Камаз 44108 тягач В наличии!
Тягач КАМАЗ 44108-6030-24
евро3, новый, дв.КАМАЗ 740.55-300л.с., КПП ZF9, ТНВД ЯЗДА, 6х6, нагрузка на седло 12т, бак 210+350л, МКБ, МОБ
 
карта сервера
«ООО Старт Импэкс» продажа грузовых автомобилей камаз по выгодным ценам
+7 (8552) 31-97-24
+7 (904) 6654712
8 800 1005894
звонок бесплатный

Наши сотрудники:
Виталий
+7 (8552) 31-97-24

[email protected]

 

Екатерина - специалист по продаже а/м КАМАЗ
+7 (904) 6654712

[email protected]

 

Фото техники

20 тонный, 20 кубовый самосвал КАМАЗ 6520-029 в наличии
15-тонный строительный самосвал КАМАЗ 65115 на стоянке. Техника в наличии
Традиционно КАМАЗ побеждает в дакаре

тел.8 800 100 58 94

Техника в наличии

тягач КАМАЗ-44108
Тягач КАМАЗ 44108-6030-24
2014г, 6х6, Евро3, дв.КАМАЗ 300 л.с., КПП ZF9, бак 210л+350л, МКБ,МОБ,рестайлинг.
цена 2 220 000 руб.,
 
КАМАЗ-4308
КАМАЗ 4308-6063-28(R4)
4х2,дв. Cummins ISB6.7e4 245л.с. (Е-4),КПП ZF6S1000, V кузова=39,7куб.м., спальное место, бак 210л, шк-пет,МКБ, ТНВД BOSCH, система нейтрализ. ОГ(AdBlue), тент, каркас, рестайлинг, внутр. размеры платформы 6112х2470х730 мм
цена 1 950 000 руб.,
КАМАЗ-6520
Самосвал КАМАЗ 6520-057
2014г, 6х4,Евро3, дв.КАМАЗ 320 л.с., КПП ZF16, ТНВД ЯЗДА, бак 350л, г/п 20 тонн, V кузова =20 куб.м.,МКБ,МОБ, со спальным местом.
цена 2 700 000 руб.,
 
КАМАЗ-6522
Самосвал 6522-027
2014, 6х6, дв.КАМАЗ 740.51,320 л.с., КПП ZF16,бак 350л, г/п 19 тонн,V кузова 12куб.м.,МКБ,МОБ,задняя разгрузка,обогрев платформы.
цена 3 190 000 руб.,

СУПЕР ЦЕНА

на АВТОМОБИЛИ КАМАЗ
43118-010-10 (дв.740.30-260 л.с.) 2 220 000
43118-6033-24 (дв.740.55-300 л.с.) 2 300 000
65117-029 (дв.740.30-260 л.с.) 2 200 000
65117-6010-62 (дв.740.62-280 л.с.) 2 350 000
44108 (дв.740.30-260 л.с.) 2 160 000
44108-6030-24 (дв.740.55,рест.) 2 200 000
65116-010-62 (дв.740.62-280 л.с.) 1 880 000
6460 (дв.740.50-360 л.с.) 2 180 000
45143-011-15 (дв.740.13-260л.с) 2 180 000
65115 (дв.740.62-280 л.с.,рест.) 2 190 000
65115 (дв.740.62-280 л.с.,3-х стор) 2 295 000
6520 (дв.740.51-320 л.с.) 2 610 000
6520 (дв.740.51-320 л.с.,сп.место) 2 700 000
6522-027 (дв.740.51-320 л.с.,6х6) 3 190 000


Перегон грузовых автомобилей
Перегон грузовых автомобилей
подробнее про услугу перегона можно прочесть здесь.


Самосвал Форд Нужны самосвалы? Обратите внимание на Ford-65513-02.

КАМАЗы в лизинг

ООО «Старт Импэкс» имеет возможность поставки грузовой автотехники КАМАЗ, а так же спецтехники на шасси КАМАЗ в лизинг. Продажа грузовой техники по лизинговым схемам имеет определенные выгоды для покупателя грузовика. Рассрочка платежа, а так же то обстоятельство, что грузовики до полной выплаты лизинговых платежей находятся на балансе лизингодателя, и соответственно покупатель автомобиля не платит налогов на имущество. Мы готовы предложить любые модели бортовых автомобилей, тягачей и самосвалов по самым выгодным лизинговым схемам.

Контактная информация.

г. Набережные Челны, Промкомзона-2, Автодорога №3, база «Партнер плюс».

тел/факс (8552) 388373.
Схема проезда


Термообработка (стр. 1 из 3). Термообработка это


Термическая обработка - это... Что такое Термическая обработка?

        металлов, процесс обработки изделий из металлов и сплавов путём теплового воздействия с целью изменения их структуры и свойств в заданном направлении. Это воздействие может сочетаться также с химическим, деформационным, магнитным и др.

         Историческая справка. Человек использует Т. о. металлов с древнейших времён. Ещё в эпоху Энеолита, применяя холодную ковку самородных золота и меди, первобытный человек столкнулся с явлением Наклёпа, которое затрудняло изготовление изделий с тонкими лезвиями и острыми наконечниками, и для восстановления пластичности кузнец должен был нагревать холоднокованую медь в очаге. Наиболее ранние свидетельства о применении смягчающего Отжига наклёпанного металла относятся к концу 5-го тысячелетия до н. э. Такой отжиг по времени появления был первой операцией Т. о. металлов. При изготовлении оружия и орудий труда из железа, полученного с использованием сыродутного процесса (См. Сыродутный процесс), кузнец нагревал железную заготовку для горячей ковки в древесноугольном горне. При этом железо науглероживалось, то есть происходила Цементация — одна из разновидностей химико-термической обработки (См. Химико-термическая обработка). Охлаждая кованое изделие из науглероженного железа в воде, кузнец обнаружил резкое повышение его твёрдости и улучшение др. свойств. Закалка в воде науглероженного железа применялась с конца 2 — начала 1-го тысячелетия до н. э. В «Одиссее» Гомера (8—7 вв. до н. э.) есть такие строки: «Как погружает кузнец раскалённый топор иль секиру в воду холодную, и зашипит с клокотаньем железо — крепче железо бывает, в огне и воде закаляясь». В 5 в. до н. э. этруски закаливали в воде зеркала из высокооловянной бронзы (скорее всего для улучшения блеска при полировке). Цементацию железа в древесном угле или органическом веществе, закалку и Отпуск стали широко применяли в средние века в производстве ножей, мечей, напильников и др. инструментов. Не зная сущности внутренних превращений в металле, средневековые мастера часто приписывали получение высоких свойств при Т. о. металлов проявлению сверхъестественных сил. До середины 19 в. знания человека о Т. о. металлов представляли собой совокупность рецептов, выработанных на основе многовекового опыта. Потребности развития техники, и в первую очередь развития сталепушечного производства. обусловили превращение Т. о. металлов из искусства в науку. В середине 19 в., когда армия стремилась заменить бронзовые и чугунные пушки более мощными стальными, чрезвычайно острой была проблема изготовления орудийных стволов высокой и гарантированной прочности. Несмотря на то что металлурги знали рецепты выплавки и литья стали, орудийные стволы очень часто разрывались без видимых причин. Д. К. Чернов на Обуховском сталелитейном заводе в Петербурге, изучая под микроскопом протравленные шлифы, приготовленные из дул орудий, и наблюдая под лупой строение изломов в месте разрыва, сделал вывод, что сталь тем прочнее, чем мельче её структура. В 1868 Чернов открыл внутренние структурные превращения в охлаждающейся стали, происходящие при определённых температурах. которые он назвал критическими точками а и b. Если сталь нагревать до температур ниже точки а, то её невозможно закалить, а для получения мелкозернистой структуры сталь следует нагревать до температур выше точки b. Открытие Черновым критических точек структурных превращений в стали позволило научно обоснованно выбирать режим Т. о. для получения необходимых свойств стальных изделий.          В 1906 А. Вильм (Германия) на изобретённом им Дуралюмине открыл старение после закалки (см. Старение металлов) — важнейший способ упрочения сплавов на разной основе (алюминиевых, медных, никелевых, железных и др.). В 30-е гг. 20 в. появилась Термомеханическая обработка стареющих медных сплавов, а в 50-е — термомеханическая обработка сталей, позволившая значительно повысить прочность изделий. К комбинированным видам Т. о. относится термомагнитная обработка, позволяющая в результате охлаждения изделий в магнитном поле улучшать их некоторые магнитные свойства (см. Магнитно-мягкие материалы, Магнитно-твёрдые материалы).

         Итогом многочисленных исследований изменений структуры и свойств металлов и сплавов при тепловом воздействии явилась стройная теория Т. о. металлов.

         Классификация видов Т. о. основывается на том, какого типа структурные изменения в металле происходят при тепловом воздействии. Т. о. металлов подразделяется на собственно термическую, заключающуюся только в тепловом воздействии на металл, химико-термическую, сочетающую тепловое и химическое воздействия, и термомеханическую, сочетающую тепловое воздействие и пластическую деформацию. Собственно термическая обработка включает следующие виды: отжиг 1-го рода, отжиг 2-го рода, закалку без полиморфного превращения и с полиморфным превращением, старение и отпуск.

         Отжиг 1-го рода (гомогенизационный, рекристаллизационный и для уменьшения остаточных напряжений) частично или полностью устраняет отклонения от равновесного состояния структуры, возникшие при литье, обработке давлением, сварке и др. технологических процессах. Процессы, устраняющие отклонения от равновесного состояния, идут самопроизвольно, и нагрев при отжиге 1-го рода проводят лишь для их ускорения. Основные параметры такого отжига — температура нагрева и время выдержки. В зависимости от того, какие отклонения от равновесного состояния устраняются, различают разновидности отжига 1-го рода. Гомогенизационный отжиг (см. Гомогенизация) предназначен для устранения последствий дендритной ликвации (См. Ликвация), в результате которой после кристаллизации внутри кристаллитов твёрдого раствора химический состав оказывается неоднородным и, кроме того, может появляться неравновесная фаза, например химическое соединение, охрупчивающее сплав. При гомогенизационном отжиге Диффузия приводит к растворению неравновесных избыточных фаз, в результате чего сплав становится более гомогенным (однородным). После такого отжига повышаются пластичность и стойкость против коррозии. Рекристаллизационный отжиг устраняет отклонения в структуре от равновесного состояния, возникающие при пластической деформации. При обработке давлением, особенно холодной, металл наклёпывается — его прочность возрастает, а пластичность снижается из-за повышения плотности дислокаций (См. Дислокации) в кристаллитах. При нагреве наклёпанного металла выше некоторой температуры развивается первичная и затем собирательная Рекристаллизация, при которой плотность дислокаций резко снижается. В результате металл разупрочняется и становится пластичнее. Такой отжиг используют для улучшения обрабатываемости давлением и придания металлу необходимого сочетания твёрдости, прочности и пластичности. Как правило, при рекристаллизационном отжиге стремятся получить бестекстурный материал, в котором отсутствует Анизотропия свойств. В производстве листов из трансформаторной стали рекристаллизационный отжиг применяют для получения желательной текстуры металла (См. Текстура металла), возникающей при рекристаллизации. Отжиг, уменьшающий напряжения, применяют к изделиям, в которых при обработке давлением, литье, сварке, термообработке и др. технологических процессах возникли недопустимо большие остаточные напряжения, взаимно уравновешивающиеся внутри тела без участия внешних нагрузок. Остаточные напряжения могут вызвать искажение формы и размеров изделия во время его обработки, эксплуатации или хранения на складе. При нагревании изделия предел текучести снижается и, когда он становится меньше остаточных напряжений, происходит быстрая их разрядка путём пластического течения в разных слоях металла.          Отжиг 2-го рода применим только к тем металлам и сплавам, в которых при изменении температуры протекают фазовые превращения. При отжиге 2-го рода происходят качественные или только количественные изменения фазового состава (типа и объёмного содержания фаз) при нагреве и обратные изменения при охлаждении. Основные параметры такого отжига — температура нагрева, время выдержки при этой температуре и скорость охлаждения. температуру и время отжига выбирают так, чтобы обеспечить необходимые фазовые изменения, например полиморфное превращение (см. Полиморфизм) или растворение избыточной фазы. При этом обычно следят за тем, чтобы не выросло крупное зерно фазы, стабильной при температуре отжига. Скорость охлаждения должна быть достаточно мала, чтобы при понижении температуры успели пройти обратные фазовые превращения, в основе которых лежит диффузия. При отжиге 2-го рода изделия охлаждают вместе с печью или на воздухе. В последнем случае процесс называется нормализацией (См. Нормализация). Отжиг 2-го рода применяют чаще всего к стали для общего измельчения структуры, смягчения и улучшения обрабатываемости резанием.          Закалка без полиморфного превращения применима к любым сплавам, в которых при нагревании избыточная фаза полностью или частично растворяется в основной фазе. Важнейшие параметры процесса — температура нагрева, время выдержки и скорость охлаждения. Скорость охлаждения должна быть настолько большой, чтобы избыточная фаза не успела выделиться (процесс выделения фазы обеспечивается диффузионным перераспределением компонентов в твёрдом растворе). Это условие выполняется, если дуралюмин и медные сплавы закаливают в воде; магниевые же сплавы и некоторые аустенитные стали можно закаливать с охлаждением на воздухе. В результате закалки образуется пересыщенный твёрдый раствор. Закалка без полиморфного превращения может как упрочнять, так и разупрочнять сплав (в зависимости от фазового состава и особенностей структуры в исходном и закалённом состояниях). Алюминиевые сплавы с магнием (см. Магналии) закаливают для повышения прочности; у бериллиевой бронзы же после закалки прочность оказывается ниже, а пластичность выше, чем после отжига, и закалку этой бронзы можно использовать для повышения пластичности перед холодной деформацией. Основное назначение закалки без полиморфного превращения — подготовка сплава к старению (см. ниже).          Закалка с полиморфным превращением применима к любым металлам и сплавам, в которых при охлаждении перестраивается Кристаллическая решётка. Основные параметры процесса — температура нагрева, время выдержки и скорость охлаждения. Нагрев производят до температуры выше критической точки, чтобы образовалась высокотемпературная фаза. Охлаждение должно идти с такой скоростью, чтобы не происходило «нормального» диффузионного превращения и перестройка решётки протекала по механизму бездиффузионного мартенситного превращения (См. Мартенситное превращение). При закалке с полиморфным превращением образуется Мартенсит, и поэтому такую термообработку называют закалкой на мартенсит. Углеродистые стали закаливают на мартенсит в воде, а многие легированные, в которых диффузионные процессы протекают замедленно, можно закаливать на мартенсит с охлаждением в масле и даже на воздухе. Основная цель закалки на мартенсит — повышение твёрдости и прочности, а также подготовка к отпуску. Сильное упрочнение сталей при закалке на мартенсит обусловлено образованием пересыщенного углеродом раствора внедрения на базе α-железа, появлением большего числа двойниковых прослоек и повышением плотности дислокаций при мартенситном превращении, закреплением дислокаций атомами углерода и дисперсными частицами карбида, которые могут выделяться на дислокациях в местах сегрегации углерода. Углеродистые стали при закалке на мартенсит резко охрупчиваются. Основная причина этого — малая подвижность дислокаций в мартенсите. Безуглеродистые железные сплавы после закалки на мартенсит остаются пластичными.

         Старение применимо к сплавам, которые были подвергнуты закалке без полиморфного превращения. Пересыщенный твёрдый раствор в таких сплавах термодинамически неустойчив и склонен к самопроизвольному распаду. Старение заключается в образовании путём диффузии внутри зерен твердого раствора участков, обогащенных растворённым элементом (зон Гинье — Престона) и (или) дисперсных частиц избыточных фаз, чаще всего химических соединений. Эти зоны и дисперсные частицы выделившихся фаз тормозят скольжение дислокаций, чем и обусловлено упрочнение при старении. Стареющие сплавы называют поэтому дисперсионно-твердеющими. Основные параметры старения — температура и время выдержки. С повышением температуры ускоряются диффузионные процессы распада пересыщенного твёрдого раствора, и сплав быстрее упрочняется. Начиная с определённой выдержки, при достаточно высокой температуре происходит перестаривание — снижение прочности сплава. Причиной перестаривания является коагуляция дисперсных выделений из раствора, которая заключается в растворении более мелких и росте более крупных частиц выделившейся фазы. В результате коагуляции расстояние между этими частицами возрастает и торможение дислокаций в зёрнах твёрдого раствора уменьшается. Одни сплавы, например дуралюмины, после закалки сильно упрочняются уже во время выдержки при комнатной температуре (естественное старение). Большинство сплавов после закалки нагревают, чтобы ускорить процессы распада пересыщенного твёрдого раствора (искусств. старение). Иногда проводят ступенчатое старение с выдержкой вначале при одной, а затем при другой температуре. Старение применяют главным образом для повышения прочности и твёрдости конструкционных материалов (алюминиевых, магниевых, медных, никелевых сплавов и некоторых легированных сталей), а также для повышения коэрцитивной силы магнитно-твёрдых материалов. Время выдержки для достижения заданных свойств в зависимости от состава сплава и температуры старения колеблется от десятков мин до нескольких сут.

         Отпуску подвергают сплавы, главным образом стали, закалённые на мартенсит. Основные параметры процесса — температура нагрева и время выдержки, а в некоторых случаях и скорость охлаждения (для предотвращения отпускной хрупкости). В сталях мартенсит является пересыщенным раствором, и сущность структурных изменений при отпуске та же, что и при старении, — распад термодинамически неустойчивого пересыщенного раствора. Отличие отпуска от старения связано прежде всего с особенностями субструктуры мартенсита, а также с поведением углерода в мартенсите закалённой стали. Для мартенсита характерно большое число дефектов кристаллического строения (дислокаций и др.). Атомы углерода быстро диффундируют в решётке мартенсита и образуют на дислокациях сегрегации, а возможно и дисперсные частицы карбида сразу после закалки или даже в период закалочного охлаждения. В результате закалённая сталь оказывается в состоянии максимального дисперсного твердения или в близком к нему состоянии. Поэтому при выделении из мартенсита дисперсных частиц карбида во время отпуска прочность и твёрдость стали или вообще не повышаются, или достигается лишь незначительное упрочнение. Уменьшение же концентрации углерода в мартенсите при выделении из него карбида является причиной разупрочнения мартенсита. В итоге отпуск сталей, как правило, приводит к снижению твёрдости и прочности с одновременным ростом пластичности и ударной вязкости. Отпуск безуглеродистых железных сплавов, закалённых на мартенсит, может приводить к сильному дисперсионному твердению из-за выделения из пересыщенного раствора дисперсных частиц интерметаллических соединений. Причина упрочнения при этом та же, что и при старении. Термины «отпуск» и «старение» часто используют как синонимы.

         Т. о., вызывая разнообразные по природе структурные изменения, позволяет управлять строением металлов и сплавов и получать изделия с требуемым комплексом механических, физических и химических свойств. Благодаря этому, а также простоте и дешевизне оборудования Т. о. является самым распространённым в промышленности способом изменения свойств металлических материалов.

         На металлургических заводах применяют гомогенизационный отжиг слитков для повышения их пластичности перед обработкой давлением, рекристаллизационный отжиг листов, лент, труб и проволоки для снятия наклёпа между операциями холодной обработки давлением и после неё, закалку, отпуск, старение и термомеханическую обработку для упрочнения проката и прессованных изделий. На машиностроительных заводах отжигают поковки и др. заготовки для уменьшения твёрдости и улучшения обрабатываемости резанием, применяют закалку, отпуск, старение и химико-термическую обработку разнообразных деталей машин, а также инструмента для повышения их прочности, твёрдости, ударной вязкости, сопротивления усталости и износу и отжигают изделия для уменьшения остаточных напряжений. В приборостроении, электротехнической и радиотехнической промышленности с помощью отжига, закалки, отпуска и старения изменяют механические, электрические, магнитные и др. физические свойства металлов и сплавов.

         О величине изменения механических свойств при Т. о. металлов дают представление следующие примеры. Рекристаллизационный отжиг холоднокатаной меди снижает предел прочности с 400 до 220 Мн/м2 (с 40 до 22 кгс/мм2). одновременно повышая относительное удлинение с 3 до 50%. Отожжённая сталь У8 имеет твёрдость 180 НВ; закалка повышает твёрдость этой стали до 650 НВ. Сталь 38 ХМЮА после закалки имеет твёрдость 470 HV, а после азотирования твёрдость поверхностного слоя достигает 1200 HV. Предел прочности дуралюмина Д16 после отжига, закалки и естественного старения равен соответственно 200, 300 и 450 Мн/м2 (20, 30 и 45 кгс/мм2). У бериллиевой бронзы Бр. Б2 предел упругости σ0,002 после закалки равен 120 Мн/м2 (12 кгс/мм2), а после старения 680 Мн/м2 (68 кгс/мм2).

        

         Лит.: Бочвар А. А., Основы термической обработки сплавов, 5 изд., М.— Л., 1940; Гуляев А. П., Термическая обработка стали, 2 изд., М., 1960; Металловедение и термическая обоаботка стали. Справочник, под ред. М. Л. Бернштейна и А. Г. Рахштадта. 2 изд., т. 1—2, М., 1961—62; Новиков И. И., Теория термической обработки металлов, М., 1974.

         И. И. Новиков.

dic.academic.ru

термическая обработка - это... Что такое термическая обработка?

совокупность операций теплового воздействия на материалы (главным образом металлы и сплавы) с целью изменения структуры и свойств в нужном направлении. Основные виды термической обработки: закалка, отпуск, отжиг, нормализация, старение (искусственное), патентирование. Тепловое воздействие может сочетаться с химическим (химико-термическая обработка), деформационным (термомеханическая обработка), магнитным (термомагнитная обработка). Разновидности термической обработки — обработка стали холодом, электротермическая обработка.

ТЕРМИ́ЧЕСКАЯ ОБРАБО́ТКА, технологический способ воздействия на структурное и фазовое состояние материала с помощью различных режимов нагрева и охлаждения, в процессе которых достигается приближение к равновесному состоянию или та или иная степень отклонения от него. Понятие режимов нагрева и охлаждения включает скорость этих процессов, температуру, среду, продолжительность изотермических выдержек. Режимы термической обработки подбирают с учетом фазовых и структурных превращений в материале с целью получения необходимого комплекса свойств. Термическая обработка может быть предварительной или окончательной. Предварительную термообработку применяют для подготовки структуры и свойств материала к последующим технологическим операциям (для обработки давлением, улучшения обрабатываемости резанием). При окончательной термообработке формируются свойства готового изделия. Термическую обработку применяют на стадии производства различных материалов и изделий, а также для снятия напряжения в них. Основные виды термообработки: отжиг (1-го и 2-го рода) и закалка без полиморфного превращения и с полиморфным превращением. Термическая обработка является основным способом воздействия на свойства металлов и сплавов. Специальные процессы термообработки, такие как возврат (см. ВОЗВРАТ), рекристаллизация (см. РЕКРИСТАЛЛИЗАЦИЯ), полигонизация (см. ПОЛИГОНИЗАЦИЯ), старение (см. СТАРЕНИЕ МАТЕРИАЛОВ), отпуск (см. ОТПУСК (металлов)), нормализация (см. НОРМАЛИЗАЦИЯ), патентирование разработаны и подробно изучены по отношению к металлам и сплавам. Если сплав однофазен и не испытывает в твердом состоянии никаких фазовых превращений, то возможные отклонения от равновесия в таких сплавах могут быть связаны с химической неоднородностью твердого раствора или с наличием структурных дефектов, созданных пластической деформацией. Приближение к равновесию в таких случаях реализуется чаще всего за счет диффузионных процессов и достигается с помощью операций отжига I рода, под которым понимают относительно продолжительный высокотемпературный нагрев с последующим, как правило, медленным охлаждением. Наличие фазовых превращений в сплаве значительно расширяет возможности термической обработки. Отжиг II рода — отжиг металлов и сплавов, испытывающих фазовые превращения в твердом состоянии при нагреве и охлаждении — проводится для сплавов, в которых имеются полиморфные или эвтектоидные (см. ЭВТЕКТИКА) превращения, а также переменная растворимость компонентов в твердом состоянии. Отжиг II рода проводят с целью получения более равновесной структуры и подготовки ее к дальнейшей обработке. В результате отжига измельчается зерно, повышаются пластичность и вязкость, снижаются прочность и твердость, улучшается обрабатываемость резанием. Чтобы зафиксировать высокотемпературное фазовое или метастабильное фазовое состояние, промежуточное между высоко- и низкотемпературным, применяют быстрое охлаждение от высоких температур. Такая операция называется закалкой. Закалка проводится для сплавов, испытывающих фазовые превращения в твердом состоянии при нагреве и охлаждении, с целью повышение твердости и прочности путем образования неравновесных структур (сорбит (см. СОРБИТ (в металловедении)), троостит (см. ТРООСТИТ), мартенсит (см. МАРТЕНСИТ)). Низкотемпературный нагрев после закалки (старение или отпуск) приближает систему к равновесному состоянию. Благодаря малой диффузионной подвижности атомов при низких температурах процесс легко остановить на промежуточных стадиях, отличающихся разной степенью приближения к равновесию, а следовательно, и свойствами. Отпуск проводится с целью снятия внутренних напряжений, снижения твердости и увеличения пластичности и вязкости закаленных сталей. Термическая обработка используется как способ воздействия на состав точечных дефектов и структурное совершенство в кристаллах полупроводников и твердых растворах на их основе как с целью изучения свойств материала, так и с целью поиска пути управления ими. Понимание механизмов дефектообразования в кристаллах полупроводников при термообработке очень важно, так как кристаллы полупроводников подвергаются термообработкам в процессе изготовления приборов. При этом, как ансамбль собственных точечных дефектов (см. ТОЧЕЧНЫЕ ДЕФЕКТЫ), так и микродефекты (см. МИКРОДЕФЕКТЫ) могут претерпевать различные превращения, что в дальнейшем может негативно повлиять на характеристики приборов. При термообработке кристаллов может происходить распад пересыщенного твердого раствора как примесей, так и собственных точечных дефектов, если их концентрация превышает растворимость при температуре термообработки. Может происходить развитие ростовых и образование новых микродефектов или их растворение в результате ухода точечных дефектов или примесей, образующих микродефект, на поверхность кристалла. В результате таких процессов происходит не только структурное превращение в матрице кристалла, но существенным образом изменяются его электрофизические свойства: могут измениться концентрация и подвижность носителей заряда, тип проводимости (термоконверсия), оптические и люминесцентные свойства полупроводников. Термическая обработка материалов подразделяется на собственно термическую, заключающуюся только в тепловом воздействии на металл, химико-термическую, сочетающую тепловое и химическое воздействия, и термомеханическую, сочетающую тепловое воздействие и пластическую Разновидности термической обработки — обработка стали холодом, электротермическая обработка.

dic.academic.ru

ТЕРМИЧЕСКАЯ ОБРАБОТКА - это... Что такое ТЕРМИЧЕСКАЯ ОБРАБОТКА?

 ТЕРМИЧЕСКАЯ ОБРАБОТКА ТЕРМИЧЕСКАЯ ОБРАБОТКА, тепловая обработка в основном металлов и сплавов для изменения их структуры и свойств. Основные виды: закалка (быстрое охлаждение с повышением температуры для увеличения прочности), отжиг (нагрев до высокой температуры, выдержка при ней и медленное охлаждение для повышения пластичности), отпуск (нагрев после закалки и последующее охлаждение для снижения хрупкости и повышения пластичности). Может сочетаться с химической, механической и магнитной обработками.

Современная энциклопедия. 2000.

  • ТЕРМИНАЛЬНОЕ СОСТОЯНИЕ
  • ТЕРМО...

Смотреть что такое "ТЕРМИЧЕСКАЯ ОБРАБОТКА" в других словарях:

  • ТЕРМИЧЕСКАЯ ОБРАБОТКА — совокупность операций теплового воздействия на материалы (главным образом металлы и сплавы) с целью изменения их структуры и свойств в нужном направлении. Основные виды термической обработки: закалка, отпуск, отжиг, нормализация, старение… …   Большой Энциклопедический словарь

  • Термическая обработка — – тепловая обработка полуфабриката при температуре ниже 800оС. [ИСО 836 2001] Рубрика термина: Огнеупоры Рубрики энциклопедии: Абразивное оборудование, Абразивы, Автодороги, Автотехника …   Энциклопедия терминов, определений и пояснений строительных материалов

  • термическая обработка — термообработка Обработка, заключающаяся в изменении структуры и свойств материала заготовки вследствие тепловых воздействий. [ГОСТ 3.1109 82] Тематики технологические процессы в целом Синонимы термообработка EN heat treatment DE thermische… …   Справочник технического переводчика

  • ТЕРМИЧЕСКАЯ ОБРАБОТКА — изменение механических свойств металлов путем соответственного температурного режима, иногда в соединении с действием химических реагентов. К термической обработке относится закалка, отжиг, цементация, отпуск, нитрирование и т. д. Самойлов К. И.… …   Морской словарь

  • ТЕРМИЧЕСКАЯ ОБРАБОТКА — совокупность технологических операций, связанных с нагреванием, охлаждением и направленных на изменение свойств материалов в результате изменения их внутреннего или поверхностного строения. Особенно широкое промышленное распространение получила Т …   Большая политехническая энциклопедия

  • термическая обработка — 3.14 термическая обработка субстрата: Процесс обработки субстрата при повышенной температуре (+60 °С ... 62 °С) с помощью насыщенного пара низкого давления (пастеризация) и последующего охлаждения («кондиционирования») субстрата для завершения… …   Словарь-справочник терминов нормативно-технической документации

  • термическая обработка — совокупность операций теплового воздействия на материалы (главным образом металлы и сплавы) с целью изменения структуры и свойств в нужном направлении. Основные виды термической обработки: закалка, отпуск, отжиг, нормализация, старение… …   Энциклопедический словарь

  • термическая обработка — [heat (thermal treatment (processing)] совокупность операций теплового воздействия на материал с целью изменения его структуры и свойств в нужном направлении (Смотри Термообработка). Смотри также: Обработка электроэрозионная обработка …   Энциклопедический словарь по металлургии

  • Термическая обработка —         металлов, процесс обработки изделий из металлов и сплавов путём теплового воздействия с целью изменения их структуры и свойств в заданном направлении. Это воздействие может сочетаться также с химическим, деформационным, магнитным и др.… …   Большая советская энциклопедия

  • Термическая обработка — Термическая обработка  выдерживание материала при повышенной (нагрев) или при пониженной (охлаждение) температуре, либо соблюдение определённого температурного режима в течение определённого времени для придания ему необходимых свойств.… …   Википедия

dic.academic.ru

Термообработка - это... Что такое Термообработка?

 Термообработка

Wikimedia Foundation. 2010.

Синонимы:
  • Термонде
  • Термопласт

Смотреть что такое "Термообработка" в других словарях:

  • термообработка — термообработка …   Орфографический словарь-справочник

  • термообработка — сущ., кол во синонимов: 2 • обработка (92) • электротермообработка (1) Словарь синонимов ASIS. В.Н. Тришин. 2013 …   Словарь синонимов

  • термообработка — Технологическая операция, при которой молоко или продукт подвергают воздействию заданной температуры в течение заданного времени. [ГОСТ Р 51917 2002] Тематики продукты молочные и молокосодержащие Обобщающие термины термины и определения… …   Справочник технического переводчика

  • термообработка — ТО термическая обработка ТО Словарь: С. Фадеев. Словарь сокращений современного русского языка. С. Пб.: Политехника, 1997. 527 с …   Словарь сокращений и аббревиатур

  • Термообработка — – комплекс операций нагрева до определенной температуры, выдержки и охлаждения с определенной скоростью металлических сплавов с целью получения требуемых свойств за счет изменения структуры. [Блюм Э. Э. Словарь основных металловедческих… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Термообработка — [heat (thermal) treatment] совокупность операций преднамеренного температурно временного воздействия на изделие или часть его с целью изменения структуры и свойств в нужном направлении. Это воздействие может сочетаться также с химической,… …   Энциклопедический словарь по металлургии

  • термообработка — 1. термообработка: Технологическая операция, при которой молоко или продукт подвергают воздействию заданной температуры в течение заданного времени. Источник: ГОСТ Р 51917 2002: Продукты молочные и молокосодержащие. Термины и определения …   Словарь-справочник терминов нормативно-технической документации

  • Термообработка — Heat treatment Термообработка. Нагрев и охлаждение твердого металла или сплава таким образом, чтобы получить желаемое состояние и свойства. Нагрев для последующей вытяжки или выдавливания к термообработке не относится. (Источник: «Металлы и… …   Словарь металлургических терминов

  • термообработка — terminis apdorojimas statusas T sritis Standartizacija ir metrologija apibrėžtis Medžiagos arba gaminio savybių keitimas kaitinant. atitikmenys: angl. heat treatment; thermal processing vok. thermische Behandlung, f; Wärmebehandlung, f rus.… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • термообработка — terminis apdorojimas statusas T sritis chemija apibrėžtis Medžiagos (gaminio) savybių keitimas kaitinimu. atitikmenys: angl. heat treatment rus. термическая обработка; термообработка …   Chemijos terminų aiškinamasis žodynas

  • термообработка — terminis apdorojimas statusas T sritis fizika atitikmenys: angl. baking; heat treatment; thermal processing vok. Wärmebehandlung, f rus. тепловая обработка, f; термическая обработка, f; термообработка, f pranc. traitement à chaud, m; traitement… …   Fizikos terminų žodynas

dic.academic.ru

Термообработка

Описание : реферат по термообработке . Здавался в МИСИС на физикохимическом факультете . Подробно смотри план :

План реферата .

1. Введение.

2. Гомогенизационный отжиг.

3. Дорекристаллизационный и рекристаллизационный отжиг.

3.1. Смягчающий отжиг.

3.2. Упрочняющий отжиг.

4. Отжиг,уменьшающий напряжения.

5. Факторы , влияющие на перлитно-аустенитное превращение.

6. Влияние зерна аустенита на свойства стали.

7. Изотермический распад переохлажденного аустенита .

8. Построение термокинетической диаграммы распада g-переохлажденного .

9. Отжиг II рода

9.1. Полный отжиг.

9.2. Неполный отжиг.

9.3. Изотермический отжиг.

9.4. Сфероидизирующий отжиг.

10. Нормализация.

11. Одинарная термообработка.

12. Патентирование стали .

1. Введение

Отжиг I рода - это термообработка , которая устраняет частично (или полностью) всякого рода неоднородности и неравновесности , которые были внесены в металл при предшествующих операциях ( мех. обработка , обработка давлением , литье , сварка ).

В зависимости от исходного состояния стали отжиг может включать процессы гомогенизации , рекристаллизации и снятия остаточных напряжений. Эти процессы происходят независимо от того , протекают ли в сплавах при такой обработке фазовые превращения или нет . Поэтому отжиг I рода можно проводить при температурах выше или ниже температур фазовых превращений .

2.Гомогенизационный отжиг.

Основной целью гомогенизационного отжига являются - устранение последствий дендритной или внутрикристаллитной ликвации , которая может привести к :

1.Снижению пластичности , за счет выделения неравновесных хрупких фаз.

2.Уменьшению коррозионной стойкости и развитии электрохимической коррозии

внутри сплава.

3.Анизотропии мех. свойств.

4.Снижению температуры солидуса.

5.Уменьшению температуры плавления , из-за которого происходит оплавление дендритов при дальнейшей обработке.

6.Отсутствию стабильности свойств.

Физико- химической основой гомогенизационного отжига является диффузия в твердом состоянии , по этому отжиг желательно проводить при более высоких температурах , чтобы диффузионные процессы , необходимые для выравнивания состава стали , проходили более полно.

Температура нагрева под отжиг колеблется в пределах (0.85-0.90)Tпл .

Выдержка будет определяться природой ликвирующих элементов . Так как гомогенизация интенсивно протекает в начальный период отжига ( по мере выравнивания состава сплава градиент концентрации dC/dX уменьшается ) , то большие времена выдержки не применяются. Однако для некоторых металлов это время составляет десятки или сотни часов. Для уменьшения времени отжига нужно

1. Увеличить температуру

2. Изменить dC/dX , а для этого нужно изменить условия кристаллизации.

3. Загрузить в печь уже нагретые слитки.

Гомогенизирующий отжиг может вызвать ряд негативных побочных явлений:

1. Рост зерна аустенита,следовательно ухудшение мех. свойств .

2. Вторичная пористость и неоднородность .

3. Коагуляция избыточных фаз.

Поэтому гомогенизирующий отжиг является предварительной обработкой , после которой поводят полный отжиг,или обработку давлением , или отпуск при 670-680 градусах ,или нормализацию.

Для устранения неоднородностей , вызванных холодной пластической деформацией применяют дорекристаллизационный и рекристаллизационный отжиг

При холодной деформации происходит:

1.Изменение формы и размеров кристаллов

2.Накопление в металле большого количества избыточной энергии ,что в конечном итоге приводит к росту напряжений 1 и 2 родов.

Из-за этого : уменьшаются пластические характеристики, появляется анизотропия механических свойств, увеличивается электросопротивление и уменьшается коррозионная стойкость.

Все это можно попытаться устранить отжигом.

Дорекристаллизационный отжиг бывает смягчающим и упрочняющим.

Смягчающий отжиг используют для повышения пластичности при частичном сохранении деформационного упрочнения. Чаще всего его применяют в качестве окончательной операции , придающей изделию требуемое сочетание прочности и пластичности. Кроме того , можно уменьшить остаточные напряжения ,стабилизировать свойства и повысить стойкость к коррозии. Для выбора режима дорекристаллизационного смягчающего отжига необходимо знать температуру начала рекристаллизации, при данной степени деформации.

Дорекристаллизационный упрочняющий отжиг применяют для повышения упругих свойств пружин и мембран.Оптимальную температуру подбирают опытным путем.

Рекристаллизационный отжиг используют в промышленности как предварительную операцию перед холодной обработкой давлением,для придания материалу наибольшей пластичности;как промежуточный процесс между операциями холодногодеформирования,для снятия наклепа ; и как окончательную термообработку,для придания материалу необходимых свойств.

При выборе режима отжига нужно избегать получения очень крупного зерна и разнозернистости.Скорость нагрева чаще всего не имеет значения.

4.Отжиг,уменьшающий напряжения.

При обработке давлением,литье,сварке,термообработке в изделиях могут возникать внутренние напряжения.В большинстве случаев,они полностью или частично сохраняются в металле после окончания технологического процесса.Поэтому основная цель отжига - полная или частичная релаксация остаточных напряжений.

Причинами возникновения остаточных напряжений являются неодинаковая пластическая деформация или разное изменение удельного объема в различных точках тела,из-за наличия градиента температур по сечению тела.

Напряжения при отжиге уменьшаются двумя путями : вследствии пластической деформации в условиях когда эти напряжения превысят предел текучести и в результате ползучести при напряжениях меньше предела текучести.

Продолжительность отжига устанавливают опытным путем.Определенной температуре отжига в каждом конкретном изделии соответствует свой конечный уровень остаточных напряжений, по достижении которого увеличивать продолжительность отжига практически бесполезно.

Температуру подбирают обычно несколько ниже критической точки Ас1 .

Скорости нагрева и особенно охлаждения при отжиге должны быть небольшими,чтобы не возникли новые внутренние термические напряжения.

Использование отжига лимитируется теми нежелательными структурными и фазовыми изменениями , которые могут произойти при нагреве. Поэтому приходится либо мириться с недостаточно полным снятием остаточных напряжений при низких температурах ,либо идти на компромис ,достигая более полного снятия напряжений при некотором ухудшении механических и других свойств.

5.Факторы,влияющие на перлитно-аустенитное превращение.

Образование аустенита при нагреве является диффузионным процессом и подчиняется основным положениям теории кристаллизации. Процесс сводится к полиморфному a®g

превращению и растворению в образовавшемся аустените цементита.Из этого вытекают факторы ,влияющие на перлитно-аустенитное превращение.

1. При повышении температуры превращение перлита в аустенит резко ускоряется. Это объясняется , с одной стороны ,ускорением диффузионных процессов, а с другой - увеличением градиента концентрации в аустените.

2. Скорость превращения будет зависеть и от исходного состояния ферритно-цементитной структуры. Чем тоньше структура ,тем больше возникает зародышей аустенита и быстрее протекает процесс аустенизации.Предварительная сфероидизация цементита замедляет прцесс образования аустенита.

3. Чем больше в стали углерода , тем быстрее протекает аустенизация,что объясняется увеличением количества цементита, и ростом суммарной поверхности раздела феррита и цементита.

4. Введение в сталь хрома ,мрлибдена,вольфрама ,ванадия и других карбидообразующих элементов задерживает аустенизацию из-за образования легированного цементита или трудно растворимых в аустените карбидов легирующих элементов.

5. Чем больше скорость нагрева ,тем выше температура ,при которой происходит превращение перлита в аустенит , а продолжительность превращения меньше.

6.Влияние величины зерна аустенита на свойства стали.

Чем мельче зерно ,тем выше прочность ( sв ,s0.2 ) ,пластичность(d , y ) и вязкость и ниже порог хладноломкости( t ). Уменьшая размер зерна аустенита, можно компенсировать отрицательное влияние других механизмов на порог хладноломкости. Чем мельче зерно , тем выше предел выносливости.Поэтому все методы , вызывающие измельчение зерна аустенита повышают конструктивную прочность стали. Крупное зерно нужно только в трансформаторных сталях , чтобы улучшить их магнитные свойства. При укрупнении зерна до 10-15 мкм трещиностойкость уменьшается , а при дальнейшем росте зерна - возрастает. Это может быть связано с очищением границ зерна аустенита от вредных примесей благодаря большему их расворению в объеме зерна при высокотемпературном нагреве.

7.Изотермический распад переохлажденного аустенита .

Если сталь со структурой аустенита , полученной в результате нагрева до температуры выше Ас3 -для доэвтектоидной стали или выше Асm - для заэвтектоидной , переохладить до температуры ниже Аr1 , то аустенит оказывается в метастабильном состоянии и претерпевает превращение .

Рассмотрим кинетику этого процесса ( см. рис. 1)

Вначале объем новой составляющей , испытавший превращение , растет с ускорением, а к концу превращения прибыль этого объема резко замедляется .Это объясняется тем , что в начальный период образуется лишь небольшое количество центров превращения с малой поверхностью новой структурной составляющей ; по мере изотермической выдержки число центров возрастает , увеличиваются размеры новой составляющей , но вскоре наступает замедление прцесса из-за того , что растущие кристаллы соприкасаются между собой и в местах стыка рост их прекращается , т.е. поверхность фронта превращения уменьшается .

mirznanii.com

Термообработка - это... Что такое Термообработка?

 Термообработка термообрабо́тка

ж.

Термическая обработка.

Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000.

.

Синонимы:
  • Термометрия и Термометрия
  • Термопара

Смотреть что такое "Термообработка" в других словарях:

  • термообработка — термообработка …   Орфографический словарь-справочник

  • термообработка — сущ., кол во синонимов: 2 • обработка (92) • электротермообработка (1) Словарь синонимов ASIS. В.Н. Тришин. 2013 …   Словарь синонимов

  • термообработка — Технологическая операция, при которой молоко или продукт подвергают воздействию заданной температуры в течение заданного времени. [ГОСТ Р 51917 2002] Тематики продукты молочные и молокосодержащие Обобщающие термины термины и определения… …   Справочник технического переводчика

  • термообработка — ТО термическая обработка ТО Словарь: С. Фадеев. Словарь сокращений современного русского языка. С. Пб.: Политехника, 1997. 527 с …   Словарь сокращений и аббревиатур

  • Термообработка — – комплекс операций нагрева до определенной температуры, выдержки и охлаждения с определенной скоростью металлических сплавов с целью получения требуемых свойств за счет изменения структуры. [Блюм Э. Э. Словарь основных металловедческих… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Термообработка — [heat (thermal) treatment] совокупность операций преднамеренного температурно временного воздействия на изделие или часть его с целью изменения структуры и свойств в нужном направлении. Это воздействие может сочетаться также с химической,… …   Энциклопедический словарь по металлургии

  • термообработка — 1. термообработка: Технологическая операция, при которой молоко или продукт подвергают воздействию заданной температуры в течение заданного времени. Источник: ГОСТ Р 51917 2002: Продукты молочные и молокосодержащие. Термины и определения …   Словарь-справочник терминов нормативно-технической документации

  • Термообработка — Heat treatment Термообработка. Нагрев и охлаждение твердого металла или сплава таким образом, чтобы получить желаемое состояние и свойства. Нагрев для последующей вытяжки или выдавливания к термообработке не относится. (Источник: «Металлы и… …   Словарь металлургических терминов

  • термообработка — terminis apdorojimas statusas T sritis Standartizacija ir metrologija apibrėžtis Medžiagos arba gaminio savybių keitimas kaitinant. atitikmenys: angl. heat treatment; thermal processing vok. thermische Behandlung, f; Wärmebehandlung, f rus.… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • термообработка — terminis apdorojimas statusas T sritis chemija apibrėžtis Medžiagos (gaminio) savybių keitimas kaitinimu. atitikmenys: angl. heat treatment rus. термическая обработка; термообработка …   Chemijos terminų aiškinamasis žodynas

  • термообработка — terminis apdorojimas statusas T sritis fizika atitikmenys: angl. baking; heat treatment; thermal processing vok. Wärmebehandlung, f rus. тепловая обработка, f; термическая обработка, f; термообработка, f pranc. traitement à chaud, m; traitement… …   Fizikos terminų žodynas

dic.academic.ru

термическая обработка (термообработка) - это... Что такое термическая обработка (термообработка)?

 термическая обработка (термообработка)

3.1.56 термическая обработка (термообработка): Нагрев, выдержка и охлаждение сварных соединений по определенным режимам с целью получения заданных свойств.

Словарь-справочник терминов нормативно-технической документации. academic.ru. 2015.

  • термическая обработка
  • Термическая обработка древесины водой

Смотреть что такое "термическая обработка (термообработка)" в других словарях:

  • термическая обработка — термообработка Обработка, заключающаяся в изменении структуры и свойств материала заготовки вследствие тепловых воздействий. [ГОСТ 3.1109 82] Тематики технологические процессы в целом Синонимы термообработка EN heat treatment DE thermische… …   Справочник технического переводчика

  • термическая обработка — 3.14 термическая обработка субстрата: Процесс обработки субстрата при повышенной температуре (+60 °С ... 62 °С) с помощью насыщенного пара низкого давления (пастеризация) и последующего охлаждения («кондиционирования») субстрата для завершения… …   Словарь-справочник терминов нормативно-технической документации

  • термическая обработка — terminis apdorojimas statusas T sritis chemija apibrėžtis Medžiagos (gaminio) savybių keitimas kaitinimu. atitikmenys: angl. heat treatment rus. термическая обработка; термообработка …   Chemijos terminų aiškinamasis žodynas

  • Термическая обработка металлов — Металл в термопечи Термическая обработка металлов и сплавов процесс тепловой обработки металлических изделий, целью которого является изменение структуры и свойств в заданном направлении …   Википедия

  • термическая обработка — [heat (thermal treatment (processing)] совокупность операций теплового воздействия на материал с целью изменения его структуры и свойств в нужном направлении (Смотри Термообработка). Смотри также: Обработка электроэрозионная обработка …   Энциклопедический словарь по металлургии

  • термическая обработка — terminis apdorojimas statusas T sritis fizika atitikmenys: angl. baking; heat treatment; thermal processing vok. Wärmebehandlung, f rus. тепловая обработка, f; термическая обработка, f; термообработка, f pranc. traitement à chaud, m; traitement… …   Fizikos terminų žodynas

  • термическая обработка — terminis apdorojimas statusas T sritis Standartizacija ir metrologija apibrėžtis Medžiagos arba gaminio savybių keitimas kaitinant. atitikmenys: angl. heat treatment; thermal processing vok. thermische Behandlung, f; Wärmebehandlung, f rus.… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • Химико-термическая обработка — Thermochemical treatment Химико термическая обработка. Термообработка сталей с целью изменения химического состава и свойств поверхности детали путем обмена со средой. (Источник: «Металлы и сплавы. Справочник.» Под редакцией Ю.П. Солнцева; НПО… …   Словарь металлургических терминов

  • химико - термическая обработка — ▲ обработка ↑ посредством, воздействие, высокая температура обжиг выдержка при высокой температуре. структуры железных сплавов: феррит. аустенит. мартенсит. цементит. троостит. перлит. сорбит. термообработка: отжиг. закалка. калить. закаливать.… …   Идеографический словарь русского языка

  • МЕТАЛЛОВ ТЕРМИЧЕСКАЯ ОБРАБОТКА — определенный временной цикл нагрева и охлаждения, которому подвергают металлы для изменения их физических свойств. Термообработка в обычном смысле этого термина проводится при температурах, не достигающих точки плавления. Процессы плавления и… …   Энциклопедия Кольера

normative_reference_dictionary.academic.ru


© 2007—2018
423800, Набережные Челны , база Партнер Плюс, тел. 8 800 100-58-94 (звонок бесплатный)