжижается масло в картере. В местах смывания смазки возникает полусухое трение деталей, сопровождающееся повышенным износом.  [32]

С испарением бензина связана и неудовлетворительная работа горячего двигателя на холостом ходу, когда при небольшом расходе бензина и невысокой скорости его прокачки по топливной системе температура бензина возрастает. В результате испарения части бензина в таких условиях может образоваться чрезмерно богатая рабочая смесь, что приведет к неровному холостому ходу и в крайних случаях - к остановке двигателя вследствие затопления карбюратора из-за перколяции бензина.  [33]

При испарении бензинов вследствие потерь легких фракций понижается октановое число и давление насыщенных паров, повышается температура начала кипения и выкипания различных фракций.  [34]

Чтобы предотвратить испарение бензина применяют центрифугу совершенно закрытого, газонепроницаемого типа. Ротор центрифуги делает 15 тыс. об / лшн.  [35]

Чтобы избежать испарения бензина при столь высокой температуре, процесс ведут под давлением в специальной металлической бомбе, фиксируя по манометру начало снижения давления в бомбе. Время от начала опыта до начала поглощения кислорода принимают за индукционный период.  [36]

Следовательно, испарение бензина в цилиндре двигателя в такте сжатия несколько замедляется увеличенным давлением и значительно ускоряется резким повышением температуры воздуха.  [37]

В случае испарения бензина из колбы бензин доливают через холодильник.  [38]

Для уменьшения испарения бензина резиновые клеи следует хранить в герметически закрываемых бидонах, устанавливаемых в железные запирающиеся ящики.  [39]

При пуске двигателя испарение бензина ухудшается из-за низкой температуры деталей и невысокой скорости движения воздуха через карбюратор. Значительное его количество конденсируется на стенках холодного трубопровода. Все это приводит к обеднению смеси. Чтобы смесь была способна к воспламенению, в ней должен быть большой избыток бензина. Это достигается прикрытием воздушной заслонки карбюратора.  [40]

Различные фирмы оценивают испарение бензинов непосредственно из топливной системы в пределах от 7 до 27 г в день на один автомобиль. Оборудование такими приборами предусмотрено для Всех новых автомобилей.  [41]

В карбюраторных двигателях испарение бензина и образование топливно-воздушной ( рабочей) смеси в основном совершается до ее поступления в цилиндр двигателя.  [42]

Например, скорость испарения бензина под слоем пены толщиной 5 см уменьшается в 30 - 40 раз. Изолирующее действие пены зависит от ее физико-химических свойств и структуры, от толщины ее слоя, а также от природы горючего вещества и от температуры на ее поверхности.  [43]

Однако для оценки испарения бензина во впускном трубопроводе определяют коэффициент диффузии и при различных скоростях движения воздуха.  [44]

Страницы:      1    2    3    4

www.ngpedia.ru

это... Что такое испарение: определение, примеры :: SYL.ru

В природе вещества могут быть в одном из трех агрегатных состояний: твердом, жидком и газообразном. Переход из первого во второе и наоборот можно наблюдать ежедневно, особенно зимой. Однако превращение жидкости в пар, которое известно как процесс испарения, часто не видно глазу. При кажущейся незначительности оно играет важную роль в жизни человека. Итак, давайте узнаем об этом подробнее.

Испарение – это что такое

Каждый раз, решив вскипятить чайник для чая или кофе, можно наблюдать, как, достигнув 100 °С, вода превращается в пар. Именно это и является практическим примером процесса парообразования (перехода определенного вещества в газообразное состояние).

Парообразование бывает двух видов: кипение и испарение. На первый взгляд они идентичны, но это распространенное заблуждение.

Испарение – это парообразование с поверхности вещества, а кипение – со всего его объема.

Испарение и кипение: в чем разница

Хотя и процесс испарения, и кипение, оба способствуют переходу жидкости в газообразное состояние, стоит помнить о двух важных отличиях между ними.

  • Кипение – это активный процесс, который происходит при определенной температуре. Для каждого вещества она уникальна и может меняться только при понижении атмосферного давления. При нормальных условиях для кипения воды нужно 100 °С, для рафинированного подсолнечного масла - 227 °С, для нерафинированного - 107 °С. Спирту, чтобы закипеть, наоборот, нужна более низкая температура – 78 °С. Температура же испарения может быть любой и оно, в отличие от кипения, происходит постоянно.
  • Вторым существенным отличием между процессами является то, что при кипении парообразование происходит по всей толще жидкости. Тогда как испарение воды или других веществ происходит только с их поверхности. Кстати, процесс кипения всегда одновременно сопровождается и испарением.

Процесс сублимации

Считается, что испарение – это переход из жидкого в газообразное агрегатное состояние. Однако в редких случаях, минуя жидкое, возможно испарение прямо из твердого состояния в газообразное. Такой процесс называется сублимацией.

Это слово знакомо всем, кто хоть раз заказывал кружку или футболку с любимой фотографией в фотосалоне. Для перманентного нанесения изображения на ткань или керамику как раз и используется этот вид испарения, в честь него печать такого рода называется сублимационной.

Также такое испарение часто используется для промышленной сушки фруктов и овощей, изготовления кофе.

Хотя сублимация встречается намного реже, нежели испарение жидкости, иногда ее можно наблюдать в быту. Так, вывешенное сушиться зимой постиранное влажное белье – мгновенно замерзает и становится твердым. Однако постепенно эта жесткость уходит, и вещи становятся сухими. В данном случае вода из состояния льда, минуя жидкую фазу, переходит сразу в пар.

Как происходит испарение

Как и большинство физических и химических процессов, главную роль в процессе испарения играют молекулы.

В жидкостях они расположены очень близко друг к другу, но при этом они не имеют фиксированного места расположения. Благодаря этому они могут «путешествовать» по всей площади жидкости, причем с разными скоростями. Это достигается благодаря тому, что во время движения они сталкиваются между собой и от этих столкновений их скорость меняется. Став достаточно быстрыми, самые активные молекулы получают возможность подняться на поверхность вещества и, преодолев силу притяжения других молекул, покинуть жидкость. Так происходит испарение воды или другого вещества и образуется пар. Не правда ли, немного напоминает полет ракеты в космос?

Хотя из жидкости в пар переходят самые активные молекулы, однако оставшиеся их «собратья» продолжают пребывать в постоянном движении. Постепенно и они приобретают необходимую скорость, чтобы преодолеть притяжение и перейти в другое агрегатное состояние.

Постепенно и постоянно покидая жидкость, молекулы задействуют для этого ее внутреннюю энергию и она уменьшается. А это напрямую влияет на температуру вещества – она понижается. Именно поэтому количество остывающего чая в чашке немного уменьшается.

Условия испарения

Наблюдая за лужами после дождя, можно заметить, что некоторые из них высыхают быстрее, а некоторые дольше. Поскольку их высыхание является процессом испарения, то можно на данном примере разобраться с условиями, необходимыми для этого.

  • Скорость испарения зависит от типа испаряемого вещества, ведь каждое из них имеет уникальные особенности, влияющие на время, за которое его молекулы полностью перейдут в газообразное состояние. Если оставить открытыми 2 идентичных флакона, наполненных одинаковым количеством жидкости (в одном спирт С2Н5ОН, в другом – вода Н2О), то первая емкость опустеет быстрее. Поскольку, как уже было сказано выше, температура испарения у спирта ниже, а значит, он быстрее испарится.
  • Второе, от чего зависит испарение, – температура окружающей среды и температура кипения испаряемого вещества. Чем выше первая и ниже вторая, тем быстрее жидкость сможет ее достигнуть и перейти в газообразное состояние. Именно поэтому при проведении некоторых химических реакций с участием испарения вещества специально нагреваются.
  • Еще одним условием, от чего зависит испарение, является площадь поверхности вещества, с которого оно происходит. Чем она больше, тем быстрее происходит процесс. Рассматривая различные примеры испарения, можно снова вспомнить о чае. Его часто переливают в блюдце, чтобы охладить. Там напиток быстрее остывал, потому что увеличивалась площадь поверхности жидкости (диаметр блюдца больше диаметра чашки).
  • И снова о чае. Известен еще одни способ быстрее его остудить – подуть на него. Каким образом можно заметить, что наличие ветра (движения воздуха) - это то, от чего также зависит испарение. Чем выше скорость ветра, тем быстрее молекулы жидкости перейдут в пар.
  • Также влияет на интенсивность испарения атмосферное давление: чем оно ниже, тем быстрее молекулы переходят из одного состояния в другое.

Конденсация и десублимация

Превратившись в пар, молекулы не перестают двигаться. В новом агрегатном состоянии они начинают сталкиваться с молекулами воздуха. Из-за этого иногда они могут возвращаться в жидкое (конденсация) или твердое (десублимация) состояние.

Когда процессы испарения и конденсации (десублимации) равносильны между собой, это называют динамическим равновесием. Если газообразное вещество находится в динамическом равновесии со своей жидкостью аналогичного состава, его называют насыщенным паром.

Испарение и человек

Рассматривая различные примеры испарения, нельзя не вспомнить влияние этого процесса на организм человека.

Как известно, при температуре тела 42,2 °С белок в крови человека сворачивается, что ведет к смерти. Нагреваться человеческое тело может не только из-за инфекции, но и при выполнении физического труда, занятий спортом или во время пребывания в жарком помещении.

Организму удается сохранить приемлемую для нормальной жизнедеятельности температуру, благодаря системе самоохлаждения – потоотделению. Если температура тела повышается, через поры кожи выделяется пот, а потом происходит его испарение. Этот процесс помогает «сжечь» лишнюю энергию и способствует охлаждению организма и нормализации его температуры.

Кстати, именно поэтому не стоит безоговорочно верить рекламам, которые преподносят пот как главное бедствие современного общества и пытаются продать наивным покупателям всевозможные вещества для избавления от него. Заставить организм меньше потеть, не нарушая его нормальной работы, нельзя, а хороший дезодорант способен лишь маскировать неприятный запах пота. Поэтому, используя антиперспиранты, различные присыпки и пудры, можно нанести организму непоправимый вред. Ведь эти вещества забивают поры или сужают выводные протоки потовых желез, а значит, лишают тело возможности контролировать свою температуру. В случаях, если использование антиперспирантов все же необходимо, предварительно стоит проконсультироваться с врачом.

Роль испарения в жизни растений

Как известно, не только человек на 70% состоит из воды, но и растения, а некоторые, вроде редиса, и на все 90%. Поэтому испарение также важно и для них.

Вода является одним из главных источников попадания полезных (и вредных тоже) веществ в организм растения. Однако, чтобы эти вещества могли усвоиться, необходим солнечный свет. Вот только в жаркие дни солнце способно не просто нагреть растение, но и перегреть, тем самым погубив его.

Чтобы этого не произошло, представители флоры способны самоохлаждаться (похоже на человеческий процесс потоотделения). Иными словами при перегреве растения испаряют воду и таким образом охлаждаются. Поэтому поливу садов и огородов уделяется летом так много внимания.

Как используют испарение в промышленности и в быту

Для химической и пищевой промышленности испарение – это незаменимый процесс. Как уже было сказано выше, оно не только помогает производить дегидратацию многих продуктов (испарять влагу из них), что увеличивает срок их хранения; но также помогает изготавливать идеальные диетические продукты (меньше веса и калорий, при большем содержании полезных веществ).

Также испарение (в особенности сублимация) используется для очистки различных веществ.

Еще одной сферой применения является кондиционирование воздуха.

Не стоит забывать и о медицине. Ведь процесс ингаляции (вдыхание пара, насыщенного лечебными препаратами) основан тоже на процессе испарения.

Опасные испарения

Однако, как и у всякого процесса, у этого есть и негативные стороны. Ведь превращаться в пар и вдыхаться людьми и животными могут не только полезные вещества, но и смертельно опасные. А самое печальное в том, что они – невидимы, а значит, человек не всегда знает, что подвергся воздействию токсина. Именно поэтому стоит избегать пребывания без защитных масок и костюмов, на заводах и предприятиях, работающих с опасными веществами.

К сожалению, вредные испарения могут подстерегать и дома. Ведь если мебель, обои, линолеум или другие предметы изготовлены из дешевых материалов с нарушениями технологии, они способны выделять токсины в воздух, которые и будут постепенно «травить» своих хозяев. Поэтому при покупке любой вещи, стоит просматривать сертификат качества материалов, из которых она изготовлена.

www.syl.ru


© 2007—2018
423800, Набережные Челны , база Партнер Плюс, тел. 8 800 100-58-94 (звонок бесплатный)