Камаз 44108 тягач В наличии!
Тягач КАМАЗ 44108-6030-24
евро3, новый, дв.КАМАЗ 740.55-300л.с., КПП ZF9, ТНВД ЯЗДА, 6х6, нагрузка на седло 12т, бак 210+350л, МКБ, МОБ
 
карта сервера
«ООО Старт Импэкс» продажа грузовых автомобилей камаз по выгодным ценам
+7 (8552) 31-97-24
+7 (904) 6654712
8 800 1005894
звонок бесплатный

Наши сотрудники:
Виталий
+7 (8552) 31-97-24

[email protected]

 

Екатерина - специалист по продаже а/м КАМАЗ
+7 (904) 6654712

[email protected]

 

Фото техники

20 тонный, 20 кубовый самосвал КАМАЗ 6520-029 в наличии
15-тонный строительный самосвал КАМАЗ 65115 на стоянке. Техника в наличии
Традиционно КАМАЗ побеждает в дакаре

тел.8 800 100 58 94

Техника в наличии

тягач КАМАЗ-44108
Тягач КАМАЗ 44108-6030-24
2014г, 6х6, Евро3, дв.КАМАЗ 300 л.с., КПП ZF9, бак 210л+350л, МКБ,МОБ,рестайлинг.
цена 2 220 000 руб.,
 
КАМАЗ-4308
КАМАЗ 4308-6063-28(R4)
4х2,дв. Cummins ISB6.7e4 245л.с. (Е-4),КПП ZF6S1000, V кузова=39,7куб.м., спальное место, бак 210л, шк-пет,МКБ, ТНВД BOSCH, система нейтрализ. ОГ(AdBlue), тент, каркас, рестайлинг, внутр. размеры платформы 6112х2470х730 мм
цена 1 950 000 руб.,
КАМАЗ-6520
Самосвал КАМАЗ 6520-057
2014г, 6х4,Евро3, дв.КАМАЗ 320 л.с., КПП ZF16, ТНВД ЯЗДА, бак 350л, г/п 20 тонн, V кузова =20 куб.м.,МКБ,МОБ, со спальным местом.
цена 2 700 000 руб.,
 
КАМАЗ-6522
Самосвал 6522-027
2014, 6х6, дв.КАМАЗ 740.51,320 л.с., КПП ZF16,бак 350л, г/п 19 тонн,V кузова 12куб.м.,МКБ,МОБ,задняя разгрузка,обогрев платформы.
цена 3 190 000 руб.,

СУПЕР ЦЕНА

на АВТОМОБИЛИ КАМАЗ
43118-010-10 (дв.740.30-260 л.с.) 2 220 000
43118-6033-24 (дв.740.55-300 л.с.) 2 300 000
65117-029 (дв.740.30-260 л.с.) 2 200 000
65117-6010-62 (дв.740.62-280 л.с.) 2 350 000
44108 (дв.740.30-260 л.с.) 2 160 000
44108-6030-24 (дв.740.55,рест.) 2 200 000
65116-010-62 (дв.740.62-280 л.с.) 1 880 000
6460 (дв.740.50-360 л.с.) 2 180 000
45143-011-15 (дв.740.13-260л.с) 2 180 000
65115 (дв.740.62-280 л.с.,рест.) 2 190 000
65115 (дв.740.62-280 л.с.,3-х стор) 2 295 000
6520 (дв.740.51-320 л.с.) 2 610 000
6520 (дв.740.51-320 л.с.,сп.место) 2 700 000
6522-027 (дв.740.51-320 л.с.,6х6) 3 190 000


Перегон грузовых автомобилей
Перегон грузовых автомобилей
подробнее про услугу перегона можно прочесть здесь.


Самосвал Форд Нужны самосвалы? Обратите внимание на Ford-65513-02.

КАМАЗы в лизинг

ООО «Старт Импэкс» имеет возможность поставки грузовой автотехники КАМАЗ, а так же спецтехники на шасси КАМАЗ в лизинг. Продажа грузовой техники по лизинговым схемам имеет определенные выгоды для покупателя грузовика. Рассрочка платежа, а так же то обстоятельство, что грузовики до полной выплаты лизинговых платежей находятся на балансе лизингодателя, и соответственно покупатель автомобиля не платит налогов на имущество. Мы готовы предложить любые модели бортовых автомобилей, тягачей и самосвалов по самым выгодным лизинговым схемам.

Контактная информация.

г. Набережные Челны, Промкомзона-2, Автодорога №3, база «Партнер плюс».

тел/факс (8552) 388373.
Схема проезда



Виды теплопередачи. Три вида теплопередачи


Виды теплопередачи

  1. Теплопроводность

Теплопроводность это теплообмен между частицами или элементами структуры материальной среды, находящимися в непосредственном соприкосновении друг с другом. Передача тепла происходит от более теплых слоев (поверхностей) к холодным. В теории теплопроводности пренебрегают (виду малости частиц и расстояний между ними) корпускулярным строением вещества, считая его сплошной средой.

Количество тепла при неизменном температурном перепаде (стационарный тепловой поток), проходящее через единицу площади согласно уравнения Фурье составит

, (2.8)

где - изменение (градиент) температур по толщине в направлениих.

Знак (-) в формуле показывает, что тепловой поток направлен в сторону понижения температуры.

При неустановившихся условиях (нестационарный поток) количество тепла, распространяющееся в направлении х изменяется, что связано с поглощением и отдачей тепла частицами материальной среды при изменении температуры с течением времени. В таком случае изменение потока находится дифференцированием предыдущего выражения

. (2.9)

Изменение потока тепла пропорционально теплоемкости материала сρ и может быть выражено зависимостью

или (2.10)

При отсутствии внутренних источников и стоков тепла изменение величины теплового потока связано только с поглощением тепла материалом и потому последние два выражения (3.9и 3.10) равны между собой

. (2.11)

При неустановившемся распространении тепла по всем трем осям координат дифференциальное уравнение приобретает вид:

, (2.12)

где - оператор Лапласа.

В стационарных условиях теплопередачи изменение температуры во времени не происходит (), тогда уравнение Лапласа имеет вид

. (2.13)

При двумерном распространении тепла уравнение выглядит

. (2.14)

Для одномерного распределения тепла

. (2.15)

  1. Конвекция

Конвекция – теплообмен движущимися массами воздуха у нагретых или охлажденных поверхностей. У нагретых воздух [2] поднимается вверх, а у холодных опускается вниз. В потоке около вертикальной поверхности образуется пограничный слой, толщина которого (см. рис. 2.1) возрастает по направлению движения. В инженерных расчетах принимается свободная конвекция за счет естественных сил.

По высоте можно выделить три условных зоны. У пола располагается зона ламинарного потока. Длина єтой зоны (при температуре внутреннего воздуха = 20оС) равна . Среднее значение коэффициента конвективного обмена в пределах этой зоны составляет. Здесь- коэффициент конвективного теплообмена, равный тепловому потоку, приходящемуся на единицу поверхности в единицу времени при разности температур между воздухом и поверхностью 1оС.

Затем происходит нарушение ламинарного течения, в переходной зоне появляются поперечные движения воздуха. В третьей по высоте зоне устанавливается турбулентный режим. Для турбулентной зоны коэффициент конвективного теплообмена не зависит от высоты и его величина определяется как .

Рис. 2.1 – Пограничные слои при свободной конвекции (- толщина ламинарного подслоя) [2]

Для горизонтальной поверхности закон распределения тот же, но меняются численные коэффициенты:

горизонтальная, обращенная вверх нагретая - 2,26, охлажденная – 1,16;

горизонтальная, обращенная вниз нагретая – 1,16, охлажденная – 2,26.

В случае, если поверхность горячая обращена вверх или холодная поверхность вниз, то наблюдается “сахар-эффект”. Воздух (см. рис. 2.2а) опускается по границам шестигранников и поднимается в их центрах. За счет сложностей подвода воздуха к центральной части при увеличении размеров горизонтальной поверхности средний коэффициент уменьшается.

Рис. 2.2 – Движение воздуха при свободной конвекции около горизонтальной нагретой поверхности, обращенной нагретой стороной вверх (а) и вниз (б) [2]

У горизонтальной поверхности, обращенной вниз или холодной, обращенной вверх, движение воздуха происходит по схеме, представленной на рис. 2.2.б

Здесь также с увеличением площади поверхности осложняется подвод тепла и среднее значение уменьшается.

В инженерных расчетах для определения количества тепла Qк, Вт, используется формула Ньютона

, (2.16)

studfiles.net

Физика Теплопередача. Виды теплопередачи

Процесс изменения внутренней энергии без совершения работы называется теплопередачей.  Без совершения работы тела могут нагреваться и остывать. Без совершения работы могут перемешиваться теплые и холодные слои жидкостей и газов. Без совершения работы  может изменяться внутренняя энергия тела путем излучения, в том числе и через пустоту - вакуум. Рассмотрим  виды теплопередачи.

Теплопроводность – явление передачи энергии от  более нагретой части тела к менее нагретой в результате теплового движения и взаимодействия  частиц, из которых состоит тело.

Можно провести опыт, сконструировав установку: на треноге помещается кольцо из тонкой   оцинкованной жести.  В кольцо  под углом 120 градусов вставляются (прикрепляются) три проволоки (медь, алюминий и сталь) в виде спиц, предварительно нужно окунуть их в расплавленный воск от старых свечей. Пока  воск на них застывает, нужно прикрепить хотя бы через сантиметр сапожные гвоздики шляпками к стержню. Три начала спиц близко расположены в середине кольца. Зажжем спиртовку (или таблетку сухого спирта), поместим на подставке   так, чтобы три начала спиц одинаково нагревались. И наблюдаем: через некоторое время начинает таять воск  и первыми начинают отпадать гвоздики на медной спице, чуть позже – на алюминиевой и ещё позже – на железной.

Металлы обладают хорошей теплопроводностью,  плохой теплопроводностью обладают  пластмасса, резина, стекло, дерево, плексиглас, большинство изоляторов.

Второй вид теплопередачи – конвекция.

Конвекция – процесс теплообмена, осуществляемый путём переноса энергии потоками жидкости или газа. Проведём опыт: в колбу налить подкрашенную  воду: капнуть раствора медного купороса или кристаллик марганцовки и снизу на спиртовке (или таблетка сухого спирта , или свеча) нагревать колбу. Через некоторое время можно заметить перемещение слоёв воды снизу вверх (а потом и по кругу).

Воздух – плохой проводник тепла, но  он в комнате нагревается  сам и, перемешивая тёплые и холодные слои, нагревает  всю комнату. Под окнами находятся батареи центрального отопления. Здесь прикоснувшиеся к чугунной батарее, слои теплого воздуха по закону Архимеда, вытесняются холодными и поднимаются вверх. На освободившееся место  подходят холодные слои, прикасаясь к поверхности батареи, нагреваются, и опять идут вверх и т.д. Слои теплого и холодного воздуха перемешиваются и нагревают всю комнату.

Третий вид теплопередачи -  излучение. Излучение – перенос энергии от одного тела к другому, обусловленный процессами испускания, распространения, рассеяния и поглощения электромагнитного излучения. Можно показать  распространение солнечного света и тепла, проговорив, что излучение передаётся и через вакуум. Светлая поверхность отражает излучение, а темная поглощает. Поэтому летом нужно использовать светлую одежду, а зимой – темную. Поэтому самолеты  и ракеты красят светлой краской, цистерны с перевозимым топливом – то же красят в светлые тона.

Трубы больших котельных строят высокими для того, чтобы «тяга» была лучше: столб теплого воздуха в трубе быстрее поднимается вверх, на его место снизу в топку быстрее поступает воздух с новой порцией кислорода и топливо горит лучше, нагрев воды быстрее, снабжение горячей водой квартир в системе центрального отопления – более уверенное. В термосе учитываются все три вида теплопередачи, чтобы горячий чай дольше не остывал: колба устанавливается на пластмассе, пробка – из пробкового дерева, т.к. у него  теплопроводность минимальная, из двустенной колбы выкачан воздух, чтобы  исключить конвекцию; и внутренняя поверхность колбы посеребрена, чтобы отражать внутрь тепловое излучение.

 

 

infourok.ru

ВИДЫ ТЕПЛОПЕРЕДАЧИ

⇐ ПредыдущаяСтр 2 из 18Следующая ⇒

 

 

Электротермические процессы связаны с преобразованием электрической энергии в тепловую с переносом тепловой энергии внутри тела (твердого, жидкого, газообразного) или из одного объема в другой по законам теплопередачи.

Теплопередачей (теплообменом)[1] называется переход тепла из одной части пространства к другой, от одного тела к другому или внутри тела от одной его части к другой. Непременным условием теплообмена является наличие разности температур отдельных тел или участков тел [6, 8].

Различают стационарный и нестационарный теплообмен (рис. 2.1).

Существуют три вида теплообмена, три различных способа передачи тепла (рис. 2.2).

Теплопроводность обусловлена тепловым движением и энергетическим взаимодействием микрочастиц (молекул, атомов, электронов), частицы с большей энергией (более нагретые и, следовательно, более подвижные) отдают часть своей энергии менее нагретым (менее подвижным). Скорость теплопередачи в этом случае зависит от физических свойств вещества, в частности от его плотности. У плотных тел (металл) скорость теплопередачи больше, у пористых (пенопласт) – меньше.

 

Тепловой поток через плоскую стенку при установившемся режиме (определяется по закону Фурье) пропорционален разнице температур поверхности стенки и обратно пропорционален термическому сопротивлению стенки.

При передаче теплоты излучением энергия передается в форме электромагнитных волн. Этот вид теплопередачи может иметь место лишь в прозрачной для этих лучей среде.

Каждое непрозрачное нагретое тело, находящееся в прозрачной среде, излучает во все стороны лучистую энергию, распространяющуюся со скоростью света. При встрече с другими полностью или частично непрозрачными телами эта лучистая энергия вновь превращается (полностью или частично) в тепло, нагревая эти тела. Следовательно, лучистый теплообмен сопровождается двойным превращением энергии – тепловой энергии в лучистую и затем вновь лучистой в тепловую.

Если температуры тел, между которыми осуществляется лучистый теплообмен, различны, то в результате теплообмена между ними тепло будет передаваться от более нагретого тела к менее нагретому, одно из них будет нагреваться, а другое – снижать свою температуру.

При излучении нагретого тела в неограниченное пространство (при односторонней теплопередаче) лучистый тепловой поток пропорционален постоянному коэффициенту излучения абсолютно черного тела, степени черноты тела, численно равной его поглощающей способности, и абсолютной температуре нагретого тела.

 

 

Рис. 2.2. Классификация теплообмена по способу передачи тепла

 

Аналитическое решение задач, связанных с конвективным теплообменом, представляет значительные трудности, поскольку этот процесс описывается сложной системой дифференциальных уравнений. Поэтому задачи конвективного теплообмена решают с использованием экспериментально полученных констант и величин. Тепловой поток конвективного теплообмена определяют на основании закона Ньютона – Рихмана. По этому закону тепловой поток прямо пропорционален поверхности омывания, режиму движения теплоносителя (коэффициент теплоотдачи) и разности температур стенки и газа или жидкости.

mykonspekts.ru

Виды теплопроводности / Открытый урок

Цель урока: знание и понимание учащимися видов теплопередачи: теплопроводности, конвекции, излучения;

Задачи:

обучающие

  •  дать определения основных понятий, изучаемых в данной теме: теплопередачей, конвекцией, излучением;
  • установить зависимость теплопроводности от рода вещества
  • учить приводить примеры теплопередачи в природе и технике.

развивающие

  • продолжить развитие умения анализировать опыты и делать на их основе выводы, формирование умения работать в группах;
  • способствовать формированию навыков экспериментальной работы и развитию аналитического мышления учащихся
воспитательные
  • способствовать привитию культуры умственного труда, создать условия для повышения интереса к изучаемому материалу

Тип урока Урок изучения нового материала

Формы работы учащихся групповая работа, индивидуальная работа

Необходимое техническое оборудование мультимедийный проектор, компьютеры учащихся, перечень ЭОР, выход в Интернет

I. Актуализация знаний

Перед началом урока можно провести проверку выполнения домашнего задания. Вспомним ранее изученный материал:

Какую энергию называют внутренней энергией тела?

Какими двумя способами можно изменить внутреннюю энергию?

Приведите примеры изменения внутренней энергии с помощью совершения работы.

Приведите примеры изменения внутренней энергии способом теплопередачи.

Объясните на основе молекулярного строения тела вещества нагревание спицы, опущенной в горячую воду.

При этом все неточности должны фиксироваться, причем не столько учителем, сколько учениками, которые принимают активное участие в работе.

II. Изучение нового материала

План изложения нового материала:

  1. Теплопроводность.
  2. Явление конвекции в жидкостях и газах.
  3. Излучение.

Учащиеся уже знают, что внутреннюю энергию можно изменить двумя способами: путем совершения работы и путем теплопередачи. Изменение внутренней энергии посредством теплопередачи может производиться по- разному. Различают три вида теплопередачи:

Как вы думаете: что такое теплопроводность, конвекция, излучение, теплопередача? Выслушав ответы, объясняет новый материал.

Теплопроводность Теплопроводность – такой тип теплообмена, когда тепло перемещается от более нагретых участков тела к менее нагретым вследствие теплового движения молекул.

Очевидно, что этот перенос энергии требует определенного времени.

Сразу можно акцентировать внимание учащихся на физическом содержании процесса. У пламени горелки молекулы, получив избыток энергии, начинают совершать колебания с большей амплитудой, передавая часть энергии при соударениях с соседними слоями.

Особенность теплопроводности в том, что само вещество не перемещается. Ясно, что чем меньше расстояние между молекулами, тем с большей скоростью идет перенос тепла.

Все кристаллы имеют очень хорошую теплопроводность. И наоборот, те вещества, в которых расстояния между молекулами большие – плохие проводники тепла. Это — различные породы древесины, строительный кирпич, котором есть поры, заполненные воздухом, различные газы. Плохая теплопроводность у шерсти и меха, так как между ворсинками также много воздуха. Именно наличие меха позволяет отдельным животным переносить зимнюю стужу.

Конвекция

Под конвекцией понимают перенос энергии струями жидкости или газа.

Включив лампу накаливания с отражателем и подставив над лампой бумажную вертушку, мы замечаем, что она начинает вращаться (этот опыт проиллюстрирован в презентации). Объяснение этому факту может быть одно: холодный воздух при нагревании у лампы становится теплым и поднимается вверх. При этом вертушка вращается.

Плотность горячего воздуха или жидкости меньше, чем холодного, поэтому нагрев производят снизу. При этом конвекционные потоки теплой жидкости поднимаются вверх, а на их место опускается холодная жидкость.

Замечено, что жидкость можно нагреть и при нагревании ее сверху, но это — длительный процесс. В данном случае нагрев происходит не за счет конвекции, а за счет теплопроводности.

Система отопления помещений основана именно на перемещении конвекционных потоков теплого и холодного воздуха: постоянное перемешивание воздуха приводит к выравниванию температуры по всему объему помещения.

Очевидно, что главным отличием конвекции от теплопроводности является то, что при конвекции происходит перенос вещества, имеющего большую внутреннюю энергию, а при теплопроводности вещество не переносится.

Холодные и теплые морские и океанские течения — примеры конвекции. Также в качестве примеров конвекции можно привести ветры, которые дуют в земной атмосфере.

3. Излучение или лучистый теплообмен Под излучением, понимают перенос энергии в виде электромагнитных волн. Любое нагретое тело является источником излучения.

Этот вид теплообмена отличается тем, что может происходить и в вакууме. Ведь солнечная энергия доходит до Земли.

Темные тела не только лучше поглощают энергию, но и лучше ее отдают в окружающую среду. Два одинаковых тела, нагретые до одной температуры, остывают по-разному, если у них разный цвет поверхности. Способность светлых тел хорошо отражать лучистую энергию используют при строительстве самолетов; крыши высотных зданий в жарких странах также красят в светлые тона.

III. Закрепление изученного материла

С целью закрепления изученного материла можно провести краткий опрос-беседу по следующим вопросам:

— Приведите примеры, какие вещества имеют наибольшую и наименьшую теплопроводность?

— Объясните, как и почему происходит перемещение воздуха над нагретой лампой.

— Почему конвекция невозможна в твердых телах?

— Приведите примеры, показывающие, что тела с темной поверхностью больше нагреваются излучением, чем со светлой. Отвечает на вопросы.

Выполнение контрольного задания.

Ученикам нужно решить тесты на компьютерах по теме теплопроводность и конвекция, используя ресурсы №4 и №5.

Домашнее задание. §4-6. Ответить на вопросы. Желающие ученики могут подготовить к следующему уроку доклады о применении теплопередачи в природе и технике. Примерными темами докладов могут быть: «Значение видов теплопередачи в авиации и при полетах в космос», «Виды теплопередачи в быту», «Теплопередача в атмосфере», «Учет и использование видов тепло – передачи в сельском хозяйстве» и др.

Рефлексия

Оцените свою работу за урок.

Если вы поняли материал, можете его рассказать и объяснить, то поставьте себе “5”.

Если материал поняли, но есть некоторые сомнения в том, что вы сможете его воспроизвести, то “4”.

Если материал усвоен слабо, то “3”.

Дополнительный материал.

С явлением конвекции связаны процессы горообразования. В первом приближении земной шар можно рассматривать как систему, состоящую из трех концентрических слоев. Внутри находится массивное ядро, состоящее в основном из металлов в виде очень плотной жидкой массы. Ядро окружают полужидкая мантия и литосфера. Самый верхний слой литосферы — земная кора. Литосфера состоит из отдельных плит, которые плавают на поверхности мантии. Вследствие неравномерного разогрева отдельных участков мантии, а также разной плотности горных пород в различных участках мантии в ней возникают конвективные потоки. Они вызывают перемещения литосферных плит, несущих континенты и ложа океанов.

Там, где плиты расходятся, возникают океанские впадины. В других местах, где плиты сталкиваются, образуются горные массивы. Скорость перемещения конвективных потоков в мантии очень мала. Соответственно и плит 2—З см в год. Однако геологические эпохи плиты могут перемещаться на сотни и тысячи километров.

Чем же вызвана столь большая теплопроводность металлов, которая в сотни и тысячи раз больше, чем у изоляторов? дело, очевидно, в структуре металлов, в особенностях металлической связи.

В самом деле, если бы теплопроводность металлов определялась только колебаниями частиц в узлах кристаллической решетки, то она бы не отличалась от теплопроводности изоляторов. Но в металлах есть еще множество свободных электронов

электронный газ, который и обеспечивает их высокую теплопроводность.

В участке металла с высокой температурой часть электронов приобретает большую кинетическую энергию. Так как масса электронов очень мала, то они легко проскакивают десятки промежутков между нонами. Говорят, что у электронов большая длина свободного пробега. Сталкиваясь с нонами, находящимися в более холодных слоях металла, электроны передают им избыток своей энергии, что приводит к повышению температуры этих слоев.

Чем больше длина свободного пробега электронов, тем больше теплопроводность. Именно поэтому у чистых металлов, где в кристаллической решетке дефектов относительно мало, теплопроводность велика, У сплавов, где дефектов решетки гораздо больше, длина свободного пробега меньше, соответственно меньше и теплопроводность.

 

open-lesson.net


© 2007—2018
423800, Набережные Челны , база Партнер Плюс, тел. 8 800 100-58-94 (звонок бесплатный)