|
||||
|
Екатерина - специалист по продаже а/м КАМАЗ
43118-010-10 (дв.740.30-260 л.с.) | 2 220 000 |
43118-6033-24 (дв.740.55-300 л.с.) | 2 300 000 |
65117-029 (дв.740.30-260 л.с.) | 2 200 000 |
65117-6010-62 (дв.740.62-280 л.с.) | 2 350 000 |
44108 (дв.740.30-260 л.с.) | 2 160 000 |
44108-6030-24 (дв.740.55,рест.) | 2 200 000 |
65116-010-62 (дв.740.62-280 л.с.) | 1 880 000 |
6460 (дв.740.50-360 л.с.) | 2 180 000 |
45143-011-15 (дв.740.13-260л.с) | 2 180 000 |
65115 (дв.740.62-280 л.с.,рест.) | 2 190 000 |
65115 (дв.740.62-280 л.с.,3-х стор) | 2 295 000 |
6520 (дв.740.51-320 л.с.) | 2 610 000 |
6520 (дв.740.51-320 л.с.,сп.место) | 2 700 000 |
6522-027 (дв.740.51-320 л.с.,6х6) | 3 190 000 |
Нужны самосвалы? Обратите внимание на Ford-65513-02. |
Контактная информация.
г. Набережные Челны, Промкомзона-2, Автодорога №3, база «Партнер плюс».
тел/факс (8552) 388373.
Схема проезда
При анализе термодинамических циклов делаются следующие допущения:
химический состав и количество рабочего тела – постоянны;
процесс горения топлива заменен обратимым процессом подведения теплоты;
выпуск продуктов сгорания заменен обратимым процессом отведения теплоты в окружающую среду;
температура рабочего тела не зависит от температуры окружающей среды;
рабочее тело находится в равновесии с источником теплоты и охладителем (окружающей средой).
Основные циклы ДВС:
со смешанным подводом теплоты при постоянном объеме и давлении (цикл Сабатэ) – отражает процесс дизеля без компрессора, который наиболее близок к реальным условиям сгорания топлива;
с подводом теплоты при постоянном давлении (цикл Дизеля) – отражает процесс тихоходного дизеля;
с подводом теплоты при постоянном объеме (цикл отто) – отражает процесс двигателя быстрого сгорания (карбюраторного и газового).
Теоретические циклы, давая максимально возможное превращение теплоты в работу при приведенных выше условиях, схематизируют действительные явления и позволяют изучать эти явления, отмечая главные факторы, которые влияют на экономику этих явлений.
Цикл со смешанным (комбинированным) подводом теплоты (рисунок 1)
смешанный цикл, в котором подвод теплоты осуществляется частично при v = const, а частично при р = const был предложен советским инженером Г.В. Тринклером. Работающие по этому циклу двигатели называются без компрессорными дизелями. в настоящее время дизели строятся только с комбинированным подводом тепла.
По этой схеме цикла ДВС работают с внутренним смесеобразованием и воспламенением рабочей смеси.
Рисунок 1– Смешанный цикл ДВС в pv и Ts координатах
В этом виде цикла (рисунок 1) в процессе 1-2 происходит адиабатное сжатие рабочего тела, после чего подводится теплота сначала при v =const (линия 2-3), а затем при р = const (линия 3-4). Далее происходит адиабатное расширение (линия 4-5) и, наконец, отвод теплоты при v =const (линия 5-1).
Процессы всасывания (линия 0-1) и выхлопа (линия 1-0) в термодинамике не рассматриваются, так как это механические процессы.
Характеристики цикла:
; (2)
. (3)
Термический кпд цикла (см. прямой цикл Карно – )
; (4)
и ; (5)
термический КПД: , если поделить числитель и знаменатель на на сv, то получим:
. (6)
Выразим T2, T3, T4, T5 через T1.
Рассмотрим процессы.
1-2 – процесс адиабатического сжатия:
T2 = T1ε k – 1. (7)
2-3 – процесс нагрева при ν = const:
;
T3 = T2λ;
3-4 – процесс нагрева при р= const:
;
T4 = T3ρ;
T4 = T1ε k – 1λρ; (9)
4-5 – процесс адиабатического расширения: ,
v5 = v1, а v4 = v2, тогда .
. (10)
Подставив в формулу (6) t2,t3,t4,T5 через t1 из формул (7), (8), (9), (10) получим:
. (11)
из уравнения (11) видно, что ηt растет с увеличением ε и k.
Таблица 1 – Значения р2 и T2при различных значениях ε
k | ε | 8 | 9 | 12 | 13 | 14 | 15 | 16 | 17 |
1,30 | p2 | 13,42 | | 22,70 | 25,20 | 27,80 | 30,30 | 33,00 | 35,80 |
T2 | 708 | 734 | 801 | 822 | 840 | 856 | 873 | 889 | |
1,35 | p2 | 14,90 | 17,50 | 25,70 | 28,80 | 31,80 | 34,90 | 38,20 | 41,40 |
T2 | 795 | 850 | 901 | 932 | 956 | 980 | 1 004 | 1 020 |
Цикл с подводом теплоты при постоянном давлении
в таких двигателях топливо распыляется сжатым воздухом.
если сжимать один воздух, а топливо вводить в цилиндр после сжатия, то степень сжатия может быть значительно большей. Такая схема применяется в дизель-моторах, и была предложена инженером Дизелем в 1897 г.
в цикле с подводом тепла при р = const первоначальное состояние рабочего тела в pv-координатах характеризуется точкой 1 (рисунок 2).
В течение первого хода справа налево совершается сжатие воздуха, которое происходит без теплообмена с внешней средой (линия 1-2). На участке 2-3 к рабочему телу подводится тепло q1 таким образом, что давление при этом остается постоянным (так как увеличивается объем), что приближенно соответствует реальным условиям сгорания трудно сгораемого топлива.
Дальнейшее расширение рабочего тела (линия 3-4) происходит без теплообмена с внешней средой (по адиабате). Для приведения рабочего тела в первоначальное состояние 1, от него отводится тепло q2 при v =const (линия 4-1).
Рисунок 2 – Цикл ДВС в pv и Ts- координатах с подводом тепла при р = const
Теоретический цикл – (1-2-3-4). процессами 0-1 (процесс всасывания) и 1- 0 (процесс выхлопа) – пренебрегают, считая, что в цилиндре находится
постоянное количество газа (механические процессы).
В рассматриваемом цикле степень повышения давления при сгорании топлива .
Основные величины этого цикла:
(12)
Тогда подставив в уравнение (173) λ = 1 в ηt цикла с комбинированным подводом теплоты получим:
. (13)
Выводы:
термический КПД двигателя Дизеля зависит от степени предварительного расширения ρ и с увеличением уменьшается экономичность цикла;
Таблица 2– Значения термического КПД цикла Дизеля при различных значениях и k = 1,35
ε | 10 | 12 | 14 | 16 | 18 | |
ρ = 1,5 | ηt | 0,52 | 0,54 | 0,57 | 0,59 | 0,61 |
ρ = 2,1 | ηt | 0,49 | 0,52 | 0,55 | 0,57 | 0,58 |
ρ = 2,5 | ηt | 0,46 | 0,49 | | 0,54 | 0,56 |
Цикл с подводом теплоты при постоянном объеме
studfiles.net
Первые поршневые двигатели внутреннего сгорания (ДВС) работали на газообразном топливе, используя светильный газ. Значительный вклад в развитие таких двигателей внес немецкий изобретатель Н.Отто, разработавший двигатель с предварительным сжатием и искровым зажиганием.
Несколько позднее Рудольф Дизель разработал двигатель, до сих пор носящий его имя, в котором используется специальное дизельное топливо. Благодаря высокой концентрации энергии в единице объема, оно практически вытеснило газообразное топливо в двигателях внутреннего сгорания.
Рассмотрим следующие основные циклы ДВС, работающие на жидком топливе при различных способах воспламенения топлива или при различных способах подвода теплоты.
Различают следующие циклы ДВС. Двигатели с подводом теплоты при постоянном объеме (V = const), двигатели с подводом теплоты при постоянном давлении (Р = const) и двигатели, работаю-
щие по смешанному циклу.
Идеальный цикл ДВС при подводе теплоты V = const (цикл Отто) в P-V и T-S диаграммах представлен на рис.7.1.
Рис.7.1. Идеальный цикл двигателя внутреннего сгорания с подводом теплоты при V = const в P-V и T-S диаграммах
В этом цикле процесс сжатия рабочей смеси происходит по адиабате 1-2. Изохора 2-3 соответствует горению топлива, воспламеняемого от электрической искры и подводу теплоты q1. Рабочий ход поршня осуществляется при адиабатическом расширении продуктов сгорания, изображен линией 3-4. Отвод теплоты q2 осуществляется по изохоре 4-1, соответствующей выхлопу отработанных газов в атмосферу.
Термический КПД рассматриваемого цикла, характеризующий эффективность использования теплоты сжигаемого топлива, вычисляется следующим образом:
. (7.1)
Сравнение адиабат 1-2 и 3-4 позволяет сделать вывод, что
(7.2)
и, следовательно, получить
. (7.3)
Отношение всего объема рабочего цилиндра V1 к объему камеры сжатия V2 называется степенью сжатия и является основной характеристикой цикла Отто
. (7.4)
Для адиабатического процесса справедливо следующее соотношение, устанавливающее связь между V и Т:
, (7.5)
которое позволяет записать уравнение для термического КПД в следующем виде:
. (7.6)
Из последнего соотношения видно, что термический КПД двигателей, работающих по циклу Отто, зависит только от степени сжатия и с ее увеличением возрастает. При этом температура в конце сжатия Т2 не должна достигать температуры самовоспламенения горючей смеси. Поэтому степень сжатия в реальных двигателях такого типа не превышает 10 и зависит от характеристик применяемого топлива.
Степень сжатия в цикле может быть повышена, если сжимать не горючую смесь, а воздух, и затем, получив высокие давление и температуру, обеспечить самовоспламенение распыленного в цилиндре топлива. В этом случае процесс горения затягивается и двигатели такого типа характеризуются постепенным (или медленным) сгоранием топлива при постоянном давлении. Идеальный цикл такого двигателя внутреннего сгорания называется циклом Дизеляи осуществляется следующим образом (рис. 7.2). Рабочее тело (воздух) сжимается по адиабате 1-2, изобарный процесс 2-3 соответствует процессу горения топлива, т.е. подводу теплоты q1 а рабочий ход выражен адиабатным расширением продуктов сгорания 3-4. Наконец, изохора 4-1характеризует отвод теплоты q2, заменяя для четырехтактных двигателей выхлоп продуктов сгорания и всасывание новой порции воздуха.
Формула для расчета термического КПД в этом случае принимает вид
. (7.7)
Кроме степени сжатия , у цикла Дизеля имеется еще одна характеристика - степень предварительного расширения :
. (7.8)
Рис.7.2. Идеальный цикл двигателя внутреннего сгорания с подводом теплоты при Р = const (цикл Дизеля) в P-V и T-S диаграммах
Для изобары 2-3 можно записать V3/V2=Т3/Т2. Рассматривая изохору 4-1 и учитывая, что P4Vk4=P3Vk3, P1Vk1=P2Vk2 и V4=V1 , получаем
. (7.9)
Окончательно с учетом соотношения (7.9) формула для расчета термического КПД цикла Дизеля имеет вид:
. (7.10)
Выражение (7.10) показывает, что основным фактором, определяющим экономичность двигателей, работающих по циклу Дизеля, также является величина степени сжатия , с увеличением которой термический КПД цикла возрастает. Как указывалось, нижний предел определен необходимостью получения в конце сжатия температуры, значительно превышающей температуру самовоспламенения топлива. Верхний предел (до 20) ограничен допустимым давлением в цилиндре, превышение которого приводит к утяжелению конструкции и увеличению потерь на трение. Повышение степени предварительного расширения вызывает снижение термического КПД цикла с подводом теплоты при постоянном давлении. Отсюда следует, что с увеличением нагрузки и удлинением процесса горения топлива экономичность двигателя уменьшается. Это следует учитывать наряду с другими обстоятельствами при определении оптимального режима работы двигателя.
Цикл Тринклера или цикл со смешанным подводом теплоты, по которому работают современные бескомпрессорные дизели (рис.7.3), осуществляется по следующей схеме. Адиабата 1-2соответствует сжатию в цилиндре воздуха до температуры, превышающей температуру самовоспламенения топлива. Изохора 2-3 соответствует процессу горения топлива, впрыскиваемого в цилиндр, а изобара 3-4 изображает процесс горения остальной части топлива по мере поступления его из форсунки. Расширение продуктов сгорания идет по адиабате 4-5, а изохора 5-1соответствует выхлопу отработавших газов в атмосферу. Таким образом, теплота q1подводится в двух процессах 2-3 и 3-4.
q1= q11 + q12 . (7.11)
Рис.7.3. Идеальный цикл Тринклера со смешанным подводом теплоты в P-V и T-S диаграммах
Выражение для термического КПД цикла со смешанным подводом теплоты записывается в следующем виде:
. (7.12)
Параметр называется степенью повышения давления в изохорном процессеи рассчитывается по формуле
= Рз/Р2 . (7.13)
В двигателях, работающих по циклу Тринклера, распыление топлива производится топливным насосом высокого давления, а компрессор, применяемый при пневматическом распылении топлива, отсутствует. Степень сжатия в рассматриваемом цикле может достигать 18.
Выражение (7.12) является общим для циклов поршневых ДВС и при =1 и =1 переходит в соответствующие формулы для термического КПД циклов с подводом теплоты при постоянном давлении или постоянном объеме. Сравнение эффективности рассмотренных циклов проведем с помощью T-S диаграммы (рис. 7.4), предположив, что в каждом из них достигается одинаковая максимальная температура Т3. Одинаковы и количества отведенной теплоты q2в каждом цикле (площадь 14ав). При таких условиях полезно используемая теплота цикла, равная полезной работе цикла, будет наибольшей для цикла Дизеля 12'34 и наименьшей для цикла Отто 1234. Цикл Тринклера 1dс34занимает промежуточное положение.
Рис.7.4. Идеальные циклы ДВС при V=const, P=const и цикл Тринклера с одинаковой температурой Т3
Таким образом, термический КПД, характеризующий степень термодинамического совершенства цикла, будет наибольшим для цикла с подводом теплоты при постоянном давлении и наименьшим для цикла с подводом теплоты при постоянном объеме.
poznayka.org
Поршневым двигателем внутреннего сгорания (ДВС) называют такую тепловую машину, в которой превращение химической энергии топлива в тепловую, а затем в механическую энергию, происходит внутри рабочего цилиндра. Превращение теплоты в работу в таких двигателях связано с реализацией целого комплекса сложных физико-химических, газодинамических и термодинамических процессов, которые определяют различие рабочих циклов и конструктивного исполнения.
Экономические и мощностные показатели двигателей внутреннего сгорания, работающих по разным циклам, трудно сравнить в реальных условиях. В этих условиях особенность протекания отдельного процесса рабочего цикла или деталь конструкции двигателя могут повлиять на конечные результаты сравнения. Поэтому основные показатели разных циклов на первом этапе рассматривают в теоретических условиях, когда каждый цикл осуществляется в наивыгоднейших условиях, в воображаемой тепловой машине. На втором этапе в теоретические зависимости (т. е. в условиях воображаемой тепловой машины) вводятся коэффициенты, учитывающие действительные условия.
В теоретических циклах введены следующие допущения:
В цикле используется в качестве рабочего тела идеальный газ, состав которого в цикле не изменяется.
Циклы считаются замкнутыми, происходящими при постоянном количестве идеального газа.
Теплоемкость газа в течение всего цикла постоянна, т. е. не зависит от температуры.
Сгорание топлива в цилиндре заменяется мгновенным подводом тепла, а выпуск – мгновенным отводом теплоты в холодный источник.
Процесс сжатия и расширения газа происходит без теплообмена с окружающей средой, и называются адиабатическими.
В соответствии с этими допущениями теоретический цикл представляет собой замкнутый цикл, осуществляемый в воображаемой тепловой машине постоянной несменяемой порцией рабочего тела. Вследствие замкнутости процессы сгорания и выпуска рабочего тела при действительном цикле заменяют подводом и отводом теплоты. Процессы сжатия и расширения предполагаются адиабатическими, т.к. это обеспечивает максимальное теплоиспользование.
Теоретические циклы имеют минимальное количество потерь, находящихся в строгом соответствии со вторым законом термодинамики. Существующие двигатели внутреннего сгорания работают по одному из трех циклов, имеющих свои характерные особенности.
Автомобильные карбюраторные двигатели, а также двигатели газогенераторные, газобаллонные и с впрыском легкого топлива работают по циклу, в котором горючая смесь, вошедшая в цилиндр во время впуска, сжимается, поджигается искрой и быстро сгорает в момент нахождения поршня около ВМТ, т. е. при почти неизменяемом объеме.
Индикаторная диаграмма теоретического цикла показана на рис. 1.1.
рис.1.1
Теоретический цикл с сообщением тепла при постоянном объеме осуществляется следующим образом. При движении поршня от НМТ (точка а диаграммы теоретического цикла) газ, заполняющий цилиндр, начинает сжиматься. Чтобы довести потери тепла до минимума, стенки цилиндра должны быть абсолютно нетеплопроводными, т. е. покрытыми идеальной тепловой изоляцией. В этом случае процесс сжатия (линия ас индикаторной диаграммы) будет адиабатическим, а внешняя механическая работа, затрачиваемая на сжатие, полностью пойдет на увеличение внутренней энергии сжимаемого газа.
Давление газа в цилиндре в конце процесса сжатия (точка с) равно:
,
где k – показатель адиабаты идеального газа.
Температура газа в цилиндре в конце процесса сжатия (точка с) равна:
.
В конце сжатия, с приходом поршня в ВМТ, происходит не процесс сгорания, как в действительном цикле, а простое мгновенное сообщение теплоты Q1 рабочему телу; результатом этого будет повышение его температуры и давления при постоянном объеме (изохоры сz). При положении поршня в ВМТ (точка z диаграммы) сообщение теплоты прекращается.
Степень повышения давления газа в цилиндре в конце процесса подвода теплоты
,
где Pz – давление газа в цилиндре в конце процесса подвода теплоты.
Температура газа в цилиндре в конце процесса подвода теплоты (точка z)
.
Температура газа в цилиндре в конце процесса расширения
.
Для повторения цикла надо вернуть газ в начальное состояние, характеризуемое точкой a индикаторной диаграммы. Для этого необходимо охладить газ, заключенный в цилиндре, т.е. отнять теплоту, представляющую собой долю Q2 от ранее введенной теплоты Q1. Таким образом, даже при осуществлении теоретического цикла часть вводимой теплоты теряется и, следовательно, не может быть полного превращения теплоты в работу.
Степень преобразования теплоты в работу любого теоретического цикла оценивается термическим КПД, который представляет собой отношение теплоты, превращенной в полезную работу газов, к подведенной теплоте Q1.
В теоретическом цикле какие-либо дополнительные тепловые потери, за исключением количества теплоты Q2, отсутствуют.
Поэтому в полезную работу превращается разность количеств теплоты Q1 – Q2, тогда термический КПД можно выразить формулой:
В цикле с сообщением теплоты при постоянном объеме вводимое количество Q1 теплоты и отводимое Q2 пропорциональны его изохорной теплоемкости Сν и соответствующим разностям температур:
Термический КПД можно определять, подставив найденные значения температур:
Согласно уравнению термического КПД, экономичность цикла с подводом теплоты при постоянном объеме возрастает при увеличении степени сжатия и показателя адиабаты идеального газа.
studfiles.net
На рис. 11.8 а изображены рассматриваемые циклы при одинаковых степенях сжатия и одинаковых количествах отведенной теплотыпл.7146. Из рисунка видно, что количество теплоты, подведенной в цикле 1-2-3-4 (пл.7236), больше, чем количество теплоты, подведенной в цикле 1-2-5-4 (= пл. 7256). Поэтому, согласно формуле (11.3), цикл 1-2-3-4 с подводом теплоты приимеет больший термический КПД, чем цикл 1-2-5-4 с подводом теплоты при, т.е..
Рис. 11.8. Сравнение циклов с подводом теплоты при и
На рис. 11.8 б представлены оба цикла при одинаковых степенях сжатия и одинаковых количествах подведенной теплоты(пл.7238 = пл.7259). Из рисунка видно, что количество отведенной теплоты в цикле 1-2-5-6 (= пл.7169) больше, чем количество отведенной теплоты в цикле 1-2-3-4 (= пл.7148). Следовательно, цикл 1-2-3-4- с подводом теплоты приимеет больший КПД, т.е..
На рис. 11.9 а приведены оба цикла при одинаковых максимальных давлениях и температурах и различных степенях сжатия. При(пл.а14b) количество подведенной теплоты в цикле 1-5-3-4 (= пл. а53b) больше, чем количество подведенной теплоты в цикле 1-2-3-4 (пл. а23b). Поэтому цикл 1-5-3-4 с подводом теплоты при постоянном давлении имеет больший термический КПД, чем цикл 1-2-5-4 с подводом теплоты при постоянном объеме, то есть .
Рис. 11.9. Сравнение циклов с подводом теплоты при и
На рис. 11.9 б представлены оба цикла при одинаковых количествах подведенной теплоты (= пл. а78с =пл . а23b) и при различных степенях сжатия . Как видно, количество теплоты, отведенной в цикле 1-2-3-4 (пл. . а14b), больше, чем количество теплоты, отведенной в цикле 1-7-8-5 (пл. а15с). Следовательно, цикл 1-7-8-5 с подводом теплоты при имеет больший термический КПД, то есть.
Сравнение циклов ДВС с подводом теплоты при ,и со смешанным подводом теплоты
На рис. 11.10 видно, что при одинаковых степенях сжатия и одинаковых количествах подведенной теплоты(пл.а23b = пл. а265с = пл. а28d) максимальный термический КПД имеет цикл 1-2-3-4- с подводом теплоты при , а минимальный – цикл 1-2-8-9 с подводом теплоты при. Термический КПД цикла 1-2-5-6-7 со смешанным подводом теплоты имеет промежуточное значение.
а | б |
Рис. 11.10. Сравнение циклов ДВС с подводом теплоты
при ,и со смешанным подводом теплоты
Из рис. 11.10 б видно, что при одинаковых конечных давлениях и температурах () во всех трех циклах и одинаковом количестве отведенной теплоты= пл. а14b =,.
Действительно, пл. а73b а56b а23b, то есть . Поэтому. При этих условиях наибольшая степень сжатия будет у двигателей с подводом теплоты при.
Циклы газотурбинных установок (ГТУ)
Циклы ГТУ с изобарным подводом теплоты
Рис. 12.1. Принципиальная схема газотурбинной установки
с подводом теплоты при постоянном давлении
Принципиальная схема ГТУ показана на рис. 12.1. Компрессор 1, газовая турбина 4, топливный насос 2 и электрогенератор 5 имеют общий вал. Компрессор 1 сжимает атмосферный воздух до требуемого давления и направляет его в камеру сгорания 3. Топливо в камеру сгорания подается насосом 2. Продукты сгорания расширяются в газовой турбине, производя работу.
В газовой турбине, как и в ДВС, рабочим телом являются продукты сгорания жидкого или газообразного топлива, но возвратно-поступательный принцип заменен вращательным движением колеса под действием струи газа. Кроме того, в турбинах осуществимо полное адиабатное расширение продуктов сгорания до давления наружного воздуха, с чем связан дополнительный выигрыш работы (пл. 1441 на рис. 12.2,а)
Рис. 12.2. Термодинамический цикл ДВС с подводом теплоты при постоянном давлении:
а – в vP- диаграмме; б – в sT-диаграмме.
Термодинамический цикл газотурбинной установки состоит из следующих процессов: 1-2 – адиабатное сжатие воздуха в компрессоре; 2-3 – подвод теплоты к рабочему телу при постоянном давлении; 3-4 адиабатное расширение рабочего тела в турбине до давления окружающей среды; 4-1 – изобарный процесс отдачи рабочим телом теплоты в окружающую среду.
Параметры цикла:
- степень повышения давления при адиабатном сжатии;
- степень предварительного расширения.
Термический КПД цикла определяется по формуле:
. (12.1)
Количество теплоты, подводимое к рабочему телу в процессе изобарном процессе 2-3:
. (12.2)
Количество теплоты, отводимое в изобарном процессе 4-1:
. (12.3)
Количество подведенной теплоты и отведеннойможно определить через параметры цикла. Для этого температурыивыражаются через температуруи параметры циклаи.
Таблица 12.1 - Определение температуры в характерных точках цикла ГТУ с изобарным подводом теплоты
Процесс | Формулы |
1-2 - адиабатный | |
2-3 – изобарный | Т.к.и, получаем: |
3-4- адиабатный |
После преобразований:
; .
, (12.4)
где - степень адиабатного сжатия в компрессоре. Из выражения (11.6) видно, чтозависит от работы компрессора. Чем выше показатель адиабатыи чем больше значение, тем выше.
Цикл ГТУ с подводом теплоты при P=const и регенерацией
Регенерация теплоты состоит в использовании теплоты отработавших газов турбины для подогревания воздуха, поступающего в камеру сгорания. Из рис. 12.1 и 12.3 видно, что основное отличие ГТУ с регенерацией теплоты от установки без регенерации состоит в том, что сжатый воздух из компрессора 1 поступает в воздушный регенератор-теплообменник 2, в котором он подогревается за счет теплоты отработавших в турбине продуктов сгорания. Из регенератора-теплообменника воздух поступает в камеру сгорания 3. Таким образом, в газотурбинных установках с регенерацией часть теплоты, ранее уносившаяся отработанными продуктами сгорания в атмосферу, полезно используется.
Рис. 12.3. Принципиальная схема газотурбинной установки с подводом теплоты при постоянном давлении и регенерацией теплоты:
компрессор; 2 – воздушный регенератор-теплообменник ; 3 – камера сгорания; 4 – турбина.
Термодинамический цикл ГТУ со сгоранием топлива при и регенерацией теплоты (рис. 12.4) состоит из следующих процессов: 1-2 – процесс сжатия воздуха в компрессоре; 2-5 – изобарный подогрев воздуха в регенераторе; 5-3 – изобарный процесс подвода теплоты в камере сгорания топлива; 3-4 – адиабатное расширение газов в турбине; 4-6 – изобарное охлаждение рабочего тела в регенераторе; 6-1 – изобарная отдача рабочим телом теплоты окружающему воздуху.
На sT-диаграмме (рис.12.4,б) теплота, отдаваемая продуктами сгорания на участке изобары 4-6 (пл.с64dc), подводится в регенераторе к сжатому воздуху на участке изобары 2-5. Регенерация будет полной, если охлаждение продуктов сгорания в регенераторе-теплообменнике происходит до температуры воздуха, то есть от , до. При этом количество теплоты, воспринятое воздухом от регенератора, равно количеству теплоты, отдаваемому в нем продуктами сгорания:
.
При имеем:.
Термический КПД при полной регенерации определяется выражением:
.
Количество подведенной теплоты в цикле с полной регенерацией:
. (12.5)
Количество отводимой теплоты в цикле с полной регенерацией:
. (12.6)
Тогда
. (12.7)
Согласно уравнениям, приведенным в таблице 12.1, имеем:
.
а | б |
Рис.12.4. Термодинамический цикл ГТУ с подводом теплоты
studfiles.net
Замкнутые теоретические (идеальные) циклы ДВС дают представление о протекании процессов в реальных двигателях, качественных зависимостях основных показателей этих двигателей от различных параметров циклов. В то же время количественные значения параметров реальных циклов весьма далеки от них в силу целого ряда причин. На рис.2.1 представлены циклы Отто, Дизеля и Тринклера, рассматриваемые при анализе идеальных циклов ДВС.
Рис.2.1. Идеальные циклы Отто, Дизеля и Тринклера
Замкнутые теоретические (идеальные) циклы ДВС дают наглядное представление о протекании процессов в реальных двигателях, качественных зависимостях основных показателей этих двигателей от различных параметров циклов. В то же время количественные значения параметров реальных циклов весьма далеки от них в силу целого ряда причин. Среди них, в первую очередь, необходимо отметить следующие.
1. Теплоемкость рабочего тела не постоянна, как это принимается при рассмотрении идеальных циклов, а существенно изменяется с изменением состава и температуры рабочего тела.
2. Процесс сгорания топлива в ДВС происходит по достаточно сложным законам и сопровождается интенсивным теплообменом.
3. Непрерывный интенсивный теплообмен через стенки, головку цилиндров, поршни и др. элементы конструкции.
4. Процессы газообмена, т. е. впуска и выпуска рабочего тела.
5. Утечки рабочего тела.
6. Подогрев воздуха, поступающего в двигатель.
Многие из перечисленных факторов удается учесть при рассмотрении действительных циклов, которые иногда называют «разомкнутыми». Эти циклы, по сравнению с идеальными, в значительно большей степени отражают параметры реальных двигателей, поскольку они учитывают следующие факторы.
1. Процессы впуска и выпуска (изменения температуры и давления рабочего тела, а также гидравлические потери при этом не учитываются).
2. Изменение состава рабочего тела в течение протекания цикла, а также его теплоемкости с изменениями температуры.
3. Зависимость показателей адиабат сжатия и расширения от средней теплоемкости.
4. Процесс сгорания топлива, а также изменение молекулярного состава рабочего тела.
5. Потери теплоты от химической неполноты сгорания топлива, а также на подогрев остаточных газов и избыточного воздуха.
В настоящее время разработаны методики расчета подобных циклов, однако, достаточно надежные и достоверные результаты теплового расчета дают только полуэмпирические методики теплового расчета, учитывающие результаты экспериментальных исследований, накопленный опыт конструирования, изготовления и эксплуатации двигателей. В них расчет параметров и характеристик ДВС осуществляется на основе детального анализа процессов газообмена, сжатия, смесеобразования и сгорания, расширения.
Рис.2.2. Действительные циклы четырехтактных и двухтактных ДВС
Рабочий цикл карбюраторного четырехтактного двигателя.
Такт впуска.Поршень движется от верхней мертвой точки (ВМТ) к нижней мертвой точке (НМТ), создавая разрежение в полости цилиндра, над собой. Впускной клапан открыт, и цилиндр заполняется горючей смесью. Горючая смесь, перемешиваясь с остаточными газами в цилиндре, образует рабочую смесь. Из-за гидравлического сопротивления впускного тракта и нагрева смеси, давление в конце такта впуска составляет примерно 0,07-0,09 МПА, а температура 100-130°С.
Такт сжатия.Поршень движется от НМТ к ВМТ. Впускной и выпускной клапаны закрыты. Рабочая смесь в цилиндре сжимается до 0,7 -1,5 МПа. Температура сжатой смеси достигает 300-450ОС. В конце такта сжатая смесь воспламеняется электрической искрой. В процессе сгорания топлива давление в цилиндре повышается до 3,0-4,5 МПа, а температура газов до 1900-2400°С.
Такт расширения.Иногда его называют рабочим ходом. Начинается движением поршня от ВМТ к НМТ под действием давления образовавшихся продуктов сгорания. Оба клапана закрыты. Шарнирно связанный с поршнем шатун приводит во вращение коленчатый вал, совершая полезную работу. К концу такта расширения давление газов уменьшается до 0,3-0,5 МПа, а температура до 1000 - 1200°С.
Такт выпуска.Поршень движется от НМТ к ВМТ. Через открытый выпускной клапан отработавшие газы выходят из цилиндра в атмосферу через выпускную трубу. К концу такта выпуска давление в цилиндре составляет около 0,11-0,12 МПа, а температура 500-800°С.
После прохождения поршнем ВМТ закрывается выпускной клапан и рабочий цикл завершается. Последующее движение поршня к НМТ - такт впуска - является началом следующего цикла.
В дизеле в отличие от карбюраторного двигателя воздух и топливо в цилиндры вводятся раздельно.
Такт впуска.Поршень двигается от ВМТ к НМТ, впускной клапан открыт и в цилиндр поступает воздух либо за счет разрежения в цилиндре, либо за счет избыточного давления воздуха, создаваемого нагнетателем у дизеля с наддувом. Давление в конце такта впуска у дизеля без наддува 0,08-0,09 МПа, а температура воздуха 50-80ОС.
Такт сжатия.Оба клапана закрыты. Поршень двигателя от НМТ к ВМТ и сжимает воздух, перемешанный с остаточными продуктами сгорания. Из-за большой степени сжатия (14-21) давление воздуха в конце этого такта достигает 3,5-4,0 МПа, а температура 500-700°С. При этом положении поршня в камеру сгорания впрыскивается мелко распыленное топливо, которое, попадая в среду сильно нагретого воздуха, нагревается, испаряется, воспламеняется и сгорает. Давление газов повышается до 5,5-9,0 МПа, а температура до 1600-2000°С.
Такт расширения.Оба клапана закрыты. Продукты сгорания, стремясь расшириться, давят на поршень, заставляя его перемещаться от ВМТ к НМТ. В такте расширения догорает оставшаяся часть топлива. К концу такта расширения давление газов уменьшается до 0,3-0,4 МПа, а температура до 600-900°С.
Такт выпуска.Поршень движется от НМТ к ВМТ. Через открытый выпускной клапан отработавшие газы выталкиваются в атмосферу. Давление газов в конце такта выпуска составляет 0,11-0,12 МПа, а температура 400 - 6000С. Затем рабочий цикл повторяется.
У вышеописанных четырехтактных двигателей при выполнении тактов выпуска, впуска и сжатия необходимо перемещать поршень, вращая коленчатый вал. Эти такты называются подготовительными и осуществляются за счет кинетической энергии, накопленной маховиком двигателя в течение такта расширения.
В двухтактных двигателях для вытеснения отработавших газов из цилиндра используют принудительное вдувание воздуха или горючей смеси в цилиндр. Такой процесс называется продувкой. Продувка может осуществляться различными способами. Рассмотрим работу двухтактного карбюраторного двигателя с кривошипно-камерной продувкой. Когда поршень находится в положении близком в ВМТ камера сгорания заполнена сжатой рабочей смесью, кривошипная камера заполнена свежей порцией горючей смеси. В этот момент рабочая смесь в цилиндре воспламеняется электрической искрой от свечи. Давление газов резко возрастает, и поршень начинает перемещаться к НМТ - совершается рабочий ход. Когда поршень закроет впускное окно, в кривошипной камере начнется сжатие горючей смеси. Следовательно, при движении поршня к НМТ одновременно совершаются такты расширения и сжатия горючей смеси в кривошипной камере. В конце рабочего хода поршень открывает выпускное окно, через которое отработавшие газы с большой скоростью выходят в атмосферу. Давление в цилиндре быстро понижается. К моменту открытия продувочного окна давление сжатой горючей смеси в кривошипной камере становится выше, чем давление отработавших газов в цилиндре. Поэтому горючая смесь из кривошипной камеры по каналу попадает в цилиндр и, наполняя его, выталкивает остатки отработавших газов через выпускное окно в атмосферу.
Второй такт происходит при движении поршня от НМТ к ВМТ. В начале хода из цилиндра продолжают вытесняться оставшиеся продукты сгорания вместе с частью рабочей смеси. Затем поршень последовательно перекрывает продувочное окно и выпускное окно. После этого в цилиндре начинается сжатие рабочей смеси. В это же время за счет освобождения поршнем некоторого объема в герметически закрытой кривошипной камере создается разрежение. Поэтому, как только нижняя кромка юбки поршня откроет впускное окно, через него из карбюратора в кривошипную камеру поступает горючая смесь. Таким образом, во время второго такта происходит сжатие рабочей смеси в цилиндре и заполнение камеры новой порцией горючей смеси из карбюратора. После прихода поршня к ВМТ все процессы повторяются в такой же последовательности.
Кривошипно-камерная продувка наиболее проста, но наименее совершенна, так как при этом недостаточно полно осуществляется очистка цилиндра от продуктов сгорания. Поэтому она применяется только в двигателях малой мощности с небольшим абсолютным расходом топлива (двигатели мотоциклов, лодочные, модельные и т.п.). В строительных машинах и на транспорте подобные схемы используются в пусковых карбюраторных двигателях.
Протекает аналогично рабочему циклу двухтактного карбюраторного двигателя и отличается только тем, что у дизеля в цилиндре поступает не горючая смесь, а чистый воздух и в конце процесса сжатия впрыскивается топливо, которое воспламеняется от соприкосновения с нагретым воздухом. Так как в дизелях продувка осуществляется чистым воздухом, а не горючей смесью, они оказываются более экономичными по сравнению с карбюраторными двигателями.
studfiles.net
Циклом называется совокупность процессов, возвращающая систему в первоначальное состояние. Число процессов, входящих в цикл, может быть любым. Графически изображается замкнутым контуром, вид которого всецело определяется числом и формой составляющих цикл процессов.
Для сгорания топлива и превращения полученной при этом тепловой энергии в механическую работу, в цилиндрах ДВС должны проходить следующие термодинамические и вспомогательные процессы: впуск, сжатие, сгорание, расширение, выпуск. В теории двигателя комплекс процессов, периодически повторяющихся в цилиндрах ДВС, называют рабочим циклом. Различают теоретические и действительные циклы.
Теоретический цикл – это замкнутый цикл, в котором приняты следующие допущения:
в цилиндре двигателя находится постоянное количество одного и того же незаменяемого идеального газа, при этом отсутствуют процессы впуска и выпуска и связанные с ним механические и гидравлические потери, неизбежные в реальном ДВС;
процесс сжатия и расширения происходит адиабатно , то есть без тепловых потерь, связанных с теплообменом между газами и стенками цилиндров. Трение между поршнем и цилиндрами отсутствует;
топливо в цилиндре не сгорает, теплота к идеальному газу подводится от внешнего источника, причем мгновенно в ВМТ;
теплоемкость газа, находящегося в цилиндре, считается постоянной и не изменяется с изменением температуры;
в соответствии со вторым законом термодинамики отсутствуют потери теплоты, кроме неизбежной теплоотдачи деталям ДВС ;
Практическое значение имеют три термодинамических цикла, которые различают между собой по условиям подвода теплоты (Рис. 2):
при постоянном объеме V= const – цикл Отто (Рис. 2,а)
при постоянном давлении P= const – цикл Дизеля (Рис. 2,б)
со смешанным подводом теплоты :частично при V= const , частично при P= const – цикл Сабатэ (Тринклера) (Рис. 2,в)
а) б) в)
Рис. 2. Теоретические циклы двигателей
Vc – объем камеры сгорания; Vh – рабочий объем двигателя; Va- полный объем цилиндра;
а-с – процесс сжатия;
с-z – процесс сгорания при смешанном подводе теплоты (подвод теплоты Q1)
c-z′ - подвод теплоты Q1΄ при постоянном объеме
z′-z – подвод теплоты Q1″ при постоянном давлении
z-b – расширение
b-a – отвод теплоты Q2.
По циклу с подводом теплоты при постоянном объеме работают карбюраторные и газовые двигатели, а также двигатели с впрыском бензина во впускном трубопровод; с подводом теплоты при постоянном давлении – тихоходные дизели; со смешанным подводом теплоты – быстроходные дизели.
Полученные уравнения теоретических циклов в последующем применяются для реальных циклов с добавлением соответствующих коэффициентов.
В каждой точке цикла в соответствии с уравнением состояния газов имеются соответствующие значения давления P, температуры T, объема V. Для характеристик циклов используются следующие параметры:
1.Степень сжатия – показывает во сколько раз уменьшается объем цилиндра при движении поршня от НМТ до ВМТ. Для цикла с подводом теплоты приV=const ε=6…10 – для карбюраторных двигателей; ε=8…11 – для газовых двигателей; ε=10…12 – для двигателей с впрыском бензина. Для цикла с подводом теплоты при P=const – ε=14…15,а со смешанным подводом – ε=14…22
1.Степень повышения давления - показывает, во сколько раз увеличивается давление в цилиндре двигателя при подводе теплотыQ1
λ=3,5…4,5 – для бензиновых двигателей; λ=3…4 – для газовых двигателей; λ=1 – для тихоходных дизелей; λ=1,6…2,2 – для быстроходных дизелей.
3.Степень предварительного расширения - показывает, во сколько раз увеличивается объем цилиндра при подводе теплотыQ1; для бензиновых и газовых двигателей ρ=1; для тихоходных дизелей ρ=1,7...1,8; для быстроходных – 1,4…2,2.
4.Степень последующего расширения – показывает во сколько раз увеличивается объем цилиндра в результате расширения газов по адибатеzb. Для двигателей с внешним смесеобразованием Vb=Va, Vz=Vc следовательно:
Для дизельных двигателей:
studfiles.net
Здравствуйте! Двигатель внутреннего сгорания (ДВС) — это тепловая машина, в которой подвод теплоты к рабочему телу осуществляется за счет сжигания топлива внутри самого двигателя. Рабочим телом в таких двигателях является на первом этапе воздух или смесь воздуха с легковоспламеняемым топливом, а на втором этапе — продукты сгорания.В поршневых двигателях внутреннего сгорания подвод теплоты происходит непосредственно в цилиндре в процессе сгорания топлива. Эти двигатели имеют сравнительно высокую экономичность, малые габариты и вес, приходящийся на единицу мощности, и поэтому в основном применяются в качестве транспортных двигателей: в авиации, автомобильном, водном и железнодорожном транспорте. Кроме того, они используются в стационарных энергетических установках малой мощности.
Недостатком поршневых двигателей является необходимость применения кривошипного механизма, предназначенного для преобразования поступательного движения поршня во вращательное. Наличие несбалансированных масс в кривошипном механизме при увеличении числа оборотов приводит к возникновению больших механических нагрузок. Поэтому мощные двигатели внутреннего сгорания выполняются тихоходными, что увеличивает их габариты и вес.
Различные требования, предъявляемые к двигателям внутреннего сгорания в зависимости от их назначения, привели к созданию самых разнообразных типов этих двигателей. Однако с термодинамической точки зрения их можно классифицировать по характеру процессов. Циклы, которые применяются в двигателях, можно подразделить на следующие три вида:
1) цикл с подводом теплоты при постоянном объеме;
2) цикл с подводом теплоты при постоянном давлении;
3) смешанный цикл, в котором теплота подводится при постоянном объеме и при постоянном давлении.
Цикл с подводом теплоты в процессе при постоянном объеме.
Особенностью двигателей, работающих по этому циклу, является внешнее приготовление рабочей смеси, которая затем подается в цилиндр, где сжимается и воспламеняется от электрической искры, причем сгорание происходит очень быстро и процесс можно рассматривать как происходящий при постоянном объеме. Так как внешнее смесеобразование осуществляется при низкой температуре, двигатель может работать только на легких топливах, которые хорошо смешиваются с воздухом. Такой двигатель впервые был построен в 1876 г. немецким изобретателем Отто и работал на газовой смеси.
Теоретический цикл с подводом теплоты при υ = const состоит из двух адиабат и двух изохор (рис. 2). В процессе 1—2 происходит адиабатное сжатие рабочей смеси, которая в точке 2 воспламеняется с помощью электрической искры и сгорает в процессе 2—3 при постоянном объеме. В процессе 3—4 адиабатного расширения продуктов сгорания топлива происходит перемещение поршня и производится работа расширения. В точке 4 открывается выхлопной клапан, и давление в цилиндре падает до атмосферного pa.
При этом часть отработавших продуктов сгорания покидает полость цилиндра. В дальнейшем в результате возвратно-поступательного движения поршня выталкиваются остатки продуктов сгорания и всасывается следующая порция рабочей смеси. На теоретической диаграмме (рис. 2) эти процессы совпадают с изобарой ра, однако условно их совмещают с изохорным процессом 4—1, в котором отводится количество теплоты q2, фактически уносимой вместе с удаляемыми газами.
Реальные циклы двигателей внутреннего сгорания заметно отличаются от теоретических, поэтому при теоретическом анализе вводятся также и другие допущения. В качестве рабочего тела при исследовании циклов двигателей внутреннего сгорания принимается идеальный газ, количество и свойства которого неизменны (в действительности они изменяются в результате сгорания распыленного топлива).
Процессы сжатия и расширения не являются адиабатными, потому что в реальном двигателе существует трение и происходит теплообмен между стенками цилиндра и газом. Процесс 2—3 в действительности также отличается от изохорного из-за перемещения поршня за время горения топлива. Вследствие развития всех процессов во времени определенные точки перехода от одного процесса к другому (точки 1, 2, 3 и 4) в реальных циклах отсутствуют, и процессы сменяют друг друга постепенно (рис. 1).
Однако при термодинамическом анализе циклов двигателей внутреннего сгорания эти отклонения от идеальных условий не учитываются, что существенно упрощает теоретическое исследование циклов.
В соответствии с формулой
термический к. п. д. цикла с подводом теплоты при постоянном объеме возрастает с увеличением степени сжатия ε, которая равна отношению υ1/υ2 (рис.2) и показывает, во сколько раз уменьшается объем рабочей смеси при ее сжатии. Однако величина ε ограничивается температурой самовоспламенения рабочей смеси.
Если в процессе адиабатного сжатия 1—2 температура в цилиндре превысит температуру самовоспламенения, то рабочая смесь воспламенится преждевременно, что не только снизит экономичность двигателя, но и приведет к весьма опасным перегрузкам. Поэтому степень сжатия в двигателях со сгоранием при υ = const не превышает ε = 6—9 (выбирается в зависимости от свойств топлива).
Цикл с подводом теплоты при постоянном давлении.
В двигателях, работающих по этому циклу, сжатию подвергается не рабочая смесь, а воздух, температура которого в конце процесса сжатия (точка 2 на рис. 3) превышает температуру самовоспламенения топлива и составляет 600—800° С. Благодаря этому подаваемое в цилиндр распыленное жидкое топливо, смешиваясь с воздухом, самовоспламеняется и горит, причем подача топлива регулируется таким образом, чтобы горение шло при постоянном давлении (изобара 2—3). Распыливание подаваемого в цилиндр топлива производится сжатым воздухом (давление 5—9 МПа), поступающим из специального компрессора (такие двигатели часто называют компрессорными). В процессе 3—4 происходит адиабатное расширение продуктов сгорания, а процесс 4—1 аналогичен такому же в цикле со сгоранием при υ=const. Этот цикл был впервые предложен и осуществлен Дизелем.
Ввиду того что сжатию подвергается только воздух, преждевременное воспламенение (детонация) топлива исключается, двигатели работают с большими степенями сжатия (порядка 15—20) и имеют большой к. п. д. Так как образование горючей смеси происходит при высокой температуре, в этих двигателях сжигаются более тяжелые виды топлива.
Недостатком этих двигателей является наличие компрессора высокого давления, снижающего надежность, а также усложняющего конструкцию и потребляющего некоторую часть мощности двигателя. Поэтому они в настоящее время вытеснены бескомпрессорными двигателями, в которых распыливание топлива осуществляется топливным насосом.
Смешанный цикл.
Двигатели, работающие по смешанному циклу, являются более совершенными по сравнению с двигателями с изобарным сгоранием, так как у них отсутствует компрессор. Первый патент на бескомпрессорный двигатель высокого давления был выдан в 1901 г. русскому инженеру Г. В. Тринклеру. Однако эти двигатели получили широкое распространение значительно позже, когда удалось осуществить тонкое распыливание топлива с помощью топливного насоса и форсунок специальной конструкции. В настоящее время по смешанному циклу работают преимущественно транспортные двигатели, в которых используется тяжелое топливо.
В смешанном цикле, как и в цикле с изобарным сгоранием, сжатию подвергается воздух. Топливо подается в цилиндр с помощью насоса в конце сжатия (точка 2 на рис. 4) при давлении 30—150 МПа и вследствие высокой температуры воздуха самовоспламеняется. Подача топлива под большим давлением создает благоприятные условия для хорошего распиливания и перемешивания его с воздухом, что обеспечивает достаточно полное сгорание топлива и повышение экономичности двигателя. Процесс горения идет сначала при постоянном объеме (изохора 2—3), а затем при постоянном давлении (изобара 3—3').
Сравнение циклов.
Как уже отмечалось раньше, сравнение экономичности двигателей целесообразно проводить с помощью Ts-диаграммы, так как эта диаграмма позволяет по соответствующим площадям определить количество теплоты. На рис. 5 выполнено сравнение рассмотренных выше циклов двигателей при одинаковом количестве отводимой теплоты q2, которой соответствует площадь 1—4—b—a—1, и одинаковых максимальных параметрах цикла в точке 3.
Степень сжатия для цикла со сгоранием топлива при p = const (определяется положением точки 2" в конце адиабатного сжатия воздуха) больше, чем для цикла со сгоранием при υ = const (точка 2). Это соответствует действительным условиям работы двигателей, так как отличительной особенностью и преимуществом двигателей с подводом тепла при р = const является возможность использования больших степеней сжатия.
Поэтому целесообразно сопоставить двигатели при одинаковых максимальных давлениях и температурах (точка 3 на рис. 2—4), поскольку эти параметры определяют величину механических и термических напряжений, а следовательно, и конструктивные особенности двигателей.При одинаковых максимальных параметрах в цикле 1—2"— 3—4—1 (рис. 5) с подводом теплоты при p = const работа, равная площади цикла, больше работы в цикле 1—2—3—4—1 с подводом теплоты при υ=const. Так как количество отводимой теплоты q2, которой соответствует площадь 1—4—b—а—1, в обоих циклах одинаково, то термический к. п. д. в условиях одинаковых максимальных параметров для цикла с подводом теплоты при p = const выше.
Термический к. п. д. смешанного цикла 1—2'—3'—3 —4—1 имеет среднее значение между термическими коэффициентами полезного действия рассмотренных циклов. В действительности для смешанного цикла и цикла Дизеля оптимальная степень сжатия одинакова и составляет ε = 16—18, поэтому бескомпрессорные двигатели работают при более высоких максимальных параметрах (точка 3 на рис. 5 расположена выше) и, следовательно, являются наиболее экономичными. Исп. литература: 1) Теплоэнергетика и теплотехника, Общие вопросы, Справочник под ред. В.А. Григорьева и В.М. Зорина, Москва, «Энергия», 1980. 2)Теплотехника, Бондарев В.А., Процкий А.Е., Гринкевич Р.Н. Минск, изд. 2-е,"Вышейшая школа", 1976.
teplosniks.ru