Камаз 44108 тягач В наличии!
Тягач КАМАЗ 44108-6030-24
евро3, новый, дв.КАМАЗ 740.55-300л.с., КПП ZF9, ТНВД ЯЗДА, 6х6, нагрузка на седло 12т, бак 210+350л, МКБ, МОБ
 
карта сервера
«ООО Старт Импэкс» продажа грузовых автомобилей камаз по выгодным ценам
+7 (8552) 31-97-24
+7 (904) 6654712
8 800 1005894
звонок бесплатный

Наши сотрудники:
Виталий
+7 (8552) 31-97-24

[email protected]

 

Екатерина - специалист по продаже а/м КАМАЗ
+7 (904) 6654712

[email protected]

 

Фото техники

20 тонный, 20 кубовый самосвал КАМАЗ 6520-029 в наличии
15-тонный строительный самосвал КАМАЗ 65115 на стоянке. Техника в наличии
Традиционно КАМАЗ побеждает в дакаре

тел.8 800 100 58 94

Техника в наличии

тягач КАМАЗ-44108
Тягач КАМАЗ 44108-6030-24
2014г, 6х6, Евро3, дв.КАМАЗ 300 л.с., КПП ZF9, бак 210л+350л, МКБ,МОБ,рестайлинг.
цена 2 220 000 руб.,
 
КАМАЗ-4308
КАМАЗ 4308-6063-28(R4)
4х2,дв. Cummins ISB6.7e4 245л.с. (Е-4),КПП ZF6S1000, V кузова=39,7куб.м., спальное место, бак 210л, шк-пет,МКБ, ТНВД BOSCH, система нейтрализ. ОГ(AdBlue), тент, каркас, рестайлинг, внутр. размеры платформы 6112х2470х730 мм
цена 1 950 000 руб.,
КАМАЗ-6520
Самосвал КАМАЗ 6520-057
2014г, 6х4,Евро3, дв.КАМАЗ 320 л.с., КПП ZF16, ТНВД ЯЗДА, бак 350л, г/п 20 тонн, V кузова =20 куб.м.,МКБ,МОБ, со спальным местом.
цена 2 700 000 руб.,
 
КАМАЗ-6522
Самосвал 6522-027
2014, 6х6, дв.КАМАЗ 740.51,320 л.с., КПП ZF16,бак 350л, г/п 19 тонн,V кузова 12куб.м.,МКБ,МОБ,задняя разгрузка,обогрев платформы.
цена 3 190 000 руб.,

СУПЕР ЦЕНА

на АВТОМОБИЛИ КАМАЗ
43118-010-10 (дв.740.30-260 л.с.) 2 220 000
43118-6033-24 (дв.740.55-300 л.с.) 2 300 000
65117-029 (дв.740.30-260 л.с.) 2 200 000
65117-6010-62 (дв.740.62-280 л.с.) 2 350 000
44108 (дв.740.30-260 л.с.) 2 160 000
44108-6030-24 (дв.740.55,рест.) 2 200 000
65116-010-62 (дв.740.62-280 л.с.) 1 880 000
6460 (дв.740.50-360 л.с.) 2 180 000
45143-011-15 (дв.740.13-260л.с) 2 180 000
65115 (дв.740.62-280 л.с.,рест.) 2 190 000
65115 (дв.740.62-280 л.с.,3-х стор) 2 295 000
6520 (дв.740.51-320 л.с.) 2 610 000
6520 (дв.740.51-320 л.с.,сп.место) 2 700 000
6522-027 (дв.740.51-320 л.с.,6х6) 3 190 000


Перегон грузовых автомобилей
Перегон грузовых автомобилей
подробнее про услугу перегона можно прочесть здесь.


Самосвал Форд Нужны самосвалы? Обратите внимание на Ford-65513-02.

КАМАЗы в лизинг

ООО «Старт Импэкс» имеет возможность поставки грузовой автотехники КАМАЗ, а так же спецтехники на шасси КАМАЗ в лизинг. Продажа грузовой техники по лизинговым схемам имеет определенные выгоды для покупателя грузовика. Рассрочка платежа, а так же то обстоятельство, что грузовики до полной выплаты лизинговых платежей находятся на балансе лизингодателя, и соответственно покупатель автомобиля не платит налогов на имущество. Мы готовы предложить любые модели бортовых автомобилей, тягачей и самосвалов по самым выгодным лизинговым схемам.

Контактная информация.

г. Набережные Челны, Промкомзона-2, Автодорога №3, база «Партнер плюс».

тел/факс (8552) 388373.
Схема проезда



2. Определение физико-механических свойств грунтов. Физико механические свойства грунтов


Основные физико – механические свойства грунтов.

ФИЗИЧЕСКИЕ СВОЙСТВА ГРУНТОВ.

Физические свойства грунтов согласно, ГОСТ -25100-95 оцениваются по следующим характеристикам :

Плотность грунта - это отношение массы грунта включая массу воды в ее порах, к занимаемому этим грунтом объему

p=m/V ,

p- плотность грунта ,г/см, кг/м, т/м

m- масса породы с естественной влажностью и сложением, г

V- объем, занимаемый породой, см

Плотность частиц грунта - отношение массы сухого грунта, исключая массу воды его порах, к объему твердой части этого грунта и изменяется для всех горных пород в пределах 2.61 до 2.75 г/см

ps=(m-mв ) /Vт ,

ps- плотность частиц грунта, г/см, кг/м ,т/м

mв- масса воды в порах грунта ,г

Vт-объем твердой части грунта, см

Удельный вес грунта - характеризует отношение веса грунта, включая вес воды в его порах, к занимаемому этим грунтом объему, включая поры и может быть рассчитан

γ=pg ,

γ- удельный вес грунта, н/м

p-плотность грунта

g-, ускорение свободного падения равное 9.81 м/с

Плотность скелета породы, или плотность сухого грунта pd, представляет собой отношение массы минеральных частиц породы (твердой части грунта ) при естественной структуре, исключая массу воды в его порах, к занимаемому этой породой объему:

pd= (m-mв)/V , V-объем, занимаемый породой, см

pd – плотность скелета породы (плотность сухого грунта), г/см, кг/см, т/м

m-mв=m1- масса сухого грунта ,г

Плотность скелета породы – величина более постоянная по сравнению с плотностью породы и обычно вычисляется по данным определений плотности и влажности по формуле : р= pd /1+ 0.01W ,

W- влажность породы ,%

р-плотность породы, г/см;

pd- плотность скелета породы, г/см

Удельный вес частиц грунта характеризует отношение веса сухого грунта к объему его твердой части и рассчитывается следующим образом:

γ s = γ g

γ -удельный вес сухого грунта ,Н/м

Пористость породы это отношение объема пор к объему всего грунта, включая поры

n=(Vn /V) 100

Vn - объем пор в породе ,см

V - объем породы, см

Пористость можно выразить через значение плотности грунта:

n=( (ps – pd) / ps ) 100 n=(1- pd / ps ) 100

Приведенной пористостью или коэффициентом пористости называется отношение объема пустот (пор) к объему твердой части (скелета грунта) и выражается в долях единицы по формулам: e=n / 1 –n e=(ps – pd) / pd

ВЛАЖНОСТЬ.

Под естественной (природной) влажностью грунта W, понимается количество воды, содержащееся в порах грунта в его природном состоянии.

Она может менятся в зависимости от климатических и гидрогеологических условий, колебаться на протяжении года или суток в известных пределах, но при этом всегда остается характерной для данного генетического типа грунта.

Весовой или абсолютной влажностью называют отношение массы воды к массе к массе абсолютно сухого грунта, выраженное %.

Полная влагоемкость – это такая влажность, при которой все поры заполнены водой

e-коэффициент пористости ; p-плотность частиц грунта

W= n /pd W = epw / ps

Влажность в зоне аэрации непостоянна. Влажность в зоне водонасыщения практически не меняется и количественно соответствует пористости грунта. Эта влажность и называется полной влагоемкостью, а грунт , имеющий такую влажность, водонасыщенным.

Под гигроскопической влажностью Wг понимают влажность воздушно-сухого грунта.

Степенью влажности или относительной влажностью называют степень заполнения пор грунта водой и характеризуется отношение объема воды к объему пор грунта

Sr=(W ps (100-n )) / n Sr = W ps /e pw

S- степень влажности породы, %

W- естественная влажность породы , %

ps - плотность частиц породы , г/см

n - пористость , %

pw - плотность воды , г/см

е - коэффицент пористости

Максимальная молекулярная влагоемкость Wм.м.в. показывает количество воды, которое удерживается в породе силами молекулярного сцепления, после того как вся гравитационная вода стечет из породы. Ее определяют центрифугированием для глинистых грунтов, а для песчаных и супесчаных грунтов способом высоких колонн.

Разностью между полной и максимальной влагоемкостью определяют водоотдачу грунта

ВОДНЫЕ СВОЙСТВА ГРУНТОВ.

Способность грунтов свободно отдавать воду под действием силы тяжести называется водоотдачей. Глинистые грунты имеют плохую водоотдачу, т. к. значительная часть влаги остается в них в виде связанной воды. Пески обладают хорошей водоотдачей, численно равной объему их пор, но истинные плывуны имеют водоотдачу практически равную нулю. Их можно заставить отдавать воду только с помощью электроосмотического осушения. Наибольшей водоотдачей обладают крупнообломочные породы и пески от 25- 43%

Водонасыщение - свойство дисперсных грунтов впитывать и удерживать в себе свободную воду. Скорость и количество удерживаемой воды зависит от величины удельной поверхности, гидрофильности, гран.состава, пористости (пески насыщаются значительно быстрее, чем глины.

W=масса поглощенной грунтом воды / масса абсолютно сухого грунта

D- дефицит водонасыщения это разность между полной влагоемкостью и естественной влажностью.

Водопроницаемость - способность грунтов пропускать через себя гравитационную воду через поры ( рыхлые и глинистые грунты ) и трещины (скальных гр.) Чем больше размер пор или чем крупнее трещины, тем выше водопроницаемость пород. Водопроницаемость характеризуется коэффициентом фильтрации – это скорость движения подземных вод при гидравлическом градиенте равном единице ( см/сек, м/ч, м/сут)

По величине Кф породы делятся на:

Водопроницаемые - Кф больше 1 м/сут (галечники, гравий, песок, трещиноватые породы, закарстованные известняки, доломиты)

Слабопроницаемые (полупроницаемые) - Кф от 1- 0.001 м/сут (супеси, суглинки, лесс, торф)

Непроницаемые (водоупорные) - Кф менее 0.001 м/сут (глины, тяжелые суглинки, не трещиноватые массивные кристаллические и сцементированные осадочные породы )

ВОДНО - ФИЗИЧЕСКИЕ СВОЙСТВА ГРУНТОВ.

(пластичность, липкость, усадка, набухание, размокание )

Изменение влажности грунта с переходом ее через характерные границы ведет к изменению состояния грунта или к возникновению в нем новых свойств.

Пластичность, липкость, усадка, набухание, размокание – характерны для песчано-глинистых грунтов и называются специфическими.

Пластичность – способность глинистого грунта под действием внешних усилий менять свою форму без разрыва сплошности, а после прекращения действия усилия сохранять полученную форму. Пластичные свойства обуславливаются наличием пленочной воды и проявляются только между двумя определенными значениями влажности. Минимальное значение влажности называют нижним пределом пластичности или границей раскатывания Wp , а максимальное – верхним пределом пластичности или границей текучести Wi . Нижним пределом пластичности называется такая влажность при которой грунт переходит из пластичного в полутвердое или твердое состояние. Верхним пределом пластичности называется такая влажность при которой грунт переходит из пластичного состояния в текучее. Разность между Wp и Wi называют числом пластичности Ip

По числу пластичности песчано-глинистые грунты разделяются:

Супесь от 0.01 до 0.07

Суглинок от 0.07 до 0.17

studfiles.net

Основные физико-механические свойства грунтов

:

Рис. 49. Условия равновесия частицы грунта на откосе

9. Угол естественного откоса ф — угол у основания конуса, который образуется при отсыпании разрыхленного грунта с некоторой высоты. Этот угол зависит от величины коэффициента внутреннего трения и от связности. Для несвязных грунтов угол естественного откоса равен углу внутреннего трения.

Величины углов естественного откоса приводятся в табл. 8.

10. Сопротивл ени е грунта вдавливанию. При вдавливании в грунт штампа или какой-либо опорной поверхности (ходовой части машины, элемента рабочего органа) под штампом происходят деформации в условиях, близких к всестороннему сжатию (т. е. когда на элемент грунта действуют одновременно окружающий массив и поверхность штампа так, что элемент оказывается сжатым со всех сторон).

Чем ближе к поверхности грунта расположен элемент, тем меньше влияние всестороннего сжатия. Вдавливание на небольшую глубину (до 1 см) называют смятием. При этом усилие, необходимое для вдавливания штампа, во много раз меньше, чем при вдавливании штампа на значительную глубину.

В частности, допускаемые нагрузки для ходовых частей” машин предусматривают погружение до 6—12 см. Величина усилия, необходимого для вдавливания штампа, зависит от размеров штампа. Чем меньше он, тем больше должно быть удельное усилие при вдавливании.

11. Абразивность (от латинского слова abrasio — соскабливать) — способность материала оказывать истирающее действие на другой материал. Абразивность грунтов из горных пород в значительной степени определяет износ рабочих органов землеройных машин. Имеются различные методы оценки аб-разивности, однако все они пока еще являются относительными, так как износ зависит от удельных давлений, скорости взаимного перемещения и прочностных показателей. При одних и тех же прочностных показателях величина износа может быть различной.

Коэффициент трения грунта о сталь зависит от состояния поверхности стали и физико-механических свойств грунта.

13. Разрыхляемость определяется как отношение объема разрыхленного грунта Vp к объему V первоначальному (в плотном теле).

Первоначальное разрыхление — это разрыхление, наблюдаемое сразу после отделения грунта от массива; остаточное разрыхление наблюдается через некоторое время после укладки грунта в отвал или насыпь, где происходит его самоуплотнение без трамбования.

Копание и резание грунтов

Копание — совокупность процессов отделения грунта от массива, включающих резание грунта, перемещение его по рабочему органу и впереди последнего, а в отдельных случаях и перемещение внутри рабочего органа (в частности, в ковшах экскаваторов).

Резание — процесс отделения грунта от массива при помощи режущей части рабочего органа, обычно имеющей вид клина.

Одно из них — движение, при котором отделяется стружка1, другое (оно может быть названо движением подачи) — при котором изменяется толщина стружки.

Скорость движения подачи обычно в несколько раз меньше скорости главного движения. Соотношение скоростей этих движений в известной мере определяет траекторию рабочего органа.

Рис. 50. Геометрия рабочего органа

В землеройно-транспортных машинах режущий орган (нож) предварительно внедряется в грунт до определенной глубины, а затем, двигаясь в нужном направлении, срезает стружку заданной толщины.

Как правило, внедрение в грунт происходит в результате одновременного перемещения ножа вглубь и вперед.

Механику отделения грунта от массива в процессе резания можно представить так.

Термином «стружка» пользуются при обработке металлов, он не всегда отражает физическую сущность процессов, происходящих при резании грунтов, однако удобен при расчетах сил сопротивления грунта резанию и копанию, наполнения ковша и производительности землеройных машин. Поэтому применяется условно.

Указанный способ моделирования процесса резания был впервые предложен М. И. Гальпериным и В. Д. Абезгаузом.

У передней грани формируется уплотненное ядро (рис. 52), которое, двигаясь перед режущей частью рабочего органа, внедряется в массив и отделяет стружку. Размеры ядра в процессе резания непрерывно изменяются, а само ядро периодически обновляется.

При углах резания, меньших 30°, у большинства грунтов ядро не образуется. В этом случае стружка отделяется под воздействием передней грани рабочего органа.

Рис. 51. Внедрение штампа у одной открытой стенки

Грунт отделяется от массива в результате сдвига или отрыва. Характер этого отделения зависит от физико-механических свойств грунта, геометрии рабочего органа и режимов работы.

Определение отдельных параметров процесса резания и копания грунта, усилий, наивыгоднейших режимов, геометрии рабочего органа из-за сложности процесса и одновременного влияния многих факторов пока еще не получило аналитического решения. В основном усилия и режимы подбираются на основе экспериментальных данных.

Рис. 53. Удельное сопротивление резанию при разработке

До определенных значений с по мере его увеличения второй фактор оказывает большее влияние и, следовательно, величина kp уменьшается. После увеличения с сверх определенных значений большее влияние оказывает всестороннее сжатие и сопротивление kp увеличивается. Это продолжается, пока значение с не достигнет величины си после чего значения kp стабилизируются.

С увеличением Ь величина kv уменьшается и после определенных значений Ь она также стабилизируется.

При полусвободном и свободном резании удельное сопротивление с увеличением с при постоянном b уменьшается и после определенных значений с тоже стабилизируется.

Величина kp в значительной степени зависит от физико-механических свойств грунта и в большей степени от его прочности на одноосное сжатие. Последняя зависит от влажности, объемного веса, пластичности, связности грунта и других параметров. Так как прочность на одноосное сжатие многих талых грунтов мала и трудно поддается измерению, а для некоторых грунтов, например для песков, ее вообще нельзя измерить, то трудность разработки характеризуют категорией грунта.

Рис. 54. Ударник конструкции ДорНИИ

Под действием удара стержень внедряется в грунт. В зависимости от физико-механических свойств грунта для внедрения стержня на глубину 0,1 м требуется различное число ударов: например, в просеянный песок влажностью 9,2

stroy-technics.ru

Физико-механические свойства грунтов

Строительные машины и оборудование, справочник

Категория:

   Рабочие органы и ходовое оборудование

Физико-механические свойства грунтов

Грунты -обрабатываются землеройными, землеройно-транспортными и уплотняющими машинами. Рабочие органы последних непрерывно или периодически находятся во взаимодействии с грунтами. Эффективность работы машин зависит от того, насколько правильно при их проектировании учтены свойства грунтов. Особенно важно знать те сопротивления, которые оказывает грунт обрабатывающим его рабочим органам машин, а также зависимость этих сопротивлений от различных факторов, к числу которых главным образом относятся скорости воздействия, форма рабочих органов, их размеры и т. п. Только при полном учете свойств грунтов возможно создание высокопроизводительных и вместе с тем экономичных машин.

Грунт представляет собой систему, состоящую из минеральных частиц, пространство между которыми в той или иной степени заполнено водой и воздухом. Поэтому в грунтах принято различать три фазы: твердую, жидкую и газообразную. Твердая фаза содержит частицы различного размера и формы, которые по крупности разделяют на глинистые (мельче 0,005 мм), пылеватые (0,05—0,005 мм) и песчаные (2—0,05 мм). Глинистые частицы представляют собой тончайшие пластинки, форма пылеватых частиц приближается к сферической, а песчаные частицы (в зависимости от их происхождения) могут быть округлыми или угловатыми. Свойства грунтов в значительной степени зависят от того, в каком соотношении находятся эти частицы. Особенное влияние оказывает наиболее мелкая фракция грунтов — глинистая.

Количественное содержание в грунтах твердых частиц того или иного размера называется гранулометрическим или механическим составом. Гранулометрические составы природных грунтов крайне разнообразны.

Твердые — минеральные частицы взаимодействуют с имеющейся в грунтах жидкой фазой — водой. Молекулы воды адсорбируются на поверхностях частиц и образуют прочно удерживаемые на них пленки, которые, в отличие от свойств воды остального объема, обладают прочностью на сдвиг и пределом текучести. Воду этих пленок принято называть прочно связанной водой. В непосредственной близости от этих пленок располагается вода, удерживаемая уже меньшими силами, которую называют рыхло связанной. Далее размещается вода, на которую уже не оказывают влияние исходящие от поверхностей минеральных частиц силы. Эта вода находится под воздействием только силы тяжести и называется свободной.

Если в каком-либо грунте содержание пылеватых частиц превышает содержание песчаных, то к наименованию грунта прибавляется слово «пылеватый», например, супесь тяжелая пылеватая, суглинок легкий пылеватый и т. п.

В результате взаимодействия частиц друг с другом и с водой грунты обладают связностью, что увеличивает необходимые для их деформирования или разрушения усилия. Ввиду этого мелкие частицы грунта образуют достаточно прочные грунтовые агрегаты. Связность грунта зависит главным образом от гранулометрического состава и от влажности. В песках, даже влажных, связность проявляется в незначительной степени, и потому эти грунты относят к несвязным. Супеси можно отнести к малосвязным грунтам. Связность особенно становится заметной в случаях суглинков и глин, поэтому последние относят к грунтам связным. Такое разделение грунтов удобно при рассмотрении многих процессов, связанных с их обработкой.

На физико-механические свойства грунтов большое влияние оказывает их состояние, которое в основном определяется влажностью и плотностью.

За счет пор, занятых водой и воздухом, плотность грунта всегда меньше удельного веса минеральных частиц и обычно находится в пределах от 1,4 до 2 г/см3, тогда как удельный вес большинства грунтовых минералов колеблется от 2,4 до 2,8 г/см3.

Особенное влияние влажность оказывает на свойства связных грунтов, которые в зависимости от влажности могут находиться в твердом, пластичном или текучем состоянии. Пластичность есть способность грунтов под действием внешних сил изменять свою форму без разрушения иизменения объема.

Связный грунт находится в пластичном состоянии в определенном, характерном для данного грунта интервале влажностей. Верхний предел этого интервала ограничен пределом текучести WT, а нижний — пределом пластичности Wp.

Предел текучести соответствует такой влажности грунта, выраженной в процентах, при которой стандартный прибор — балансирный конус с углом при вершине в 30° и весом в 76 г — под действием собственного веса за 5 сек погружается в грунт на глубину в 10 мм. Предел пластичности (граница раскатывания) соответствует такой выраженной в процентах влажности, при которой изготовленное из грунта и воды тесто, раскатываемое в шнур толщиной 3 мм, начинает крошиться. Разность между пределами текучести и пластичности называется числом пластичности.

rn=Wl-Wp.

Число пластичности является важной характеристикой грунтов, так как определяет интервал влажностей, при котором они находятся в пластичном состоянии. Предел пластичности часто служит критерием для разделения грунтов на виды.

Грунт при влажности большей предела текучести представляет собой вязкую жидкость. Если влажность грунта находится между пределами текучести и пластичности, то он пастообразен. Наконец, при влажности меньшей предела пластичности грунт находится в твердом состоянии.

Различают следующие консистенции грунтов в зависимости от значения их показателя:

Твердая 0Полутвердая 0—0,25Тугопластичная 0,25—0,5Мягкопластичная 0,50—0,75Текучепластичная 0,75—1Текучая 1

Получаемая в результате уплотнения грунтов плотность в значительной степени зависит от их влажности. Установлено, что каждой нагрузке на грунт соответствует такая оптимальная влажность, при которой достигаемая плотность является максимальной. Таким образом, оптимальная влажность грунта будет зависеть от нагрузки на него. При более низких или высоких влажностях получаемая плотность будет снижаться, и тем значительнее, чем больше влажность грунта отличается от оптимальной.

Для оценки степени уплотнения грунты испытывают в приборе стандартного уплотнения. Сущность этого метода состоит в том, что помещенный в стальной стакан грунт в три слоя при разных влажностях уплотняют последовательными ударами падающей гири. Размеры стакана, вес и высота падения гири, а также число ударов стандартизированы. Получаемая в результате такого уплотнения наибольшая плотность называется максимальной стандартной плотностью Smax, а соответствующая ей влажность — оптимальной влажность ю W0.

При разработке грунты разрыхляются, что приводит к увеличению их объема. Это свойство характеризуется коэффициентом разрыхления kp, который представляет собой отношение объема разрыхленного грунта к тому объему, который грунт занимал в естественном залегании. Для большинства видов грунтов коэффициент разрыхления находится в пределах 1,1—1,3. При этом чем большей связностью обладает грунт, тем выше коэффициент разрыхления. Коэффициент разрыхления мерзлых грунтов примерно равен 1,5—1,6.

При отсыпке разрыхленного грунта с некоторой высоты он откладывается в виде конуса. Угол образующей этого конуса с его основанием называется углом естественного откоса ф. Величина угла естественного откоса зависит от вида грунта и его влажности. Примерные значения этого угла даны в табл. 2.Сопротивляемость грунта нагрузкам до некоторой степени может быть охарактеризована модулем деформации.

Часто разработка грунтов сопряжена с приложением к ним быстродействующих, иногда и повторяющихся нагрузок. В этих случаях некоторые виды грунтов претерпевают так называемые т и ксотропные изменения, сущность которых состоит в том, что при встряхивании связанная вода переходит в свободную, в результате чего грунты как бы разжижаются. При этом сопротивляемость их внешним нагрузкам снижается.

Процесс тиксотропии является грунтов в градобратимым, т. е. при более или менее длительном покое грунты частично или даже полностью восстанавливают свои свойства. Явление тиксотропии проявляется в том случае, если грунты содержат глинистые частицы и значительное количество воды.

Деформация грунтов, как и других материалов, может быть обратимой и необратимой.

Обратимая деформация исчезает по прекращении действия нагрузки, а необратимая остается. В отличие от других материалов, например металлов, обратимая деформация грунтов не всегда идет с высокими скоростями.- Во многих случаях ее скорость сравнительно мала, в результате чего происходит отставание в изменении деформации по сравнению с изменением напряжения. Поэтому обратимую деформацию грунтов упругой называть не принято.

Необратимая часть деформации может быть названа еще и пластической, если она не сопровождается нарушением сплошности грунта, т. е. его разрушением.

Прикладываемая к грунтам нагрузка воспринимается не только скелетом грунта, но и водой. Установлено, что в крупнозернистых грунтах нагрузка воспринимается в основном скелетом, а в мелкозернистых — окружающими частицы грунта водными пленками. Перераспределение нагрузки между скелетом и водой зависит также от влажности грунта. Под нагрузкой происходит сближение частиц и их агрегатов. При этом они вначале соприкасаются с окружающими их водно-коллоидными пленками, которые в местах контактов начинают испытывать местные давления и потому толщина их в этом месте уменьшается. Вода внутри пленок при сдавливании начинает перемещаться из мест более напряженных в места менее напряженные. Поэтому всякое деформирование грунта сопряжено с миграцией влаги. Связанная вода обладает повышенной вязкостью как ввиду того, что она прочно удерживается на поверхностях частиц, так и из-за содержания в ней коллоидных частиц. Свободная вода, стремясь удалиться из напряженной зоны, вынуждена проходить через тонкие капилляры и потому тоже испытывает большие сопротивления. Все это приводит к тому, что движение воды, а следовательно, и деформация грунта, становятся возможными с ограниченными скоростями. Поэтому грунты относят к упруго-пластично-вязким материалам, т. е. к телам, деформация которых зависит не только от величины нагрузки, но и от ее временных параметров. Под последними понимаются скорость изменения напряженного состояния и продолжительность действия нагрузки.

Деформация грунтов складывается из множества взаимоперемещений как отдельных грунтовых частиц, так и их агрегатов. При деформации несвязных грунтов большое значение имеет трение между частицами, так как оно в сильной степени тормозит развитие деформации.

Если на поверхности грунта установить жесткий плоский штамп и непрерывно увеличивать на него нагрузку, то при сравнительно малых напряжениях на поверхности вся развивающаяся деформация сосредоточивается в небольшом объеме грунта, расположенном вблизи подошвы штампа. По мере роста напряжения деформация распространяется на все большую глубину. Наконец наступает момент, когда, несмотря на продолжающееся увеличение напряжений, дальнейший рост деформируемой зоны прекращается, так как потенциальные возможности такого роста, которые определяются не только напряжением, но и диаметром штампа, исчерпываются. Предельная глубина той зоны, на которую еще распространяется действие нагрузки, составляет Ъ,Ъйш (где йш — диаметр штампа).

Если теперь измерить плотность грунта под штампом, то окажется, что в определенной зоне, которая непосредственно к нему прилегает и с внешней стороны ограничивается поверхностью, близкой к поверхности полусферы, плотность грунта будет одинаковой и больше той, которую имеет окружающий эту зону грунт. Расположенный в этой зоне грунт получил название уплотненного ядра.

После сформирования это ядро существенно изменяет дальнейший ход развития деформации. До образования уплотненного ядра деформация, т.е. погружение штампа, в основном происходит за счет уплотнения грунта и таким образом сопровождается изменением его объема. При дальнейшем погружении штамп будет перемещаться вместе с уплотненным ядром, причем это перемещение будет происходить из-за пластических сдвигов грунта в стороны, которые развиваются несколько ниже уплотненного ядра. Эти сдвиги приводят к разрушению грунтового массива, ввиду чего вокруг штампа появляются кольцевые и радиальные трещины, а затем происходит выпирание грунта.

Таким образом, на определенной стадии развития деформации грунта происходит качественный переход от развития ее с изменением объема к развитию без изменения последнего. Этот переход совпадает с окончанием формирования уплотненного ядра и характеризует собой начало разрушения. То напряжение, при котором начинается такое разрушение, называется пределом прочности ар.

Рабочие органы землеройных машин работают за пределом прочности, а машины для уплотнения грунтов — до предела прочности. Поэтому важно знать, от каких факторов зависят пределы прочностей грунтов, а в тех случаях, где это необходимо, и уметь определять их численные значения.

Рис. 1. Зависимость предела прочности тяжелого пылеватого суглинка от скорости изменения напряженного состояния

Пределы прочности зависят от вида и влажности грунта. Фактор влажности оказывает особенное влияние на предел прочности грунта, и особенно в случае связных грунтов, где со снижением влажности предел прочности прогрессивно возрастает. Предел прочности растет с увеличением диаметра штампа и с повышением плотности грунта, а также бр.кГ/смг с ростом скорости изменения напряженного состояния. Последняя зависимость показана на графике (рис. 1). На основе этого графика можно сделать вывод, что в полулогарифмических координатах зависимость предела прочности от скорости изменения напряженного состояния может быть отображена прямой линией. Поэтому скорость изменения напряженного состояния оказывает влияние на предел прочности главным образом при ее малых значениях. Чем выше значения скорости, тем меньше ее влияние.

Воздействие на грунты рабочих органов некоторых машин связано с приложением к ним циклических нагрузок. Под циклической нагрузкой понимаются следующие друг за другом процессы нагружения и разгрузки грунта. В общем случае характер изменения напряжений во времени при этом может быть самым различным. Однако при рассмотрении воздействия на грунты различных машин в большинстве случаев эти изменения могут быть приняты как линейные. При этом повышение и снижение напряженного состояния могут следовать непосредственно друг за другом либо между концом нагрузки и началом разгрузки будет иметь место пауза, в течение которой напряжение остается примерно постоянным. Такой случай соответствует, например, перекатыванию по грунту пневматического колеса.

Зависимость между напряжением и деформацией при циклических нагрузках может быть отображена в виде диаграмм (рис. 2). Изменения в деформации грунта все время отстают от соответствующих им изменений в напряжениях, и тем больше, чем с более высокой скоростью прикладывается нагрузка. Поэтому вид диаграммы в сильной степени зависит от скорости изменения напряженного состояния. На него оказывает также влияние предварительное упрочнение грунта. Последнее достигается последовательным нагружением грунта циклическими нагрузками.

Деформация неупрочненных грунтов, нагружаемых с небольшой скоростью изменения напряженного состояния — менее 0,1 кГ/см2 сек, начинает развиваться одновременное повышением напряжения.

При этом в случае связных грунтов до напряжений, близких к пределу прочности, деформация прямо пропорциональна действующему напряжению (рис. 2, а). При нагрузке упрочненных и неупрочненных грунтов с более высокими скоростями изменения напряженного состояния имеет место запаздывание в развитии деформации (отрезок О А = а1; рис. 2, б), после чего хотя на участке кривой АВ деформация и развивается со все возрастающей скоростью, все же ее развитие отстает от изменения напряжения. Ввиду этого деформация продолжает расти еще и после того, как напряжение начало снижаться, т. е. за точкой В.Этот процесс дальнейшего развития деформации называется последействием нагружен и я. При таких скоростях изменения напряженного состояния, которые соответствуют, например, перекатыванию колес землеройно-транспортных машин, катков и т. п., около 50% всей деформации развивается в процессе последействия.

Рис. 2. Зависимость между напряжением и деформацией при циклических нагрузках: а — медленное нагружение; б — быстрое нагружение; в —- ударная нагрузка

На рис. 2, s представлена диаграмма, соответствующая весьма быстрому нагружению, которое, например, имеет место при ударе о грунт жесткой плиты. Здесь деформация часто достигает максимума уже тогда, когда нагрузка успела снизиться до нуля. Обратимая часть деформации всегда начинает восстанавливаться лишь после понижения напряжения на какую-то определенную для данных условий нагружения величину. Такое запаздывание связано с повышением под нагрузкой сцепления между отдельными частицами грунта и их агрегатами. Далее восстановление обратимой части деформации идет со все возрастающей скоростью. Хотя в точке D грунт оказывается уже полностью разгруженным, процесс восстановления деформации все еще продолжается, что уже целиком относится к явлению обратного упругого последействия. Чем выше скорость изменения напряженного состояния, тем все большая часть обратимой деформации восстанавливается в процессе обратного упругого последействия.

Отрезок оси OF выражает полную деформацию (погружение штампа), а отрезки ОЕ и EF — необратимую и обратимую ее части. Площадь диаграммы OABCD соответствует затраченной на деформирование грунта работе.

Деформирование циклической нагрузкой даже хорошо уплотненных и упрочненных грунтов, когда большая часть или даже почти вся деформация обратима, всегда связано с затратой работы, которая при этом рассеивается.

Установлено, что к процессу нагрузки линейная зависимость между напряжением и деформацией может быть применена лишь в случае неупрочненных связных грунтов, нагружаемых до предела прочности с весьма малыми скоростями изменения напряженного состояния — менее 0,05 кГ 1см1 сек. Процесс разгрузки линейной зависимости не подчиняется. Если рассматривать не сам ход течения деформации, а ее результаты, под которыми понимаются полная деформация с учетом последействия, деформация, а также обратимая и необратимая ее части, то здесь применение линейной зависимости возможно лишь по отношению к связным грунтам, нагружаемым с одинаковыми скоростями до напряжений менее предела прочности. Несвязные грунты и здесь линейной зависимости не подчиняются.

Кривая нагрузки в координатах напряжение — деформация при больших скоростях деформации всегда располагается выше, чем при малых скоростях. По мере роста скорости разрушение грунта происходит при все уменьшающейся величине деформации, т. е. грунт приобретает хрупкие свойства.

На графике (рис. 3) показаны результаты опытов по выяснению влияния скорости изменения напряженного состояния на величину относительной деформации е. Относительная деформация представляет собой отношение абсолютной величины погружения штампа к его диаметру. Из графика видно, что по мере роста скорости изменения напряженного состояния vU3 полная деформация и ее необратимая часть убывают и особенно сильно в области небольших скоростей из менения напряженногосостояния — до 0,3 — 0,4 кГ/см2 -сек.

Рис. 3. Зависимость деформаций связного грунта от скорости изменения напряженного состояния:1 — полная деформация; 2 — необратимая часть деформации; 3 — обратимая деформация; / — зона работы катков; // — зона ударных нагрузок

Обратимая часть деформации остается практически постоянной. Поэтому понижение скорости изменения напряженного состояния грунта при циклической нагрузке принципиально эквивалентно соответствующему повышению напряжения. Из этого графика видно, что если превзойти ту область скоростей изменения напряженного состояния, при которых они оказывают еще существенное влияние на деформацию, то дальнейшее повышение скорости уже практически не будет сказываться на результатах. Эти свойства грунтов следует учитывать при выборе скоростей работы машин.

При нагрузке грунтов равновесие между внешними и внутренними силами устанавливается постепенно, в течение более или менее длительного времени. Поэтому при относительно небольшом времени действия нагрузки равновесное состояние может быть достигнуто лишь при повторных нагрузках. При этом происходит упрочнение грунта, т. е. с увеличением числа повторностей деформация грунта постепенно снижается. Такой характер изменения деформации грунтов при повторных нагрузках отображает их вязко-пластичные свойства. Если материалы не обладают вязкими свойствами, то вся соответствующая данной нагрузке необратимая деформация развивается за однократное приложение нагрузки и Дальнейшее ее повторение вызывает лишь обратимую деформацию. В идеально вязких телах необратимая деформация при повторных нагрузках не меняется. Грунты занимают промежуточное положение. При этом чем большее количество глинистых частиц они содержат, тем выше их вязкость и, следовательно, тем в меньшей степени затухает от цикла к циклу необратимая деформация. Ввиду этих свойств уплотнение грунтов может быть произведено лишь при многократном повторении нагрузки.

Для практических целей представляет интерес закономерность накопления необратимой деформации грунта при повторных нагрузках. Опытным путем установлено, что если к грунту через штамп прикладывать повторные циклические нагрузки с одним и тем же максимальным напряжением и при одной и той же скорости изменения последнего, то накопленная деформация пропорциональна логарифму числа повтор-ностей приложения нагрузки. Если продолжительность пауз между нагрузками меньше времени, которое требуется для полного восстановления обратимой части деформации, то на накопленную необратимую деформацию оказывает влияние частота приложения нагрузки. По мере увеличения частоты накопленная деформация несколько снижается. Это происходит потому, что при недостаточной продолжительности пауз процесс обратного упругого последействия еще не успевает закончиться и потому возникают как бы встречные движения грунтовых агрегатов и, кроме того, последние в меньшей степени находят новые «пути» для взаимоперемещений, в результате чего эти взаимоперемещения становятся короче.

Частота приложения нагрузок имеет значение при деформировании грунтов, обладающих тиксотропными свойствами. Установлено, что имеют место такие частоты, при которых происходят интенсивные тиксотропные превращения грунтов, сопровождающиеся обильным выделением влаги и ослаблением связей между его частицами и агрегатами. При таких частотах эффективность действия нагрузок значительно повышается. Этим свойством грунтов следует воспользоваться как при их уплотнении, так и при их разработках.

Читать далее: Рабочие органы землеройно-транспортных машин и их взаимодействие с грунтом

Категория: - Рабочие органы и ходовое оборудование

Главная → Справочник → Статьи → Форум

stroy-technics.ru

Физико-механические свойства грунтов основания

свойства, характеризующие физические состояние грунта и способность изменять это состояние под влиянием физико-химических факторов — объемный и уд. вес, влажность, границы пластичности, липкость, усадка, набухание, размоканпе, водопроницаемость, структурная связность. Физические свойства грунтов изучаются в грунтоведении.

Объемн. в. грунта — вес единицы объема грунта. Различаются: объемн. в. влажного грунта (у г!см3), равный отношению веса образца грунта к его объему, и объемн. в. скелета грунта (уск г/см3) — отношение веса образца грунта, высушенного при 100—105° С, к его первоначальному объему. Объемн. в. грунтов устанавливают для образцов ненарушенного сложения и природной влажности, отобранных из скважин или шурфов, методами режущего кольца или парафинироваиия. По первому методу объемн. в. определяют как частное от деления веса грунта в объеме кольца (диаметром не менее 50 мм, высотой 40 мм) на его объем. По второму методу объем образца (овальной формы весом не менее 30 г, покрытого парафиновой оболочкой) определяют в воде по весу вытесненной воды. В полевых условиях объемн. в. грунта можно установить без отбора образца радиометрия. методохм, основанным на способности грунта поглощать лучи радиоактивного кобальта.

Уд. в. грунта (уч) равен отношению веса твердой фазы (частиц) грунта к весу воды равного объема. Уд. в. грунтов определяют в лаборатории в пикнометре (мерной колбе). Навеску грунта помещают в пикнометр, доливают дистиллированной водой и кипятят для удаления пузырьков воздуха, затем пикнометр с грунтом и водой охлаждают, доливают дистиллированной водой до метки и взвешивают.

Влажность грунта (W) — отношение веса содержащейся в грунте воды к весу абсолютно сухого грунта, выраженное в процентах. Влажность грунта определяют методом высушивания навески грунта при темп-ре 100—105° до постоянного веса. Можно оценить природную влажность грунта в массиве без отбора образцов, напр. определением электропроводности или радиометрия. методом.

Пористость грунта (п) — отношение объема пор ко всему объему, занимаемому грунтом, выраженное в процентах. Отношение объема пор к объему, занимаемому грунтовыми частицами, наз. коэфф. пористости (е). Пористость и коэфф. пористости грунта вычисляются по формулам на основании экспериментально определенных значений влажности, объемн. и уд. весов. Доля заполнения объема пор грунта водой наз. степенью влажности (G), величина ее может изменяться от 0 до 1 (полное насыщение).

Степень уплотнения песка характеризуется относит, плотностью (D), к-рая вычисляется по значениям коэфф. пористости песка в самом рыхлом, естественном и самом плотном состояниях. При этом D=0 для песка в самом рыхлом состоянии и D—1 для песка в самом плотном состоянии. Плотность глинистых грунтов характеризуется их консистенцией (В), к-рая в зависимости от количества воды в грунте может быть текучей, пластичной или твердой. Пластичность грунта — способность под воздействием внешних усилий деформироваться без разрыва сплошности и сохранять приобретенную форму после устранения действия внешней силы. В практике принят косвенный метод оценки пластичности, основанный иа определении диапазона влажности (влажность границы текучести и влажность границы раскатывания), в к-ром проявляются пластич. свойства грунта.

Граница текучести (WT) соответствует влажности, при незначительном превышении к-рой грунт переходит в текучее состояние. Границу текучести глинистых грунтов устанавливают по величине вдавливания под собственным весом баланснр- ного конуса весом 76 г, высотой 22 мм с углом заострения 30°. Граница текучести характеризуется весовой влажностью (в процентах) теста, изготовленного из грунта и воды, прн к-рой балансирный конус погружается за 5 сек на глубину 10 мм. Граница раскатывания (Wp) характеризуется весовой влажностью (в %) грунта, при незначительном уменьшении к-рой пластичное тесто, приготовленное из грунта и воды, при раскатывании в жгут толщиной 3 мм начинает крошиться. Разница во влажности на границе текучести и на границе раскатывания наз. числом пластичности (Wn).

Липкость, т. е. способность глинистого грунта при соприкосновении с различными предметами прилипать к ним, проявляется при влажности меньше WT и больше Wv. Липкость измеряется усилием, необходимым для отрыва металлич. пластинки от грунта.

К физическим свойствам грунтов относится влагоемкость, т. е. способность грунта поглощать определенное количество воды; влагоемкость подразделяется на гигроскопическую, максимальную молекулярную, капиллярную и полную. При оценке строит, свойств грунтов наибольшее значение имеет макс, молекулярная влагоемкость, к-рая характеризует количество связанной воды в грунте и по своей величине для глинистых грунтов близка к влажности на границе раскатывания. Максимальную молекулярную влагоемкость определяют по методу влагоемких сред, замешивая тесто из грунта, близкого по влажности к границе текучести. Затем лепешку из этого теста помещают под гидравлич. пресс и выдерживают под давлением 65,5 кг(см2\ ее весовая влажность характеризует макс, молекулярную влагоемкость или количество связной воды в грунте.

Набухание грунта — увеличение его объема прн взаимодействии с водой, вследствие чего развивается давление набухания. Усадка грунта — уменьшение объема при испарении свободной и капиллярной воды, в результате чего грунтовые частицы сближаются под влиянием сил молекулярного притяжения. Влажность, при к-рой на поверхности грунта появляются трещины, наз. пределом усадки. Величину усадки определяют по уменьшению линейных (линейная усадка) или объемных (объемная усадка) размеров образцов грунта и выражают в процентах по отношению к длине или объему влажного образца.

Водопроницаемость — способность грунтов пропускать через себя воду. Она характеризуется коэфф. фильтрации — к (см/сек или м/сутки). Коэфф. фильтрации равен скорости фильтрации при единичном градиенте напора. Коэфф. фильтрации песчаных грунтов определяют в приборах без внешнего давления на грунт, а глинистых грунтов — в приборах с внешним давлением на грунт, при постоянной пористости в процессе определения. Коэфф. фильтрации в полевых условиях определяется методом откачек.

Структурная связность грунтов—проявление внутренних связей в грунтах, определяющих в процессе формирования и последующего существования их структуры. Структурные связи обусловлены силами молекулярного взаимодействия между минеральными частицами и водой или цементацией. По своей природе они разделяются на водно-коллоидные (эластичные и вязко-пластичные) и кристаллизационные (жесткие). Способность нек-рых грунтов с водно-коллоидными связями, иапр. илов, восстанавливать в известной мере разрушенную структуру наз. тиксотропией. Оценивают структурную связность по разности механич. прочности (предельное напряжение сдвига или минимальное давление расплющивания) образцов нарушенной и ненарушенной структуры.

Размокаемость грунтов — способность глинистых грунтов при впитывании воды терять связность и превращаться в рыхлую массу с полной потерей несущей способности. Показателем размокания является время распада образца грунта в воде и характер распада.

Физические свойства грунтов зависят от их гранулометрия, и минералогич. составов, от состава обменных катионов, присутствия гумуса. Гранулометрическим составом грунта наз. содержание в нем частиц различной величины, выраженное в процентах к весу абсолютно сухого образца. Частицы грунта, близкие по величине, объединяют в гранулометрич. фракции, напр. частицы более 2 мм называют гравием; от 2 до 0,10 мм — песком; 0,10— 0,005 — пылью; менее 0,005 — глинистыми. По гранулометрич. составу классифицируют песчаные и крупнообломочные грунты.

Гранулометрич. состав грунта определяют ситовым методом — рассеиванием грунта на ситах, и гидравлич. методом, основанным на различной скорости падения в воде частиц разной крупности. Сюда относятся метод отмучивания (для песков), предусматривающий носледовательное взятие проб из суспензии (нипеточный), и метод, основанный на учете изменения плотности суспензии во времени (ареомет- рпческпй).

Минералогпч. состав грунтов, гл. обр. состав минералов их глнпистой фракции, обусловливает количественные показатели физических свойств грунта благодаря различному строению крпсталлич. решеток минералов и различной интенсивности взаимодействия их с водой. Особенно выделяются грунты группы монтмориллонита и каолинита. Минералы группы монтмориллонита, имеющие наиболее подвижную крпсталлич. решетку, отличаются высокими дисперсностью, пористостью, пластичностью, набуханием, липкостью, усадкой, малой водопроницаемостью. Из одновалентных обменных катионов чаще всего присутствует в грунтах ион натрия, к-рый увеличивает дисперсность грунтов, их пластичность, набухание, липкость, ухудшает строит, качества.

 

 

lektsia.com

Тема 15. Физико-механические свойства грунтов

Горные породы различаются по структуре, текстуре, условиям залегания, минералогическому и петрографическому составу, что обуславливает различие их физико-механических свойств.

Физические свойства характеризуют физическое состояние горных пород. Важнейшие физические свойства: плотность, пористость, влажность, пластичность и др.

Водные свойства проявляются в отношении горных пород к воде. Они характеризуют способность породы изменить состояние, прочность и деформируемость при взаимодействии с водой, поглощать и удерживать воду, фильтровать ее. Важнейшие водные свойства: водоустойчивость, влагоемкость, водоотдача, капиллярность, водопроницаемость и др.

Механические свойства определяют поведение горных пород при воздействии на них внешних нагрузок (усилий). Различают прочностные и деформационные свойства.

Для оценки пород при использовании их в строительных целях необходимо иметь их количественные характеристики или показатели свойств.

По практическому использованию показатели свойств делятся на:

Классификационные показатели приведены в табл. 15.1. Они используются для предварительного определения типа породы. Их обычно определяют в массовом количестве, простыми и быстрыми методами (визуально, либо с помощью несложных приспособлений).

Таблица 15.1. Классификационные показатели

Свойство или признак грунта

Показатели

Метод определения

Плотность

Масса 1см3 в г

Взвешивание образца известного объема

Естественная пористость

Объем пор в % ко всему объему образца

Вычисление по плотности, влажности и плотности минеральной части (удельный вес)

Размокаемость

Характер и скорость размокания

Непосредственное наблюдение

Набухаемость

1.Влажность набухания

2.Увеличение объема в %

Приборы:1.Ф. Лаптева 2. Ф.Филатова3.А.М.Васильева

Пластичность

Пределы и число пластичности

1.Стандартный ручной

2.Объемный (для числа пластичности)

Уплотняемость

Показатель уплотняемости

Вычисление по максимальной и минимальной пористости

Водопроницаемость

Коэффициент фильтрации

Трубка Г.Н. Каменского или Спецгео

Выветрелость

Изменение характерных для данной породы признаков и свойств, в частности, цвета, прочности (гр.I кл.), проявление вторичных минералов (гипс), трещиноватость.

Визуальный

Естественная (природная) влажность

Влажность в весовых процентах

Высушивание и взвешивание

Естественная консистенция

1.Сопротивление вдавливанию

2. Показатель текучести

1.Конус А.М. Васильева

2. С помощью прибора типа иглы

3. Вычисление по влажности и пределам пластичности

Степень плотности

Показатель степени плотности для песков

Вычисление по максимальной, минимальной и естественной пористости

Степень уплотненности

Показатель степени уплотненности для глинистых пород по В.А. Приклонскому

Вычисление по пределам пластичности и естественной пористости

Косвенные показатели приведены в табл. 15.2. Они используются для приближенной оценки свойств пород, для предварительных расчетов прочности и деформируемости оснований зданий и сооружений на первых стадиях проектирования.

Таблица 15.2. Косвенные показатели

Показатель

Способ получения

Практическое применение

Плотность минеральных частиц

Непосредственное определение в лаборатории

1. Вычисление пористости.

2. Вычисление весовой пористости по природной.

3. Вычисление влажности с помощью пикнометра.

Плотность грунта

Непосредственное определение в лаборатории

1. Вычисление плотности скелета грунта и пористости.

2. В качестве расчетного показателя.

Плотность сухого грунта

Вычисление

1. Вычисление пористости.

Естественная (природная)

влажность

Непосредственное определение в лаборатории

1. Вычисление плотности скелета грунта и пористости.

Естественная пористость

Вычисление

1. Вычисление веса грунта под водой.

2. Приближенное вычисление коэффициента фильтрации.

3. Вычисление степени плотности.

4. Вычисление водоотдачи.

5. Вычисление параметров кривой сжатия.

1.Гранулометрический состав (содержание фракций в %)

Непосредственное определение в лаборатории

1. Вычисление показателей гранулометрического состава.

2.Косвенное вычисление коэффициента фильтрации.

Максимальная молекулярная влагоемкость

Непосредственное определение в лаборатории

1. Вычисление водоотдачи.

2. Приближенное определение нижнего предела пластичности.

Нижний и верхний пределы пластичности

Непосредственное определение в лаборатории

1. Вычисление показателя текучести.

2. Вычисление числа пластичности.

Число пластичности

Вычисление

Вычисление показателя текучести.

Степень влажности

Вычисление

Прямые показатели приведены в табл. 15.3. Они непосредственно входят в расчеты при оценке устойчивости и деформируемости оснований зданий и сооружений или устойчивости инженерного сооружения (открытая горная выработка, насыпь и т.д.) на последних стадиях проектирования.

Таблица 15.3. Прямые показатели

Физические характеристики следует определять не менее чем для двух параллельных проб, отбираемых из исследуемого образца грунта. Значение характеристик вычисляют как среднее арифметическое из результатов параллельных определений.

При обработке результатов испытаний плотность вычисляется с точностью до 0,01 г/дм3, влажность до 30 % – с точностью 0,1 % и выше – с точностью до 1 %. Погрешность измерения массы (взвешивания) не должна превышать при массе от 10 до 1000 г – 0,02 г/см3.

Таблица 15.4. Показатели физико-механических свойств пород рыхлых отложений

Усл. обозначения

Показатель по СНиП 2.02.01-83

Единица измерения,Си

Физический смысл

Расчетная формула или методика определения по гос. стандартам

γ

Удельный вес

н/м3

γ = ρ*g;g=9.81м/с2.

ρs

Плотность частиц грунта

кг/м3

(г/см3)

Масса единицы объема скелета грунта в воде при отсутствии пор: для песчаных–2.66; супесей-2.70; суглинков-2.71;глин-2.74

ГОСТ 5180-84. Пикнометрический метод

ρ

Плотность

кг/м3

(г/см3)

Масса единицы объема при данной пористости и влажности

ГОСТ 5180-84. Метод режущего кольца или парафинирования

ρd

Плотность сухого грунта

кг/м3

(г/см3)

Масса единицы объема за вычитанием массы воды в порах

ρd = ρ / (1+0,01 W)

W

Природная (естественная) влажность

%

Кол-во свободной и поверхностно связанной воды, содержащейся в порах грунта в естественных условиях

ГОСТ5180-84

Весовой метод

n

Пористость

Доли единицы

Отношение объема пустот к объему грунта

n= (ρs - ρd ) / ρs

е

Коэффициент пористости

Доли единицы

Отношение объема пустот к объему скелета грунта

е = (ρs- ρd) / ρd

Гигроскопическая влажность

%

Под гигроскопической влажностью понимается отношение веса воды, удаленной из образца воздушно сухого грунта к массе высушенного грунта.

ГОСТ 5180–84

Весовой метод

WL

Влажность на границе текучести

% (верхний предел)

Влажность, при которой грунт переходит из пластичного состояние в текучее.

ГОСТ 5180–84. Метод балансированного конуса

Wp

Влажность на границе раскатывания

% (нижний

предел)

Влажность, при которой грунт переходит из пластичного состояние в твердое.

ГОСТ 5180–84

Метод раскатывания

IP

Число пластичности

%

Разность между верхним и нижним пределами влажности.

Ip = WL – WP

IL

Показатель текучести

Доли единицы

Степень подвижности слагающих грунт частиц при механическом воздействии

IL =(W – WP) / Ip

S r

Степень влажности

Доли единицы

Степень заполнения пор водой.

S r = W· ρs /(е · ρW*100), где ρW = 1,0

С

Сцепление

МПа, КПа

Сила сопротивления сдвигу при отсутствии внешней нагрузки.

ГОСТ 12248-96

φ

Угол внутреннего трения

Град.

Угол наклона прямолинейной части диаграммы сдвига к оси нормальных давлений

ГОСТ 12248-96

Е

Модуль общей деформации

МПа,

Коэффициент пропорциональности между давлением и относительной линейной деформацией грунта

ГОСТ 12248-96

Е 1-2= β [(1+ е) / α]

studfiles.net

2. Определение физико-механических свойств грунтов.

Все грунты различаются по структуре, текстуре, условиям залегания, минералогическому и петрографическому составу, что обуславливает различие их физико-механических свойств.

Физические свойства характеризуют физическое состояние грунтов. Важнейшие физические свойства: плотность, влажность, пористость, пластичность и т.д.

Водные свойства проявляются в отношении горных пород к воде. Они характеризуют способность породы изменить состояние, прочность и деформируемость при взаимодействии с водой, поглощать и удерживать воду, фильтровать ее. Важнейшие водные свойства: водоустойчивость (растворимость воде), влагоемкость, водоотдача, капиллярность, водопроницаемость и др.

Механические свойства определяют поведение грунтов при воздействии на них внешних нагрузок (усилий). Различают прочностные и деформационные и свойства.

Задание посвящено определению показателей, которые используются для оценки вышеописанных (физических, водных и механических) свойств дисперсных грунтов, а также изучению методов их определения.

В соответствии с указанным вариантом (Приложение 1) для каждой из трех проб грунта рассчитать по формулам основные показатели, характерные для связных и несвязных грунтов, определить наименование каждого образца и дать его полную характеристику.

2.1. Порядок определения физических свойств связных (глинистых) грунтов.

Основным критерием для определения группы дисперсного грунта – связный или несвязный, является число пластичности.

Если Ip≤0,01 (1%), то дисперсный грунт является несвязным (песчаным или крупнообломочным), если Ip>0,01, то грунт связный, глинистый (супесь, суглинок или глина).

Для глинистых грунтов классификационными характеристиками являются: число пластичности, показатель текучести, просадочность, набухаемость, водопроницаемость, наличие органики, степень водонасыщения, степень морозной пучинистости.

  1. Наименование (разновидность) глинистого грунта определяют по числу пластичности (таблица 1).

Число пластичности Ip – разность влажностей, соответствующая двум состояниям грунта: на границе текучести WL и на границе раскатывания Wp. WL и Wp определяют по ГОСТ 5180 (таблица 1).

(1)

Основные разновидности грунтов по Ip (по ГОСТ 25100-95, табл.Б.11)

Таблица 1

Разновидность глинистых грунтов

Чисто пластичности, д.ед.

Супесь

0,01—0,07

Суглинок

0,07—0,17

Глина

>0,17

Примечание^ Илы подразделяют по значениям числа пластичности, указанным в таблице, на супесчаные, суглинистые и глинистые.

Если Ip<0,01 (1%), то дисперсный грунт является несвязным (песчаным или крупнообломочным).

  1. Для характеристики консистенции глинистого грунта в строительных целях используют показатель текучести (консистенции) IL:

(2)

где W – естественная влажность грунта, д.ед.;

Wp – нижний предел пластичности (влажность на границе раскатывания), д.ед.;

Ip – число пластичности, д.ед.

Основные разновидности глинистых грунтов по IL(по ГОСТ 25100-95, табл.Б.14)

Таблица 2.

Разновидность глинистых грунтов

Показатель текучести IL

Супесь:

— твердая

< 0

— пластичная

0–1

—текучая

> 1

Суглинки и глины:

— твердые

<0

—полутвердые

0–0,25

—тугопластичные

0,25–0,50

—мягкопластичные

0,50–0,75

—текучепластичиые

0,75–1,00

— текучие

> 1,00

3. По гранулометрическому составу и числу пластичности Ip глинистые группы подразделяют согласно таблице 3 (ГОСТ 25100-95, табл.Б.12).

Таблица 3

Разновидность глинистых грунтов

Число пластичности Ip

Содержание песчаных частиц (2—0,05 мм), % по массе

Супесь:

—песчанистая

0,010,07

 50

—пылеватая

0,010,07

< 50

Суглинок:

—легкий песчанистый

0,070,12

 40

—легкий пылеватый

0,070,12

 40

—тяжелый песчанистый

0,120,17

 40

— тяжелый пылеватый

0,120,17

< 40

Глина:

— легкая песчанистая

0,170,27

 40

—легкая пылеватая

0,170,27

< 40

—тяжелая

> 0,27

Не регламентируется

4. По наличию включений глинистые грунты подразделяют согласно таблице 4 (ГОСТ 25100-95, табл.Б.13).

Таблица.4

Разновидность глинистых грунтов

Содержание частиц крупнее 2 мм,

% по массе

Супесь, суглинок, глина с галькой (щебнем)

1525

Супесь, суглинок, глина галечниковые (щебенистые) или гравелистые (дресвяные)

2550

5. По относительной деформации набухания без нагрузки sw глинистые грунты подразделяют согласно таблице 5 (ГОСТ 25100-95, табл.Б.15).

Грунт набухающий — грунт, который при замачивании водой или другой жидкостью увеличивается в объеме и имеет относительную деформацию набухания (в условиях свободного набухания) sw  0,04.

Относительная деформация набухания без нагрузки sw, д. е. — отношение увеличения высоты образца грунта после свободного набухания в условиях невозможности бокового расширения к начальной высоте образца природной влажности. Определяется по ГОСТ 24143.

(3)

- величина абсолютной деформации грунта при набухании, мм.

- высота образца грунта с природной влажностью при природном давлении (на глубине отбора образца), мм.

Для расчетов h0 =50мм.

Таблица 5

Разновидность глинистых грунтов

Относительная деформация набухания бет нагрузки sw, д. е.

Ненабухающий

<0,04

Слабонабухающий

0,04—0,08

Средненабухающий

0,080,012

Сильнонабухающий

>0,12

6. По относительной деформации просадочности sl глинистые грунты подразделяют согласно таблице 6 (ГОСТ 25100-95, табл.Б.16).

Грунт просадочный — грунт, который под действием внешней нагрузки и собственного веса или только от собственного веса при замачивании водой или другой жидкостью претерпевает вертикальную деформацию (просадку) и имеет относительную деформацию просадки sl  0,01.

Относительная деформация просадочности , д. е. – отношение разности высот образцов, соответственно, природной влажности и после его полного водонасыщения при определенном давлении к высоте образца природной влажности. Определяется по ГОСТ 23161.

(4) где — дополнительное сжатие (просадка) грунта в результате замачивания, мм;

—высота образца грунта с природной влажностью при природном давлении (на глубине отбора образца), мм;

Для расчетов h0 =50мм.

Таблица 6

Разновидность глинистых грунтов

Относительная деформация просадочности sl, д. е.

Непросадочный

<0,01

Просадочный

0,01

  1. Рассчитывают плотность сухого грунта d, г/см3 – отношение массы грунта (за вычетом массы воды и льда) к его объему:

(5)

где  — плотность грунта, г/см3;

W — влажность грунта, д. е.

  1. Пористость грунта n, %, доли ед., – отношение объема пор ко всему объему грунта:

(6)

где ρs – плотность частиц грунта – масса единицы объема минеральной части, г/см3;

d – плотность сухого грунта, г/см3.

Средние значения ρs песчаных и пылевато-глинистых грунтовследующие (в г/см3): песок – 2,66; супесь – 2,70; суглинок – 2,71; глина – 2,74.

  1. Коэффициент пористости е, доли ед., – отношение объема пор к объему твердой части скелета грунта:

или (7)

  1. Коэффициент водонасыщения (степень влажности) Sr, доли ед., – степень заполнения объема пор водой:

(8)

где ρs – плотность частиц грунта, г/см3;

W – природная влажность, доли ед.;

е – коэффициент пористости, доли ед.;

ρw– плотность воды, принимаемая равной 1,0г/см3.

  1. Определяют степень морозной пучинистости грунта по его полной характеристике, таблица 7 (по ГОСТ 25100-95, табл.Б.27).

По относительной деформации пучения fn грунты подразделяют согласно таблице 7.

Грунт пучинистый — дисперсный грунт, который при переходе из талого в мерзлое состояние увеличивается в объеме вследствие образования кристаллов льда и имеет относительную деформацию морозного пучения fn  0,01.

Таблица 7.

Разновидность грунтов

Относительная деформация пучения fn, д. е.

Характеристика грунтов

Практически непучинистый

< 0,01

Глинистые при IL  0

Пески гравелистые, крупные и средней круп­ности, пески мелкие и пылеватые при Sr  0,б, а также пески мелкие и пылеватые, содержащие менее 15 % по массе частиц мельчи 0,05 мм (независимо от значения Sr).

Крупнообломочные грунты с заполнителем до 10 %

Слабопучинистый

0,01  0,035

Глинистые при 0 < IL  0,25

Пески пылеватые и мелкие при 0,6 < Sr  0,8

Крупнообломочные с заполнителем (глинистым, песком мелким и пылеватым) от 10 до 30 % по массе

Среднепучинистый

0,035  0,07

Глинистые при 0,25 < IL  0,50

Пески пылеватые и мелкие при 0,80 < Su  0,95

Крупнообломочные с заполнителем (глинистым, песком пылеватым и мелким) более 30 % по массе

Сильнопучинистый и чрезмерно пучинистый

> 0,07

Глинистые при IL > 0,50.

Пески пылеватые и мелкие при Sr > 0,95

12. По относительному содержанию органического вещества Ir глинистые грунты и пески подразделяют согласно таблице 12 (по ГОСТ 25100-95, табл.Б.22).

studfiles.net

2.9. Основные физико-механические свойства структурно-неустойчивых и некоторых особых грунтов

К структурно-неустойчивым грунтам относятся:

  • лессовые, структура которых нарушается при замачивании их под приложенной нагрузкой и от собственного веса или только от собственного веса; они имеют относительную деформацию просадочности se  0,01;

  • мерзлые и вечномерзлые, структура которых нарушается при оттаивании;

  • рыхлые пески, резко уплотняющиеся при динамических воздействиях;

  • илы и чувствительные глины, деформационные и просадочные свойства которых резко изменяются при нарушении их природной структуры; они имеют свойства современного осадка преимущественно морских акваторий, содержащего органическое вещество в виде растительных осадков и гумуса. Верхний слой ила имеет коэффициент пористости e 0,9, текучую консистенцию JL> 1, содержание частиц меньше 0,01 мм составляет 30-50% по массе.

К особым грунтам относятся: сапропель – пресноводный ил, образовавшийся на дне застойных водоемов из продуктов распада растительных и животных организмов, содержит более 10% по массе органических веществ. Сапропель имеет коэффициент пористости e >3, текучую консистенцию JL>1, высокую дисперсность, частицы крупнее 0,25 мм обычно не превышают 5% по массе.

Торф – органический грунт, образовавшийся в результате естественного отмирания и неполного разложения болотных растений, содержание органических веществ 50% и более по массе, обладает очень большой сжимаемостью и малой прочностью.

Грунт заторфованный – песок и глинистый грунт, содержащий от 10 до 50% торфа по массе.

К особым грунтам относятся также набухающие грунты, которые при увлажнении способны существенно увеличиваться в объеме даже под нагрузкой.

2.9.1. Лессовые просадочные грунты

Просадочными грунтами называются грунты, которые под воздействием поверхностных или подземных вод утрачивают свою природную структуру, что приводит к большим по величине деформациям провального типа под действием внешней нагрузки или и под влиянием собственного веса.

Типичные просадочные грунты – макропористые – лессовые и лессовидные. Наибольшие просадки свойственны грунтам лессовым, эолового происхождения, обладающим неоднородностью химического и минералогического состава грунтового скелета. Встречаются лессовидные грунты любых происхождений и также во многих случаях дают просадки при замачивании. Ранее, до 1930-х годов, строители не уделяли внимания специальному изучению свойств просадочных грунтов. Однако в период 1929-1934 гг. были зарегистрированы случаи катастрофических деформаций сооружений:

1. Доменные печи Запорожстали за 4 года эксплуатации претерпели просадку местами более 130 см.

2. Дымовая труба Кузнецкого завода испытала просадку до 119 см.

3. Опоры железнодорожного моста на Урале просели на 92 см и 104 см.

4. Некоторые ирригационные каналы в Средней Азии просели до 220 см.

Причиной этих деформаций, как показали проведенные исследования, послужило замачивание грунтов оснований.

Практика гражданского строительства также дает ряд примеров просадочных деформаций сооружений (здания школы в Туле, Госбанка в Ростове-на-Дону). Большое количество примеров можно было бы привести и из практики зарубежного строительства в Германии, Америке и других странах.

Просадочные деформации как по величине, так и по времени неравномерны и оказывают разрушительное воздействие на надземные части сооружений.

Наибольшее количество просадочных деформаций происходило от проникновения в толщу грунта поверхностных вод – производственных, бытовых или атмосферных. Особенно значительное обводнение территорий наблюдается в зоне деятельности металлургических предприятий (Запорожсталь, Кузнецкий комбинат, Никопольский комбинат), а также в ирригационных сооружениях. В некоторых случаях замачивание грунта основания было вызвано поднятием уровня грунтовых вод (мост на Урале).

Полевые и лабораторные исследования, начатые еще в 30-х годах ВИОСом, ведутся в настоящее время большинством научно-исследовательских институтов и проектных организаций. Такой интерес к вопросу изучения просадочных деформаций объясняется широким распространением лессовых и лессовидных грунтов на Дону и Кубани, в Среднем и Нижнем Поволжье, в районах Западной Сибири, Забайкалья. Встречаются лессовые просадочные грунты и на Урале, в том числе в Перми.

Лессы и лессовидные грунты представляют собой глинистые грунты (супеси, суглинки и реже глины). Для строителя черезвычайно важно уметь отличать их от обычных грунтов по внешним признакам, а еще важнее - отличать просадочные грунты от непросадочных.

Важнейшими признаками грунтов, обладающих склонностью к просадочным деформациям, являются:

1. Однородность зернового состава при преобладании пылеватых фракций и сравнительно незначительном содержании глинистых.

2. Наличие видимых невооруженным глазом пор (макропор), по своим размерам значительно превышающих размеры частиц. Эти поры представляют собой канальцы, покрытые изнутри налетом отложенных солей, образовавшимся в результате гниения корней и стеблей растений; за счет геологических процессов, развивавшихся в течение многих тысячелетий, слои грунта с развитой растительностью оказались перекрытыми слоями более позднего возраста, в которых в свою очередь развивались те же процессы; в иных случаях макропоры представляют собой результат действия процессов выщелачивания (элювиальные грунты).

3. Вертикальность откосов природных обнажений и искусственных выемок, устойчивость которых объясняется наличием вертикальных трубочек (отложений солей на стенках канальцев), как бы армирующих толщу грунтов в вертикальном направлении.

4. Малая природная влажность грунтов, объясняемая высокой водопроницаемостью по вертикальным макропорам.

5. Обилие ходов землероев (червей, кротов), белесых включений, называемых на Украине "белоглазка", общих светлых тонов окраски (серых, палевых, светло-желтых).

6. Быстрое размокание в воде, сопровождающееся обильным выделением пузырьков газа.

Однако наличие большинства или даже всех вышеуказанных признаков еще недостаточно для суждения о наличии у грунтов просадочных свойств.

Просадочность грунта оценивают относительной просадочностью se, которую можно определить по данным компрессионных испытаний с подачей воды в прибор. По данным испытаний строят график зависимости высоты образца от давления и характера деформации при замачивании (рис.2.30,а)

, 2.69

где hпр – высота образца грунта природной влажности при давлении на данной глубине после возведения сооружения, hsatp – высота образца после просадки от замачивания, hnq – высота образца при природном давлении P=zq на данной глубине z.

Рис.2.30. Деформации лессового грунта при замачивании: а – компрессионная кривая; б – изменение коэффициента относительной просадочности

Грунт считается просадочным при sl0,01. Серия опытов с замачиванием образцов при различных давлениях позволяет построить график зависимости коэффициента относительной просадочности от давления (рис.2.30,б). По графику можно оценить начальное просадочное давление Psl, при котором sl= 0,01. При меньшем давлении лессовый грунт считается практически непросадочным.

Просадочность грунта при замачивании объясняется рядом причин, основная из которых – размягчение неводостойких связей между частицами грунта. При попадании воды в грунт вокруг частиц образуются водные пленки, утолщение которых оказывает на частицы "раскалывающее" действие. Структурные связи между частицами, представляющие собой цементацию солями или склеивание коллоидными частицами, разрушаются (частично растворяются, размягчаются, размокают). Все это приводит к оплыванию частиц грунта и заполнению ими макропор, т.е. к уменьшению объема грунта (просадка).

Лабораторные определения основных характеристик просадочных грунтов подтверждают однородность зернового состава (обычно cu  3), высокое содержание пылеватых фракций (до 70-80%), невысокую влажность (часто меньше 10-12%). Химический анализ большей частью показывает высокое содержание карбонатов (углекислых солей), в связи с чем грунт "вскипает" от соляной кислоты.

В природе встречаются макропористые грунты, не обладающие просадочными свойствами. Это, преимущественно, грунты с высокой природной влажностью, т.е. грунты, подвергшиеся влиянию замачивания в природных условиях. При степени водонасыщения Sr > 0,8 испытания на просадочность можно не производить, т.к. грунты заведомо не будут просадочными даже при наличии всех вышеописанных признаков.

Другой причиной отсутствия просадочности может служить высокая набухаемость грунтов, объясняемая повышенным содержанием глинистых частиц или высокой их дисперсностью (значительное содержание коллоидов). В таких высокогидрофильных грунтах при увлажнении происходит образование адсорбционных пленок большой толщины, что влечет за собой увеличение объема грунта (набухание).

Таким образом, набухаемость и просадочность грунта находятся как бы в борьбе друг с другом и, в конечном счете, склонность грунта к просадочным деформациям определяется либо большей набухаемостью, либо большей просадочностью. В частности, элювиальные глинистые грунты, среди которых нередко встречаются макропористые, большей частью непросадочные, т.к. богаты содержанием коллоидов и, соответственно, высокогидрофильны.

При замачивании просадочных грунтов в природных условиях, особенно поверхностными водами, просадочные явления усугубляются за счет значительного выноса вещества скелета грунта в растворенном (соли) и взвешенном (пылеватые частицы) состоянии в нижележащие слои грунта за счет высокой фильтрационной способности грунта в направлении макропор.

Просадочные свойства грунтов наиболее достоверно могут быть определены полевыми испытаниями с замачиванием. Результаты таких испытаний графически представлены на рис.2.31.

Рис.2.31. Зависимость между осадкой и давлением в условиях замачивания:

в полевых условиях (а) и зависимость между осадкой и временем (б)

studfiles.net


© 2007—2018
423800, Набережные Челны , база Партнер Плюс, тел. 8 800 100-58-94 (звонок бесплатный)