Камаз 44108 тягач В наличии!
Тягач КАМАЗ 44108-6030-24
евро3, новый, дв.КАМАЗ 740.55-300л.с., КПП ZF9, ТНВД ЯЗДА, 6х6, нагрузка на седло 12т, бак 210+350л, МКБ, МОБ
 
карта сервера
«ООО Старт Импэкс» продажа грузовых автомобилей камаз по выгодным ценам
+7 (8552) 31-97-24
+7 (904) 6654712
8 800 1005894
звонок бесплатный

Наши сотрудники:
Виталий
+7 (8552) 31-97-24

[email protected]

 

Екатерина - специалист по продаже а/м КАМАЗ
+7 (904) 6654712

[email protected]

 

Фото техники

20 тонный, 20 кубовый самосвал КАМАЗ 6520-029 в наличии
15-тонный строительный самосвал КАМАЗ 65115 на стоянке. Техника в наличии
Традиционно КАМАЗ побеждает в дакаре

тел.8 800 100 58 94

Техника в наличии

тягач КАМАЗ-44108
Тягач КАМАЗ 44108-6030-24
2014г, 6х6, Евро3, дв.КАМАЗ 300 л.с., КПП ZF9, бак 210л+350л, МКБ,МОБ,рестайлинг.
цена 2 220 000 руб.,
 
КАМАЗ-4308
КАМАЗ 4308-6063-28(R4)
4х2,дв. Cummins ISB6.7e4 245л.с. (Е-4),КПП ZF6S1000, V кузова=39,7куб.м., спальное место, бак 210л, шк-пет,МКБ, ТНВД BOSCH, система нейтрализ. ОГ(AdBlue), тент, каркас, рестайлинг, внутр. размеры платформы 6112х2470х730 мм
цена 1 950 000 руб.,
КАМАЗ-6520
Самосвал КАМАЗ 6520-057
2014г, 6х4,Евро3, дв.КАМАЗ 320 л.с., КПП ZF16, ТНВД ЯЗДА, бак 350л, г/п 20 тонн, V кузова =20 куб.м.,МКБ,МОБ, со спальным местом.
цена 2 700 000 руб.,
 
КАМАЗ-6522
Самосвал 6522-027
2014, 6х6, дв.КАМАЗ 740.51,320 л.с., КПП ZF16,бак 350л, г/п 19 тонн,V кузова 12куб.м.,МКБ,МОБ,задняя разгрузка,обогрев платформы.
цена 3 190 000 руб.,

СУПЕР ЦЕНА

на АВТОМОБИЛИ КАМАЗ
43118-010-10 (дв.740.30-260 л.с.) 2 220 000
43118-6033-24 (дв.740.55-300 л.с.) 2 300 000
65117-029 (дв.740.30-260 л.с.) 2 200 000
65117-6010-62 (дв.740.62-280 л.с.) 2 350 000
44108 (дв.740.30-260 л.с.) 2 160 000
44108-6030-24 (дв.740.55,рест.) 2 200 000
65116-010-62 (дв.740.62-280 л.с.) 1 880 000
6460 (дв.740.50-360 л.с.) 2 180 000
45143-011-15 (дв.740.13-260л.с) 2 180 000
65115 (дв.740.62-280 л.с.,рест.) 2 190 000
65115 (дв.740.62-280 л.с.,3-х стор) 2 295 000
6520 (дв.740.51-320 л.с.) 2 610 000
6520 (дв.740.51-320 л.с.,сп.место) 2 700 000
6522-027 (дв.740.51-320 л.с.,6х6) 3 190 000


Перегон грузовых автомобилей
Перегон грузовых автомобилей
подробнее про услугу перегона можно прочесть здесь.


Самосвал Форд Нужны самосвалы? Обратите внимание на Ford-65513-02.

КАМАЗы в лизинг

ООО «Старт Импэкс» имеет возможность поставки грузовой автотехники КАМАЗ, а так же спецтехники на шасси КАМАЗ в лизинг. Продажа грузовой техники по лизинговым схемам имеет определенные выгоды для покупателя грузовика. Рассрочка платежа, а так же то обстоятельство, что грузовики до полной выплаты лизинговых платежей находятся на балансе лизингодателя, и соответственно покупатель автомобиля не платит налогов на имущество. Мы готовы предложить любые модели бортовых автомобилей, тягачей и самосвалов по самым выгодным лизинговым схемам.

Контактная информация.

г. Набережные Челны, Промкомзона-2, Автодорога №3, база «Партнер плюс».

тел/факс (8552) 388373.
Схема проезда



Технологический процесс в электронной промышленности. Технический процесс это


1. Производственный и технологический процессы. Техническая подготовка производства. Технологический процесс.Технологическая операция и ее структура.

Производственный процесс – это совокупность всех действий людей и орудий труда, необходимых на данном предприятии для изготовления или ремонта продукции.Состав цехов и служб предприятия с указанием связи между ними определяет производственную структуру. Элементарной единицей структуры предприятия является рабочее место. Производственный участок представляет собой группы рабочих мест, организованных по предметному, технологическому или предметно-технологическому признаку. Совокупность производственных участков образует цех.

Технологическим процессом (ТП) называют часть производственного процесса, направленного на изменение и определение состояния предметов труда. К предметам труда относят заготовки и изделия. представляет собой совокупность различных операций, в результате которых изменяются размеры, форма и свойства предметов труда; выполняется соединение деталей сборочной единицы и изделия, контроль по требованиям чертежа и техническим условиям.

Техническая подготовка производства является объектом внутризаводского планирования и представляет собой в определенной мере детализацию и конкретизацию планов технического и организационного развития производства. представляет собой совокупность взаимосвязанных научно-технических процессов, обеспечивающих технологическую готовность предприятия выпускать продукцию с техническими условиями качеств.  Для того чтобы уменьшить трудозатраты применяется система единой технической документации по технической подготовке производства – ЕСТПП - это установленная государственными стандартами система организации и управления технической подготовкой производства, непрерывно совершенствуемая на основе достижений науки и техники, управляющая развитием технической подготовки производством на уровнях: государственном, отраслевом, организации, предприятии.

Технологической операцией - закон­ченную часть технологического процесса, вы­полняемую на одном рабочем месте. Она является основным элементом производственного планирова­ния и учета. На выполнение операций устанавливают нормы времени и расценки. По операциям определя­ют трудоемкость и себестоимость процесса, необхо­димое количество производственных рабочих и средств технологического оснащения.

основные элементы технологических операций:

1. Установом называют часть технологической операции, выполняемой при неизменном закреплении обрабатываемой заготовки или группы одновременно обрабатываемых заготовок. Съем детали со станка с последующим закреплением считается новым установом.

2. Позицией называется фиксированное положение, занимаемое неизменно закрепленной обрабатываемой заготовкой совместно с приспособлением относительно инструмента или неподвижной части оборудования, для выполнения определенной части операции.

3. Технологическим переходом называют законченную часть технологической операции, характеризующуюся постоянством применяемого инструмента и поверхностей, образуемых обработкой. Следовательно, переход от обработки одной поверхности заготовки к другой поверхности является следующим переходом.

4. Рабочий ход - это законченная часть технологического перехода, состоящая из однократного перемещения инструмента относительно заготовки, сопровождаемого изменением формы, размеров, шероховатости или свойств заготовки.

5. Вспомогательный переход - законченная часть технологической операции, состоящая из действий человека и оборудования или одного оборудования, которые не сопровождаются изменением формы, размеров и шероховатости поверхностей, но необходимы для выполнения технологического перехода (пуск станка, останов станка, включение подачи и т. д.).

6. Вспомогательным ходом называют законченную часть технологического перехода, состоящую из однократного перемещения инструмента относительно заготовки, не сопровождаемого изменением формы, размеров, шероховатости поверхности или свойств заготовки, но необходимого для выполнения рабочего хода.

studfiles.net

Технологический процесс в электронной промышленности

Процессор Apple.

Технологический процесс полупроводникового производства — технологический процесс изготовления полупроводниковых (п/п) изделий и материалов, и состоит из последовательности технологических (обработка, сборка) и контрольных операций, часть производственного процесса производства п/п изделий (транзисторов, диодов и тп.).

При производстве п/п интегральных микросхем применяется фотолитография и литографическое оборудование. Разрешающая способность (в мкм и нм) этого оборудования (т. н. проектные нормы) и определяет название применяемого конкретного технологического процесса.

Совершенствование технологии и пропорциональное уменьшение размеров п/п структур способствуют улучшению характеристик (размеры, энергопотребление, стоимость) полупроводниковых приборов (микросхем, процессоров, микроконтроллеров и тд.).

Особую значимость это имеет для процессорных ядер, в аспектах потребления электроэнергии и повышения производительности, поэтому ниже указаны процессоры (ядра) массового производства на данном техпроцессе.

Содержание

Этапы технологического процесса

Пластина монокристаллического кремния с готовыми микросхемами

Технологический процесс производства полупроводниковых приборов и интегральных микросхем (микропроцессоров, модулей памяти и др.) включает нижеследующие операции.

  • Механическую обработку полупроводниковых пластин — получают пластины полупроводника со строго заданной геометрией, нужной кристаллографической ориентацией (не хуже ±5 %) и классом чистоты поверхности. Эти пластины в дальнейшем служат заготовками в производстве приборов или подложками для нанесения эпитаксиального слоя.
  • Химическую обработку (предшествующую всем термическим операциям) — удаление механически нарушенного слоя полупроводника и очистка поверхности пластины. Основные методы химической обработки: жидкостное и газовое травление, плазмохимические методы. Для получения на пластине рельефа (профилирование поверхности) в виде чередующихся выступов и впадин определённой геометрии, для вытравливания окон в маскирующих покрытиях, для проявления скрытого изображения в слое экспонированного фоторезиста, для удаления его заполимеризированных остатков, для получения контактных площадок и разводки в слое металлизации применяют химическую (электрохимическую) обработку.
  • Эпитаксиальное наращивание слоя полупроводника — осаждение атомов полупроводника на подложку, в результате чего на ней образуется слой, кристаллическая структура которого подобна структуре подложки. При этом подложка часто выполняет лишь функции механического носителя.
  • Получение маскирующего покрытия — для защиты слоя полупроводника от проникновения примесей на последующих операциях легирования. Чаще всего проводится путём окисления эпитаксиального слоя кремния в среде кислорода при высокой температуре.
  • Фотолитография — производится для образования рельефа в диэлектрической плёнке.
  • Введение электрически активных примесей в пластину для образования отдельных p- и n-областей — нужно для создания электрических переходов, изолирующих участков. Производится методом диффузии из твёрдых, жидких или газообразных источников, основными диффузантами в кремний являются фосфор и бор.
Термическая диффузия — направленное перемещение частиц вещества в сторону убывания их концентрации: определяется градиентом концентрации. Часто применяется для получения введения легирующих примесей в полупроводниковые пластины (или выращенные на них эпитаксиальные слои) для получения противоположного, по сравнению с исходным материалом, типа проводимости, либо элементов с более низким электрическим сопротивлением. Ионное легирование (применяемое при изготовлении полупроводниковых приборов с большой плотностью переходов, солнечных батарей и СВЧ-структур) определяется начальной кинетической энергией ионов в полупроводнике и выполняется в два этапа:
  1. в полупроводниковую пластину на вакуумной установке внедряют ионы
  2. производится отжиг при высокой температуре
В результате восстанавливается нарушенная структура полупроводника и ионы примеси занимают узлы кристаллической решётки.
  • Получение омических контактов и создание пассивных элементов на пластине — с помощью фотолитографической обработки в слое оксида, покрывающем области сформированных структур, над предварительно созданными сильно легированными областями n+- или p+-типа, которые обеспечивают низкое переходное сопротивление контакта, вскрывают окна. Затем, методом вакуумного напыления всю поверхность пластины покрывают слоем металла (металлизируют), излишек металла удаляют, оставив его только на местах контактных площадок и разводки. Полученные таким образом контакты, для улучшения адгезии материала контакта к поверхности и уменьшения переходного сопротивления, термически обрабатывают (операция вжигания). В случае напыления на материал оксида специальных сплавов получают пассивные тонкоплёночные элементы — резисторы, конденсаторы, индуктивности.
  • Добавление дополнительных слоев металла (в современных процессах — около 10 слоев), между слоями располагают диэлектрик (англ. inter-metal dielectric, IMD) со сквозными отверстиями.
  • Пассивация поверхности пластины. Перед контролем кристаллов необходимо очистить их внешнюю поверхность от различных загрязнений. Более удобной (в технологическом плане) является очистка пластин непосредственно после скрайбирования или резки диском, пока они ещё не разделены на кристаллы. Это целесообразно и потому, что крошки полупроводникового материала, образуемые при скрайбировании или надрезании пластин, потенциально являются причиной появления брака при размалывании их на кристаллы с образованием царапин при металлизации. Наиболее часто пластины очищают в деионизированной воде на установках гидромеханической (кистьевой) отмывки, а затем сушат на центрифуге, в термошкафу при температуре не более 60° C или инфракрасным нагревом. На очищенной пластине определяются дефекты вносимые операцией скрайбирования и разламывания пластин на кристаллы, а также ранее проводимых операциях — фотолитографии, окислении, напылении, измерении (сколы и микротрещины на рабочей поверхности, царапины и другие повреждения металлизации, остатки оксида на контактных площадках, различные остаточные загрязнения в виде фоторезиста, лака, маркировочной краски и т.п.).
  • Тестирование неразрезанной пластины. Обычно это испытания зондовыми головками на установках автоматической разбраковки пластин. В момент касания зондами разбраковываемых структур измеряются электрические параметры. В процессе маркируются бракованные кристаллы, которые затем отбрасываются. Линейные размеры кристаллов обычно не контролируют, так как их высокая точность обеспечивается механической и электрохимической обработкой поверхности (толщина) и последующим скрайбированием (длина и ширина).
  • Разделение пластин на кристаллы — механически разделяет (разрезанием) пластину на отдельные кристаллы.
  • Сборка кристалла и последующие операции монтажа кристалла в корпус и герметизация — присоединение к кристаллу выводов и последующая упаковка в корпус, с последующей его герметизацией.
  • Электрические измерения и испытания — проводятся с целью отбраковки изделий, имеющих несоответствующие технической документации параметры. Иногда специально выпускаются микросхемы с «открытым» верхним пределом параметров, допускающих впоследствии работу в нештатных для остальных микросхем режимах повышенной нагрузки (см., например, Разгон компьютеров).
  • Выходной контроль (англ.), завершающий технологический цикл изготовления устройства весьма важная и сложная задача (так, для проверки всех комбинаций схемы, состоящей из 20 элементов с 75 (совокупно) входами, при использовании устройства работающего по принципу функционального контроля со скоростью 104 проверок в секунду, потребуется 1019 лет!)
  • Маркировка, нанесение защитного покрытия, упаковка — завершающие операции перед отгрузкой готового изделия конечному потребителю.
Для выполнения требований электронной производственной гигиены строят особо чистые помещения («чистые комнаты»), в которых люди могут находиться только в специальной одежде

Технологии производства полупроводниковой продукции с субмикронными размерами элементов основана на чрезвычайно широком круге сложных физико-химических процессов: получение тонких плёнок термическим и ионно-плазменным распылением в вакууме, механическая обработка пластин производится по 14-му классу чистоты с отклонением от плоскостности не более 1 мкм, широко применяется ультразвук и лазерное излучение, используются отжиг в кислороде и водороде, рабочие температуры при плавлении металлов достигают более 1500 °C, при этом диффузионные печи поддерживают температуру с точностью 0,5 °C, широко применяются опасные химические элементы и соединения (например, белый фосфор).

Всё это обусловливает особые требования к производственной гигиене, так называемую «электронную гигиену», ведь в рабочей зоне обработки полупроводниковых пластин или на операциях сборки кристалла не должно быть более пяти пылинок размером 0,5 мкм в 1 л воздуха. Поэтому в чистых комнатах на фабриках по производству подобных изделий все работники обязаны носить специальные комбинезоны.[1]. В рекламных материалах Intel спецодежда работников получила название bunny suit («костюм кролика») [2][3].

Техпроцессы более 100 нм

3 мкм

3 мкм — техпроцесс, соответствующий уровню технологии, достигнутому в 1979 году Intel. Соответствует линейному разрешению литографического оборудования, примерно равному 3 мкм.

1,5 мкм

1,5 мкм — техпроцесс, соответствующий уровню технологии, достигнутому Intel в 1982 году. Соответствует линейному разрешению литографического оборудования, примерно равному 1,5 мкм.

0,8 мкм

0,8 мкм — техпроцесс, соответствующий уровню технологии, достигнутому в конце 1980-х — начале 1990-х годов компаниями Intel и IBM.

0,6 мкм

Техпроцесс, достигнутый производственными мощностями компаниями Intel и IBM в 1994—1995 годах.

  • 80486DX4 CPU (1994 год)
  • IBM/Motorola PowerPC 601, первый чип архитектуры PowerPC
  • Intel Pentium на частотах 75, 90 и 100 МГц
  • МЦСТ-R100 (1998 г., 0,5 мкм, 50 МГц)

0,35 мкм

350 нм — техпроцесс, соответствующий уровню технологии, достигнутому в 1997 году ведущими компаниями-производителями микросхем, такими как Intel, IBM, и TSMC. Соответствует линейному разрешению литографического оборудования, примерно равному 0,35 мкм.

0,25 мкм

250 нм — техпроцесс, соответствующий уровню технологии, достигнутому в 1998 году ведущими компаниями-производителями микросхем. Соответствует линейному разрешению литографического оборудования, примерно равному 0,25 мкм.

слоев металла до 6. минимальное количество масок 22

0,18 мкм

180 нм — техпроцесс, соответствующий уровню технологии, достигнутому в 1999 году ведущими компаниями-производителями микросхем. Соответствует линейному разрешению литографического оборудования, примерно равному 0,180 мкм.

слоев металла до 6-7. минимальное количество масок 22-24

0,13 мкм

130 нм — техпроцесс, соответствующий уровню технологии, достигнутому в 2000—2001 годах ведущими компаниями-производителями микросхем. Соответствует линейному разрешению литографического оборудования, примерно равному 130 нм.

  • Intel Pentium III Tualatin
  • Intel Celeron Tualatin-256 — октябрь 2001
  • Intel Pentium M Banias — март 2003
  • Intel Pentium 4 Northwood — январь 2002
  • Intel Celeron Northwood-128 — сентябрь 2002
  • Intel Xeon Prestonia и Gallatin — февраль 2002
  • AMD Athlon XP Thoroughbred, Thorton и Barton
  • AMD Athlon MP Thoroughbred — август 2002
  • AMD Athlon XP-M Thoroughbred, Barton и Dublin
  • AMD Duron Applebred — август 2003
  • AMD K7 Sempron Thoroughbred-B, Thorton и Barton — июль 2004
  • AMD K8 Sempron Paris — июль 2004
  • AMD Athlon 64 Clawhammer и Newcastle — сентябрь 2003
  • AMD Opteron Sledgehammer — июнь 2003
  • МЦСТ Эльбрус 2000 (1891BM4Я) — июль 2008
  • МЦСТ-R500S (1891ВМ3) — 2008, 500 МГц

Техпроцессы менее 100 нм

Данные в этой статье приведены по состоянию на 2011 год. Вы можете помочь, обновив информацию в статье.

90 нм (0,09 мкм)

90 нм — техпроцесс, соответствующий уровню полупроводниковой технологии, которая была достигнута к 2002—2003 годам. Соответствует линейному разрешению литографического оборудования, примерно равному 90 нм.

Технологический процесс с проектной нормой 90 нм часто используется с технологиями напряженного кремния, медных соединений с меньшим сопротивлением, чем у ранее применяемого алюминия, а также новый диэлектрический материал с низкой диэлектрической проницаемостью.

  • Intel Pentium 4 (Prescott)
  • МЦСТ-4R (готовится к выпуску, 4 ядра, 1 ГГц)
  • AMD Turion 64 X2 (мобильный)

65 нм (0,065 мкм)

65 нм — техпроцесс, соответствующий уровню технологии, достигнутому к 2004 году ведущими компаниями-производителями микросхем. Соответствует линейному разрешению литографического оборудования, примерно равному 65—70 нм.

  • STI Cell – PlayStation 3 – 2007-11-17
  • Microsoft Xbox 360 "Falcon" CPU – 2007–09
  • Microsoft Xbox 360 "Opus" CPU – 2008
  • Microsoft Xbox 360 "Jasper" CPU – 2008–10
  • Microsoft Xbox 360 "Jasper" GPU – 2008–10
  • Sun UltraSPARC T2 – 2007–10
  • TI OMAP 3 – 2008-02
  • VIA Nano – 2008-05
  • Loongson – 2009

50 нм (0,050 мкм)

50 нм — техпроцесс, соответствующий уровню технологии, достигнутому к 2005 году ведущими компаниями-производителями микросхем. Соответствует линейному разрешению литографического оборудования, примерно равному 50 нм.

45 нм (0,045 мкм)

45 нм — техпроцесс, соответствующий уровню технологии, достигнутому к 2006—2007 годах ведущими компаниями-производителями микросхем. Соответствует линейному разрешению литографического оборудования, примерно равному 45 нм. Для микроэлектронной промышленности стал революционным, так как это был первый техпроцесс, использующий технологию high-k/metal gate (HfSiON/TaN в технологии компании Intel), для замены физически себя исчерпавших SiO2/poly-Si

32 нм (0,032 мкм)

32 нм — техпроцесс, соответствующий уровню технологии, достигнутому к 2009—2010 годах ведущими компаниями-производителями микросхем. Соответствует линейному разрешению литографического оборудования, примерно равному 32 нм. Осенью 2009 компания Intel находилась на этапе перехода к этому новому техпроцессу[4][5][6][7][8]. С начала 2011 начали производится процессоры по данному техпроцессу.

  • Intel Sandy Bridge
  • AMD Bulldozer
  • AMD Piledriver (второе поколение Bulldozer, выход 23 октября 2012[9][10])
  • APU от AMD: Llano и Trinity (выход последнего намечен на октябрь 2012)

28 нм (0,028 мкм)

В третьем квартале 2010 года на новых мощностях расположенной на Тайване фабрики Fab 12 компании TSMC должен начаться серийный выпуск продукции по 28-нанометровой технологии[11].

В мае 2011 по технологии 28 нм фирмой Altera была выпущена самая большая в мире микросхема, состоящая из 3,9 млрд транзисторов.[12]

22 нм (0,022 мкм)

22 нм — техпроцесс, соответствующий уровню технологии, достигнутому к 2009-2012 гг. ведущими компаниями - производителями микросхем. Соответствует линейному разрешению литографического оборудования, примерно равному 22 нм. 22-нм элементы формируются при литографии путем экспонирования маски светом длиной волны 193 нм[13]

В 2008 году, на ежегодной выставке высоких технологий International Electron Devices Meeting в Сан-Франциско технологический альянс компаний IBM, AMD и Toshiba продемонстрировал ячейку памяти SRAM, выполненую по 22-нм техпроцессу из транзисторов типа FinFET, которые, в свою очередь, выполняются по прогрессивной технологии high-k/metal gate (затворы транзистора изготавливаются не из кремния, а из гафния), площадью всего 0,128 мкм² (0,58×0,22 мкм)[14]. Также о разработке ячейки памяти типа SRAM площадью 0,1 мкм² созданную по техпроцессу 22 нм объявили IBM и AMD[15]Первые работоспособные тестовые образцы регулярных структур (SRAM) представлены публике компанией Intel в 2009 году[16]. 22-нм тестовые микросхемы представляют собой память SRAM и логические модули. SRAM-ячейки размером 0,108 и 0,092 мкм² функционируют в составе массивов по 364 млн бит. Ячейка площадью 0,108 мкм² оптимизирована для работы в низковольтной среде, а ячейка площадью 0,092 мкм² является самой миниатюрной из известных сегодня ячеек SRAM.

Производятся процессоры по такой технологии в начале 2012 года.

  • Intel Ivy Bridge (анонсирован 23 апреля 2012 года).[17]
  • Intel Haswell (последователь Ivy Bridge, ожидаются в 2013 году).

14 нм (0,014 мкм)

Строительство завода под названием Fab42 в американском штате Аризона начнется в середине 2011 года, а в эксплуатацию он будет сдан в 2013 году. По заявлению Intel, он станет самым современным заводом по массовому выпуску компьютерных процессоров — Intel будет выпускать здесь продукцию по 14-нанометровой технологии на основе 300-миллиметровых кремниевых пластин. Завод также станет первым массовым производством, совместимым с 450-мм пластинами.[18][19] В стройку планируется вложить более $5 млрд. На момент запуска Fab 42 станет, как ожидается, одним из самых передовых в мире заводов по выпуску полупроводниковой продукции в больших объёмах.

10 нм (0,01 мкм)

Планы по выпуску серверных решений и развитию техпроцесса до 2018 года.[20]

Техпроцесс атомарного уровня

Учёные нашли способ создания рабочего транзистора, размер которого соответствует лишь одному атому. Исследователи из Университета Южного Уэльса в Австралии смогли создать и управлять технологией на основе атома фосфора, тщательно размещённого на полупроводниковом кристалле[21]. Результаты, как сообщается, приведут к созданию техпроцессов атомарного уровня примерно к 2020 году и могут лечь в основу будущих квантовых компьютеров.

См. также

Литература

  • Готра З. Ю. Справочник по технологии микроэлектронных устройств. — Львов: Каменяр, 1986. — 287 с.
  • Бер А. Ю., Минскер Ф. Е. Сборка полупроводниковых приборов и интегральных микросхем. — М: «Высшая школа», 1986. — 279 с.

Ссылки

Примечания

  1. В качестве средств индивидуальной защиты применяют спецодежду, изготовленную из металлизированной ткани (комбинезоны, халаты, передники, куртки с капюшонами и вмонтированными в них защитными очками)

    — В. М. Городилин, В. В. Городилин §21. Излучения, их действия на окружающую среду и меры борьбы за экологию. // Регулировка радиоаппаратуры. — Издание четвёртое, исправленное и дополненное. — М.: Высшая школа, 1992. — С. 79. — ISBN 5-06-000881-9

  2. ↑ Миниатюрность и чистота
  3. ↑ Intel Museum – From Sand to Circuits
  4. ↑ Intel 32nm Logic Technology (англ.)
  5. ↑ процессоры Intel по 32-нм технологии
  6. ↑ New Details on Intel’s Upcoming 32nm Logic Technology (англ.)
  7. ↑ White Paper Introduction to Intel’s 32nm Process Technology (англ.)
  8. ↑ High Performance 32nm Logic Technology Featuring 2nd Generation High-k + Metal Gate Transistors
  9. ↑ Массовое производство чипов AMD FX на базе Piledriver начнётся в III квартале
  10. ↑ Премьера процессоров AMD
  11. ↑ TSMC преодолела сложности 40-нанометровой технологии и в этом году начнет выпуск по нормам 28 нм
  12. ↑ Корпорация Altera установила новый отраслевой рекорд - Программируемая вентильная матрица (FPGA) Stratix V
  13. ↑ Новости с прошедшего с 22 по 24 сентября в Сан-Франциско Форума Intel для разработчиков (Intel Developer Forum, IDF)
  14. ↑ IBM, AMD и Toshiba продемонстрировали первую 22-нм ячейку памяти SRAM
  15. ↑ IBM и AMD продемонстрируют 22 нм ячейку памяти
  16. ↑ Intel Developer Forum 22nm News Facts
  17. ↑ Порядок анонса процессоров Intel Ivy Bridge
  18. ↑ A First Look at Intel's 14nm Fab 42 Manufacturing Facility // January 25, 2012 by Douglas Perry - source: VLSI Research; на русском: Intel Fab 42: первые фото строящегося производства по созданию 14 нм процессоров. Цитата: "first volume production facility that is compatible with 450 mm wafers"
  19. ↑ Update: Intel to build fab for 14-nm chips // Mark LaPedus 2/18/2011 "Fab 42, will be a 300-mm plant. It will also be compatible for 450-mm"
  20. ↑ Просочившийся слайд Intel указывает на 10-нм техпроцесс в 2018 году
  21. ↑ Создан транзистор на основе единственного атома

dic.academic.ru

ВИДЫ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ

Основы ТЕХНОЛОГИИ МАШИНОСТРОЕНИЯ

Технологические процессы по уровню обобщения делятся на два вида: единичный и типовой.

Единичный технологический процесс применим только для изго­товления одного конкретного изделия, а типовой технологический про­цесс - для изготовления группы схожих изделий.

Единичный технологический процесс - это процесс изготовления или ремонта изделия одного наименования, типоразмера и исполнения, независимо от типа производства.

К преимуществам единичного технологического процесса относят­ся, с одной стороны, возможность учета всех особенностей данного изде­лия, а с другой стороны, наиболее эффективного изготовления изделия за счет учета конкретных производственных условий (имеющегося техно­логического оборудования, приспособлений, инструментальной оснаст­ки, квалификации рабочих и т. п.).

Наряду с преимуществами единичный технологический процесс имеет и недостатки. Для его разработки требуются большие затраты вре­мени и труда.

Затраты времени на разработку технологического процесса могут во много раз превышать затраты времени на его осуществление. Если изго­тавливается большое число изделий, то доля затрат времени на разработ­ку технологического процесса, приходящаяся на одно изделие, будет не­значительной, но при небольшом выпуске изделий эта доля резко возрас­тет. В этом случае разрабатывают укрупненный технологический про­цесс, например, создают лишь маршрутное описание технологического процесса, в которое включают последовательность операций и оборудо­вание, но без указаний переходов и режимов процесса. Все остальное предоставляется решать непосредственно рабочему, который должен иметь соответствующую квалификацию. По мере роста объема выпус­каемой продукции разработку технологического процесса проводят более подробно.

В единичном производстве высокая продолжительность разработки технологического процесса нередко входит в противоречие с продолжи­тельностью самого процесса. Чем тщательней и подробней разрабатыва­ется единичный технологический процесс, тем больше времени требуется для его разработки и тем выше должна быть квалификация технолога. Однако в определенных условиях затраты времени на разработку процес­са становятся значительно больше затрат времени на его осуществление Иллюстрацией такого положения может служить технологический про­цесс изготовления деталей на станке с ЧПУ, где его разработка отличает­ся большой тщательностью и подробностью. Так, к примеру, документа­ция технологического процесса изготовления детали на станке с ЧПУ содержит карту наладки, операционно-техническую карту, схему движе­ния инструментов, операционную расчетно-техническую карту, карту программирования, чертежи специального инструмента и оснастки. Все это приводит к росту трудоемкости разработки операции; например, только разработка управляющей программы и ее отладка для деталей высокой сложности требует нескольких рабочих дней технолога-програм­миста, в то время как обработка небольшой партии таких деталей может уложиться в одну рабочую смену.

Проектирование единичного технологического процесса отличается большим числом возможных решений по каждому изделию, подлежаще­му изготовлению. Поэтому в условиях единичного производства при сравнительно малом времени, отводимом на разработку процесса, воз­можность подкрепления принимаемых решений объективными технико- экономическими расчетами очень ограничена.

В массовом производстве высокая трудоемкость тщательной разра­ботки единичного технологического процесса оказывается оправданной, так как ее величина несопоставимо мала по сравнению с трудоемкостью изготовления всего объема изделий данного наименования. Оправдыва­ет себя в массовом производстве и применение специального оборудо­вания, оснастки, отличающиеся высокопроизводи ч-льными рабочими процессами.

Недостатки еДИНИЧНОЙ ТеХНОЛОГИИ В массовом ПрОИЗВОДС і І. Н' проявляются в большой длительности технологической подго: производства, обусловленной необходимостью создания специальных технологических средств.

Широкое применение единичной технологии в масштабе всего ма­шиностроительного производства страны приводит к большим потерям. Дело в том, что в среднем изготавливаемые изделия состоят примерно на 70 % из общемашиностроительных узлов и деталей, близких по своему конструктивному строению. Но на тысячах машиностроительных пред­приятий их изготавливают по единичным технологическим процессам, мало отличающимся по эффективности друг от друга, но зачастую ис­пользующим оригинальную оснастку, а в крупносерийном и массовом производстве - и оригинальное технологическое оборудование. При этом прогрессивные высокоэффективные решения, разработанные на каком - либо одном предприятии и потребовавшие больших затрат труда, теря­ются в огромном разнообразии разработок и практически не находят применения на других предприятиях.

Все перечисленные негативные стороны единичной технологии по­служили причиной поиска нового вида технологии, свободной от этих недостатков. Первым шагом в этом направлении явилась разработка ти­повой технологии, когда в 30-е годы XX века проф. А. П. Соколовский 1111 высказал идею типизации технологических процессов.

Типовой технологический процесс характеризуется единством со­держания и последовательности большинства технологических операций для группы изделий с общими конструктивными признаками.

В основе типовой технологии лежит классификация изделий на классы - подклассы - группы - подгруппы - типы. Тип представляет со - |><>й группу схожих изделий, среди которых выбирается типовой представитель, обладающий наибольшей совокупностью свойств изде - Iіий, вошедших в эту группу. На типовой представитель разрабатывается пшовой технологический процесс, по которому осуществляется изготов - неиие всех изделий этого типа. В случае отсутствия в конкретном изде - ііии гой или иной характеристики (например, какой-то поверхности) при (ииработке рабочего процесса соответствующая операция из типового процесса исключается.

Тем самым типовой процесс в определенной степени разрешает противоречие между большими затратами времени на разработку процесса и малыми сроками на изготовление изделия, так как затраты времени на разработку рабочего технологического процесса для изготов­ления конкретного изделия резко сокращаются. Разрабатывая на группу деталей, близких по своему конструктивному оформлению, один типовой процесс, можно разработать более совершенный процесс, так как на его проектирование можно затратить больше времени и средств. Пользуясь типовым процессом, рабочий технологический процесс на деталь из группы будет разработан достаточно быстро и качественно.

Типовые процессы позволяют избегать повторных и новых разрабо­ток при проектировании рабочих технологических процессов, вследствие чего облегчается труд технолога и сокращаются затраты времени на раз­работку.

Важное обстоятельство: типовой технологический процесс, приоб­ретая универсальность, одновременно теряет черты индивидуальности. Действительно, типовой технологический процесс изготовления деталей разрабатывается под группу конструктивно схожих деталей, вошедших в один тип. По этому типовому процессу изготавливаются все детали группы, несмотря на то, что они чем-то отличаются друг от друга. В этом и заключается универсальность типового технологического процесса.

Потеря индивидуальности типового процесса заключается в том, что он не учитывает отмеченные выше различия, специфику изделий, во­шедших в один тип. Как известно, в каждом типе из группы деталей вы­бирают типовую деталь, которая отличается наиболее часто встречаю­щимися конструктивными формами, размерами, требованиями к точно­сти и другими показателями качества. Типовая деталь, как правило, наи­более сложная из всех деталей, вошедших в данный тип. Поэтому если бы для каждой детали из этой группы разработать единичный технологи­ческий процесс, то он был бы более эффективным, чем типовой процесс, так как он учитывает все особенности детали (иными словами, потеря индивидуальности не позволяет типовому процессу стать оптимальным для каждой детали данной группы).

Чем больше изделия в группе отличаются по своему конструктив­ному оформлению и требованиям к качеству, тем сильнее отличается типовой процесс от оптимального. Это является одним из ограничений расширения группы изделий под один типовой технологический процесс. В результате изготавливаемые изделия приходится делить на большее число типов, что приводит к росту числа типовых процессов и снижает эффективность типизации.

В целом типовая технология способствует:

1) сокращению разнообразия технологических процессов и внесе­нию однообразия в изготовление сходных изделий:

2) внедрению и распространению передового опыта и достижений науки и техники;

3) упрощению разработки рабочих технологических процессов и сокращению затрат времени на их разработку;

4) сокращению разнообразия средств технологического оснащения технологических процессов;

5) разработке новых высокоэффективных технологических процессов.

Эффективность единичной и типовой технологий будет разной в за­висимости от типа производства. В массовом производстве эффективнее применять единичный технологический процесс, так как он позволяет создать оптимальный технологический процесс, дающий в итоге высокий суммарный экономический эффект.

По мере роста разнообразия выпускаемых изделий, снижения се­рийности их выпуска, величин партий увеличиваются потери времени, связанные с частыми переналадками технологического оборудования и оснастки. В итоге снижается эффективность производства, повышается себестоимость изготовления изделий. И чем шире выпускаемая номенк­латура изделий и меньше их серийность, тем ниже эффективность произ­водства.

В этих условиях возникла задача группирования изделий, отличаю­щихся однородностью технологии изготовления, что позволяет снизить число переналадок оборудования и увеличить размеры партий, посту­пающих на обработку.

В результате решения этой задачи появился новый вид технологии - групповая технология, основоположником которой является проф. С. П. Митрофанов [9].

Если типовая технология направлена на сокращение трудоемкости технологической подготовки производства, повышение эффективности технологических процессов и распространение прогрессивных решений, го групповая технология предназначена для повышения эффективности производственного процесса.

Групповой технологический процесс - это процесс изготовления группы изделий с разными конструктивными, но общими технологиче­скими признаками.

Групповой процесс нашел применение в мелкосерийном и серийном производстве. Принципиальная сущность групповой технологии заклю­чается, прежде всего, в группировании изделий в технологические груп­пы по технологическому подобию.

Групповой технологический процесс разрабатывают на комплексное изделие. В отличие от типового изделия комплексное изделие является "собирательным", часто не существующим в действительности, объеди­няющим в себе черты большинства изделий, вошедших в группу. Для комплексного изделия разрабатывается технологический процесс и все изделия этой группы, будучи, как правило, проще комплексного изделия, изготовляют по данному технологическому процессу, пропуская отдель­ные технологические переходы. Все изделия, закрепленные за этим тех­нологическим процессом, изготовляют партиями.

В качестве комплексного изделия технологической группы служит какое-то изделие из группы или искусственно созданное изделие. Напри­мер, комплексная деталь формируется следующим образом: берется наи­более сложная деталь, которая включает все поверхности других деталей и, если она не содержит всех поверхностей, содержащихся в других дета­лях группы, то к ней искусственно добавляют недостающие поверхности.

Различают групповую операцию и групповой технологический процесс. Групповая технологическая операция разрабатывается для вы­полнения технологически однородных работ при изготовлении группы изделий на специализированном рабочем месте при условии возможно­сти частичной подналадки технологической системы. Групповой техно­логический процесс представляет собой комплекс групповых технологи­ческих операций, выполняемых на специализированных рабочих местах в последовательности технологического маршрута группы изделий, эле­ментов.

Применение групповой технологии особенно эффективно тогда, ко­гда на ее основе в серийном и мелкосерийном производствах удается создать групповые поточные или даже автоматические линии изготовле­ния изделий или деталей отдельных групп. Создание подобных линий обычно основано на сочетании принципов типизации технологических процессов и групповой обработки, т. е. когда применяется типовой маршрут (например, при обработке заготовок по отдельным групповым операциям, выполняемым на станках с групповыми настройками, и при широком использовании групповых переналаживаемых приспособ­лений).

Применение групповой технологии тем эффективней, чем больше технологическая группа.

При внедрении групповой технологии возникают трудности, свя­занные с организацией больших технологических групп не только в связи со сложностью в построении групповых наладок и приспособлений, но и из-за необходимости учета календарного планирования по выпуску изделий.

Изделия, изготавливаемые по групповой технологии, хотя и похожи, но имеют и различия, поэтому за редким исключением избавиться полно­стью от переналадки оборудования не удается.

По мере расширения номенклатуры деталей в группе при разработке групповой наладки возрастают ее сложность, количество позиций и время простоя инструментальных позиций. Это ограничивает номенкла­туру деталей в группе приводит к росту числа групп и, следовательно, увеличению числа групповых технологических процессов (операций).

Групповая технология оправдывает себя при условии многократного повторения выпуска данной технологической группы изделий. Если по­вторяемость отсутствует или незначительна, то дополнительные затраты на технологическую подготовку, которые значительно выше по сравнению с единичной технологией, себя не окупают (примером эффек­тивного применения групповой технологии может служит авиационная промышленность, где имеет место высокая повторяемость групп).

Практика внедрения типовых и групповых технологических процес­сов показывает, что, несмотря на очевидные преимущества, доля их вне­дрения невысока и до сих пор доминирует единичная технология. Одной из главных причин этого является недосток классификации изделий на типы, группы, которыми пользуются при разработке типовых и группо­вых процессов. Анализ этих классификаций показывает, что в обоих слу­чаях в явном или неявном виде в качестве отличительных признаков вы­ступают не конструктивные, а технологические характеристики. Это приводит к тому, что на предприятиях, различающихся составом техно­логических средств и квалификацией работников, одна и та же номенкла­тура изделий будет разбита на разные группы. С другой стороны, стоит изменить на предприятии применяемую технологию и оборудование, как придется изменять типы и группы. Чтобы свести к минимуму эти недос - іатки, надо классифицировать изделия на группы не по технологическим, а конструктивным признакам, что позволит сократить разнообразие ти­повых и групповых процессов и расширить область их применения. Под­водя итог анализу различных видов технологического процесса, можно отметить следующее: применение единичного процесса позволяет разра­батывать оптимальные процессы, но это приводит к большим затратам времени на их разработку;

Применение типового технологического процесса снижает объем и сроки технологической подготовки производства, но не обеспечивает оптимального процесса для каждой детали одного типа;

Применение группового технологического процесса хотя и увеличи­вает размер партии, но требует повторяемости выпуска изделий, что су­щественно снижает область его эффективного применения.

Все три вида технологии не обладают гибкостью, так как не позво­ляют изменять в случае надобности маршрут.

Одной из главных причин недостатков всех видов технологических процессов является описание изделия на геометрическом уровне, когда деталь представляется совокупностью элементарных геометрических поверхностей, а сборочная единица - совокупностью деталей как геомет­рических тел.

Это приводит к тому, что технолог, разрабатывая технологический процесс, стремится изготавливать на операциях такие совокупности по­верхностей, которые позволяют достичь наибольшей производительно­сти. Однако при этом часто нарушаются связи между поверхностями, обусловленные совместным выполнением функций детали. В результате, во-первых, появляется многовариантность технологического процесса из - за большого числа комбинаций поверхностей, изготавливаемых на опе­рациях, а во-вторых, из-за изготовления функционально связанных по­верхностей на разных операциях возникают сложные технологические размерные связи, приводящие к необходимости введения дополнитель­ных операций.

Все это приводит к необоснованному разнообразию технологиче­ских процессов, повышению трудоемкости их разработки, вызывают трудности в типизации технологических процессов и в группировании деталей при разработке групповых процессов.

Если же деталь описывать функциональными блоками в виде моду­лей поверхностей, объединенных совместным выполнением служебных функций, то геометрический признак становится вторичным, а элемен­тарные поверхности входят в состав модулей поверхностей и не являются самостоятельными объектами при разработке технологических процессов.

Учитывая ограниченную номенклатуру МП и их высокую повто­ряемость, можно существенно снизить разнообразие технологических операций по составу изготавливаемых МП. В итоге упростится разработ­ка технологических процессов, их типизация и группирование деталей при использовании групповых процессов.

Все изложенное справедливо и для сборочных технологических процессов, если сборочную единицу рассматривать как совокупность модулей соединения.

С целью реализации изложенных преимуществ описания изделия как совокупности МП и МС, следует рассматривать построение техноло­гического процесса как компоновку из модулей изготовления МП (МС), входящих в состав детали (сборочной единицы).

В связи с этим процесс получил название м

msd.com.ua

технический процесс - это... Что такое технический процесс?

 технический процесс

processo tecnico

Dictionnaire technique russo-italien. 2013.

  • технический проект
  • технический рубин

Смотреть что такое "технический процесс" в других словарях:

  • Организационно-технический процесс предоставления услуг абоненту — 1. Комплекс мероприятий, в том числе технологический процесс предоставления услуги, который охватывает все взаимоотношения оператора связи и абонента Употребляется в документе: Руководящий документ отрасли, (Минсвязи России 2002) год Сети сотовой …   Телекоммуникационный словарь

  • процесс Холла — Технический процесс выделения алюминия из глинозема электролитическим восстановлением расплавленной ванны глинозема, растворенного в криолите. [http://www.manual steel.ru/eng a.html] Тематики металлургия в целом EN Hall process …   Справочник технического переводчика

  • Процесс Холла — Hall process Процесс Холла. Технический процесс выделения алюминия из глинозема электролитическим восстановлением расплавленной ванны глинозема, растворенного в криолите. (Источник: «Металлы и сплавы. Справочник.» Под редакцией Ю.П. Солнцева; НПО …   Словарь металлургических терминов

  • Технический углерод — (техуглерод, ТУ, англ. Carbon black) высокодисперсный аморфный углеродный продукт, производимый в промышленных масштабах. Иногда для наименования технического углерода применяют термин «сажа», что является неточным, поскольку он (в отличие… …   Википедия

  • Технический Университет Молдовы — (ТУМ) Оригинальное название …   Википедия

  • технический контроль — Проверка соответствия объекта установленным техническим требованиям. [ГОСТ 16504 81] [ГОСТ 13015 2003] технический контроль контроль Проверка соответствия объекта установленным техническим требованиям. Пояснения Сущность всякого контроля сводится …   Справочник технического переводчика

  • Технический редактор — работник изд ва, занимающийся техн. редактированием издания. Т. р. проверяет, насколько оригиналы издания соответствуют нормативным требованиям к ним, и в случае расхождений возвращает их для доработки в редакцию и худож. редактору; размечает… …   Издательский словарь-справочник

  • Технический отбор почтовых отправлений —   процесс выделения с помощью технических средств из общего потока корреспонденции представляющих оперативный интерес почтовых отправлений без вскрытия (по специальной метке, определенному адресу и т. п.) …   Контрразведывательный словарь

  • Технический регламент: Технический регламент на масложировую продукцию — Терминология Технический регламент: Технический регламент на масложировую продукцию: 1. Масложировая продукция масла растительные и продукция, изготавливаемая на основе растительных или растительных и животных масел и жиров (включая жиры рыб и… …   Словарь-справочник терминов нормативно-технической документации

  • процесс — 4.25 процесс (process): Совокупность взаимосвязанных или взаимодействующих видов деятельности, преобразующих входы в выходы. [ИСО 9000:2005] Источник …   Словарь-справочник терминов нормативно-технической документации

  • технический анализ — 4.2.64 технический анализ (proximate analysis): Анализ твердого топлива из бытовых отходов с определением в стандартных условиях показателей зольности, содержания общей влаги, выхода летучих веществ и связанного углерода. Примечание… …   Словарь-справочник терминов нормативно-технической документации

polytechnic_ru_it.academic.ru

технический процесс - это... Что такое технический процесс?

 технический процесс adj

progr. technischer Prozess

Универсальный русско-немецкий словарь. Академик.ру. 2011.

  • технический писатель
  • технический регламент

Смотреть что такое "технический процесс" в других словарях:

  • Организационно-технический процесс предоставления услуг абоненту — 1. Комплекс мероприятий, в том числе технологический процесс предоставления услуги, который охватывает все взаимоотношения оператора связи и абонента Употребляется в документе: Руководящий документ отрасли, (Минсвязи России 2002) год Сети сотовой …   Телекоммуникационный словарь

  • процесс Холла — Технический процесс выделения алюминия из глинозема электролитическим восстановлением расплавленной ванны глинозема, растворенного в криолите. [http://www.manual steel.ru/eng a.html] Тематики металлургия в целом EN Hall process …   Справочник технического переводчика

  • Процесс Холла — Hall process Процесс Холла. Технический процесс выделения алюминия из глинозема электролитическим восстановлением расплавленной ванны глинозема, растворенного в криолите. (Источник: «Металлы и сплавы. Справочник.» Под редакцией Ю.П. Солнцева; НПО …   Словарь металлургических терминов

  • Технический углерод — (техуглерод, ТУ, англ. Carbon black) высокодисперсный аморфный углеродный продукт, производимый в промышленных масштабах. Иногда для наименования технического углерода применяют термин «сажа», что является неточным, поскольку он (в отличие… …   Википедия

  • Технический Университет Молдовы — (ТУМ) Оригинальное название …   Википедия

  • технический контроль — Проверка соответствия объекта установленным техническим требованиям. [ГОСТ 16504 81] [ГОСТ 13015 2003] технический контроль контроль Проверка соответствия объекта установленным техническим требованиям. Пояснения Сущность всякого контроля сводится …   Справочник технического переводчика

  • Технический редактор — работник изд ва, занимающийся техн. редактированием издания. Т. р. проверяет, насколько оригиналы издания соответствуют нормативным требованиям к ним, и в случае расхождений возвращает их для доработки в редакцию и худож. редактору; размечает… …   Издательский словарь-справочник

  • Технический отбор почтовых отправлений —   процесс выделения с помощью технических средств из общего потока корреспонденции представляющих оперативный интерес почтовых отправлений без вскрытия (по специальной метке, определенному адресу и т. п.) …   Контрразведывательный словарь

  • Технический регламент: Технический регламент на масложировую продукцию — Терминология Технический регламент: Технический регламент на масложировую продукцию: 1. Масложировая продукция масла растительные и продукция, изготавливаемая на основе растительных или растительных и животных масел и жиров (включая жиры рыб и… …   Словарь-справочник терминов нормативно-технической документации

  • процесс — 4.25 процесс (process): Совокупность взаимосвязанных или взаимодействующих видов деятельности, преобразующих входы в выходы. [ИСО 9000:2005] Источник …   Словарь-справочник терминов нормативно-технической документации

  • технический анализ — 4.2.64 технический анализ (proximate analysis): Анализ твердого топлива из бытовых отходов с определением в стандартных условиях показателей зольности, содержания общей влаги, выхода летучих веществ и связанного углерода. Примечание… …   Словарь-справочник терминов нормативно-технической документации

universal_ru_de.academic.ru


© 2007—2018
423800, Набережные Челны , база Партнер Плюс, тел. 8 800 100-58-94 (звонок бесплатный)