Камаз 44108 тягач В наличии!
Тягач КАМАЗ 44108-6030-24
евро3, новый, дв.КАМАЗ 740.55-300л.с., КПП ZF9, ТНВД ЯЗДА, 6х6, нагрузка на седло 12т, бак 210+350л, МКБ, МОБ
 
карта сервера
«ООО Старт Импэкс» продажа грузовых автомобилей камаз по выгодным ценам
+7 (8552) 31-97-24
+7 (904) 6654712
8 800 1005894
звонок бесплатный

Наши сотрудники:
Виталий
+7 (8552) 31-97-24

[email protected]

 

Екатерина - специалист по продаже а/м КАМАЗ
+7 (904) 6654712

[email protected]

 

Фото техники

20 тонный, 20 кубовый самосвал КАМАЗ 6520-029 в наличии
15-тонный строительный самосвал КАМАЗ 65115 на стоянке. Техника в наличии
Традиционно КАМАЗ побеждает в дакаре

тел.8 800 100 58 94

Техника в наличии

тягач КАМАЗ-44108
Тягач КАМАЗ 44108-6030-24
2014г, 6х6, Евро3, дв.КАМАЗ 300 л.с., КПП ZF9, бак 210л+350л, МКБ,МОБ,рестайлинг.
цена 2 220 000 руб.,
 
КАМАЗ-4308
КАМАЗ 4308-6063-28(R4)
4х2,дв. Cummins ISB6.7e4 245л.с. (Е-4),КПП ZF6S1000, V кузова=39,7куб.м., спальное место, бак 210л, шк-пет,МКБ, ТНВД BOSCH, система нейтрализ. ОГ(AdBlue), тент, каркас, рестайлинг, внутр. размеры платформы 6112х2470х730 мм
цена 1 950 000 руб.,
КАМАЗ-6520
Самосвал КАМАЗ 6520-057
2014г, 6х4,Евро3, дв.КАМАЗ 320 л.с., КПП ZF16, ТНВД ЯЗДА, бак 350л, г/п 20 тонн, V кузова =20 куб.м.,МКБ,МОБ, со спальным местом.
цена 2 700 000 руб.,
 
КАМАЗ-6522
Самосвал 6522-027
2014, 6х6, дв.КАМАЗ 740.51,320 л.с., КПП ZF16,бак 350л, г/п 19 тонн,V кузова 12куб.м.,МКБ,МОБ,задняя разгрузка,обогрев платформы.
цена 3 190 000 руб.,

СУПЕР ЦЕНА

на АВТОМОБИЛИ КАМАЗ
43118-010-10 (дв.740.30-260 л.с.) 2 220 000
43118-6033-24 (дв.740.55-300 л.с.) 2 300 000
65117-029 (дв.740.30-260 л.с.) 2 200 000
65117-6010-62 (дв.740.62-280 л.с.) 2 350 000
44108 (дв.740.30-260 л.с.) 2 160 000
44108-6030-24 (дв.740.55,рест.) 2 200 000
65116-010-62 (дв.740.62-280 л.с.) 1 880 000
6460 (дв.740.50-360 л.с.) 2 180 000
45143-011-15 (дв.740.13-260л.с) 2 180 000
65115 (дв.740.62-280 л.с.,рест.) 2 190 000
65115 (дв.740.62-280 л.с.,3-х стор) 2 295 000
6520 (дв.740.51-320 л.с.) 2 610 000
6520 (дв.740.51-320 л.с.,сп.место) 2 700 000
6522-027 (дв.740.51-320 л.с.,6х6) 3 190 000


Перегон грузовых автомобилей
Перегон грузовых автомобилей
подробнее про услугу перегона можно прочесть здесь.


Самосвал Форд Нужны самосвалы? Обратите внимание на Ford-65513-02.

КАМАЗы в лизинг

ООО «Старт Импэкс» имеет возможность поставки грузовой автотехники КАМАЗ, а так же спецтехники на шасси КАМАЗ в лизинг. Продажа грузовой техники по лизинговым схемам имеет определенные выгоды для покупателя грузовика. Рассрочка платежа, а так же то обстоятельство, что грузовики до полной выплаты лизинговых платежей находятся на балансе лизингодателя, и соответственно покупатель автомобиля не платит налогов на имущество. Мы готовы предложить любые модели бортовых автомобилей, тягачей и самосвалов по самым выгодным лизинговым схемам.

Контактная информация.

г. Набережные Челны, Промкомзона-2, Автодорога №3, база «Партнер плюс».

тел/факс (8552) 388373.
Схема проезда



Теплопроводность или теплопередача. В какой среде происходит теплопроводность


Теплопроводность или теплопередача

 

 

 

 

 

 

 

теплопроводность

Передача тепла в среде происходит при наличии разности температур. При этом тепло распространяется из области повышенных температур в область пониженных. Например, зимой в отапливаемых зданиях теплопередача происходит через наружные ограждения из здания, а летом при сильном нагреве поверхностей стен за счет солнечной радиации – в здание.

 

Различают три вида теплопередачи: теплопроводность, конвекция, излучение.

 

1. Теплопроводность - способность материала передавать через свою толщину тепловой поток, возникающий из-за разности температур на противоположных поверхностях. Теплопроводность характеризуется количеством теплоты, проходящей за 1 ч через образец материала толщиной 1 м, площадью 1 м2 при разности температур на противоположных поверхностях образца 1 градуса Цельсия. Наиболее полно теплопроводность проявляется в сплошных твердых телах, но также имеет место и в капельных жидкостях и газах. Теплопроводность выражается в Вт/(м К) или Вт/(м градус Цельсия). Теплопроводность зависит от средней плотности и химико-минерального состава материала, его структуры, пористости, влажности и средней температуры материала. Чем больше пористость (меньше средняя плотность), тем ниже теплопроводность материала. С увеличением влажности материала теплопроводность резко увеличивается, т.е. снижаются показатели теплоизоляционных свойств материала. Различные материалы проводят теплоту по - разному: одни - быстрее (например: металлы), другие - медленнее (теплоизоляционные материалы). Количественным показателем теплопроводности различных тел служит коэффициент теплопроводности – λ (лямбда). Коэффициент теплопроводности численно равен количеству тепла в Джоулях(Дж), проходящему через 1м 2 ограждения толщиной в 1 м в единицу времени при разности температур поверхностей ограждения 1 °С, и имеющим размерность Вт/(м×°С). Строительные материалы имеют коэффициенты теплопроводности в пределах от 3,5 (гранит) до 0,04 Вт/(м×°С) (пенополистирол). Определяется λ экспериментальным путем и зависит от плотности, влажности, температуры и структуры материала. Для большинства случаев увеличение плотности, влажности и температуры материала приводит к повышению величины λ.

 

2. Конвекция – процесс передачи тепла движущими массами жидкости и газа. Движение это может быть естественным за счет температурного перепада в пределах среды или искусственным, вызванным каким-либо внешним возбуждением, например, работой вентилятора.

 

3. Тепловое излучение – перенос тепла в газообразной среде или пустоте (вакууме) в виде электромагнитных волн. При взаимном облучении двух поверхностей происходит двойной процесс преобразования тепловой энергии. Вначале на поверхности излучающего тела происходит преобразование тепловой энергии в лучистую, а затем лучистой в тепловую на поверхности тела, поглощающего лучистое тепло. Процессы передачи тепла в зданиях и их ограждающих конструкциях связаны со всеми тремя видами теплопередачи. При этом в воздушной среде у поверхности ограждений, в воздушных прослойках и пустотах преобладает теплообмен конвекцией и излучением. В твердых материалах конструкций основным видом передачи тепла является теплопроводность.

 

Теплозащитные (теплоизоляционные) материалы и их основные характеристики.

Теплозащитными называют строительные материалы и изделия, предназначенные для тепловой защиты конструкций зданий и сооружений, а также различных технических применений. Основной особенностью теплозащитных материалов является их высокая пористость и, следовательно, малая средняя плотность и низкая теплопроводность.

 

Применение теплозащитных материалов в строительстве позволяет снизить массу конструкций, уменьшить потребление конструкционных строительных материалов (бетон, кирпич, древесина и др.). Теплозащитные материалы существенно улучшают комфорт в жилых помещениях. Важнейшей целью теплозащиты строительных конструкций является сокращение расхода энергии на отопление здания.

 

Основной путь снижения энергозатрат на отопление зданий лежит в повышении термического сопротивления ограждающих конструкций с помощью теплозащитных материалов.

Свойства теплозащитных материалов применительно к строительству характеризуются следующими основными параметрами.

 

Важнейшей технической характеристикой теплозащитных материалов является теплопроводность.

На величину теплопроводности теплозащитных материалов оказывают влияние плотность материала, вид, размеры и расположение пор (пустот) и т.д. Сильное влияние на теплопроводность оказывает также температура материала и, особенно, его влажность.

 

Пористость определяет содержание пор в материале и выражается процентным соотношением объема пор к общему объему материала. Для строительных материалов она изменяется от нуля до 90 %. У материалов типа пенополистирола она может быть еще выше.

Плотность - отношение массы сухого материала к его объему, определенному при заданной нагрузке (кг/м3). Прочность на сжатие - это величина нагрузки (кПа), вызывающей изменение толщины изделия на 10%.

Сжимаемость - способность материала изменять толщину под действием заданного давления. Сжимаемость характеризуется относительной деформацией материала под действием нагрузки 2 кПа.

Паропроницаемость — свойство материалов ограждающей конструкции пропускать влагу под действием разности парциальных давлений водяного пара на ее наружной и внутренней поверхностях.

Водопоглощение - способность материала впитывать и удерживать в порах (пустотах) влагу при непосредственном контакте с водой. Водопоглощение теплозащитных материалов характеризуется количеством воды, которое впитывает сухой материал при выдерживании в воде, отнесенным к массе или объему сухого материала. Для снижения водопоглощения ведущие производители теплозащитных материалов вводят в них гидрофобизирующие добавки.

Влажность – содержание в материале химически свободной воды. С повышением влажности теплозащитных материалов повышается их теплопроводность.

Морозостойкость - способность материала в насыщенном влагой состоянии выдерживать многократное попеременное замораживание и оттаивание без признаков разрушения. От этого показателя существенно зависит долговечность всей конструкции.

Воздухопроницаемость. Теплозащитные свойства тем выше, чем ниже воздухопроницаемость теплозащитного материала. Огнестойкость - способность материала выдерживать воздействие высоких температур без воспламенения, нарушения структуры, прочности и других его свойств.

Теплоемкость – способность материала поглощать тепло при повышении температуры. Количественно теплоемкость характеризуется удельной теплоемкостью с, равной количеству тепла в Дж, необходимому для повышения температуры 1 кг материала на 1 °С, и имеющей размерность Дж/(кг×°С). Величина с зависит от степени влажности материала: при увеличении влажности, теплоемкость увеличивается.

Термическое сопротивление - важнейшая характеристика качества наружных ограждающих конструкции, связанная с теплопроводностью материалов. От нее зависит толщина наружных стен и расход топлива на отопление зданий.

 

Теплозащита ограждающих конструкций.

 

К строительным ограждающим конструкциям относят стены, кровлю, окна – все то, что ограждает нас от перепадов температур, влаги, ветра и т.д.

 

Устройство хорошей теплозащиты позволяет экономить до 50% энергии, расходуемой на отопление и обогрев здания площадью около 200м2 , затратив 15кВт вместо 30кВт, что в настоящее время особенно важно из – за нехватки и дороговизны энергии.

 

Итак, мы выяснили, что уменьшить затраты на отопление можно изменив конструкцию стены. Так какой же она должна быть? Теплозащитные свойства ограждающей конструкции зависят от ее толщины и коэффициента теплопроводности материала, из которого она построена. Если стена состоит из нескольких слоев (например, кирпич – утеплитель – кирпич), то ее термическое сопротивление будет складываться из коэффициентов теплопроводности, которые приведены в таблице № 3.

 

Однослойные кирпичные или шлакобетонные стены толщиной 500-650 мм обеспечивают уровень теплозащиты, как выяснилось, приблизительно в три раза меньше требуемой. Высокими характеристиками, соответствующими современным требованиям, обладают трехслойные ограждения, где между наружными и внутренними стенами, соединенными гибкими связями в виде защищенных от коррозии арматурных или стеклопластиковых стержней или каркасов, уложенные в горизонтальные швы кладки, помещен слой теплозащитного материала.

 

Если материал стенок, обеспечивающих прочность конструкции, вопросов не вызывает и достаточно традиционен (кирпич, стеновые панели, шлакоблоки). То материал, идущий на утепление, весьма разнообразен как по виду (маты, плиты, рулоны) так и по названиям, изготовителю и цене. Мягкий пористый утеплитель из минеральной ваты или стекловолокна удобен при заполнении полостей сложной конфигурации, а твердые утеплители, в виде плит определенных размеров (пенопласт, пеноизол, пенополиуретан), более технологичны. Все подобные материалы не горючи, пожаробезопасны, высокогигиеничны. Различаются пористые теплоизоляционные материалы и по назначению: одни больше подходят для утепления трубопроводов и резервуаров в промышленном строительстве. Другие - для внутренних перегородок здания или изготовленные с элементами парозащиты для использования в вентилируемых фасадах. Помимо того, что подобные материалы хорошо сохраняют нужную температуру внутри помещений, они являются отличным звукоизолятором, повышая комфортность и качество жилья. Что касается коэффициента теплопроводности, то он у всех материалов подобного рода аналогичен (таблица № 4). Необходимо лишь заметить, что коэффициенты теплопроводности пористых минеральных утеплителей, даны для их сухого состояния и при эксплуатации в районах средней полосы при естественной влажности их значение необходимо увеличивать примерно в полтора раза.

 

В помещении, где колебания температуры нечасты и невелики - строительство домов , утеплитель располагают ближе к наружной поверхности, защищая его от атмосферной влаги пленками, а от осадков - сайдингом, вагонкой или другими покрытиями, обеспечивающими защиту стены.

 

Стены здания, используемого от случая к случаю (мастерские, подсобные помещения, бани) для уменьшения количества тепла и времени, затрачиваемого на его обогрев, требует иного расположения утеплителя - как можно ближе к внутренней стороне. В этом случае уменьшается количество энергии, идущей на прогрев основного массива стены, материала который потребляет тепла в 15 - 20 раз больше, чем тонкий слой утеплителя. В случае подобной конструкции следует обязательно предусмотреть хорошую внутреннюю пароизоляцию утеплителя, так как влажность внутри помещения всегда выше, чем снаружи. В любом случае во всех помещениях здания необходимо предусмотреть вентиляцию, обеспечивающую достаточный воздухообмен в объемах не меньших, чем требуют санитарные нормы.

 

Однако многослойным ограждающим конструкциям присущи и некоторые недостатки, снижающие их эффективность. Поэтому, применение многослойных конструкций в строительстве целесообразно именно при реконструкции существующих зданий и сооружений, не отвечающих возросшим требованиям теплотехнических норм.

 

И тем не менее для многослойных ограждающих конструкций характерна большая трудоемкость возведения и малая воздухопроницаемость, теплотехническая неоднородность и, наконец, возможность конденсации влаги между разнородными слоями такой стены - все это серьезный недостаток многослойных композиций. Теплотехническая однородность однослойных ограждений в 1.3-1.5 раз больше, чем в многослойных.

 

Кроме того, проблема долговечности различных типов утеплителей в многослойных ограждающих конструкциях недостаточно изучена. Поэтому современное капитальное строительство развивается именно по пути возведения не многослойных, а однослойных ограждающих конструкций.

 

Из современных строительных материалов, имеющих высокие показатели теплосопротивления, малый объемный вес и, поэтому являющихся оптимальным материалом для возведения теплоэффективных однослойных ограждающих конструкций, можно отметить ячеистые бетоны (газобетон, пенобетон) и бетоны на легких заполнителях (полистиролбетон, вермикулитобетон). Для этих материалов характерно, что при средней плотности 600кг/м3 коэффициент теплопроводности в среднем составляет 0.14 - 0.145 Вт/ (м*Со), что позволяет создавать ограждающие конструкции, обеспечивающие требуемое теплосопротивление при умеренной толщине наружных стен. Итак, рассмотрев основные виды энергосберегающих материалов, применяемых в современном строительстве, можно выделить наиболее целесообразную область применения этих видов. При реконструкции существующих зданий, несмотря на значительные трудозатраты, наиболее перспективным представляется использование утеплителей на основе пенополистирола и волокнистых минеральных плит. Однако при капитальном строительстве, либо при сложных реконструкциях зданий (например надстройка дополнительного этажа, устройство мансарды и т.д.), целесообразно применение однослойных ограждающих конструкций на основе теплоэффективных строительных материалов (пенобетон, газобетон, полистиролбетон)

 

теплопроводность стен из разных материалов сравнение

 

Узнать стоимость строительство домов можно здесь из различных материалов и проектов

 

xn--i1adjheebb.xn--p1ai

Теплопроводность - среда - Большая Энциклопедия Нефти и Газа, статья, страница 1

Теплопроводность - среда

Cтраница 1

Теплопроводность среды, в которой находится шихтованный сердечник, оказывает значительное влияние. С одной стороны, эта среда иногда проникает в изоляцию листов и, таким образом, влияет на величину Яи; с другой стороны, между изоляцией и прилегающим листом стали также всегда имеется тонкая прослойка окружающей среды. Отсюда можно сделать дальнейший вывод о том, что давление, под которым находится сердечник, также оказывает значительное влияние, так как повышенное давление уменьшает толщину прослойки, заполняемой окружающей средой.  [1]

Изменение теплопроводности среды приводит к изменению температуры термосопротивления, при которой осуществляется тепловое равновесие, что приводит к изменению его сопротивления. Таким образом, в вакуумметрах ( приборах для измерения вакуума) используется зависимость теплопроводности газа от давления.  [3]

Теплоемкость и теплопроводность среды - степенные функции температуры, а ее плотность постоянна. Определить закон обращения температуры в нуль вблизи границы области, до которой в данный момент распространялось тепло из некоторого произвольного источника; вне этой области температура равна нулю.  [4]

Вязкость и теплопроводность среды играют примерно одинаковую роль в поглощении звука, хотя влияние вязкости несколько больше. Влияние теплопроводности становится более значительным, когда звук распространяется вдоль твердой стенки; в этом случае имеют место более заметные перепады в значениях температуры соседних элементов воздуха, а также воздуха и стенки.  [5]

К - теплопроводность среды; п, и Av - показатель преломления и коэффициент поглощения для частоты v спектра; / в ( v, Т) - функция Планка; R, - коэффициент отражения границ; ЕЗ 00 - интегро-экспоненциальная функция третьего порядка.  [6]

Теплоемкость и теплопроводность среды - степенные функции температуры, а ее плотность постоянна. Определить закон обращения температуры в нуль вблизи границы области, до которой в данный момент распространялось тепло из некоторого произвольного источника; вне этой области температура равна нулю.  [7]

Теплоемкость и теплопроводность среды - степенные функции температуры, а ее плотность постоянна.  [8]

Лс - общая теплопроводность среды, в которой наблюдается конвекция.  [10]

Хс - общая теплопроводность среды, в которой наблюдается конвекция.  [12]

Если коэффициент теплопроводности среды по зависит от плотности, ситуация заметно упрощается.  [13]

Если коэффициент теплопроводности среды можно с достаточной точностью считать постоянным, то уравнение (2.18) еще более упрощается.  [14]

Пусть коэффициент теплопроводности тепловыделяющей среды настолько велик, что градиентом температуры для нее можно пренебречь. Между наружной поверхностью цилиндра и окружающей средой происходит нестационарный конвективный теплообмен.  [15]

Страницы:      1    2    3    4

www.ngpedia.ru

Необходимое условие теплопередачи в любой среде? — КиберПедия

Перемещение теплоты в какой-либо среде возможно при условии, что температура в отдельных ее местах неодинакова. Разность температур в среде — необходимое условие для возникновения в ней теплопередачи, при этом перемещение теплоты происходит в направлении более низкой температуры. При разности температур воздуха внутри и снаружи здания происходит теплопередача через наружные ограждающие конструкции. Зимой в отапливаемых зданиях теплопередача происходит через наружные ограждения из здания; теряемая при этом зданием теплота возмещается теплотой, подаваемой различными системами отопления. В зданиях холодильников в летний период теплопередача происходит в обратном направлении, т. е. внутрь здания. В холодильниках требуемая температура воздуха поддерживается холодильными машинами, в других зданиях — при помощи вентиляции, в зданиях специального назначения — системами кондиционирования воздуха. Наружные ограждающие конструкции разделяют среды с различными температурами, что и вызывает процессы теплопередачи в них.

 

Что определяет теплопроводность материала?

Теплопроводность зависит от средней плотности материала (с увеличением средней плотности теплопроводность возрастает), его структуры, пористости, влажности и средней температуры слоя материала. Чем выше пористость (меньше средняя плотность) материала, тем ниже теплопроводность. С увеличением влажности материала теплопроводность резко возрастает, при этом понижаются его теплоизоляционные свойства. Поэтому все теплоизоляционные материалы хранят в помещении или под навесом, а в теплоизоляционной конструкции защищают от попадания влаги покровным слоем. (Строительные материалы состоят из твердой фазы, а также пор и капилляров, которые заполнены воздухом, водяным паром или жидкостью. Соотношение и характер этих элементов и определяют теплопроводность материала.)

 

Здание как единая энергетическая система

Совокупность всех факторов и процессов (внешних и внутрен-

них воздействий), влияющих на формирование теплового микро-

климата помещений, называется тепловым режимом здания.

Ограждения не только защищают помещение от наружной

среды, но и обмениваются с ним теплотой и влагой, пропускают

воздух сквозь себя как внутрь, так и наружу. Задача поддержания

заданного теплового режима помещений здания (поддержания на

необходимом уровне температуры и влажности воздуха, его под-

вижности, радиационной температуры помещения) возлагается на

инженерные системы отопления, вентиляции и кондиционирова-

ния воздуха. Однако определение тепловой мощности и режима

работы этих систем невозможно без учета влияния тепловлагоза-

щитных и теплоинерционных свойств ограждений. Поэтому сис-

тема кондиционирования микроклиматапомещений включает

в себя все инженерные средства, обеспечивающие заданный мик-

роклимат обслуживаемых помещений: ограждающие конструкции

здания и инженерные системы отопления, вентиляции и конди-

ционирования воздуха. Таким образом, современное здание –

сложная взаимосвязанная система тепломассообмена – единая

Энергетическая система.

Теплопроводность– вид передачи теплоты между неподвиж-

ными частицами твердого, жидкого или газообразного вещества.

Таким образом, теплопроводность – это теплообмен между части-

цами или элементами структуры материальной среды, находящими-

ся в непосредственном соприкосновении друг с другом. При изуче-

нии теплопроводности вещество рассматривается как сплошная мас-

са, его молекулярное строение игнорируется. В чистом виде тепло-

проводность встречается только в твердых телах, так как в жидких и

газообразных средах практически невозможно обеспечить непод-

вижность вещества.

Большинство строительных материалов являются пористыми те-

лами. В порах находится воздух, имеющий возможность двигаться, т.е.

переносить теплоту конвекцией. Считается, что конвективной состав-

ляющей теплопроводности строительных материалов можно пренеб-

речь ввиду ее малости. Внутри поры между поверхностями ее стенок

происходит лучистый теплообмен. Передача теплоты излучением в

порах материалов определяется главным образом размером пор, пото-

му что чем больше поры, тем больше разность температуры на ее стен-

ках. При рассмотрении теплопроводности характеристики этого про-

цесса относят к общей массе вещества: скелету и порам совместно.

Ограждающие конструкции здания, как правило, является плос-

ко-параллельными стенками, теплоперенос в которых осуществля-

ется в одном направлении. Кроме того, обычно при теплотехниче-

ских расчетах наружных ограждающих конструкций принимается,

что теплопередача происходит при стационарных тепловых усло-

виях, т.е. при постоянстве во времени всех характеристик процесса:

теплового потока, температуры в каждой точке, теплофизических

характеристик строительных материалов. Поэтому важно рассмот-

реть процесс одномерной стационарной теплопроводности в од-

нородном материале, который описывается уравнением Фурье:

 

qт=- λ (dt/dx)

 

где qт – поверхностная плотность теплового потока, проходящего че-

рез плоскость, перпендикулярную тепловому потоку, Вт/м2;

λ – теплопроводность материала, Вт/м·°С;

t – температура, изменяющаяся вдоль оси x,°С.

Отношение dt/dx носит название градиента температуры, оС/м,

и обозначается grad t. Градиент температуры направлен в сторону

возрастания температуры, которое связано с поглощением теплоты и

уменьшением теплового потока. Знак минус, стоящий в правой час-

ти уравнения , показывает, что увеличение теплового потока не

совпадает с увеличением температуры.

Теплопроводность λ является одной из основных тепловых

характеристик материала. Как следует из уравнения (2.1) тепло-

проводность материала – это мера проводимости теплоты мате-

риалом, численно равная тепловому потоку, проходящему сквозь

1 м2 площади, перпендикулярной направлению потока, при гра-

диенте температуры вдоль потока, равном 1 °С/м (рис. 1). Чем

больше значение λ, тем интенсивнее в таком материале процесс

теплопроводности, больше тепловой поток. Поэтому теплоизоля-

ционными материалами принято считать материалы с теплопро-

водностью менее 0,3 Вт/м·°С.__

18. Теплоизолирующая способность отдельной конструкции. Основные понятия и определения: теплопроводность, коэффициент теплопроводности, термическое сопротивление, общее требуемое сопротивление теплопередаче, коэффициенты тепловосприятия и теплоотдачи.

Теплоизолирующая способность– способность ограждающей конструкции при одностороннем огневом воздействии ограничивать рост температуры не обогреваемой поверхности выше установленного уровня.

Теплопроводность– вид передачи теплоты между неподвижными частицами твердого, жидкого или газообразного вещества. Таким образом, теплопроводность – это теплообмен между частицами или элементами структуры материальной среды, находящимися в непосредственном соприкосновении друг с другом.

Количественно способность вещества проводить тепло характеризуется коэффициентом теплопроводности. Эта характеристика равна количеству теплоты, проходящему через однородный образец материала единичной длины и единичной площади за единицу времени при единичной разнице температур (1 К).

Термическое сопротивление — тепловое сопротивление, способность тела (его поверхности или какого-либо слоя) препятствовать распространению теплового движения молекул.

Сопротивление теплопередаче ограждающих конструкций (англ. R-value) (также коэффициент теплосопротивления, теплосопротивление и термическое сопротивление) применяется в строительстве. При общих равных условиях, это отношение разности температур по краям изоляционного материала к величине теплового потока (теплопередача на единицу площади, Q ˙ A {\displaystyle {\dot {Q}}_{A}} ) проходящего сквозь него, т.е. R = Δ T / Q ˙ A {\displaystyle R=\Delta T/{\dot {Q}}_{A}} . Коэффициент теплосопротивления отражает свойства любого материала и выражается как плотность материала, делённая на теплопроводность. Для определения теплосопротивления всей площади материала, мера теплосопротивления делится на площадь материала. Например, если имеется расчётная мера теплосопротивления стены, её необходимо разделить на площадь среза стены и получить нужное теплосопротивление. Коэффициент теплопроводности материала, обозначаемый как k, обратно пропорционален теплосопротивлению. Он также называется коэффициентом поверхностной проводимости и обозначается h[1] Чем больше это число, тем лучше эффективность изоляции.[2] Мера теплосопротивления R обратно пропорциональна коэффициенту теплоусвоения U.(википедия)

cyberpedia.su

Теплопроводность - среда - Большая Энциклопедия Нефти и Газа, статья, страница 2

Теплопроводность - среда

Cтраница 2

Так как коэффициент теплопроводности среды Я, легко определяется, то весь расчет теплоотдачи сводится к определению градиента температуры в потоке среды на поверхности нагрева F. Но чтобы определить градиент, необходимо знать закон изменения температуры в потоке жидкости. Для большинства случаев решение этой задачи оказывается невозможным.  [16]

К - коэффициент теплопроводности среды; ДЯ, - теплота кристаллизации на единицу объема; г - радиус кривизны вновь образующейся поверхности раздела фаз; Т0 - равновесная температура фазового превращения; Тт - температура среды, в которой происходит рост кристалла.  [17]

Яс - коэффициент теплопроводности среды, окружающей поверхность преобразователя; kv - коэффициент, зависящий от кинематической вязкости и от диаметра трубы, в которой размещен терморезистор; п - показатель, являющийся функцией плотности, вязкости, теплопроводности и скорости среды.  [18]

Я - коэффициент теплопроводности среды; ДГ - разность температур между пластинками или цилиндрами; / - расстояние между пластинками; d - диаметр внутреннего цилиндра; D - диаметр камеры.  [19]

Определим эффективный коэффициент теплопроводности полупрозрачной среды.  [21]

Зная дополнительно коэффициент теплопроводности X среды, омывающей стенку, легко с помощью формулы ( 4 - 10) вычислить а. Требуемые при этом температурные измерения затруднительны, а подчас и вовсе недоступны.  [22]

Развитию тепловой неустойчивости может препятствовать теплопроводность среды, стремящаяся сгладить температурные неоднородности.  [23]

В расчете используются также значения теплопроводности среды, заполняющей поры при температурах и давлениях, соответствующих эксплуатационным.  [25]

В другой рассматриваемой группе нестационарных методов теплопроводность среды определяют, изучая установившуюся пульсацию температуры малоинерционного металлического датчика ( проволоки, фольги), помещенного в исследуемую среду и нагреваемого переменным током. Особенностью методики является возможность использования радиотехнических средств измерения.  [26]

Высокое давление, большие теплоемкость и теплопроводность среды, в которой образуется дуга, приводят к усиленному теплоотво-ду от нее и способствуют нарушению устойчивости разряда. При неизменной длине дуги ее устойчивость обеспечивается при определенном минимальном напряжении. При уменьшении этого напряжения или увеличении длины дуги заряд прекращается. Чем быстрее увеличивается длина дуги, тем эффективней процесс ее гашения. Продолжительное существование дугового разряда в отключающих устройствах недопустимо из-за разрушающего действия дуги.  [27]

Так, некоторый вклад в затухание дает теплопроводность среды ( см. выражение (4.12)), однако обычно такое затухание в твердых телах, за исключением металлов, мало. В твердых телах в килогер-цевом диапазоне частот часто наблюдается явление, известное под названием термоупругой релаксации. Оно заключается в появлении тепловых потоков между локальными участками со случайными флуктуациями температуры. Различия в температуре возникают в соседних произвольно ориентированных кристаллических зернах в силу того, что соотношение между напряжением и деформацией в кристаллическом зерне зависит от его ориентации. Тепловое затухание может возникать также на дислокациях кристаллической решетки. Вклад этих эффектов в полное затухание звука также мал.  [28]

Следовательно, Яэк является таким значением коэффициента теплопроводности среды, при котором через прослойку передавалось бы такое же количество теплоты путем теплопроводности, что и при сложном процессе передачи теплоты. Значение Яэк определяется непосредственно по данным, приведенным в гл.  [29]

Здесь ф-температура в произвольной точке, и-коэффициент теплопроводности среды, а ф, q, h и ф0 - заданные ФУНКЦИИ координат.  [30]

Страницы:      1    2    3    4

www.ngpedia.ru

Теплопроводность — Википедия

Теплопрово́дность — способность материальных тел к переносу энергии (теплообмену) от более нагретых частей тела к менее нагретым телам, осуществляемому хаотически движущимися частицами тела (атомами, молекулами, электронами и т. п.). Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества.

Теплопроводностью называется также количественная характеристика способности тела проводить тепло. В сравнении тепловых цепей с электрическими это аналог проводимости.

Количественно способность вещества проводить тепло характеризуется коэффициентом теплопроводности. Эта характеристика равна количеству теплоты, проходящему через однородный образец материала единичной длины и единичной площади за единицу времени при единичной разнице температур (1 К). В системе СИ единицей измерения коэффициента теплопроводности является Вт/(м·K).

Исторически считалось, что передача тепловой энергии связана с перетеканием гипотетического теплорода от одного тела к другому. Однако с развитием молекулярно-кинетической теории явление теплопроводности получило своё объяснение на основе взаимодействия частиц вещества. Молекулы в более нагретых частях тела движутся быстрее и передают энергию посредством столкновений медленным частицам в более холодных частях тела.

Закон теплопроводности Фурье[править]

В установившемся режиме плотность потока энергии, передающейся посредством теплопроводности, пропорциональна градиенту температуры:

где  — вектор плотности теплового потока — количество энергии, проходящей в единицу времени через единицу площади, перпендикулярной каждой оси,  — коэффициент теплопроводности (удельная теплопроводность),  — температура. Минус в правой части показывает, что тепловой поток направлен противоположно вектору grad T (то есть в сторону скорейшего убывания температуры). Это выражение известно как закон теплопроводности Фурье.[1]

В интегральной форме это же выражение запишется так (если речь идёт о стационарном потоке тепла от одной грани параллелепипеда к другой):

где  — полная мощность тепловых потерь,  — площадь сечения параллелепипеда,  — перепад температур граней,  — длина параллелепипеда, то есть расстояние между гранями.

Связь с электропроводностью[править]

Связь коэффициента теплопроводности с удельной электрической проводимостью в металлах устанавливает закон Видемана — Франца:

где  — постоянная Больцмана,  — заряд электрона.

Коэффициент теплопроводности газов[править]

В газах коэффициент теплопроводности может быть найден по приближённой формуле[2]

где  — плотность газа,  — удельная теплоёмкость при постоянном объёме,  — средняя длина свободного пробега молекул газа,  — средняя тепловая скорость. Эта же формула может быть записана как[3]

где  — сумма поступательных и вращательных степеней свободы молекул (для двухатомного газа i=5, для одноатомного i=3),  — постоянная Больцмана,  — молярная масса,  — абсолютная температура,  — эффективный (газокинетический) диаметр молекул,  — универсальная газовая постоянная. Из формулы видно, что наименьшей теплопроводностью обладают тяжелые одноатомные (инертные) газы, наибольшей — легкие многоатомные (что подтверждается практикой, максимальная теплопроводность из всех газов — у водорода, минимальная — у радона, из нерадиоактивных газов — у ксенона).

Теплопроводность в сильно разреженных газах[править]

Приведённое выше выражение для коэффициента теплопроводности в газах не зависит от давления. Однако если газ сильно разрежен, то длина свободного пробега определяется не столкновениями молекул друг с другом, а их столкновениями со стенками сосуда. Состояние газа, при котором длина свободного пробега молекул ограничивается размерами сосуда называют высоким вакуумом. При высоком вакууме теплопроводность убывает пропорционально плотности вещества (то есть обратно пропорционально давлению в системе): , где  — размер сосуда,  — давление.

Таким образом коэффициент теплопроводности вакуума тем ближе к нулю, чем глубже вакуум. Это связано с низкой концентрацией в вакууме материальных частиц, способных переносить тепло. Тем не менее, энергия в вакууме передаётся с помощью излучения. Поэтому, например, для уменьшения теплопотерь стенки термоса делают двойными, серебрят (такая поверхность лучше отражает излучение), а воздух между ними откачивают.

Обобщения закона Фурье[править]

Следует отметить, что закон Фурье не учитывает инерционность процесса теплопроводности, то есть в данной модели изменение температуры в какой-то точке мгновенно распространяется на всё тело. Закон Фурье неприменим для описания высокочастотных процессов (и, соответственно, процессов, чьё разложение в ряд Фурье имеет значительные высокочастотные гармоники). Примерами таких процессов являются распространение ультразвука, ударные волны и т. п. Инерционность в уравнения переноса первым ввел Максвелл[4], а в 1948 году Каттанео был предложен вариант закона Фурье с релаксационным членом:[5]

Если время релаксации пренебрежимо мало, то это уравнение переходит в закон Фурье.

Коэффициенты теплопроводности различных веществ[править]

Материал Теплопроводность, Вт/(м·K)
Графен 4840±440 — 5300±480
Алмаз 1001—2600
Графит 278,4—2435
Карбид кремния 490
Серебро 430
Медь 401
Оксид бериллия 370
Золото 320
Алюминий 202—236
Нитрид алюминия 200
Нитрид бора 180
Кремний 150
Латунь 97—111
Хром 107
Железо 92
Платина 70
Олово 67
Оксид цинка 54
Сталь 47
Свинец 35,3
Кварц 8
Гранит 2,4
Базальт 1,3
Стекло 1-1,15
Термопаста КПТ-8 0,7
Вода при нормальных условиях 0,6
Кирпич строительный 0,2—0,7
Силиконовое масло 0,16
Пенобетон 0,05—0,3
Древесина 0,15
Нефтяные масла 0,12
Свежий снег 0,10—0,15
Пенополистирол (горючесть Г1) 0,038-0,052
Экструдированный пенополистирол (горючесть Г1 и Г4 0,032-0,034
Стекловата 0,032-0,041
Каменная вата 0,034-0,039
Воздух (300 K, 100 кПа) 0,022
Вакуум (абсолютный) 0 (строго)

Также нужно учитывать передачу тепла из-за конвекции молекул и излучения. Например, при полной нетеплопроводности вакуума, тепловая энергия передаётся излучением (Солнце, инфракрасные теплогенераторы). В газах и жидкостях происходит перемешивание разнотемпературных слоёв естественным путём или искусственно (примеры принудительного перемешивания — фены, электрочайники). Также в конденсированных средах возможно «перепрыгивание» фононов из одного твердого тела в другое через субмикронные зазоры, что способствует распространению звуковых волн и тепловой энергии, даже если зазоры представляют собой идеальный вакуум.

www.wikiznanie.ru

Реферат Теплопроводность

скачать

Реферат на тему:

План:

    Введение
  • 1 Закон теплопроводности Фурье
    • 1.1 Коэффициент теплопроводности вакуума
    • 1.2 Связь с электропроводностью
  • 2 Обобщения закона Фурье
  • 3 Коэффициенты теплопроводности различных веществ
  • Примечания

Введение

Не следует путать с термическим сопротивлением.

Теплопрово́дность — это перенос тепловой энергии структурными частицами вещества (молекулами, атомами, ионами) в процессе их теплового движения. Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества. Явление теплопроводности заключается в том, что кинетическая энергия атомов и молекул, которая определяет температуру тела, передаётся другому телу при их взаимодействии или передаётся из более нагретых областей тела к менее нагретым областям. Иногда теплопроводностью называется также количественная оценка способности конкретного вещества проводить тепло.

Численная характеристика теплопроводности материала равна количеству теплоты, проходящей через материал толщиной 1 м и площадью 1 кв.м за единицу времени (секунду) при разности температур на двух противоположных поверхностях в 1 К. Данная численная характеристика используется для расчета теплопроводности для калибрования и охлаждения профильных изделий.

Исторически считалось, что передача тепловой энергии связана с перетеканием теплорода от одного тела к другому. Однако более поздние опыты, в частности, нагрев пушечных стволов при сверлении, опровергли реальность существования теплорода как самостоятельного вида материи. Соответственно, в настоящее время считается, что явление теплопроводности обусловлено стремлением занять состояние более близкое к термодинамическому равновесию, что выражается в выравнивании температуры.

1. Закон теплопроводности Фурье

В установившемся режиме поток энергии, передающейся посредством теплопроводности, пропорционален градиенту температуры:

где  — вектор потока тепла — количество энергии, проходящей в единицу времени через единицу площади, перпендикулярной каждой оси,  — коэффициент теплопроводности (иногда называемый просто теплопроводностью), T — температура. Минус в правой части показывает, что тепловой поток направлен противоположно вектору grad T (то есть в сторону скорейшего убывания температуры). Это выражение известно как закон теплопроводности Фурье.

В интегральной форме это же выражение запишется так (если речь идёт о стационарном потоке тепла от одной грани параллелепипеда к другой):

где P — полная мощность тепловых потерь, S — площадь сечения параллелепипеда, ΔT — перепад температур граней, h — длина параллелепипеда, то есть расстояние между гранями.

Коэффициент теплопроводности измеряется в Вт/(м·K).

1.1. Коэффициент теплопроводности вакуума

Коэффициент теплопроводности вакуума почти ноль (чем глубже вакуум, тем ближе к нулю). Это связано с низкой концентрацией в вакууме материальных частиц, способных переносить тепло. Тем не менее, тепло в вакууме передаётся с помощью излучения. Поэтому, например, для уменьшения теплопотери стенки термоса делают двойными, серебрят (такая поверхность лучше отражает излучение), а воздух между ними откачивают.

1.2. Связь с электропроводностью

Связь коэффициента теплопроводности K с удельной электрической проводимостью σ в металлах устанавливает закон Видемана — Франца:

где k — постоянная Больцмана, e — заряд электрона.

2. Обобщения закона Фурье

Следует отметить, что закон Фурье не учитывает инерционность процесса теплопроводности, то есть в данной модели изменение температуры в какой-то точке мгновенно распространяется на всё тело. Закон Фурье не применим для описания высокочастотных процессов (и, соответственно, процессов, чьё разложение в ряд Фурье имеет значительные высокочастотные гармоники). Примерами таких процессов являются распространение ультразвука, ударные волны и т. д. Инерционность в уравнения переноса первым ввел Максвелл[1], а в 1948 году Каттанео был предложен вариант закона Фурье с релаксационным членом:[2]

Если время релаксации τ пренебрежимо мало, то это уравнение переходит в закон Фурье.

3. Коэффициенты теплопроводности различных веществ

Цветок на куске аэрогеля над горелкой Бунзена

Материал Теплопроводность, Вт/(м·K)
Графен (4840±440) — (5300±480)
Алмаз 1001—2600
Серебро 430
Медь 382—390
Золото 320
Алюминий 202—236
Латунь 97—111
Железо 92
Платина 70
Олово 67
Сталь 47
Кварц 8
Стекло 1-1,15
КПТ-8 0,7
Вода при нормальных условиях 0,6
Кирпич строительный 0,2—0,7
Пенобетон 0,14—0,3
Дерево 0,15
Свежий снег 0,10—0,15
Вата 0,055
Воздух (300 K, 100 кПа) 0,026
Вакуум (абсолютный) 0 (строго)

другие вещества

Материал Теплопроводность, Вт/(м·K)
Кальций 201
Бериллий 201
Вольфрам 173
Магний 156
Родий 150
Иридий 147
Молибден 138
Рутений 117
Хром 93,9
Осмий 87,6
Титан 21,9
Тефлон 0,25
Бумага 0,14
Полистирол 0,082
Шерсть 0,05
Минеральная вата 0,045
Пенополистирол 0,04
Стекловолокно 0,036
Пробковое дерево 0,035
Пеноизол 0,035
Каучук вспененный 0,03
Аргон 0,0177
Аэрогель 0,017
Ксенон 0,0057

На практике нужно также учитывать проводимость тепла за счет конвекции молекул и проникаемости излучений. Например, при полной нетеплопроводности вакуума, тепло может передаваться за счет излучения (пример — Солнце, установки инфракрасного излучения). А газ или жидкость могут обмениваться нагретыми или охлажденными слоями самостоятельно или искусственно (пример — фен, греющие вентиляторы).

Примечания

  1. J. C. Maxwell, Philos. Trans. Roy. Soc. London 157 (1867) 49.
  2. C. Cattaneo, Atti Seminario Univ. Modena 3 (1948) 33.

wreferat.baza-referat.ru

ТЕПЛОПРОВОДНОСТЬ В ГАЗАХ

Из второго начала термодинамики следует, что во всякой изоли­рованной (т.е. не испытывающей никаких внешних воздействий) системе самопроизвольно протекают только такие процессы, кото­рые приводят ее в состояние, не изменяющееся в дальнейшем с те­че­нием времени. Такое состояние термодинамической системы назы­вается тепловым равновесием. Например, тепло всегда переходит от горячего тела к холодному, пока температуры обоих тел не станут одинаковыми, то есть пока не установится тепловое равновесие.

Если в газе существует пространственная неоднородность плот­ности, температуры или скорости движения отдельных его слоев, то на хаотическое тепловое движение молекул накладывается их упо­рядоченное движение. При этом возникают потоки вещества, энер­гии или импульса. В результате происходит самопроизвольное вы­ра­в­нивание параметров газа. Эти потоки являются физической осно­вой так называемых явлений переноса. К явлениям переноса от­­но­сятся диффузия, теплопроводность и внутреннее трение (вяз­кость). Диффузия обусловлена переносом массы, а внутреннее тре­ние – переносом импульса молекул.

Рассмотрим более подробно теплопроводность. Это явление воз­никает при наличии разности температур, обусловленной внешними причинами. Теплопроводность газа заключается в непосредственной передаче кинетической энергии хаотического молекулярного дви­жения от одних молекул к другим при их соударениях.

Если значения температуры различных слоев газа отличаются друг от друга, то и значения средней кинетической энергии также будут разными. Молекулы, движущиеся из более нагретых частей объема газа, попадая в менее нагретые слои и сталкиваясь с молекулами, имеющими меньшие скорости, передают им часть своей энергии. Так, молекулы из менее нагретых слоев газа уве­ли­чивают свою энергию. Этим объясняется передача тепла в направ­ле­нии убывания температуры. Этот процесс не сопровождается макро­скопическим движением среды.

Для простоты рассмотрим одномерное явление тепло­провод­нос­ти. В этом случае определяющие ее физические величины зависят толь­ко от одной координаты (например координаты ). Пред­поло­жим, что газ заключен между двумя параллельными поверхнос­тя­ми, имеющими температуры и (рис.1).

Если эти температуры под­дер­живать постоянными, то через газ установится стаци­о­нар­ный (т.е. неизменный во времени) поток теплоты. На­правим ось перпендику­ляр­но к этим поверхностям. Не­од­но­родность в пространстве зна­чений температуры может быть задана с помощью градиента. Градиент – это вектор, харак­те­ризующий изменение физи­чес­кой величины (в данном случае температуры) при перемещении на единичную длину и направленный в сторону наиболее быстрого ее возрастания. Таким образом, вдоль оси будет иметь место градиент температуры . Количество теплоты , передаваемое вследствие теплопроводности за время через поверхность пло­щадью , расположенную перпендикулярно оси , опре­деляется за­коном Фурье:

, (1.1)

где коэффициент теплопроводности;
градиент температуры.

Знак минус показывает, что перенос тепла происходит в на­правлении убывания температуры.

Количество теплоты, переносимое через поверхность площадью за одну секунду, называется тепловым потоком:

.

Из формулы (1.1) следует, что

.

Отсюда видно, что коэффициент теплопроводности численно ра­вен количеству теплоты, проходящему через единицу площади по­верхности за единицу времени при градиенте температуры, равном единице.

Выведем размерность этой физической величины:

.

Коэффициент теплопроводности показывает, насколько быстро вы­равнивается температура различных точек газа. Чем больше коэф­фициент теплопроводности, тем скорее наступает состояние теп­лового равновесия. Коэффициент теплопроводности зависит от агрегатного состояния вещества, его атомно-молекулярного строе­ния, температуры, давления и состава. В анизотропных средах он зависит от направления распространения тепла.

Наилучшие проводники тепла – твердые тела, в особенности металлы. Влияние давления на теплопроводность твердых тел с хорошей степенью точности описывается линейной зависимостью. У многих металлов и минералов теплопроводность растет с ростом давления. В процессе плавления металлов теплопроводность, как правило, падает скачком при температуре плавления.

Жидкости обычно проводят тепло намного хуже твердых тел. Так, коэффициент теплопроводности воды при температуре 0 0С со­ставляет 0,55 , а льда 2,21 . Как правило, теплопро­вод­ность жидкостей убывает с ростом температуры и слабо возрастает с ростом давления.

Газы обладают наименьшей теплопроводностью по сравнению с жидкостями и твердыми телами. Например, при 20 0С коэффициент теплопроводности углекислого газа равен 0,0162 , водорода 0,175 , воздуха 0,0257 .

Выведем формулу для нахождения коэффициента теп­ло­проводности идеального газа. Выделим элементарную площадку , расположенную перпендикулярно оси (см. рис. 1).

В соответствии с формулой (1.1) элементарное количество теп­лоты , переносимое молекулами через площадку за время , равно

. (1.2)

Учтем, что до площадки долетают только те молекулы, кото­рые находятся от нее не дальше длины свободного пробега моле­кулы газа . Средняя длина свободного пробега – это среднее рас­с­тояние, которое пробегает молекула между двумя после­до­ва­тельными столкновениями. Она вычисляется по формуле

,

где эффективный диаметр молекулы – минимальное расстоя­ние, на которое сближаются при столкновении центры молекул;
концентрация молекул.

Выберем на оси две точки А и В, расположенные по обе сто­роны площадки на расстояниях от нее, равных средней длине свободного пробега молекулы газа (см. рис.1). Будем считать, что температура в месте, где находится площадка, равна , а .

Тогда температура в точке А равна , а в точке В .

Найдем число молекул, проходящих за одну секунду через по­верхность . Поскольку процесс теплопроводности не сопро­вож­дается макроскопическим движением среды, количество молекул , пересекающих эту поверхность в единицу времени слева на­право и справа налево, будет одинаковым. Ввиду хаотичности теп­лового движения можно считать, что вдоль каждой из осей коор­динат (а значит, и вдоль оси ) движется со скоростью одна треть от общего количества молекул. Из них половина движется слева направо, а половина – справа налево.

Следовательно, количество молекул определяется по формуле

, (1.3)

где концентрация молекул;
среднеарифметическая скорость теплового движения молекул газа:

;

Согласно закону равномерного распределения энергии по степеням свободы каждая молекула обладает средней кинетической энергией , вычисляемой по формуле

, (1.4)

Эта энергия определяется температурой газа в той точке пространства, в которой произошло ее последнее столкновение с другой молекулой.

Энергия , которой обладают молекулы газа, находящиеся в единице объема, равна

. (1.5)

Тогда количество теплоты , перенесенное через площадку слева направо за время , окажется равным суммарной энергии молекул, имеющих температуру точки А:

. (1.6)

Количество теплоты , перенесенное через площадку за вре­мя справа налево, равно суммарной энергии молекул, имею­щих температуру точки В:

. (1.7)

Вычитая из выражения (1.7) выражение (1.6), получим общее количество теплоты, перенесенное через площадку :

. (1.8)

Учитывая, что ,

где концентрация молекул;
масса одной молекулы;
плотность газа,

получим окончательное выражение:

. (1.9)

Сравнивая выражения (1.9) и (1.2), получим выражение для коэффициента теплопроводности идеального газа:

. (1.10)

Поскольку длина свободного пробега молекул обратно про­пор­циональна давлению газа, а плотность прямо пропорцио­наль­на давлению, то теплопроводность идеального газа от давления не зависит.

Теплопроводность газов зависит от температуры. При увели­чении температуры возрастает энергия каждой молекулы, а значит, и количество энергии, переносимое из слоя в слой. Вместе с тем одновременно увеличивается и число столкновений молекул, что несколько снижает обмен энергией между слоями. В результате коэффициент теплопроводности идеального газа оказывается про­пор­циональным квадратному корню из абсолютной температуры.

Коэффициент теплопроводности реальных газов представляет собой довольно сложную функцию температуры и давления. При­чем, с ростом температуры и давления значение коэффициента теп­ло­­проводности возрастает.

На плохой теплопроводности газов основано применение в строительстве пористых материалов (т.е. материалов, содержащих газовые включения). Этим же объясняются теплоизолирующие свойст­ва одежды, в особенности шерстяной и меховой. В ней содер­жится большое число маленьких пузырьков воздуха, так же, как и в рыхлом снеге, защищающем посевы от вымерзания.

 

2.ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ТЕПЛОПРОВОДНОСТИ ВОЗДУХА МЕТОДОМ НАГРЕТОЙ НИТИ

Методика измерений

При измерении коэффициента теплопроводности газов необхо­димо иметь в виду, что существует целый ряд факторов, которые могут повлиять на результат опыта. Укажем некоторые из них.

Перенос теплоты в газах происходит тремя способами: тепловым излу­чением (перенос энергии электромагнитными волнами), кон­век­цией (перенос энергии за счет перемещения слоев газа в про­стран­стве из областей с высокой тем­пе­ра­ту­рой в области с низкой темпе­ратурой) и теплопроводностью.

Лабораторная установка для оп­реде­ления коэффициента тепло­про­вод­­ности сконструирована таким об­ра­­­зом, чтобы перенос теп­ло­ты про­ис­хо­дил в ней, в основном, за счет теп­ло­проводности.

Рассмотрим две длинные коак­си­альные цилиндрические поверх­ности, пространство между которыми заполнено газом, коэф­фи­циент теплопроводности которого не­об­ходимо измерить. На рис.2 по­ка­зано поперечное сечение этих поверх­нос­тей. Температуры и радиусы внут­рен­ней и внешней цилиндрических поверхностей соот­вет­ственно обозначим через и .

 

Рис. 2

Температуры слоев газа, прилегающих к поверхностям, равны температурам соответствующих поверхностей.

Выделим внутри газа кольцевой слой радиусом , толщиной и длиной . В соответствии с законом Фурье тепловой поток , т.е. количество теплоты, проходящее через этот слой за одну секун­ду, можно записать в виде:

, (2.1)

где площадь боковой поверхности цилиндрического слоя.

Следовательно

. (2.2)

Это дифференциальное уравнение можно решить методом разделения переменных:

. (2.3)

Считая коэффициент теплопроводности постоянным в иссле­дуе­мом диапазоне температур и интегрируя обе части уравнения (2.3), получаем:

. (2.4)

Отсюда:

. (2.5)

Из уравнения (2.5) находим формулу для определения коэф­фи­циента теплопроводности:

(2.6)

где – разность температур в слое газа.

Таким образом, для определения коэффициента тепло­провод­нос­ти необходимо знать разность температур в слое газа и величину теплового потока .

В качестве внутреннего цилиндра может быть использована ме­тал­лическая нить. Нить нагревают,×пропуская через нее элект­ри­чес­кий ток.

Разность температур в слое газа можно найти косвенным ме­то­дом, измеряя электрическое сопротивление нити при двух раз­лич­ных температурах и . Запишем формулы для определения со­про­тивлений нити и для двух значений температуры:

; (2.7)

, (2.8)

Вычитая из уравнения (2.7) уравнение (2.8), получим

,

где – разность температур.

Выражая отсюда и подставляя его в формулу (2.8), получаем выражение для разности температур:

. (2.9)

Соединим последовательно с нитью эталонный резистор, имею­щий сопротивление . При последовательном соединении ток, про­­текающий через эталонный резистор, равен току, протекающему через металлическую нить: .

 

Тогда

;

отсюда

,

где Iн, Iр – токи, протекающие через нить и эталонный резистор;
Uн,Uр – падения напряжения на нити и эталонном резисторе;
Rн, Rр – сопротивления нити и эталонного резистора.

Следовательно,

; ,

где Uн1 – падение напряжения на нити в нагретом состоянии;
Uн2 – падение напряжения на нити при температуре окру­жающего воздуха;
Uр1 – падение напряжения на эталонном резисторе при на­греве нити;
Up2 – падение напряжения на эталонном резисторе при тем­пературе окружающего воздуха.

Используя в качестве эталонного сопротивления резистор с ма­лым значением температурного коэффициента, можно полагать, что . Тогда получаем:

,

где a – температурный коэффициент сопротивления;
t2 – температура окружающего воздуха.

Тепловой поток q, создаваемый путем нагрева нити постоянным током, определяется по формуле

, (2.10)

где Rр1 – сопротивление эталонного резистора.

Подставляя найденные DT и q в формулу (2.6), можно рассчи­тать коэффициент теплопроводности.

Для определения коэффициента теплопроводности воздуха пред­назначена экспериментальная установка ФПТ1-3, общий вид кото­рой приведен на рис.3.

 

Рис. 3

Рабочий элемент состоит из стеклянной трубки 2, заполненной воздухом, по оси которой натянута тонкая вольфрамовая проволо-ка 1. В течение эксперимента температура трубки поддерживается по­стоянной, что обеспечивается принудительной циркуляцией воз­ду­ха с помощью вентилятора между трубкой и кожухом 9 рабочего элемента. Для измерения температуры стенки трубки предназначен полупроводниковый термометр, показания которого высвечиваются на цифровом индикаторе 3.

 

Похожие статьи:

poznayka.org


© 2007—2018
423800, Набережные Челны , база Партнер Плюс, тел. 8 800 100-58-94 (звонок бесплатный)