Камаз 44108 тягач В наличии!
Тягач КАМАЗ 44108-6030-24
евро3, новый, дв.КАМАЗ 740.55-300л.с., КПП ZF9, ТНВД ЯЗДА, 6х6, нагрузка на седло 12т, бак 210+350л, МКБ, МОБ
 
карта сервера
«ООО Старт Импэкс» продажа грузовых автомобилей камаз по выгодным ценам
+7 (8552) 31-97-24
+7 (904) 6654712
8 800 1005894
звонок бесплатный

Наши сотрудники:
Виталий
+7 (8552) 31-97-24

[email protected]

 

Екатерина - специалист по продаже а/м КАМАЗ
+7 (904) 6654712

[email protected]

 

Фото техники

20 тонный, 20 кубовый самосвал КАМАЗ 6520-029 в наличии
15-тонный строительный самосвал КАМАЗ 65115 на стоянке. Техника в наличии
Традиционно КАМАЗ побеждает в дакаре

тел.8 800 100 58 94

Техника в наличии

тягач КАМАЗ-44108
Тягач КАМАЗ 44108-6030-24
2014г, 6х6, Евро3, дв.КАМАЗ 300 л.с., КПП ZF9, бак 210л+350л, МКБ,МОБ,рестайлинг.
цена 2 220 000 руб.,
 
КАМАЗ-4308
КАМАЗ 4308-6063-28(R4)
4х2,дв. Cummins ISB6.7e4 245л.с. (Е-4),КПП ZF6S1000, V кузова=39,7куб.м., спальное место, бак 210л, шк-пет,МКБ, ТНВД BOSCH, система нейтрализ. ОГ(AdBlue), тент, каркас, рестайлинг, внутр. размеры платформы 6112х2470х730 мм
цена 1 950 000 руб.,
КАМАЗ-6520
Самосвал КАМАЗ 6520-057
2014г, 6х4,Евро3, дв.КАМАЗ 320 л.с., КПП ZF16, ТНВД ЯЗДА, бак 350л, г/п 20 тонн, V кузова =20 куб.м.,МКБ,МОБ, со спальным местом.
цена 2 700 000 руб.,
 
КАМАЗ-6522
Самосвал 6522-027
2014, 6х6, дв.КАМАЗ 740.51,320 л.с., КПП ZF16,бак 350л, г/п 19 тонн,V кузова 12куб.м.,МКБ,МОБ,задняя разгрузка,обогрев платформы.
цена 3 190 000 руб.,

СУПЕР ЦЕНА

на АВТОМОБИЛИ КАМАЗ
43118-010-10 (дв.740.30-260 л.с.) 2 220 000
43118-6033-24 (дв.740.55-300 л.с.) 2 300 000
65117-029 (дв.740.30-260 л.с.) 2 200 000
65117-6010-62 (дв.740.62-280 л.с.) 2 350 000
44108 (дв.740.30-260 л.с.) 2 160 000
44108-6030-24 (дв.740.55,рест.) 2 200 000
65116-010-62 (дв.740.62-280 л.с.) 1 880 000
6460 (дв.740.50-360 л.с.) 2 180 000
45143-011-15 (дв.740.13-260л.с) 2 180 000
65115 (дв.740.62-280 л.с.,рест.) 2 190 000
65115 (дв.740.62-280 л.с.,3-х стор) 2 295 000
6520 (дв.740.51-320 л.с.) 2 610 000
6520 (дв.740.51-320 л.с.,сп.место) 2 700 000
6522-027 (дв.740.51-320 л.с.,6х6) 3 190 000


Перегон грузовых автомобилей
Перегон грузовых автомобилей
подробнее про услугу перегона можно прочесть здесь.


Самосвал Форд Нужны самосвалы? Обратите внимание на Ford-65513-02.

КАМАЗы в лизинг

ООО «Старт Импэкс» имеет возможность поставки грузовой автотехники КАМАЗ, а так же спецтехники на шасси КАМАЗ в лизинг. Продажа грузовой техники по лизинговым схемам имеет определенные выгоды для покупателя грузовика. Рассрочка платежа, а так же то обстоятельство, что грузовики до полной выплаты лизинговых платежей находятся на балансе лизингодателя, и соответственно покупатель автомобиля не платит налогов на имущество. Мы готовы предложить любые модели бортовых автомобилей, тягачей и самосвалов по самым выгодным лизинговым схемам.

Контактная информация.

г. Набережные Челны, Промкомзона-2, Автодорога №3, база «Партнер плюс».

тел/факс (8552) 388373.
Схема проезда



Исследование асинхронного двигателя с фазным ротором. Асинхронный двигатель с фазным ротором


Устройство асинхронного двигателя с фазным ротором

Устройство, принцип действия асинхронного двигателя

Асинхронный двигатель – это машина переменного тока. Слово «асинхронный» означает неодновременный. При этом имеется в виду, что у асинхронных двигателей частота вращения магнитного поля отличается от частоты вращения ротора. Основными частями машины являются статор и ротор, отделенные друг от друга равномерным воздушным зазором.

Устройство асинхронного двигателя с фазным ротором

Рис.1. Устройство асинхронных двигателей

Статор – неподвижная часть машины (рис. 1, а ). Его сердечник с целью уменьшения потерь на вихревые токи набирают из штампованных листов электротехнической стали толщиной 0,35 – 0,5 мм, изолированных друг от друга слоем лака. В пазы магнитопровода статора укладывается обмотка. В трехфазных двигателях обмотка трехфазная. Фазы обмотки могут соединяться в звезду или в треугольник в зависимости от величины напряжения сети.

Ротор – вращающаяся часть двигателя. Магнитопровод ротора представляет собой цилиндр, набранный из штампованных листов электротехнической стали (рис. 1, б. в ). В пазах ротора укладывают обмотку, в зависимости от типа обмотки роторы асинхронных двигателей делятся на короткозамкнутые и фазные (с контактными кольцами). Короткозамкнутая обмотка представляет собой неизолированные медные или алюминиевые стержни (рис. 1, г ), соединенные с торцов кольцами из этого же материала («беличья клетка»).

У фазного ротора (см. рис. 1, в ) в пазах магнитопровода уложена трехфазная обмотка, фазы которой соединены звездой. Свободные концы фаз обмотки присоединены к трем медным контактным кольцам, насаженным на вал двигателя. Контактные кольца изолированы друг от друга и от вала. К кольцам прижаты угольные или медно-графитные щетки. Через контактные кольца и щетки в обмотку ротора можно включить трехфазный пуско-регулировочный реостат.

Преобразование электрической энергии в механическую в асинхронном двигателе осуществляется посредством вращающегося магнитного поля. Вращающееся магнитное поле это постоянный поток, вращающийся в пространстве с постоянной угловой скоростью.

Необходимыми условиями возбуждения вращающегося магнитного поля являются:

— пространственный сдвиг осей катушек статора,

— временной сдвиг токов в катушках статора.

Первое требование удовлетворяется соответствующим расположением намагничивающих катушек на магнитопроводе статора. Оси фаз обмотки смещены в пространстве на угол 120º. Второе условие обеспечивается подачей на катушки статора трехфазной системы напряжений.

При включении двигателя в трехфазную сеть в обмотке статора устанавливается система токов одинаковой частоты и амплитуды, периодические изменения которых относительно друг друга совершаются с запаздыванием на 1/3 периода.

Токи фаз обмотки создают магнитное поле, вращающееся относительно статора с частотой n1. об/мин, которая называется синхронной частотой вращения двигателя:

где f1 – частота тока сети, Гц;

р – число пар полюсов магнитного поля.

При стандартной частоте тока сети Гц частота вращения поля по формуле (1) и в зависимости от числа пар полюсов имеет следующие значения:

Вращаясь, поле пересекает проводники обмотки ротора, наводя в них ЭДС. При замкнутой обмотке ротора ЭДС вызывает токи, при взаимодействии которых с вращающимся магнитным полем возникает вращающий электромагнитный момент. Частота вращения ротора в двигательном режиме асинхронной машины всегда меньше частоты вращения поля, т.е. ротор «отстает» от вращающегося поля. Только при этом условии в проводниках ротора наводится ЭДС, протекает ток и создается вращающий момент. Явление отставания ротора от магнитного поля называется скольжением. Степень отставания ротора от магнитного поля характеризуется величиной относительного скольжения

где n2 – частота вращения ротора, об/мин.

Для асинхронных двигателей скольжение может изменяться в пределах от 1 (пуск) до величины, близкой к 0 (холостой ход).

185.154.22.117 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам.

Асинхронные электродвигатели с фазным ротором

В настоящее время, на долю асинхронных двигателей приходится не менее 80% всех электродвигателей, выпускаемых промышленностью. К ним относятся и трехфазные асинхронные двигатели.

Трехфазные асинхронные электродвигатели широко используются в устройствах автоматики и телемеханики, бытовых и медицинских приборах, устройствах звукозаписи и т.п.

Достоинства асинхронных электродвигателей

Широкое распространение трехфазных асинхронных двигателей объясняется простотой их конструкции, надежностью в работе, хорошими эксплуатационными свойствами, невысокой стоимостью и простотой в обслуживании.

Устройство асинхронных электродвигателей с фазным ротором

Устройство асинхронного двигателя с фазным роторомОсновными частями любого асинхронного двигателя является неподвижная часть – статор и вращающая часть, называемая ротором.

Статор трехфазного асинхронного двигателя состоит из шихтованного магнитопровода, запрессованного в литую станину. На внутренней поверхности магнитопровода имеются пазы для укладки проводников обмотки. Эти проводники являются сторонами многовитковых мягких катушек, образующих три фазы обмотки статора. Геометрические оси катушек сдвинуты в пространстве друг относительно друга на 120 градусов.

Фазы обмотки можно соединить по схеме »звезда» или «треугольник» в зависимости от напряжения сети. Например, если в паспорте двигателя указаны напряжения 220/380 В, то при напряжении сети 380 В фазы соединяют «звездой». Если же напряжение сети 220 В, то обмотки соединяют в «треугольник». В обоих случаях фазное напряжение двигателя равно 220 В.

Ротор трехфазного асинхронного двигателя представляет собой цилиндр, набранный из штампованных листов электротехнической стали и насаженный на вал. В зависимости от типа обмотки роторы трехфазных асинхронных двигателей делятся на короткозамкнутые и фазные.

Устройство асинхронного двигателя с фазным ротором

В асинхронных электродвигателях большей мощности и специальных машинах малой мощности для улучшения пусковых и регулировочных свойств применяются фазные роторы. В этих случаях на роторе укладывается трехфазная обмотка с геометрическими осями фазных катушек (1), сдвинутыми в пространстве друг относительно друга на 120 градусов.

Фазы обмотки соединяются звездой и концы их присоединяются к трем контактным кольцам (3), насаженным на вал (2) и электрически изолированным как от вала, так и друг от друга. С помощью щеток (4), находящихся в скользящем контакте с кольцами (3), имеется возможность включать в цепи фазных обмоток регулировочные реостаты (5).

Устройство асинхронного двигателя с фазным ротором

Асинхронный двигатель с фазным ротором имеет лучшие пусковые и регулировочные свойства, однако ему присущи большие масса, размеры и стоимость, чем асинхронному двигателю с короткозамкнутым ротором.

Принцип работы асинхронных электродвигателей

Принцип работы асинхронной машины основан на использовании вращающегося магнитного поля. При подключении к сети трехфазной обмотки статора создается вращающееся магнитное поле. угловая скорость которого определяется частотой сети f и числом пар полюсов обмотки p, т. е. ω1=2πf/p

Пересекая проводники обмотки статора и ротора, это поле индуктирует в обмотках ЭДС (согласно закону электромагнитной индукции). При замкнутой обмотке ротора ее ЭДС наводит в цепи ротора ток. В результате взаимодействия тока с результирующим малнитным полем создается электромагнитный момент. Если этот момент превышает момент сопротивления на валу двигателя, вал начинает вращаться и приводить в движение рабочий механизм. Обычно угловая скорость ротора ω2 не равна угловой скорости магнитного поля ω1, называемой синхронной. Отсюда и название двигателя асинхронный, т. е. несинхронный.

Работа асинхронной машины характеризуется скольжением s, которое представляет собой относительную разность угловых скоростей поля ω1 и ротора ω2: s=(ω1-ω2)/ω1

Устройство асинхронного двигателя с фазным ротором

Значение и знак скольжения, зависящие от угловой скорости ротора относительно магнитного поля, определяют режим работы асинхронной машины. Так, в режиме идеального холостого хода ротор и магнитное поле вращаются с одинаковой частотой в одном направлении, скольжение s=0, ротор неподвижен относительно вращающегося магнитного пол, ЭДС в его обмотке не индуктируется, ток ротора и электромагнитный момент машины равны нулю. При пуске ротор в первый момент времени неподвижен: ω2=0, s=1. В общем случае скольжение в двигательном режиме изменяется от s=1 при пуске до s=0 в режиме идеального холостого хода.

При вращении ротора со скоростью ω2>ω1 в направлении вращения магнитного поля скольжение становится отрицательным. Машина переходит в генераторный режим и развивает тормозной момент. При вращении ротора в направлении, противоположном направлению вращения магнитного поли (s>1), асинхронная машина переходит в режим противовключения и также развивает тормозной момент. Таким образом, в зависимости от скольжения различают двигательный (s=1÷0), генераторный (s=0÷-∞) режимы и режим противовключення (s=1÷+∞). Режимы генераторный и противовключения используют для торможения асинхронных двигателей.

Статьи и схемы

Полезное для электрика

Устройство и принцип работы асинхронных двигателей с фазным ротором

Основная классификация асинхронных двигателей осуществляется в зависимости от особенностей их пусковых свойств, которые определяются нюансами конструкции.

Устройство асинхронного двигателя с фазным ротором

Если рассматривать устройство с фазным ротором, то пуск происходит следующим образом:

  1. Начало запуска параллельно сопровождается переходом фазного ротора из спокойного состояния к постепенному равномерному вращению, во время которого машина начинает уравновешивать момент сил сопротивления на собственном валу.
  2. При совершении запуска наблюдается увеличение объемов потребления электроэнергии из сети. Усиленное питание обуславливается необходимостью преодоления тормозного момента, приложенного к валу; передачей движущимся элементам кинетической энергии и компенсацией потерь внутри самого двигателя.
  3. Начало пускового момента и параметры скольжения в этот период напрямую зависят от активного сопротивления, которое оказывают резисторы, введенные в роторную цепь.
  4. Иногда показателей малого начального пускового момента бывает недостаточно для того, чтобы перевести асинхронный агрегат в полноценный рабочий режим. В такой ситуации, ускорение не является достаточным, а пусковой электрический ток со значительными показателями воздействует на обмотки двигателя, что вызывает их чрезмерный нагрев. Это может ограничить частоту его включений, а если машина была подключена к электросети с малой мощностью, такой запуск может вызвать понижение общего напряжения, что негативно сказывается на функционировании иных потребителей.
  5. Благодаря введению в роторную цепь пусковых резисторов происходит понижение показателей электрического тока и пропорциональное увеличение начального пускового момента вплоть до достижения им максимальных параметров.
  6. Последующее увеличение параметров сопротивления резисторов не является необходимым условием, поскольку оно будет способствовать снижению начального пускового момента и постепенному отклонению от максимальных характеристик его работы. Область скольжения при этом рискует достигнуть недопустимых показателей, что негативно скажется на разгоне ротора.
  7. Пуск двигателя может быть легким, нормальным или тяжелым, именно этот фактор определит оптимальное значение сопротивления резисторов.
  8. Далее, необходимо только поддержание достигнутого вращающего момента во время разгона ротора, это позволяет сократить длительность переходного процесса, в котором находится запущенная машина, а также способствует снижению степени нагрева. Для достижения этих целей, осуществляется постепенное понижение показателей сопротивления пусковых резисторов. Параметры допустимого изменения момента зависят от общих условий, которые определяют пиковый предел этого параметра.
  9. Процесс переключения разных резисторов осуществляется за счет последовательного подключения контакторов ускорения. На протяжении всего пуска, моменты, во время которых достигаются пиковые значения, являются одинаковыми, а периоды переключения равными между собой.
  10. Процесс отключения машины от электросети разрешается осуществлять при накоротко замкнутой роторной цепи, поскольку, в противном случае имеется риск возникновения перенапряжения в обмоточных фазах статора.
  11. Параметры напряжения могут достичь значения. которое превосходит его номинальные показатели в 3-4 раза, если во время отключения машины роторная цепь находилась в разомкнутом состоянии.

Устройство асинхронного двигателя с фазным ротором

Технические характеристики

Устройство асинхронного двигателя с фазным роторомОсновные требования, которые обеспечивают качественное функционирование асинхронных агрегатов с фазным ротором, определены и указаны в соответствующих ГОСТах.

Именно они определяют главные технические характеристики и к таким параметрам относятся:

  1. Габариты и мощность двигателя. которые должны иметь показатели, соответствующие техническому регламенту.
  2. Уровень защиты должен соответствовать условиям, в которых происходит процесс эксплуатации, поскольку различные виды машин могут быть предназначены для установки на улице или только внутри помещений.
  3. Высокая степень изоляции. которая должна обладать устойчивостью к повышению рабочей температуры и последующему нагреву.
  4. Различные виды асинхронных двигателей предназначены для использования в определенных климатических условиях. Это касается в первую очередь установки подобных машин в крайне холодных местностях или, наоборот, жарких областях. Исполнение агрегата должно соответствовать климату местности, в которой проходит процесс эксплуатации.
  5. Полное соответствие режимам функционирования.
  6. Наличие системы охлаждения. которая должна соответствовать рабочим режимам машины.
  7. Уровень шума при запуске агрегата на холостом ходу должен соответствовать второму классу или быть ниже его.

Устройство

Устройство асинхронного двигателя с фазным ротором

Для работы с асинхронными двигателями и полного понимания принципов функционирования подобных машин, необходимо ознакомиться с особенностями их устройства:

  1. Основными частями конструкции агрегата является статор, находящийся в неподвижном состоянии, и вращающийся ротор, который расположен внутри него.
  2. Воздушный зазор разделяет оба элемента между собой.
  3. И статор, и ротор обладают специальной обмоткой.
  4. Статорная обмотка имеет подключение к питающей электросети с переменным напряжением.
  5. Роторная обмотка по своей сути является вторичной, поскольку не имеет подключения к сети, а передачу необходимой энергии для нее осуществляет непосредственно статор. Этот процесс происходит благодаря созданию магнитного потока.
  6. Корпус статора и корпус двигателя – это один элемент, который имеет в своей структуре запрессованный сердечник.
  7. В пазах сердечника размещены проводники обмотки. Специальный электротехнический лак обеспечивает надежную изоляцию данных объектов друг от друга.
  8. Обмотка сердечника особым образом разделена на секции, которые соединены в катушки.
  9. Катушки составляют фазы самого двигателя. к которым происходит подключение фазы от питающей электросети.
  10. Ротор состоит из вала и сердечника.
  11. Роторный сердечник создан из набранных пластин, которые изготавливаются из особой разновидности электротехнической стали. На его поверхности имеются симметричные пазы, внутри которых размещены проводники обмотки.
  12. Роторный вал в ходе работы выполняет функции по передаче крутящего момента непосредственно к приводному механизму машины.
  13. Роторы обладают собственной классификацией, короткозамкнутая разновидность имеет в своей конструкции стержни, изготовленные из алюминия. Они располагаются внутри сердечника, а на торцах замкнуты специальными кольцами. Подобная система получила название беличьего колеса. В машинах с наиболее высокой мощностью, пазы дополнительно заливаются алюминием, что способствует повышению прочности конструкции.
  14. Вместо короткозамкнутого ротора в конструкции может присутствовать фазная разновидность. Количество катушек, сдвинутых под определенным углом относительно друг друга, в такой системе зависит от числа парных полюсов. При этом, роторные пары полюсов всегда равны количеству аналогичных пар в статоре. Роторная обмотка соединена особым образом и напоминает по своей форме звезду, а ее лучи выводятся на контакты токосъемных колец, которые соединены при помощи механизма щеточного типа и пускового реостата.

Принцип работы

Устройство асинхронного двигателя с фазным ротором

После освоения устройства асинхронного двигателя с фазным ротором и особенностей его запуска, можно переходить к изучению принципа работы, который заключается в следующем:

  1. На статор. обладающий тройной обмоткой, начинает подаваться трехфазное напряжение, идущее от внешней электросети с переменным током.
  2. Последовательно происходит процесс возбуждения магнитного поля, которое начинает совершать вращательные движения.
  3. Совершаемые вращения постепенно становятся быстрее скорости ротора.
  4. В определенный момент времени начинает происходить пересечение отдельных линий полей статора и ротора, что обуславливает возникновение электродвижущей силы.
  5. Электродвижущая сила оказывает прямое воздействие на закороченную обмотку ротора, благодаря чему в ней начинает появляться электрический ток.
  6. Через определенное время начинает происходить взаимодействие между возникшим в роторе током и статорным магнитным полем, из-за этого образуется крутящий момент, обеспечивающий функционирование асинхронной машины.

Преимущества и недостатки

Устройство асинхронного двигателя с фазным роторомВостребованность асинхронных двигателей подобного типа на сегодняшний день обуславливается следующими значимыми преимуществами, которыми они обладают:

  1. Значительные показатели. которых способен достигать начальный вращающий момент после запуска машины.
  2. Механические перегрузки. которые возникают на протяжении коротких промежутков времени, переносятся агрегатом без каких-либо значимых последствий и не оказывают влияния на процесс функционирования машины.
  3. При возникновении разнообразных перегрузок в системе. двигатель сохраняет постоянную скорость, возможные отклонения не являются значимыми.
  4. Показатели пускового тока значительно меньше, чем у большинства асинхронных аналогов, например, имеющих в своей конструкции короткозамкнутый ротор.
  5. Использование подобных агрегатов предусматривает возможность использования систем, автоматизирующих процесс их запуска и введения в рабочее состояние.
  6. Конструкция и устройство таких машин являются довольно простыми.
  7. Запуска агрегата осуществляется по простой схеме, не подразумевающей значимых усилий.
  8. Относительно невысокая стоимость.
  9. Обслуживание таких машин не требует значительных затрат сил и времени.

Однако, при таком большом количестве положительных сторон, асинхронные двигатели с фазным ротором обладают и некоторыми недостатками, основными из них являются следующие особенности подобных машин:

  1. Слишком большие размеры двигателя, которые могут причинять некоторые неудобства при монтаже и эксплуатации.
  2. Коэффициент полезного действия и общая выработка у них намного ниже, чем у многих аналогов. Разновидность агрегатов с короткозамкнутым ротором значительно превосходит их по этим показателям.

Применение

На сегодняшний день, большая часть двигателей, выпускаемых в промышленных масштабах, относится к асинхронной разновидности.

Благодаря ряду преимуществ, которыми обладают машины с фазными роторами, они широко используются в разных сферах человеческой деятельности, в том числе для поддержания работы:

  1. Устройств автоматики и приборов из телемеханической области.
  2. Бытовых приборов.
  3. Медицинского оборудования.
  4. Оборудования. предназначенного для осуществления аудиозаписи.
  • Устройство асинхронного двигателя с фазным ротором

Как самостоятельно сделать генератор из асинхронного двигателя?

  • Устройство асинхронного двигателя с фазным ротором

    Устройство и принцип работы двигателя на постоянных магнитах

  • Устройство асинхронного двигателя с фазным ротором

    Принцип работы и подключение однофазного электродвигателя 220в

    Источники: http://studopedia.ru/10_130200_ustroystvo-printsip-deystviya-asinhronnogo-dvigatelya.html, http://electricalschool.info/main/osnovy/259-asinkhronnye-jelektrodvigateli-s-faznym.html, http://slarkenergy.ru/oborudovanie/engine/asinxronnye-s-faznym-rotorom.html

  • electricremont.ru

    Асинхронный двигатель с фазным ротором

     

    Надёжность электродвигателя это одно из важнейших качеств его. Обычно она связана с простотой конструкции. Чем проще конструкция, тем надёжнее движок. Эта зависимость подтверждается асинхронными электродвигателями. Они получили самое широкое распространение из всех электродвигателей именно по причине простоты устройства и надёжности. В них реализован самый простой способ получения крутящего момента на валу движка. Максимум магнитного поля статора перемещается вокруг вала, вызывая его ответную реакцию.

    Причины появления фазного ротора в асинхронном двигателе

    Реакция ротора вызвана током, который возникает в нём. Ведь по своей сути статор является первичной обмоткой трансформатора. А ротор – его вторичная обмотка. При неподвижном роторе величина тока в нём максимальна. Это объясняется тем, что скорость перемещения максимума магнитного поля статора относительно вала получается максимальной. Такой режим асинхронного движка аналогичен включению трансформатора с вторичной обмоткой замкнутой накоротко.

    А поскольку обмотки взаимосвязаны магнитопроводом, который в асинхронном двигателе разделён на железо вращающейся части его и сердечник статора, в обмотке статора тоже получается максимум величины тока. Если мощность электросети недостаточна для того, чтобы при пуске асинхронных движков поддержать напряжение в пределах необходимого значения, применяются меры по уменьшению пускового тока этих двигателей. Это делается либо при помощи специальных схем, которые позволяют регулировать токи в обмотках статора, либо использованием асинхронных движков специальной конструкции – с фазным ротором.

    Как устроен фазный ротор?

    Фазный ротор содержит обмотки в виде катушек с витками. Эти катушки соединены по схеме «звезда». Конец каждой обмотки соединён с ответствующим кольцом. При подаче напряжения на статор на каждом кольце появляется напряжение. В скользящем контакте с кольцом находится щётка, которая даёт возможность подключения внешних элементов. Эти элементы являются частью схемы управления. Она получается более простой, по сравнению с теми схемами, которыми движок управляется со стороны статора. Чаще всего схема управления содержит набор резисторов.

    Они подключаются по мере разгона вала. Хотя такой способ управления пуском асинхронного двигателя не самый экономичный, он наиболее часто применяется на практике в силу своей простоты и минимума коммутационных помех. Ограничение тока ротора это не только возможность плавного запуска двигателя, но и ограничение скорости вращения вала. Но тогда более рациональным решением будет использование индуктивностей вместо резисторов. Иллюстрации, показывающие особенности конструкции асинхронного движка с фазным ротором показаны далее.

    При автоматическом управлении лучше всего применять реле или полупроводниковые коммутаторы, которые параллельно стартовому резистору подключают новые резисторы, постепенно уменьшая их суммарное сопротивление до нуля с шунтированием всех резисторов последним коммутатором или контактами реле. Для наиболее плавного пуска необходимо использовать реостат 1, который на схеме слева включён в электрической цепи ротора и своими ползунками 5 соединён с кольцами 2 через клеммы щёток 3. Движок начинает работать после замыкания контактов рубильника 4. При этом ползунки реостата должны быть установлены в положение «Пуск».

    В этом положении сопротивлении реостата максимально. Вал движка начинает вращаться. Перемещение ползунка будет приводить к разгону вала до максимальной скорости, которая появится при нулевом значении сопротивлении реостата. Однако есть ещё одно следствие такой регулировки двигателя с фазным ротором. Меняется связь крутящего момента и скольжения. Этот эффект показан на графике ниже. При определённой величине сопротивления в цепи ротора максимум крутящего момента смещается в сторону более высоких оборотов движка, как на кривой 2. Кривая 1 соответствует нулевому значению сопротивления в цепи фазного ротора.

    При нулевом сопротивлении кольца, по сути, замкнуты накоротко. Щётки и кольца из-за трения изнашиваются. А поскольку после завершения разгона вала этот узел фактически не используется его целесообразно исключить из процесса работы. По этой причине асинхронный двигатель с фазным ротором предусматривает специальный механизм. Он отодвигает щётки от колец и одновременно замыкает последние накоротко. В результате кольца и щётки работают намного дольше по сравнению с тем вариантом, который предусматривает их непрерывный контакт.

    Простота и надёжность асинхронных двигателей основана на конструкции ротора. Но именно это обстоятельство и создаёт проблемы с их эксплуатацией. Большие пусковые токи в некоторых случаях неприемлемы настолько, что оправдывается более сложная и дорогостоящая намоточная конструкция ротора с кольцами и щётками. Тогда и применяют асинхронный двигатель с фазным ротором. Но более сложная конструкция и цена их в сравнении с асинхронными двигателями с короткозамкнутым ротором оправдывается также и тем, что они позволяют получить величину крутящего момента в рабочем режиме при меньших габаритах и массе. Поэтому эти особенности делают асинхронные двигатели с фазным ротором в ряде случаев наиболее предпочтительными.

    podvi.ru

    Двигатель с фазным ротором принцип работы

    Асинхронные электродвигатели с фазным ротором

    В настоящее время, на долю асинхронных двигателей приходится не менее 80% всех электродвигателей, выпускаемых промышленностью. К ним относятся и трехфазные асинхронные двигатели.

    Трехфазные асинхронные электродвигатели широко используются в устройствах автоматики и телемеханики, бытовых и медицинских приборах, устройствах звукозаписи и т.п.

    Достоинства асинхронных электродвигателей

    Широкое распространение трехфазных асинхронных двигателей объясняется простотой их конструкции, надежностью в работе, хорошими эксплуатационными свойствами, невысокой стоимостью и простотой в обслуживании.

    Устройство асинхронных электродвигателей с фазным ротором

    Двигатель с фазным ротором принцип работыОсновными частями любого асинхронного двигателя является неподвижная часть – статор и вращающая часть, называемая ротором.

    Статор трехфазного асинхронного двигателя состоит из шихтованного магнитопровода, запрессованного в литую станину. На внутренней поверхности магнитопровода имеются пазы для укладки проводников обмотки. Эти проводники являются сторонами многовитковых мягких катушек, образующих три фазы обмотки статора. Геометрические оси катушек сдвинуты в пространстве друг относительно друга на 120 градусов.

    Фазы обмотки можно соединить по схеме »звезда» или «треугольник» в зависимости от напряжения сети. Например, если в паспорте двигателя указаны напряжения 220/380 В, то при напряжении сети 380 В фазы соединяют «звездой». Если же напряжение сети 220 В, то обмотки соединяют в «треугольник». В обоих случаях фазное напряжение двигателя равно 220 В.

    Ротор трехфазного асинхронного двигателя представляет собой цилиндр, набранный из штампованных листов электротехнической стали и насаженный на вал. В зависимости от типа обмотки роторы трехфазных асинхронных двигателей делятся на короткозамкнутые и фазные.

    Двигатель с фазным ротором принцип работы

    В асинхронных электродвигателях большей мощности и специальных машинах малой мощности для улучшения пусковых и регулировочных свойств применяются фазные роторы. В этих случаях на роторе укладывается трехфазная обмотка с геометрическими осями фазных катушек (1), сдвинутыми в пространстве друг относительно друга на 120 градусов.

    Фазы обмотки соединяются звездой и концы их присоединяются к трем контактным кольцам (3), насаженным на вал (2) и электрически изолированным как от вала, так и друг от друга. С помощью щеток (4), находящихся в скользящем контакте с кольцами (3), имеется возможность включать в цепи фазных обмоток регулировочные реостаты (5).

    Двигатель с фазным ротором принцип работы

    Асинхронный двигатель с фазным ротором имеет лучшие пусковые и регулировочные свойства, однако ему присущи большие масса, размеры и стоимость, чем асинхронному двигателю с короткозамкнутым ротором.

    Принцип работы асинхронных электродвигателей

    Принцип работы асинхронной машины основан на использовании вращающегося магнитного поля. При подключении к сети трехфазной обмотки статора создается вращающееся магнитное поле. угловая скорость которого определяется частотой сети f и числом пар полюсов обмотки p, т. е. ω1=2πf/p

    Пересекая проводники обмотки статора и ротора, это поле индуктирует в обмотках ЭДС (согласно закону электромагнитной индукции). При замкнутой обмотке ротора ее ЭДС наводит в цепи ротора ток. В результате взаимодействия тока с результирующим малнитным полем создается электромагнитный момент. Если этот момент превышает момент сопротивления на валу двигателя, вал начинает вращаться и приводить в движение рабочий механизм. Обычно угловая скорость ротора ω2 не равна угловой скорости магнитного поля ω1, называемой синхронной. Отсюда и название двигателя асинхронный, т. е. несинхронный.

    Работа асинхронной машины характеризуется скольжением s, которое представляет собой относительную разность угловых скоростей поля ω1 и ротора ω2: s=(ω1-ω2)/ω1

    Двигатель с фазным ротором принцип работы

    Значение и знак скольжения, зависящие от угловой скорости ротора относительно магнитного поля, определяют режим работы асинхронной машины. Так, в режиме идеального холостого хода ротор и магнитное поле вращаются с одинаковой частотой в одном направлении, скольжение s=0, ротор неподвижен относительно вращающегося магнитного пол, ЭДС в его обмотке не индуктируется, ток ротора и электромагнитный момент машины равны нулю. При пуске ротор в первый момент времени неподвижен: ω2=0, s=1. В общем случае скольжение в двигательном режиме изменяется от s=1 при пуске до s=0 в режиме идеального холостого хода.

    При вращении ротора со скоростью ω2>ω1 в направлении вращения магнитного поля скольжение становится отрицательным. Машина переходит в генераторный режим и развивает тормозной момент. При вращении ротора в направлении, противоположном направлению вращения магнитного поли (s>1), асинхронная машина переходит в режим противовключения и также развивает тормозной момент. Таким образом, в зависимости от скольжения различают двигательный (s=1÷0), генераторный (s=0÷-∞) режимы и режим противовключення (s=1÷+∞). Режимы генераторный и противовключения используют для торможения асинхронных двигателей.

    Статьи и схемы

    Полезное для электрика

    Асинхронный двигатель с фазным ротором

    Надёжность электродвигателя это одно из важнейших качеств его. Обычно она связана с простотой конструкции. Чем проще конструкция, тем надёжнее движок. Эта зависимость подтверждается асинхронными электродвигателями. Они получили самое широкое распространение из всех электродвигателей именно по причине простоты устройства и надёжности. В них реализован самый простой способ получения крутящего момента на валу движка. Максимум магнитного поля статора перемещается вокруг вала, вызывая его ответную реакцию.

    Причины появления фазного ротора в асинхронном двигателе

    Реакция ротора вызвана током, который возникает в нём. Ведь по своей сути статор является первичной обмоткой трансформатора. А ротор – его вторичная обмотка. При неподвижном роторе величина тока в нём максимальна. Это объясняется тем, что скорость перемещения максимума магнитного поля статора относительно вала получается максимальной. Такой режим асинхронного движка аналогичен включению трансформатора с вторичной обмоткой замкнутой накоротко.

    А поскольку обмотки взаимосвязаны магнитопроводом, который в асинхронном двигателе разделён на железо вращающейся части его и сердечник статора, в обмотке статора тоже получается максимум величины тока. Если мощность электросети недостаточна для того, чтобы при пуске асинхронных движков поддержать напряжение в пределах необходимого значения, применяются меры по уменьшению пускового тока этих двигателей. Это делается либо при помощи специальных схем, которые позволяют регулировать токи в обмотках статора, либо использованием асинхронных движков специальной конструкции – с фазным ротором.

    Как устроен фазный ротор?

    Фазный ротор содержит обмотки в виде катушек с витками. Эти катушки соединены по схеме «звезда». Конец каждой обмотки соединён с ответствующим кольцом. При подаче напряжения на статор на каждом кольце появляется напряжение. В скользящем контакте с кольцом находится щётка, которая даёт возможность подключения внешних элементов. Эти элементы являются частью схемы управления. Она получается более простой, по сравнению с теми схемами, которыми движок управляется со стороны статора. Чаще всего схема управления содержит набор резисторов.

    Они подключаются по мере разгона вала. Хотя такой способ управления пуском асинхронного двигателя не самый экономичный, он наиболее часто применяется на практике в силу своей простоты и минимума коммутационных помех. Ограничение тока ротора это не только возможность плавного запуска двигателя, но и ограничение скорости вращения вала. Но тогда более рациональным решением будет использование индуктивностей вместо резисторов. Иллюстрации, показывающие особенности конструкции асинхронного движка с фазным ротором показаны далее.

    При автоматическом управлении лучше всего применять реле или полупроводниковые коммутаторы, которые параллельно стартовому резистору подключают новые резисторы, постепенно уменьшая их суммарное сопротивление до нуля с шунтированием всех резисторов последним коммутатором или контактами реле. Для наиболее плавного пуска необходимо использовать реостат 1, который на схеме слева включён в электрической цепи ротора и своими ползунками 5 соединён с кольцами 2 через клеммы щёток 3. Движок начинает работать после замыкания контактов рубильника 4. При этом ползунки реостата должны быть установлены в положение «Пуск».

    В этом положении сопротивлении реостата максимально. Вал движка начинает вращаться. Перемещение ползунка будет приводить к разгону вала до максимальной скорости, которая появится при нулевом значении сопротивлении реостата. Однако есть ещё одно следствие такой регулировки двигателя с фазным ротором. Меняется связь крутящего момента и скольжения. Этот эффект показан на графике ниже. При определённой величине сопротивления в цепи ротора максимум крутящего момента смещается в сторону более высоких оборотов движка, как на кривой 2. Кривая 1 соответствует нулевому значению сопротивления в цепи фазного ротора.

    При нулевом сопротивлении кольца, по сути, замкнуты накоротко. Щётки и кольца из-за трения изнашиваются. А поскольку после завершения разгона вала этот узел фактически не используется его целесообразно исключить из процесса работы. По этой причине в асинхронных двигателях с фазным ротором предусмотрен специальный механизм. Он отодвигает щётки от колец и одновременно замыкает последние накоротко. В результате кольца и щётки работают намного дольше по сравнению с тем вариантом, который предусматривает их непрерывный контакт.

    Простота и надёжность асинхронных двигателей основана на конструкции ротора. Но именно это обстоятельство и создаёт проблемы с их эксплуатацией. Большие пусковые токи в некоторых случаях неприемлемы настолько, что оправдывается более сложная и дорогостоящая намоточная конструкция ротора с кольцами и щётками. Тогда и применяются асинхронные двигатели с фазным ротором. Но более сложная конструкция и цена их в сравнении с асинхронными двигателями с короткозамкнутым ротором оправдывается также и тем, что они позволяют получить величину крутящего момента в рабочем режиме при меньших габаритах и массе. Поэтому эти особенности делают асинхронные двигатели с фазным ротором в ряде случаев наиболее предпочтительными.

    Устройство, принцип работы и схема подключения асинхронного двигателя с фазным ротором

    Асинхронный двигатель с фазным ротором имеет очень обширную область обслуживания. АД (асинхронный двигатель) чаще применяется в управлении двигателями большой мощности. Обслуживание и управление приводов мельниц, станков, насосов, кранов, дымососа, дробилок. Асинхронный двигатель с массивным ротором даёт возможность подключения множества технических механизмов.

    • Характеристика асинхронного двигателя
    • Схема подключения
    • Устройство двигателя
    • Принцип работы
    • Расчёт числа повторений
    • Реостатный пуск
    • Ремонт и характеристики неисправностей

    Характеристика асинхронного двигателя

    • Запуск двигателя с нагрузкой, подключение к валу благодаря созданию большого момента вращения. Это обеспечивает обслуживание асинхронных двигателей с фазовым элементом любой мощности.
    • Возможность постоянной скорости вращения большой или маленькой нагрузки
    • Регулирование автоматического пуска.
    • Работа даже при перегрузке тока напряжения.
    • Простота использования.
    • Невысокая стоимость.
    • Надёжность применения.
    • Использование резисторов увеличивается стоимость, а работа двигателя усложняется;
    • Большие размеры;
    • Значение КПД меньше, чем короткозамкнутых роторов;
    • Трудное управление скоростью вращения;
    • Регулярный капитальный ремонт .

    Схема подключения

    При подключении к току начинают работать реле времени. Контакты размыкаются. При нажатии тумблера происходит пуск.

    Двигатель с фазным ротором принцип работы

    Чтобы подключить АД нужно правильно обозначить концы и начала обмоток фазы.

    Устройство двигателя

    Главными постоянными являются статор и ротор. Статор представляет собой цилиндр, состав –листы электротехнической стали, в цилиндр уложена трёхфазная обмотка. Она состоит из обмоточной проволоки. Которые соединены между собой в виде звезды или треугольника в зависимости от напряжения.

    Двигатель с фазным ротором принцип работы

    Ротор – основная вращающаяся часть двигателей. Он в зависимости от расположения может быть внешним, внутренним. Данный элемент состоит из стальных листов. Пазы сердечника наполнены алюминием, который имеет стержни, содержащие торцевые кольца. Они могут быть латунными или стальными, каждое из них изолировано слоем лака. Между трёхфазным статором и ротором образуется зазор. Регулирование размер зазора от 0,30 –0,34 мм в устройствах с небольшим напряжением, 1,0–1,6 мм в устройствах с большим постоянным электрическим напряжением. Конструкция имеет название «беличья клетка». Для мощных двигателей используется медь в сердечнике. Контактор начинает действие, двигатель заводится.

    Существует добавочный резистор в цепи обмотки вращающей части машины, крепится с помощью металлографитных щеток. Щетки обычно используются две, расположены на щеткодержателе. В приводах кранах и центрифугах для регулирования роботы применяется конический подвижный ротор. Асинхронные двигатели с фазным ротором незаменимы при технических требованиях мощного пускового момента. Это могут быть такие механизмы, как кран, мельница, лифт.

    Двигатель с фазным ротором принцип работы

    Схема переключения электрической цепи со звезды на треугольник

    Принцип работы

    В основе АД лежит вращение поля магнитов. В область обмотки трёхфазного статора поступает ток, а в фазах возникает поток магнитов, изменяемый в зависимости от скорости и частоты постоянной электрической мощности. При статорном вращении возникает электродвижущая сила.

    В роторную обмотку подходит напряжение, которое совместно с постоянным магнитным потоком статора образует пуск. Он стремится направить ротор по магнитному вращению статора и при достижении превышения момента торможения, приводит к скольжению. Оно выражает отношение между частотами статорного силового поля магнитов и скоростью роторного вращения.

    Двигатель с фазным ротором принцип работы

    Чертеж режима кз

    При балансе между моментами электромагнита и торможения, перемена значений остановится. Особенность эксплуатации АД – сольватация кругового движения силового поля статора и им наводящих токов в роторе. Момент вращения возникает лишь при разнице частот круговых движений магнитных полей.

    Машины различают синхронные, асинхронные. Разница механизмов в их обмотке. Она образует магнитное поле.

    Неподвижность ротора и замыкание обмотки приводит к короткому замыканию (кз).

    Наши читатели рекомендуют!

    Для экономии на платежах за электроэнергию наши читатели советуют «Экономитель энергии Electricity Saving Box». Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

    Расчёт числа повторений

    Возьмём m1 – процесс повторения постоянного поля магнитов и ротора. Система фазы переменного тока образуют вращение поля магнитов.

    Данные расчета считаются по формуле:

    f1 – частота электричества$

    p – количество полюсных пар каждой обмотки статора.

    m2 – процесс повторения вращения ротора. Имея различное количество одновременных повторений, данная скорость частоты будет асинхронной. Определение расчёта частоты проводится по соотношению между данными:

    Асинхронный электродвигатель работает только при асинхронной частоте.

    При одновременном вращении статора и ротора, расчет скольжения будет равняться нулю.

    Двухроторный АД используется для привода разных механизмов. Различие двухроторного двигателя заключается присутствием в конструкции двух роторов. Второй ротор выполняет функцию вспомогательную, может вращаться с другой скоростью. Вспомогательный ротор представляет собой внутренний хомут для замыкания постоянного потока магнитов, охлаждения электродвигателя. Недостаток двухмоторного асинхронного двигателя в низком КПД от использования ферромагнитного вспомогательного ротора.

    В ходе исследования двухроторных машин достигаются близкие данные скоростик желаемым, когда вспомогательный ротор имеет максимальные вентиляционные зазоры. Полый ротор установлен на ступице, его вал расположен внутри цилиндра. При вращении вспомогательного ротора вентиляция работает по принципу центробежного вентилятора. Для увеличения пускового момента и большей электрической нагрузки полый ротор должен регулироваться, перемещаясь вдоль вала, с установленным штифтом, конец чего входит в паз ступицы ротора.

    Данные для расчета:

    Двигатель с фазным ротором принцип работы

    Реостатный пуск

    Часто для включения двигателя безмощных пусковых моментов оказывают нужное действие реостаты. Схема реостатного способа:

    Двигатель с фазным ротором принцип работы

    Главной характеристикой метода является присоединение двигателя при пуске к реостатам. Реостаты разрываются (на чертеже К1), на них идет частично электрический ток. Что дает возможность уменьшить пусковые токи. Пусковой момент тоже снижается. Преимущество реостатного способа заключается в снижении нагрузки на механическую часть и нехватку напряжения.

    Ремонт и характеристики неисправностей

    Причиной ремонта могут служить внешние и внутренние причины.

    Внешние причины ремонта:

    • обрыв провода или нарушение соединений с электрическим током;
    • сгорание предохранителей;
    • понижение или повышения напряжения;
    • перегруженность АД;
    • неравномерная вентиляция в зазоре.

    Внутренняя поломка может возникнуть по механическим и электрическим причинам.

    Механические причины ремонта:

    • неправильное регулирование зазора подшипников;
    • повреждение вала ротора;
    • расшатывание щеткодержателей;
    • возникновение глубоких выработок;
    • истощение креплений и трещины.

    Электрические причины ремонта:

    • замыкания витков;
    • поломка провода в обмотках;
    • пробивание изоляции;
    • пробой пайки проводов.

    Данные причины – это далеко не полный список поломок.

    Асинхронный двигатель – незаменимый и важный механизм, применяемый для обслуживания быта и различных отраслей промышленности. Для практического действия АД с фазным ротором необходимо знать техническую характеристику управления, использовать его по назначению и регулярно проводить ремонт при технических осмотрах. Тогда асинхронный двигатель станет практически вечной эксплуатации.

    Источники: http://electricalschool.info/main/osnovy/259-asinkhronnye-jelektrodvigateli-s-faznym.html, http://podvi.ru/elektrodvigatel/asinxronnyj-dvigatel-s-faznym-rotorom.html, http://electricvdele.ru/elektrooborudovanie/elektrodvigateli/asinhronnyj-dvigatel-s-faznym-rotorom.html

    electricremont.ru

    Устройство и принцип работы асинхронных двигателей с фазным ротором

    Основная классификация асинхронных двигателей осуществляется в зависимости от особенностей их пусковых свойств, которые определяются нюансами конструкции.

    асинхронный двигатель

    Если рассматривать устройство с фазным ротором, то пуск происходит следующим образом:

    1. Начало запуска параллельно сопровождается переходом фазного ротора из спокойного состояния к постепенному равномерному вращению, во время которого машина начинает уравновешивать момент сил сопротивления на собственном валу.
    2. При совершении запуска наблюдается увеличение объемов потребления электроэнергии из сети. Усиленное питание обуславливается необходимостью преодоления тормозного момента, приложенного к валу; передачей движущимся элементам кинетической энергии и компенсацией потерь внутри самого двигателя.
    3. Начало пускового момента и параметры скольжения в этот период напрямую зависят от активного сопротивления, которое оказывают резисторы, введенные в роторную цепь.
    4. Иногда показателей малого начального пускового момента бывает недостаточно для того, чтобы перевести асинхронный агрегат в полноценный рабочий режим. В такой ситуации, ускорение не является достаточным, а пусковой электрический ток со значительными показателями воздействует на обмотки двигателя, что вызывает их чрезмерный нагрев. Это может ограничить частоту его включений, а если машина была подключена к электросети с малой мощностью, такой запуск может вызвать понижение общего напряжения, что негативно сказывается на функционировании иных потребителей.
    5. Благодаря введению в роторную цепь пусковых резисторов происходит понижение показателей электрического тока и пропорциональное увеличение начального пускового момента вплоть до достижения им максимальных параметров.
    6. Последующее увеличение параметров сопротивления резисторов не является необходимым условием, поскольку оно будет способствовать снижению начального пускового момента и постепенному отклонению от максимальных характеристик его работы. Область скольжения при этом рискует достигнуть недопустимых показателей, что негативно скажется на разгоне ротора.
    7. Пуск двигателя может быть легким, нормальным или тяжелым, именно этот фактор определит оптимальное значение сопротивления резисторов.
    8. Далее, необходимо только поддержание достигнутого вращающего момента во время разгона ротора, это позволяет сократить длительность переходного процесса, в котором находится запущенная машина, а также способствует снижению степени нагрева. Для достижения этих целей, осуществляется постепенное понижение показателей сопротивления пусковых резисторов. Параметры допустимого изменения момента зависят от общих условий, которые определяют пиковый предел этого параметра.
    9. Процесс переключения разных резисторов осуществляется за счет последовательного подключения контакторов ускорения. На протяжении всего пуска, моменты, во время которых достигаются пиковые значения, являются одинаковыми, а периоды переключения равными между собой.
    10. Процесс отключения машины от электросети разрешается осуществлять при накоротко замкнутой роторной цепи, поскольку, в противном случае имеется риск возникновения перенапряжения в обмоточных фазах статора.
    11. Параметры напряжения могут достичь значения, которое превосходит его номинальные показатели в 3-4 раза, если во время отключения машины роторная цепь находилась в разомкнутом состоянии.

    схема пуска асинхронного двигателя

    Технические характеристики

    асинхронный двигательОсновные требования, которые обеспечивают качественное функционирование асинхронных агрегатов с фазным ротором, определены и указаны в соответствующих ГОСТах.

    Именно они определяют главные технические характеристики и к таким параметрам относятся:

    1. Габариты и мощность двигателя, которые должны иметь показатели, соответствующие техническому регламенту.
    2. Уровень защиты должен соответствовать условиям, в которых происходит процесс эксплуатации, поскольку различные виды машин могут быть предназначены для установки на улице или только внутри помещений.
    3. Высокая степень изоляции, которая должна обладать устойчивостью к повышению рабочей температуры и последующему нагреву.
    4. Различные виды асинхронных двигателей предназначены для использования в определенных климатических условиях. Это касается в первую очередь установки подобных машин в крайне холодных местностях или, наоборот, жарких областях. Исполнение агрегата должно соответствовать климату местности, в которой проходит процесс эксплуатации.
    5. Полное соответствие режимам функционирования.
    6. Наличие системы охлаждения, которая должна соответствовать рабочим режимам машины.
    7. Уровень шума при запуске агрегата на холостом ходу должен соответствовать второму классу или быть ниже его.

    Устройство

    устройство асинхронного двигателя

    Для работы с асинхронными двигателями и полного понимания принципов функционирования подобных машин, необходимо ознакомиться с особенностями их устройства:

    1. Основными частями конструкции агрегата является статор, находящийся в неподвижном состоянии, и вращающийся ротор, который расположен внутри него.
    2. Воздушный зазор разделяет оба элемента между собой.
    3. И статор, и ротор обладают специальной обмоткой.
    4. Статорная обмотка имеет подключение к питающей электросети с переменным напряжением.
    5. Роторная обмотка по своей сути является вторичной, поскольку не имеет подключения к сети, а передачу необходимой энергии для нее осуществляет непосредственно статор. Этот процесс происходит благодаря созданию магнитного потока.
    6. Корпус статора и корпус двигателя – это один элемент, который имеет в своей структуре запрессованный сердечник.
    7. В пазах сердечника размещены проводники обмотки. Специальный электротехнический лак обеспечивает надежную изоляцию данных объектов друг от друга.
    8. Обмотка сердечника особым образом разделена на секции, которые соединены в катушки.
    9. Катушки составляют фазы самого двигателя, к которым происходит подключение фазы от питающей электросети.
    10. Ротор состоит из вала и сердечника.
    11. Роторный сердечник создан из набранных пластин, которые изготавливаются из особой разновидности электротехнической стали. На его поверхности имеются симметричные пазы, внутри которых размещены проводники обмотки.
    12. Роторный вал в ходе работы выполняет функции по передаче крутящего момента непосредственно к приводному механизму машины.
    13. Роторы обладают собственной классификацией, короткозамкнутая разновидность имеет в своей конструкции стержни, изготовленные из алюминия. Они располагаются внутри сердечника, а на торцах замкнуты специальными кольцами. Подобная система получила название беличьего колеса. В машинах с наиболее высокой мощностью, пазы дополнительно заливаются алюминием, что способствует повышению прочности конструкции.
    14. Вместо короткозамкнутого ротора в конструкции может присутствовать фазная разновидность. Количество катушек, сдвинутых под определенным углом относительно друг друга, в такой системе зависит от числа парных полюсов. При этом, роторные пары полюсов всегда равны количеству аналогичных пар в статоре. Роторная обмотка соединена особым образом и напоминает по своей форме звезду, а ее лучи выводятся на контакты токосъемных колец, которые соединены при помощи механизма щеточного типа и пускового реостата.

    Принцип работы

    принцип работы асинхронного двигателя

    После освоения устройства асинхронного двигателя с фазным ротором и особенностей его запуска, можно переходить к изучению принципа работы, который заключается в следующем:

    1. На статор, обладающий тройной обмоткой, начинает подаваться трехфазное напряжение, идущее от внешней электросети с переменным током.
    2. Последовательно происходит процесс возбуждения магнитного поля, которое начинает совершать вращательные движения.
    3. Совершаемые вращения постепенно становятся быстрее скорости ротора.
    4. В определенный момент времени начинает происходить пересечение отдельных линий полей статора и ротора, что обуславливает возникновение электродвижущей силы.
    5. Электродвижущая сила оказывает прямое воздействие на закороченную обмотку ротора, благодаря чему в ней начинает появляться электрический ток.
    6. Через определенное время начинает происходить взаимодействие между возникшим в роторе током и статорным магнитным полем, из-за этого образуется крутящий момент, обеспечивающий функционирование асинхронной машины.

    Преимущества и недостатки

    асинхронные двигателиВостребованность асинхронных двигателей подобного типа на сегодняшний день обуславливается следующими значимыми преимуществами, которыми они обладают:

    1. Значительные показатели, которых способен достигать начальный вращающий момент после запуска машины.
    2. Механические перегрузки, которые возникают на протяжении коротких промежутков времени, переносятся агрегатом без каких-либо значимых последствий и не оказывают влияния на процесс функционирования машины.
    3. При возникновении разнообразных перегрузок в системе, двигатель сохраняет постоянную скорость, возможные отклонения не являются значимыми.
    4. Показатели пускового тока значительно меньше, чем у большинства асинхронных аналогов, например, имеющих в своей конструкции короткозамкнутый ротор.
    5. Использование подобных агрегатов предусматривает возможность использования систем, автоматизирующих процесс их запуска и введения в рабочее состояние.
    6. Конструкция и устройство таких машин являются довольно простыми.
    7. Запуска агрегата осуществляется по простой схеме, не подразумевающей значимых усилий.
    8. Относительно невысокая стоимость.
    9. Обслуживание таких машин не требует значительных затрат сил и времени.

    Однако, при таком большом количестве положительных сторон, асинхронные двигатели с фазным ротором обладают и некоторыми недостатками, основными из них являются следующие особенности подобных машин:

    1. Слишком большие размеры двигателя, которые могут причинять некоторые неудобства при монтаже и эксплуатации.
    2. Коэффициент полезного действия и общая выработка у них намного ниже, чем у многих аналогов. Разновидность агрегатов с короткозамкнутым ротором значительно превосходит их по этим показателям.

    Применение

    На сегодняшний день, большая часть двигателей, выпускаемых в промышленных масштабах, относится к асинхронной разновидности.

    Благодаря ряду преимуществ, которыми обладают машины с фазными роторами, они широко используются в разных сферах человеческой деятельности, в том числе для поддержания работы:

    1. Устройств автоматики и приборов из телемеханической области.
    2. Бытовых приборов.
    3. Медицинского оборудования.
    4. Оборудования, предназначенного для осуществления аудиозаписи.

    slarkenergy.ru

    АД с фазным ротором

     

    Пусковые свойства асинхронного двигателя зависят от особенностей его конструкции, в частности от устройства ротора.

    Пуск асинхронного двигателя сопровождается переходным процессом машины, связанным с переходом ротора из состояния покоя в состояние равномерного вращения, при котором момент двигателя уравновешивает момент сил сопротивления на валу машины.

    При пуске асинхронного двигателя имеет место повышенное потребление электрической энергии из питающей сети, затрачиваемое не только на преодоление приложенного к валу тормозного момента и покрытие потерь в самой асинхронном двигателе, но и на сообщение движущимся звеньям производственного агрегата определенной кинетической энергии. Поэтому при пуске асинхронный двигатель должен развить повышенный вращающий момент.

    Для асинхронного двигателя с фазным ротором начальный пусковой момент, соответствующий скольжению sп= 1, зависит от активных сопротивлений регулируемых резисторов, введенных в цепь ротора.

    Рис. 1. Пуск трехфазного асинхронного двигателя с фазным ротором: а — графики зависимости вращающего момента двигателя с фазным ротором от скольжения при различных активных сопротивлениях резисторов в цепи ротора, б — схема включения резисторов и замыкающих контактов ускорения в цепь ротора.

    Так, при замкнутых контактах ускорения У1, У2, т. е. при пуске асинхронного двигателя с замкнутыми накоротко контактными кольцами, начальный пусковой момент Мп1 = (0,5 -1,0) Мном, а начальный пусковой ток Iп = (4,5 - 7) Iном и более.

    Малый начальный пусковой момент асинхронного электродвигателя с фазным ротором может оказаться недостаточным для приведения в действие производственного агрегата и последующего его ускорения, а значительный пусковой ток вызовет повышенный нагрев обмоток двигателя, что ограничивает частоту его включений, а в маломощных сетях приводит к нежелательному для работы других приемников временному понижению напряжения. Эти обстоятельства могут явиться причиной, исключающей использование асинхронных двигателей с фазным ротором с большим пусковым током для привода рабочих механизмов. 

    Введение в цепь ротора двигателя регулируемых резисторов, называемых пусковыми, не только снижает начальный пусковой ток, но одновременно увеличивает начальный пусковой момент, который может достигнуть максимального момента Mmax (рис. 1, а, кривая 3), если критическое скольжение двигателя с фазным ротором

    sкр = (R2' + Rд') / (Х1 + Х2') = 1,

    где Rд' — активное сопротивление резистора, находящегося в фазе обмотки ротора двигателя, приведенное к фазе обмотки статора. Дальнейшее увеличение активного сопротивления пускового резистора нецелесообразно, так как оно приводит к ослаблению начального пускового момента и выходу точки максимального момента в область скольжения s > 1, что исключает возможность разгона ротора.

    Необходимое активное сопротивление резисторов для пуска двигателя с фазным ротором определяют, исходя из требований пуска, который может быть легким, когда Мп = (0,1 - 0,4) Mном, нормальным, если Мп — (0,5 - 0,75) Мном, и тяжелым при Мп ≥ Мном.

    Для поддержания достаточно большого вращающего момента двигателем с фазным ротором в процессе разгона производственного агрегата с целью сокращения длительности переходного процесса и снижения нагрева двигателя необходимо постепенно уменьшать активное сопротивление пусковых резисторов. Допустимое изменение момента в процессе разгона M(t) определяется электрическими и механическими условиями, лимитирующими пиковый предел момента М > 0,85Ммах, момент переключения М2 > > Мс (рис. 2), а также ускорение.

    Рис. 2. Пусковые характеристики трехфазного асинхронного двигателя с фазным ротором

    Переключение пусковых резисторов обеспечено поочередным включением контакторов ускорения Y1, Y2 соответственно в моменты времени t1, t2 отсчитываемые с момента пуска двигателя, когда в процессе разгона вращающий момент М становится равным моменту переключения М2. Благодаря этому на протяжении всего пуска все пиковые моменты получаются одинаковыми и все моменты переключения равны между собой.

    Поскольку вращающий момент и ток асинхронного двигателя с фазным ротором взаимно связаны, то можно при разгоне ротора установить пиковый предел тока I1= (1,5 - 2,5) Iном и ток переключения I2, который должен обеспечить момент переключения М2 > Мc.

    Отключение асинхронных двигателей с фазным ротором от питающей сети всегда выполняют при цепи ротора, замкнутой накоротко, во избежание появления перенапряжений в фазах обмотки статора, которые могут превысить номинальное напряжение этих фаз в 3 - 4 раза, если цепь ротора в момент отключения двигателя окажется разомкнутой. 

    Рис. 3. Схема соединения обмоток двигателя с фазным ротором: а - к питающей сети, б - ротора, в - на доске зажимов.

    Рис. 4. Пуск двигателя с фазным ротором: а - схема включения, б - механические характеристики

    studfiles.net

    Асинхронный двигатель с фазным ротором

    Асинхронный двигатель с фазным ротором – это двигатель, который можно регулировать с помощью добавления в цепь ротора добавочных сопротивлений. Обычно такие двигатели применяются при пуске с нагрузкой на валу, так как увеличение сопротивления в цепи ротора, позволяет повысить пусковой момент и уменьшить пусковые токи. Этим асинхронный двигатель с фазным ротором выгодно отличается от АД с короткозамкнутым ротором.

    Устройство

    Статор (3) выполнен, так же как и в обычном асинхронном двигателе, он представляет из себя полый цилиндр, набранный из листов электротехнической стали, в который уложена трехфазная обмотка.

    Ротор (4) по сравнению с короткозамкнутым, представляет из себя более сложную конструкцию. Он состоит из сердечника в который уложена трехфазная обмотка, аналогично обмотке статора. Отсюда название двигателя. Если двигатель двухполюсный, то обмотки ротора смещены геометрически друг относительно друга на 120. Эти обмотки соединяются с тремя контактными кольцами (2), расположенными на валу (5) ротора. Контактные кольца выполнены из латуни или стали, причем друг от друга они изолированы. С помощью нескольких металлографитовых щеток (обычно двух), которые расположены на щеткодержателе (1) и прижимаются пружинами к кольцам, в цепь вводятся добавочные сопротивления. Выводы обмоток соединяются по схеме "звезда". фазный ротор

    Добавочное сопротивление вводится только при пуске двигателя. Причем им обычно служит ступенчатый реостат, сопротивление которого уменьшают с увеличением оборотов двигателя. Таким образом пуск двигателя осуществляется тоже ступенчато. После того, как разгон закончился и двигатель вышел на естественную механическую характеристику, обмотку ротора закорачивают. Для того, чтобы сохранить щетки и снизить потери на них, в двигателях с фазным ротором существует специальное устройство, которое поднимает щетки и замыкает кольца. Таким образом, удается повысить еще и КПД двигателя.

    Добавочное сопротивление позволяет главным образом осуществить пуск двигателя под нагрузкой, работать с ним длительное время двигатель не может, так как механические характеристики слишком мягкие и работа двигателя на них нестабильна.

    Для того чтобы автоматизировать пуск двигателя, в обмотку ротора включают индуктивность. В момент пуска, частота тока в роторе наибольшая, а значит и индуктивное сопротивление максимально. Затем, при разгоне двигателя, частота, как и сопротивление уменьшаются, и двигатель постепенно начинает работать в обычном режиме.

    За счет усложнения своей конструкции, асинхронный двигатель с фазным ротором, обладает хорошими пусковыми и регулировочными характеристиками. Но по той же причине, его стоимость возрастает приблизительно в 1.5 по сравнению с обычным АД, кроме того увеличивается масса, размеры и как правило, уменьшается надежность двигателя.

    electroandi.ru

    Исследование асинхронного двигателя с фазным ротором

    Цель работы: ознакомиться с конструкцией асинхронного двигателя с фазным ротором. Изучить пуск, регулирование частоты вращения изменением скольжения, реверсирование. Снять пусковую диаграмму, рабочие, механические и регулировочную характеристики двигателя.

    Общие сведения

    Асинхронный двигатель с фазным ротором (двигатель с контактными кольцами), принципиальная схема которого приведена на рис.1, состоит из двух частей: неподвижной части ― статора и вращающейся ― ротора.

    Статор (рис.2) представляет собой станину (корпус) (1), выполненную из чугунного литья в виде цилиндрической отливки с лапами для крепления на фундаменте. Внутрь станины запрессован пакет (2), представляющий собой пустотелый цилиндр, набранный из отдельных, покрытых специальным изолирующим лаком, тонких листов электротехнической стали с выштампованными вдоль внутренней поверхности пазами (3).

    В пазах уложена трехфазная обмотка статора, состоящая из трех одинаковых фазовых обмоток , повернутых друг относительно друга вдоль окружности пакета статора на 120 электрических градусов. Начала обмоток и концы выведены на щиток машины.

    Наличие шести выводов дает возможность соединять обмотки статора или по схеме «звезда» или по схеме «треугольник». К клеммам подключается питающая двигатель трехфазная сеть. К торцам станины крепятся подшипниковые щиты, в центре которых расположены шариковые подшипники вала ротора.

    Рис. 1

    Ротор (рис. 3) представляет собой напрессованный на вал цилиндр (пакет ротора) (1), набранный из отдельных, покрытых специальным изолирующим лаком, тонких листов электротехнической стали с выштампованными вдоль наружной поверхности пазами (2). В пазах уложена трехфазная обмотка ротора выполненная по типу статорной обмотки и соединенная по схеме «звезда».

    Начало фаз обмотки , , выведены внутри пустотелого вала и присоединены к контактным кольцам (3). На кольцах наложены медно-графитные щетки (4) ,соединенные с клеммами , , на щитке ротора.

    Рис. 2

    Рис. 4

    Клеммы , , служат для присоединения к обмотке ротора трехфазного пускорегулировочного реостата (рис. 4), который состоит из трех, разделенных на секции, одинаковых активных сопротивлений , соединенных по схеме «звезда». Величину можно уменьшить ступенями (, , , , = 0), замыкая контакты , , , последовательным переводом рукоятки (маховичка) реостата из положения в положения 3, 2, 1, = 0.

    Принцип действия асинхронного двигателя с фазным ротором

    Ток, идущий по обмоткам статора под действием приложенного к зажимам трехфазного напряжения, создает внутри статора вращающийся магнитный поток «». Частота вращения этого потока относительно статора определяется формулой:

    ,

    где − частота питающей трехфазной сети, Гц,

    р − число пар полюсов обмотки статора,

    − частота вращения магнитного потока, об/мин.

    Направление вращения потока определяется порядком чередования фаз статора. Изменение порядка чередования фаз реверсирует магнитный поток. Чтобы изменить порядок чередования фаз, достаточно поменять местами любые два из трех проводов, соединяющих статор с сетью. Величина вращающегося магнитного потока, являющегося суммой трех синусоидальных магнитных потоков фазных обмоток статора, не изменяется во времени и определяется формулой:

    = 3/2 ,

    где ─ амплитуда синусоидального изменяющегося магнитного потока фазной обмотки статора.

    Величина прямо пропорциональна приложенному к зажимам статора напряжению и при U = const также постоянна. При вращении магнитный поток своими силовыми линиями пересекает проводники обмотки ротора и наводит в них трехфазную ЭДС. Так как обмотка ротора замкнута (с одной стороны ─ общей точкой соединенных в звезду фазных обмоток ротора, с другой ─ общей точкой соединенных в звезду сопротивлений реостата), то по ней пойдет трехфазный ток ротора , который создает вращающийся поток ротора .

    Потоки и вращаются синхронно и образуют общий вращающийся поток двигателя Ф. Общий магнитный поток, сцепленный и с обмоткой статора, и с обмоткой ротора, наводит в них электродвижущие силы. В этом аналогия асинхронного двигателя с трансформатором.

    В результате взаимодействия токов ротора с потоком Ф возникают действующие на проводники обмотки ротора механические силы, создающие вращающий электромагнитный момент М. Если вращающий момент М больше статического тормозного момента на валу , то ротор двигателя придет во вращение в направлении вращения поля с частотой вращения <. Относительную разность частот вращения поля и ротора называют скольжением.

    Частота вращения ротора, выраженная через скольжение будет

    .

    При пуске двигателя = 0, а s = 1. Если бы ротор вращался синхронно с полем статора (= ), то скольжение было бы равно нулю (s = 0). При магнитное поле статора неподвижно относительно ротора и токи в роторе индуктироваться не будут, поэтому М = 0. Следовательно, такой частоты вращения двигатель достичь не может, отсюда и название ─ асинхронный (неодновременный).

    studfiles.net


    © 2007—2018
    423800, Набережные Челны , база Партнер Плюс, тел. 8 800 100-58-94 (звонок бесплатный)