Камаз 44108 тягач В наличии!
Тягач КАМАЗ 44108-6030-24
евро3, новый, дв.КАМАЗ 740.55-300л.с., КПП ZF9, ТНВД ЯЗДА, 6х6, нагрузка на седло 12т, бак 210+350л, МКБ, МОБ
 
карта сервера
«ООО Старт Импэкс» продажа грузовых автомобилей камаз по выгодным ценам
+7 (8552) 31-97-24
+7 (904) 6654712
8 800 1005894
звонок бесплатный

Наши сотрудники:
Виталий
+7 (8552) 31-97-24

[email protected]

 

Екатерина - специалист по продаже а/м КАМАЗ
+7 (904) 6654712

[email protected]

 

Фото техники

20 тонный, 20 кубовый самосвал КАМАЗ 6520-029 в наличии
15-тонный строительный самосвал КАМАЗ 65115 на стоянке. Техника в наличии
Традиционно КАМАЗ побеждает в дакаре

тел.8 800 100 58 94

Техника в наличии

тягач КАМАЗ-44108
Тягач КАМАЗ 44108-6030-24
2014г, 6х6, Евро3, дв.КАМАЗ 300 л.с., КПП ZF9, бак 210л+350л, МКБ,МОБ,рестайлинг.
цена 2 220 000 руб.,
 
КАМАЗ-4308
КАМАЗ 4308-6063-28(R4)
4х2,дв. Cummins ISB6.7e4 245л.с. (Е-4),КПП ZF6S1000, V кузова=39,7куб.м., спальное место, бак 210л, шк-пет,МКБ, ТНВД BOSCH, система нейтрализ. ОГ(AdBlue), тент, каркас, рестайлинг, внутр. размеры платформы 6112х2470х730 мм
цена 1 950 000 руб.,
КАМАЗ-6520
Самосвал КАМАЗ 6520-057
2014г, 6х4,Евро3, дв.КАМАЗ 320 л.с., КПП ZF16, ТНВД ЯЗДА, бак 350л, г/п 20 тонн, V кузова =20 куб.м.,МКБ,МОБ, со спальным местом.
цена 2 700 000 руб.,
 
КАМАЗ-6522
Самосвал 6522-027
2014, 6х6, дв.КАМАЗ 740.51,320 л.с., КПП ZF16,бак 350л, г/п 19 тонн,V кузова 12куб.м.,МКБ,МОБ,задняя разгрузка,обогрев платформы.
цена 3 190 000 руб.,

СУПЕР ЦЕНА

на АВТОМОБИЛИ КАМАЗ
43118-010-10 (дв.740.30-260 л.с.) 2 220 000
43118-6033-24 (дв.740.55-300 л.с.) 2 300 000
65117-029 (дв.740.30-260 л.с.) 2 200 000
65117-6010-62 (дв.740.62-280 л.с.) 2 350 000
44108 (дв.740.30-260 л.с.) 2 160 000
44108-6030-24 (дв.740.55,рест.) 2 200 000
65116-010-62 (дв.740.62-280 л.с.) 1 880 000
6460 (дв.740.50-360 л.с.) 2 180 000
45143-011-15 (дв.740.13-260л.с) 2 180 000
65115 (дв.740.62-280 л.с.,рест.) 2 190 000
65115 (дв.740.62-280 л.с.,3-х стор) 2 295 000
6520 (дв.740.51-320 л.с.) 2 610 000
6520 (дв.740.51-320 л.с.,сп.место) 2 700 000
6522-027 (дв.740.51-320 л.с.,6х6) 3 190 000


Перегон грузовых автомобилей
Перегон грузовых автомобилей
подробнее про услугу перегона можно прочесть здесь.


Самосвал Форд Нужны самосвалы? Обратите внимание на Ford-65513-02.

КАМАЗы в лизинг

ООО «Старт Импэкс» имеет возможность поставки грузовой автотехники КАМАЗ, а так же спецтехники на шасси КАМАЗ в лизинг. Продажа грузовой техники по лизинговым схемам имеет определенные выгоды для покупателя грузовика. Рассрочка платежа, а так же то обстоятельство, что грузовики до полной выплаты лизинговых платежей находятся на балансе лизингодателя, и соответственно покупатель автомобиля не платит налогов на имущество. Мы готовы предложить любые модели бортовых автомобилей, тягачей и самосвалов по самым выгодным лизинговым схемам.

Контактная информация.

г. Набережные Челны, Промкомзона-2, Автодорога №3, база «Партнер плюс».

тел/факс (8552) 388373.
Схема проезда



Энциклопедия по машиностроению XXL. Ведущие колеса


Ведущие колеса | autoposobie.ru

Ведущими называют колеса, на которые передается крутящий момент от трансмиссии через полуоси или карданный вал. Ведущими колесами вопреки заблуждениям могут быть как передние, так и задние колеса. Некоторые ошибочно полагают, что ведущие значит — первые, то есть те, которые впереди ведут что-либо. Однако это не так, ведущими могут быть и задние колеса, на которые передается крутящий момент через кардан.

Если передние колеса ведущие — это передний привод, а сам автомобиль называют переднеприводным. Если задние колеса ведущие, то же самое — задний привод, соответственно и сам автомобиль будет заднеприводным. Существует также и третий вариант — полный привод. В таком крутящий момент при помощи дифференциалов и раздаточной коробки передается на все четыре колеса.

На сегодняшний день передний привод более популярен, нежели задний, и причин здесь несколько. Главная причина заключается в себестоимости производства переднеприводных автомобилей. В переднеприводных автомобилях нет многих деталей (кардан, задний мост и т. д.), которые есть у заднеприводных авто, что позволяет существенно удешевить производство. Кроме того, переднеприводные авто имеют меньший вес, что также является плюсом и положительно сказывается на разгонной динамике, расходе топлива и управляемости в целом. Также к плюсам можно отнести сцепление колес с дорогой. У заднеприводных авто ведущие колеса не нагружены как у передних, поэтому в момент резкого старта они попросту буксуют из-за недостатка сцепления. Кроме того, зимой заднеприводные автомобили сложнее управляются, в результате чего они нередко попадают в аварии.

Полный привод обозначается 4х4, то есть 4 колеса и все ведущие. Такая система существенно улучшает проходимость, а также устойчивость автомобилей на дороге. Для внедорожников полный привод просто жизненно необходим, в противном случае во время преодоления труднопроходимого участка он рискует безнадежно застрять.

Седаны премиум-класса, а также спорткары с полным приводом, то есть четырьмя ведущими колесами оснащают не для улучшения проходимости, поскольку их клиренс, а также класс изначально исключает возможность движения по бездорожью. Для этих авто полный привод — это устойчивость на любой, даже скользкой или заснеженной дороге, а также прекрасная динамика.

www.autoposobie.ru

www.autoposobie.ru

Ведущее колесо - это... Что такое Ведущее колесо?

Ходовая часть тяжёлого танка ИС-2 крупным планом; справа ведущее колесо машины, имеющее цевочное зацепление Ходовая часть Т-34, видно ведущее колесо гребневого зацепления У этого термина существуют и другие значения, см. Звёздочка.

Ведущее колесо (ведущая звёздочка) — элемент гусеничного движителя, осуществляющий перематывание гусеничной ленты и преобразовывающий собственное вращательное движение в поступательное движение танка (либо другой гусеничной или полугусеничной машины).[1][2][3] Как правило (за исключением гусеничных движителей с фрикционным зацеплением), конструктивно представляет собой разновидность звёздочки.

Разновидности

В зависимости от типа зацепления с гусеничной лентой различают три типа ведущих колёс — цевочного, гребневого и фрикционного зацепления.

  • Ведущее колесо цевочного зацепления состоит из двух зубчатых венцов и расположенной между ними ступицы.[4] Ведущими элементами при этом являются зубцы венца колеса, входящие в специальные углубления траков и упирающиеся в стенки этих углублений, называемые цевками. Преимущество данной схемы заключается в возможности делать звенья гусеницы более лёгкими и компактными, чем при гребневом зацеплении.[1][3]
  • Ведущее колесо гребневого зацепления состоит из двух дисков и зубчатого венца меньшего диаметра либо нескольких небольших роликов, размещённых между ними. Траки для зацепления с ведущим колесом имеют массивные гребни на внутренней стороне.[1][3]
  • Ведущее колесо фрикционного зацепления имеет гладкую поверхность и перематывает гусеницу лишь за счёт силы трения. Данная схема получила широкое распространение в межвоенный период, однако уже в период Второй мировой войны в силу присущих ей недостатков практически вышла из употребления; в настоящее время применяется лишь на некоторых моделях гражданских вездеходов. Типичным примером ходовой части с фрикционным зацеплением является гусеничный движитель системы Кегресса.

Изображения

  • Ходовая часть танка Т-34, ведущее колесо слева

  • Ходовая тяжёлого танка КВ-85, вид на корму и ведущую звёздочку

  • Ведущее (переднее) колесо лёгкого танка Т-70М

Примечания

Литература

dic.academic.ru

Динамика ведущего колеса

В отличие от ведомого колеса, вращение ведущего колеса крутящим моментом Мк, изменяет направление сил трения и реакций дороги.

Рис.6 иллюстрирует схему качения ведущего колеса с пневматической шиной по твердой (например, асфальтовой) дороге.

Для случая равномерного движения эластичного ведущего колеса по твердой недеформируемой дороге уравнение моментов имеет вид:

Мк=Хк·rd + Zк·а ,

Следовательно:

,

здесь Мf2 =Zк·а– момент сопротивления качению ведущего колеса.

Рис.6. Силы и моменты, действующие на ведущее колесо.

При торможении автомобиляна колесо действует тормозной моментМТ, направленный против вращения колеса, момент от сил инерции поступательно и вращательно движущихся масс и момент от тангенциальной реакция дорогиХк, которая в этом случае определится как (рис.7):

.

Рис.7. Силы и моменты, действующие на колесо при торможении автомобиля.

Коэффициент полезного действия ведущего колеса

Физически коэффициент полезного действия ведущего колеса представляет собой отношение работы, производимой этим колесом, к энергии, подводимой к колесу.

КПД ведущего колеса ηк можно определить с учетом величины сопротивления качению и величины буксования, если таковое присутствует.

В первом случае коэффициент полезного действия, учитывающий сопротивление качению f, определяется относительной долей потерянного момента, подведенного к колесу:

.

Во втором случае коэффициент полезного действияηδучитывает эффект буксования ведущего колеса

ηδ= (100 -δ) : 100,

где δ– буксование, взятое в процентах.

Таким образом, мощность, полезно используемая ведущими колесами автомобиля, равна:

Nк исп. = Nк ηк,

где: ηк=ηf ηδ;

Nк- мощность подведенная к ведущему колесу.

КПДведущего колеса зависит от соотношения между тяговым усилием и нагрузкой на колесо. Например, для ведущего колеса автотягача с шиной 11,00 – 36 при внутреннем давлении в ней 0,085МПаего коэффициент полезного действия достигает 80% при отношении тягового усилия к нагрузке на колесо, равном 0,4. С увеличением этого отношения до 0,7КПДведущего колеса снижается до 50%.

Тяговые свойства ведущего колеса по условию сцепления его с дорогой

Тангенциальная реакция дороги Хк, приложенная к колесу, направлена в сторону, противоположную движению. Ее величина ограничивается прочностью (сцеплением) между рабочей частью поверхности шины и дороги. Условие движения ведущего колеса без буксования:

Хк<Gк(φ + f),

где Gк- весовая нагрузка на колесо;

φ- коэффициент сцепления.

Если коэффициент сопротивления качению мал, то приближенно можно принять:

Хк<Gкφ,

то есть для того, чтобы не было пробуксовывания, тяговая сила на ведущих колесах не должна превосходить силы сцепления (Рφ=Gкφ). В том случае, когда соотношение между касательной силой тяги и силой сцепления удовлетворяет данному условию, тяговая сила ведущих колес будет полностью использоваться для движения автомобиля. В противном случае, будет иметь место пробуксовывание на дороге, и для движения автомобиля будет использоваться только часть тяговой силы, равная силе сцепленияGкφ.

Очевидно, что пробуксовывание приводит к снижению скорости автомобиля. Относительное снижение скорости из-за буксования определяется величиной:

,

где vt– теоретическая скорость движения автомобиля без буксования;

v– действительная скорость движения автомобиля.

Величину буксования можно определить и по отношению пути, потерянного на буксование за один оборот колеса, к теоретическому пути без буксования также за один оборот колеса:

,

где St–путь, проходимый колесом без буксования за один оборот;

S– действительный путь, проходимый за один оборот при тяговой эксплуатации.

Обычно сила Хкможет ограничиваться по силе сцепления при трогании с места или при преодолении повышенных сопротивлений на скользкой дороге. Ограничение тяговой силы по силе сцепления происходит чаще, когда автомобиль используется в качестве тягача для буксировки прицепа.

Для нахождения силы сцепления ведущих колес с дорогой необходимо знать нагрузку, воспринимаемую дорогой от каждого колеса автомобиля.

Распределение нагрузки на колесах двухосного автомобиля, стоящего неподвижно на горизонтальной площадке, определяется положением его центра массы:

- часть веса автомобиля, приходящегося на передние колеса;

- часть веса автомобиля, приходящегося на задние колеса;.

Здесь аиb– отрезки, определяющие положение центра масс (ЦМ) автомобиля в продольной плоскости;

L- база автомобиля (рис.8).

Очевидно, G1+ G2 = G. Практически величиныG1иG2определяются путем взвешивания отдельно передней и задней частей автомобиля. По экспериментально определенным значениямG1 и G2легко рассчитать (обратная задача) положение центра массы (отрезкиаиb), используя для этого приведенные выше формулы.

Распределение нагрузки на колесах двухосного автомобиля обуславливают понятие сцепного веса автомобиля Gφ. Сцепной вес автомобиля определяется по весу, приходящемуся на ведущие колеса, с учетом коэффициента перераспределения нагрузки по осям автомобиля.

Для автомобилей с приводом на передние колеса:

Gφ =G1 .

Рис.8. Распределение нагрузки на колеса двухосного автомобиля.

Для автомобилей с приводом на задние колеса:

Gφ =G2,

где G1, G2, - вес, приходящийся соответственно на переднюю и заднюю оси автомобиля.

Для полноприводных автомобилей:

Gφ = G.

При движении автомобиля возникают дополнительные силы и моменты, которые перераспределяют нагрузки на колеса. Например, сила сопротивления воздуха и подъему, бокового ветра, сила инерции при ускоренном или замедленном движении автомобиля и др.

Коэффициент сцепления ведущего колеса с дорогой.

В общем случае коэффициент сцепления ведущих колес с дорогой φпредставляет собой отношение силы сцепления к сцепному весу автомобиля:

.

В физическом понимании коэффициент сцепления колеса с дорогой φпредставляет собой отношение той силы, которая может вызвать относительное перемещение опорной поверхности шины колеса по дороге, к реакции дороги на колесо, направленное нормально к поверхности дороги. Это определение аналогично установленному в механике определению коэффициента трения первого рода между двумя твердыми телами. Поэтому часто считают, что коэффициент сцепления и коэффициент трения -–понятия равнозначащие. Это положение весьма близко к действительности для дорог с твердым покрытием. Здесь передача тангенциальных усилий от колеса к дороге обуславливается почти исключительно трением между опорной поверхностью шины и дорогой.

Взаимодействие колеса с дорогой, имеющей мягкое покрытие (песок, щебень и т.п.) происходит иначе. В этом случае под влиянием тангенциальных усилий между дорогой и шиной происходит частичное разрушение контактной поверхности (смятие, сдвиг и т.д.), что вызывает проскальзывание или буксование ведущего колеса. Коэффициент сцепления при этом отличается от определения коэффициента трения.

В общем случае коэффициент сцепления зависит от качества ре­зины протектора, геометрических параметров шины, давления возду­ха в ней, вертикальной нагрузки, шероховатости опорной поверхно­сти, а также степени проскальзывания (пробуксовывания) колеса.

Коэффициент сцепления колеса на таких дорогах трудно определим расчетным путем и выясняется проведением экспериментальных исследований. Исследуемый автомобиль с полностью заторможенными колесами буксируется с помощью специального тягача при одновременном измерении усилия на сцепке с помощью динамометра. Отношение этого усилия к полному весу буксируемого автомобиля представляет собой коэффициент сцепления. Существуют и другие способы определения φ, например, торможением автомобиля на исследуемом участке дороге с одновременным измерением тормозных путей.

По результатам многочисленных испытаний устанавливают средние величины коэффициента сцепления для различных типов дорожного покрытия. Коэффициент сцепления φ для различных типов дорожного покрытия приведен в таблице 1.2.

Таблица 1.2.

Тип дорожного покрытия

Величина коэффициента сцепления φ

Сухая поверхность

Мокрая поверхность

Асфальт

0,7…0,8

0,3…0,4

Грунтовая дорога

0,5…0,6

0,3…0,4

Глина

0,5…0,6

0,3…0,4

Песок

0,5…0,6

0,4…0,5

Обледенелая дорога

0,2…0,3

Дорога, покрытая снегом

0,2…0,4

Автомобиль с одинарными шинам обладает более высокой проходимостью по сравнению с автомобилем, оснащенным спаренными шинами. Объясняется это тем, что при наличии второй шины при движении по мягкой дороге (глина, песок, снег) дополнительно расходуется мощность на образование второй колеи. Кроме того, при переходе от спаренных колес к одинарным неизбежно должен быть увеличен диаметр шины (по соображениям сохранения заданного удельного давления в зоне контакта колеса с дорогой), что также благоприятно сказывается на повышении проходимости.

Большое влияние на тягово-сцепные качества автомобиля оказывают геометрические параметры грунтозацепов протектора шины. Грунтозацепы шины ведущего колеса, погружаясь в грунт, деформируют его не только в радиальном, но и в тангенциальном направлении, и постепенно уплотняют. По мере уплотнения грунта в тангенциальном направлении, его сопротивление сдвигу возрастает до некоторого предела, после чего начинается разрушение (сдвиг) грунта. Соответственно этому по мере деформации грунта, внешним проявлением чего служит частичная пробуксовка шины (ее поворачивание на угол, соответствующей величине уплотнения грунта), коэффициент сцепления возрастает до некоторого максимума, а затем падает до величины, характеризуемой внутренним трением между частицами грунта.

Эффект аквапланирования (гидропланирования) шины.

На мокрых дорогах, ввиду присутствия пленки влаги между ши­ной и поверхностью дороги, составляющая трения значительно снижается. Поэтому коэффициент сцепления во многом зависит от того, внедряются ли микровыступы дороги в тело протектора. Вступая в соприкосновение с опорной поверхностью, выступы протектора выдавливают влагу из зоны кон­такта. При этом в передней части пятна контакта (зона 1 на рис.9) они не успевают выдавить всю влагу. Поэтому в этой части пятна контакта шина отделена от поверхности дороги слоем влаги и не соприкасается с ее микровыступами, в результате чего здесь возникает гидродинамическое трение, для которого коэффици­ент трения близок к нулю.

Рис.9. Аквапланирование (гидропланирование) шины:

зоны трения: 1 – гидродинамическое трение; 2 – смешанное трение; 3 - граничное трение.

В зоне 2 ввиду большего времени выдавливания, слой влаги гораздо меньше, в результате чего возникает режим смешанного (полусухого) трения, при котором имеет место, как гидродинамическое трение, так и граничное (сухое) трение.

В зоне 3 вся вода оказывается выдавленной, поэтому в этой части пятна все выступы протектора находятся в граничном (сухом) трении с опорной поверхностью, т.е. непосредственно взаимодействуют с опорной поверхностью.

При увеличении скорости движения автомобиля размеры зоны 1 возрастают, а зоны 3 сокращаются. Если слой воды значителен, то при некото­рой скорости движения автомобиля выступы протектора не успевают выдавить ее из пятна контакта. Другими словами, зона 1 разрастается до раз­меров всего пятна контакта. В этом случае возникает процесс аквапланирования (гидропланирования), при котором: шина теряет кон­такт с твердой поверхностью и скользит по воде. При этом коэффи­циент сцепления резко снижается.

Поскольку отвод воды из пятна контакта зависит от глубины канавок протектора, то значение ско­рости, при которой возникает эффект гидропланирования, во мно­гом зависит от степени износа протектора. Чтобы указанная ско­рость резко не снижалась, величина износа протектора по высоте ограничивается. Согласно правилам эксплуатации шин, у грузовых автомобилей остаточная глубина канавок протектора по центру беговой дорожки должна быть не менее 1 мм, у автобусов – 2 мм, а у легковых автомобилей – 1,6 мм. У современных легковых автомобилей отдельные типы шин в протекторной зоне имеют специальные водоотводящие канавки.

studfiles.net

Устройство привода ведущих колес — Мегаобучалка

Цель работы:

На примере переднеприводного автомобиля ВАЗ изучить конструкцию приводов (шрусов) и освоить технику снятия и установку привода колес.

Пояснение к работе:

Крутящий момент от коробки передач передается непосредственно к ведущим колесам, а трансформируется через механизм, называемый дифференциалом привода.

Дифференциал предназначен для распределения крутящего момента между ведущими колесами автомобиля и дает им возможность вращаться с разными угловыми скоростями.

Распределение крутящего момента поровну между ведущими колесами целесообразно в случаях, когда автомобиль движется по дороге с высоким коэффициентом сцепления шин с дорогой. При этом уменьшается нагруженность привода колес, замедляется изнашивание шин и снижается расход топлива.

Однако ведущие колеса не всегда могут вращаться с разной угловой скоростью. При движении на закруглениях улиц и дорог, при повороте внутренние колеса катятся по дуге меньшего радиуса и проходят меньший путь, чем колеса, катящиеся по дуге большего радиуса, т.е. по внешней колее. Следовательно, внешние колеса должны вращаться быстрее внутренних. Частота вращения колес также будет разной при движении автомобиля по неровностям дорог и при разном диаметре шин. Ведущие колеса могут иметь неодинаковый диаметр из-за ненормального давления воздуха в шинах, разного износа шин или неравномерное распределение груза в кузове автомобиля.

Чтобы ведущие колеса автомобиля могли вращаться с разной частотой и проходить разные пути, необходимо устанавливать их не на общей оси, а на отдельных приводных валах и соединять эти валы специальным механизмом, способным обеспечивать вращение колес с разной частотой.

Таким механизмом является дифференциал. Он передает крутящий момент с ведомой шестерни главной передачи на приводные валы колес, у заднеприводных автомобилей это полуоси. У переднеприводных автомобилей – это привода (шрусы).

 

Особенность переднеприводнго автомобиля заключается прежде всего в том, что передние управляемые колеса являются одновременно движущими. Для поворота ведущих колес на валах (полуосях) привода имеют шаровые шарниры, которые должны допускать поворот колес без изменения скорости их вращения. Этому условию удовлетворяют карданы равных угловых скоростей (синхронные шаровые шарниры). Обычный карданный шарнир в этих условиях быстро выходит из строя, так как при отклонениях его ведущего и ведомого звеньев создается неравномерная по угловой скорости передача вращения на ведомое звено. Это вызывает перегрузку валов привода и быстрый износ карданного шарнира.

У современных переднеприводных автомобилей для привода передних колес применяются полуоси с двумя синхронными шаровыми шарнирами: у ведущего колеса жесткого типа (с угловой степенью свободы), у силового агрегата универсального типа (с угловой и осевой степенью свободы).

Применяемый на автомобиле ВАЗ привод передних колес компактен и надежен. Долговечность привода при правильной эксплуатации автомобиля обеспечивается совершенством конструкции шарниров, подбором улучшенных материалов, точностью изготовления деталей, хорошей герметичностью шарниров и применением специальной смазки.

Привод каждого колеса состоит из двух шарниров равных угловых скоростей и вала 10, который у привода левого колеса (маленький) сплошной, а у правого (большой) трубчатый.

 

Наружный шарнир состоит из корпуса 1, сепаратора 6, внутренней обоймы 3, и шести шариков. В корпусе шарнира и обойме выполнены канавки для размещения шариков. Канавки в продольной плоскости выполнены по радиусу, что обеспечивает угол поворота наружного шарнира до 40⁰. Шлицевый наконечник корпуса шарнира устанавливается в ступицу колеса и крепится к ней гайкой. Обойма 3, устанавливается на шлицах вала 10 между упорным кольцом 7 и стопорным кольцом 2.

Внутренний шарнир отличается от наружного тем, что дорожки корпуса и обоймы выполнены прямыми, а не радиусными, что позволяет деталям шарнира перемещаться в продольном направлении. Это необходимо для компенсации перемещений, вызванных колебаниями передней подвески и силового агрегата.

Задание студентам:

На демонстрационном автомобиле ВАЗ с передним приводом снять привод и зарисовать устройство привода в сборе.

 

Порядок выполнения практической работы:

Устанавливаем автомобиль на подъемник или смотровую канаву и выполняют с обеих сторон автомобиля следующие операции.

1. Ослабляют болты крепления переднего колеса, снимают колпак, ступицы и отвертывают гайку крепления ступицы колеса на корпусе наружного шарнира;

2. Вывешивают переднюю часть автомобиля и снимают переднее колесо;

3. Отсоединяют шаровой шарнир рычага подвески от поворотного кулака, отвернув болты его крепления;

4. Отводя в сторону телескопическую стойку передней подвески, вынимают из ступицы шлицевой хвостовик наружного шарнира;

5. Сливают масло из коробки передач;

6. Ударным съемником или молотком через выколотку выбивают корпус внутреннего шарнира из отверстия полуосевой шестерни;

7. Снимают привод колеса.

8. После отсоединения валов от коробки передач необходимо фиксировать полуосевые шестерни оправкой или технологической заглушкой, чтобы они не выпали в картер коробки передач.

9. Зарисовать привод в сборе в отчете и практической работе.

Установка привода колеса ведется в обратной последовательности. При этом обязательно заменяется стопорное кольцо 13 корпуса внутреннего шарнира, чтобы не допустить самопроизвольного разъединения привода колеса и полуосевой шестерни. При необходимости замены сальника полуоси пользуются оправкой.

 

Контрольные вопросы:

1. Где и зачем устанавливают дифференциал?

2. Назначение приводов и полуосей

3. Чем отличается вал привода левого колеса от привода правого колеса ВАЗ 2110?

4. В какой последовательности выполняют работы по снятию и установки приводов?

5. Расскажите устройство шрусов.

 

Оборудование и инструмент применяемый при выполнении практической работы:1. Набор гаечных ключей

2.Привод переднеприводного леггового автомобиля в сборе

Литература:

В.К.Вахлаев, М.Г. Шатров, А.А. Юриевский

«Автомобили»

М. И.Ц. «Академия»

Правило безопасности выполнения задания:

При работе с использованием подъемника будьте осторожны; Перед его включением убедитесь в отсутствии людей в опасной зоне.

 

 

megaobuchalka.ru

Колеса ведущие - Энциклопедия по машиностроению XXL

Свойства эвольвентного зацепления. На рис. 18.4 показаны зубья двух колес — ведущего / и ведомого 2, профили которых очерчены по эвольвентам /61/С1 и КЖ2 и касаются друг друга в точке К. Проведем нормаль п—п к профилям зубьев в точке К. Эта нормаль в соответствии с определением эвольвенты будет касательной к основным окружностям. При вращении колес  [c.181]

Ременная передача (рис. 192) состоит из двух колес (ведущего и ведомого), называемых шкивами, и бесконечного ремня, охваты-  [c.228]

Знак минус перед передаточным отношением показывает, что колеса —ведущее 1 и ведомое 5 —вращаются в разные стороны  [c.121]

Увеличивая высоту головки зуба, нельзя допускать его заострения, при котором вершина головки зуба получается острой с шириной площадки на вершине, равной нулю, или же недостаточной это приводит к быстрому выкрашиванию острой вершины зуба. Проверка зубьев на отсутствие заострения проводится графически следующим образом. Задано число зубьев, модуль и угол зацепления пары сопряженных колес (рис. 211). Пусть верхнее меньшее колесо ведущее. Направление вращения его показано стрелкой. Определим, может ли дуга удаления равняться, например, - Рш, где рш — величина шага зубьев. От точки Р на касательной хх к начальным окружностям откладываем отрезок Pd = - Pw Через  [c.191]

Зубчатое колеса ведущее коническое со спиральными зубьями  [c.126]

Вращение ведущего колеса ведущего вала совершается против вращения стрелки часов, если смотреть вдоль ведущего вала со стороны привода, а ведомого колеса промежуточного вала — по направлению вращения стрелки часов.  [c.346]

В результате упругого скольжения окружная скорость ведомого колеса оказывается несколько меньше окружной скорости колеса ведущего.  [c.188]

Явление упругого скольжения получается из-за упругого сдвига контактных поверхностей колес. Это явление может быть представлено следующим образом. Вступающие в соприкосновение точки обода ведущего колеса и точки обода ведомого колеса сдвигаются одни относительно других, причем точки ведущего колеса опережают точки колеса ведомого, создавая упругое натяжение, заставляющее вращаться ведомое колесо. Опережение точек обода ведущего колеса создает упругое скольжение, вследствие чего ведомое колесо отстает от колеса ведущего. При прочих равных условиях упругое скольжение зависит от величины передаваемого окружного усилия.  [c.189]

Коэффициентом упругого скольжения так же, как и в случае ременной передачи, будем называть отношение разности действительных окружных скоростей V и t 2 ободьев колес 1 и 2 к окружной скорости колеса ведущего  [c.189]

Рис. 7.104. Неполные зубчатые колеса. Ведущее колесо 4 (рис. 7.104, а) за один оборот сообщает ведомому 2 поворот на 180°. Для входа зубьев в зацепление предусмотрены перекатывающиеся рычаги 5. Положение ведомого звена во время паузы фиксируется запирающей дугой 1. На рис. 7.104, д показано зеркальное изображение противоположной стороны колес. Рис. 7.104. <a href="/info/280614">Неполные зубчатые колеса</a>. Ведущее колесо 4 (рис. 7.104, а) за один оборот сообщает ведомому 2 поворот на 180°. Для входа зубьев в зацепление предусмотрены перекатывающиеся рычаги 5. Положение <a href="/info/4860">ведомого звена</a> во время паузы фиксируется запирающей дугой 1. На рис. 7.104, д показано <a href="/info/477218">зеркальное изображение</a> противоположной стороны колес.
Технические решения могут относиться к изделию в целом, его функциональному узлу, к детали узла или к конструктивному элементу детали. В зависимости от места технического решения в общем функциональном строении конструкции решение получает свое наименование, например зубья зацепления с закругленными торцами, а не зубчатое колесо ведущее с закругленными торцами зубьев.  [c.31]

Трансмиссия предназначена для передачи крутящего момента от двигателя к ведущим колесам автомобиля, мотоцикла. Изменение крутящего момента в трансмиссии оценивается ее передаточным числом — отношением угловой скорости вала двигателя к угловой скорости ведущих колес. Разделив крутящий момент, подведенный к ведущим колесам, на их радиус качения, получим силу тяги, обеспечивающую движение автомобиля, мотоцикла. Сила тяги затрачивается на преодоление сил сопротивления движению силы сопротивления качению колес, силы сопротивления воздуха, силы сопротивления подъему и силы сопротивления разгону. Сумма сил сопротивления движению может изменяться в широких пределах в зависимости от условий движений. Сила тяги ограничивается сцеплением ведущих колес с дорогой. Максимальная сила тяги равна произведению коэффициента сцепления колеса с дорогой на сцепной вес, т. е. на часть веса автомобиля (мотоцикла), приходящуюся на ведущие колеса. Более полно силу тяги можно реализовать, если сделать все колеса ведущими. При движении автомобиля главным образом по дорогам с твердым покрытием достаточно двух ведущих колес.  [c.82]

На легковом автомобиле повышенной проходимости ВАЗ-2121 колеса ведущих мостов работают в различных (по сцеплению колес с дорогой) условиях перекатываясь через неровности, колеса вместе с тем преодолевают разный по длине путь. Это означает, что возможны вращение колес одного ведущего моста относительно колес другого п их пробуксовка. Поэтому в трансмиссию таких машин включают дифференциал между ведущими мостами так же, как и между ведущими колесами. По той же причине предусмотрено устройство для их блокировки, Это позволяет улучшить условия работы ведущих мостов, уменьшить износ покрышек, обеспечить автомобилю более высокие тяговые качества на скользких дорогах, повысить проходимость по мягким грунтам.  [c.94]

Методика диагностирования автомобиля на стенде тяговых качеств силового типа следующая. Автомобиль устанавливают на барабаны стенда колесами ведущей оси (трех-  [c.193]

Зубчатые колеса ведущих мостов 3-30 9,00 — 940 620—650 1 Укладка 156 — 217 5  [c.533]

Dm — диаметр колеса (ведущего или ведомого)  [c.80]

Z — число зубьев зубчатого колеса (ведущего или ведомого, шестерни или колеса)  [c.114]

На рис. 62 — планетарный редуктор двухступенчатый. Центральное колесо / — ведущее, водило Я — ведомое, центральное колесо 4 закреплено в корпусе, а колеса 2 и 5 жестко соединены между собой. Передаточное число редуктора  [c.129]

Накатные ролики устанавливают на требуемом межцентровом расстоянии, которое не меняется в процессе накатки. Заготовка перемещается между накатниками принудительно или в результате самозатягивания и может быть жестко связана с эталонным колесом, которое перемещается вместе с ней между колесами ведущего (делительного) механизма. Если такой связи нет, но заготовка все же принудительно подается в рабочую зону, то накатывание с тангенциальной подачей ведется по так называемой дифференциальной схеме. При бесцентровой накатке заготовка перемещается в тангенциальном направлении вследствие самозатягивания и не связана с эталонным колесом, синхронизирующим вращение накатников.  [c.342]

Пример 2. Рассмотрим автомобиль, который условно представим в виде системы из двух тел колес ведущей пары и кузова оба тела могут вращаться около одной общей оси — оси ведущей пары.  [c.244]

Из опыта известно, что, когда машина трогается с места или набирает скорость, она как бы оседает на задние колеса. Когда же машина останавливается, она оседает на передние колеса. Оседание машины связано с проявлением закона сохранения момента импульса системы. В то мгновение, когда происходит изменение угловой скорости колес ведущей пары, г,, е. появляется дополнительный момент импульса ведуш,ей пары, возникает такой же по модулю, но противоположный по направлению момент импульса кузова относительно оси пары. Кузов поворачивается около этой оси, что и приводит к его оседанию. Резкое торможение на переднюю пару колес может привести к перевертыванию машины вверх колесами .  [c.244]

На рис. 9.21 дан чертеж общего вида одноступенчатого редуктора со сварным цилиндрическим колесом. Ведущий вал вращается с угловой скоростью 59,6 рад/сек. Требуется определить номинальную мощность, которую может передать редуктор, из условия контактной прочности зубьев колеса, если допускаемое контактное напряжение [а] = 500 Мн1м . Коэффициент нагрузки К = 1,2.  [c.163]

Лобовой вариатор. Схема лобового вариатора показана на рис. 22.2, а, а конструкция катков — на рис. 22.2, б. На ведущем валу 1, вращающемся с угловой скоростью Wi, насажен диск с радиусом г, который может перемещаться вдоль оси. Ведомый вал 2 с диском радиуса R прижимается к колесу ведущего нала. Изменение передаточного отношения осуществляется перемещением ведущего диска по оси, при этом радиус ведомого диска меняется от до Rm x- Минимальное и максимальное передаточные отношения определяют по формулам  [c.259]

Второе колесо ведущее. Ход рассуждений для вывода к. п. д. планетарного редуктора (ri2s) остается прежним. В уравнении  [c.337]

Диск сцепления, отулка валика распределителя Крыльчатка насоса, зубчатые колеса, ведущее и ведомое, втулка клапана Всасывающая труба, корпус масляного насоса, шкив коленчатого вала Выхлопная труба, крышка клапанной коробки, крышка распределения, картер коробки скоростей Корпус помпы переключения передач Картер сцепления, картер маховика Блок и крышка блока  [c.257]

Рис. 3.168. Дифференциальный механизм с коническими зубчатыми колесами. Конические колеса 2, 5 соединены с валами 1, б н находятся в зацеплении с зубчатыми колесами 3, 7, оси которых укреплены в коробке, имеющей зубчатое колесо 4, соединенное с колесом ведущего вала I. Механизм применяется для суммирования вращений пли для компеисацни разности частот вращения. Поводок II всегда составляет полусумму частот вращения валов I и б. Механизм применяется в автомобилях, тракторах, станках и пр. в качестве уравнительного или суммирующего механизма. Если дифференциал применен в экипаже (см. рис. 3.174), то, когда ведущие колеса при движении экипажа по прямой вращаются с одинаковым числом оборотов, механизм дифференциала, т. е. зубчатые колеса 2, 5 и 3, 7 вместе с коробкой работают как одно жесткое тело. Если же колеса начинают катиться по криволинейному пути, то зубчатые колеса 3, 7 начинают вращаться, обеспечивая необходимое различие частот вращения ведущих колес экипажа. Рис. 3.168. <a href="/info/164">Дифференциальный механизм</a> с <a href="/info/4460">коническими зубчатыми колесами</a>. <a href="/info/1000">Конические колеса</a> 2, 5 соединены с валами 1, б н находятся в зацеплении с <a href="/info/999">зубчатыми колесами</a> 3, 7, оси которых укреплены в коробке, имеющей <a href="/info/999">зубчатое колесо</a> 4, соединенное с колесом ведущего вала I. Механизм применяется для суммирования вращений пли для компеисацни разности <a href="/info/2051">частот вращения</a>. <a href="/info/12254">Поводок</a> II всегда составляет полусумму <a href="/info/2051">частот вращения</a> валов I и б. Механизм применяется в автомобилях, тракторах, станках и пр. в качестве уравнительного или <a href="/info/12224">суммирующего механизма</a>. Если дифференциал применен в экипаже (см. рис. 3.174), то, когда ведущие колеса при движении экипажа по прямой вращаются с одинаковым <a href="/info/15165">числом оборотов</a>, механизм дифференциала, т. е. <a href="/info/999">зубчатые колеса</a> 2, 5 и 3, 7 вместе с <a href="/info/72034">коробкой</a> работают как одно <a href="/info/147104">жесткое тело</a>. Если же колеса начинают катиться по криволинейному пути, то <a href="/info/999">зубчатые колеса</a> 3, 7 начинают вращаться, обеспечивая необходимое различие <a href="/info/2051">частот вращения</a> ведущих колес экипажа.
Параллельным будем называть соединение рычажной и зубчатой кинематических цепей, в котором зубчатые колеса располагаются на осях шарниров рычажной кинематической цепи, звенья которой обеспечивают постоянное межцентровое расстояние в каждой паре зубчатых колес. Ведущим звеном в таком механизме может быть звено первой или второй кинематической цепи или звено, принадлежащее обеим цепям одновременно. Механизмы второго типа, в которых осуществлено параллельное соединение рычажной и зубчатой кинематических цепей, а также механизмы, в которых число подвижных звеньев рычажной цепи больше единицы, будем называть зубчаторычажными. При последовательном соединении отключение зубчатой цепи от рычажной не изменяет степени подвижности последи . В параллельном соединении,  [c.3]

Зубчатые колеса ведущих мостов легковых автомобилей 19ХГН 0,8—1,1 58—63 32—45  [c.343]

Кинематическую погрешность зубчатых колес с выявлением погрешности обката проводят на кинематомерах, основанных на механическом, электрическом и фотоэлектрических принципах. Кине-матомеры основаны на измерении, регистрации, гармоническом анализе текущего рассогласования углов поворота ведущего и ведомого зубчатых колес (ведущим может быть измерительное колесо или колесо, парное к ведомому), установленных на номинальном межосевом расстоянии по отношению друг к другу. В современных моделях рассогласование измеряют с помощью различных электрических и фотоэлектрических датчиков углов поворота, преобразующих рассогласование в электрические сигналы, смещение которых по фазам измеряют фазометрами.  [c.128]

Параметр 12=22/21 по ГОСТ 16532 — 70 назьшают передаточным числом и определяют как отношение большего числа зубьев к меньшему независимо от того, как передается движение от 2] к 22 или от 22 к 2]. Это передаточное число и отличается от передаточного отношения I, которое равно отношению угловых скоростей ведущего колеса к ведомому и которое может быть меньше или больше единицы, положительным или отрицательным. Применение и вместо 2 связано только с принятой формой расчетных зависимостей для контактных напряжений [см. вывод формулы (8.9), где выражено через d (меньшее колесо), а не через 2/2 (большее колесо)]. Величина контактных напряжений, так же как и передаточное число и, не зависит от того, какое колесо ведущее, а величина передаточного отношения 2 зависит. Однозначное определение и позволяет уменьшить вероятность ошибки при расчете. Передаточное число и относится только к одной паре зубчатых колес. Его не следует применять для обозначения передаточного отношения многоступенчатых редукторов, планетарных, цепных, ременных и других передач. Там справедливо только обозначение г.  [c.140]

РАСЧЕТ ЗУБЧАТЫХ КОЛЕС ВЕДУЩИХ МОСТОЗ И КОРОБОК ПЕРЕДАЧ  [c.140]

Зубчатые колеса ведущих мостов легковых автомобилей 19ХГН Нитро- демеитация 870 800 Пресс Глиссон, масло МЗМ-16, i = 30-5-40 С 0,8—1,1 58—63 32—45  [c.543]

mash-xxl.info

Ведущие и направляющие колеса

Строительные машины и оборудование, справочник

Категория:

   Автомобили и трактора

Ведущие и направляющие колеса

В настоящее время все отечественные колесные тракторы имеют колеса с пневматическими шинами низкого давления. Обладая высокой эластичностью, шины низкого давления обеспечивают большую опорную поверхность колесам трактора, снижают их удельное давление и сопротивление качению, а также смягчают удары, передающиеся остову трактора от поверхности дороги, улучшая сохранность механизмов и плавность хода трактора.

Ведущие колеса обеспечивают преобразование крутящего момента, подводимого к ним от конечной передачи, в касательную силу тяги, необходимую для передвижения трактора.

Конструкция ведущих колес зависит в основном от типа конечных передач и способа изменения ширины колеи трактора.

На тракторах МТЗ-80 и МТ3-8 ведущее колесо состоит из ступицы (рис. 223, а), диска с ободом и шины. Ступица ведущего колеса закреплена болтами на полуоси конечной передачи. Для увеличения сцепления ведущих колес с почвой рекомендуют к дискам колес привертывать грузы либо заполнять камеру водой или 25%-ным раствором хлористого кальция1, который не замерзает при — 30 °С.

Передние направляющие колеса воспринимают относительно небольшую нагрузку (около 25% массы трактора) и для удобства поворота изготовляются небольшого диаметра. Ступица (рис. 223, б) направляющего колеса устанавливается на цапфе поворотного кулака передней оси на двух конических роликовых подшипниках. Подшипники регулируют и закрепляют гайкой. Внутреняя полость ступицы заполняется консистентной смазкой с внутренней стороны ступица уплотнена сальником, а снаружи закрыта колнаком.

На тракторах К-701 и К-7 0 установлены четыре . односкатных бездисковых ведущих колеса с шинами низкого давления. Колеса закреплены на ступице водила конечной передачи сломощью специальных прижимов и ограничителей.

Такая конструкция ведущего колеса позволяет значительно сократить габаритную ширину трактора и обеспечить необходимый дорожный просвет, так как конечная передача целиком вписывается в обод колеса.

Рис. 223. Колеса трактора:а — ведущие; б — направляющие

Читать далее: Передний мост и подвеска колесных тракторов

Категория: - Автомобили и трактора

Главная → Справочник → Статьи → Форум

stroy-technics.ru

Значение словосочетания ВЕДУЩИЕ КОЛЁСА. Что такое ВЕДУЩИЕ КОЛЁСА?

Значение слова не найдено

Делаем Карту слов лучше вместе

Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю как устроен ваш мир. Помоги мне разобраться!

Спасибо! Я стал чуточку лучше понимать мир эмоций.

Вопрос: благодушный — это связано с эмоциями, чувствами, переживаниями (взрыв смеха, праведное негодование, счастливая улыбка)?

Сильныеэмоции

Средней силыэмоции

Какие-тоэмоции

Предложения со словом «ведущие колёса»:

  • Трансмиссией называется совокупность агрегатов, предназначенных для передачи крутящего момента от двигателя к ведущим колёсам автомобиля и для изменения величины и направления этого момента.
  • Если на Т-34 ленивец опущен, то гусеница на ведущем колесе будет проскакивать, не цепляясь гребнями.
  • Бронебойный снаряд вмял, расколол ведущее колесо и застрял в нижней части лобовой брони, напротив места механика-водителя.
  • (все предложения)

Оставить комментарий

Текст комментария:

kartaslov.ru


© 2007—2018
423800, Набережные Челны , база Партнер Плюс, тел. 8 800 100-58-94 (звонок бесплатный)