|
||||
|
Екатерина - специалист по продаже а/м КАМАЗ
43118-010-10 (дв.740.30-260 л.с.) | 2 220 000 |
43118-6033-24 (дв.740.55-300 л.с.) | 2 300 000 |
65117-029 (дв.740.30-260 л.с.) | 2 200 000 |
65117-6010-62 (дв.740.62-280 л.с.) | 2 350 000 |
44108 (дв.740.30-260 л.с.) | 2 160 000 |
44108-6030-24 (дв.740.55,рест.) | 2 200 000 |
65116-010-62 (дв.740.62-280 л.с.) | 1 880 000 |
6460 (дв.740.50-360 л.с.) | 2 180 000 |
45143-011-15 (дв.740.13-260л.с) | 2 180 000 |
65115 (дв.740.62-280 л.с.,рест.) | 2 190 000 |
65115 (дв.740.62-280 л.с.,3-х стор) | 2 295 000 |
6520 (дв.740.51-320 л.с.) | 2 610 000 |
6520 (дв.740.51-320 л.с.,сп.место) | 2 700 000 |
6522-027 (дв.740.51-320 л.с.,6х6) | 3 190 000 |
Нужны самосвалы? Обратите внимание на Ford-65513-02. |
Контактная информация.
г. Набережные Челны, Промкомзона-2, Автодорога №3, база «Партнер плюс».
тел/факс (8552) 388373.
Схема проезда
Нефтепереработка – многоступенчатый процесс физической и химической обработки сырой нефти, результатом которого является получение комплекса нефтепродуктов. Переработку нефти осуществляют методом перегонки, то есть физическим разделением нефти на фракции.
Различают первичные и вторичные процессы переработки нефти. К первичным процессам относится прямая (атмосферно-вакуумная) перегонка нефти, в процессе которой углеводороды нефти не подвергаются химическим превращениям. В результате вторичных процессов (крекинг, риформинг) происходит изменение структуры углеводородов в процессе химических реакций.
Первичная переработка нефти. Прямая перегонка, или разделение нефти на фракции, основана на разной температуре кипения углеводородов разной молекулярной массы и осуществляется при нормальном атмосферном давлении и температуре до 350 °С.
Перегонка нефти производится на атмосферных или атмосферно-вакуумных установках, состоящих из трубчатой печи, ректификационной колонны, теплообменников и другой аппаратуры.
Вторичная переработка нефти. Прямогонные продукты не удовлетворяют требованиям современной техники и поэтому подвергаются дальнейшей переработке. Прямогонные бензины содержат сернистые соединения, ухудшающие экологические показатели топлив, вызывающие коррозию двигателя, отравляющие катализаторы, поэтому их подвергают гидроочистке.
Гидроочистка – это термокаталитический процесс, обеспечивающий гидрирование сероорганических соединений нефти до сероводорода, который затем улавливается и отделяется. Крекинг – расщепление тяжелых углеводородов для получения дополнительного количества бензинов и дизельных топлив. Различают следующие виды крекинга:
- термический – производится при 500 - 750 °С и давлении 4 – 6 МПа, выход бензина при этом достигает 60 – 70 %.
- каталитический – производится с использованием катализаторов.
Риформинг каталитический – процесс получения высокооктановых компонентов бензинов из бензиновых и лигроиновых фракций нефти.
Алкилирование – введение в молекулы углеводородов соединений алкила. Применяется для получения высокооктановых компонентов бензина.
Классификация и показатели качества нефти.
Существует несколько классификаций нефти. В соответствии с ГОСТ Р нефть классифицируется по физико-химическим свойствам, степени подготовки, содержанию сероводорода и легких меркаптанов на классы, типы, группы, виды. Признаки классификации нефти одновременно являются показателями, по которым осуществляется приемка нефти по качеству.
В зависимости от массовой доли серы нефть подразделяют на классы 1 – 4:
1 класс – малосернистая;
2 класс – сернистая;
3 класс – высокосернистая;
4 класс – особо высокосернистая.
По плотности, а при поставке на экспорт – дополнительно по выходу фракций и массовой доле парафина нефть подразделяют на пять типов:
0 тип – особо легкая;
1 тип – легкая;
2 тип – средняя;
3 тип – тяжелая;
4 тип – битуминозная.
По степени подготовки нефть подразделяют на группы 1 – 3 по таким показателям, как содержание воды, концентрация хлористых солей, давление насыщенных паров, массовая доля механических примесей.
По массовой доле сероводородов и легких меркаптанов нефть подразделяют на 2 вида.
Условное обозначение нефти состоит из четырех цифр, соответствующих обозначениям класса, типа, группы и вида нефти. При поставке нефти на экспорт к обозначению типа добавляется индекс «э».
Технологическая классификация нефти действует в России с 1967 г. и определяет использование ее как сырья для тех или иных нефтепродуктов. По технологической классификации нефти подразделяют на:
- классы (1 – 3) – по содержанию серы;
- типы (Т1 – Т3) – по выходу светлых фракций, перегоняемых до 350 °С;
- группы (М1 – М4) – по потенциальному содержанию базовых масел;
- подгруппы (И1 – И2) – по индексу вязкости базовых масел;
- виды (П1 – П2) по содержанию парафинов в нефти.
Химическая классификацияподразделяет нефти различных месторождений по их углеводородному составу на шесть групп:
- парафиновые
- нафтеновые
- ароматические
- парафино-нафтеновые
- парафино-нафтено-ароматические
- нафтено-ароматические
Нефтепродукты. Виды и характеристика моторных бензинов
Ассортимент нефтеперерабатывающей промышленности насчитывает более 500 наименований газообразных, жидких и твердых нефтепродуктов в зависимости от их назначения. Нефтепродукты по назначению классифицируются на следующие группы: топлива, нефтяные масла, парафины и церезины, ароматические углеводороды, нефтяные битумы, нефтяной кокс и прочие нефтепродукты.
Топливом - горючие вещества для получения при их сжигании тепловой энергии. Практическая ценность топлива определяется количеством теплоты, выделяющейся при его полном сгорании.
Моторные бензины.
Моторные бензины предназначены для поршневых авиационных и автомобильных двигателей внутреннего сгорания с принудительным воспламенением.
Современные автомобильные и авиационные бензины должны удовлетворять следующим требованиям:
- иметь хорошую испаряемость, позволяющую получить однородную топливовоздушную смесь при любых температурах;
- иметь групповой углеводородный состав, обеспечивающий устойчивый, бездетонационный процесс сгорания на всех режимах работы двигателя; не изменять своего состава и свойств при длительном хранении;
- не оказывать вредного влияния на детали топливной системы и окружающую среду.
Автомобильные бензины используются в бензиновых двигателях внутреннего сгорания. Основные показатели качества бензинов – фракционный состав и октановое число. Фракционный состав характеризуется температурой начала кипения, температурами испарения. Октановое число является основным показателем качества бензина, характеризующим его детонационную стойкость. Детонацией - сгорание топливной смеси в цилиндре двигателя. Если марка бензина содержит буквенный индекс «И», то это значит, что октановое число данного бензина определяют исследовательским методом; если только букву «А» – моторным.
Авиационные бензины. Авиационные бензины предназначены для применения в поршневых авиационных двигателях.
Реактивные топлива предназначены для использования в современных самолетах с воздушно-реактивными двигателями.
Дизельное топливо предназначено для быстроходных дизельных и газотурбинных двигателей наземной и судовой техники
megaobuchalka.ru
Моторное топливо: бензины (авиационные и автомобильные), реактивное топливо и дизельное топливо.
Энергетические топлива: газотурбинные, котельные и судовые.
Углеродные и вяжущие материалы: нефтяные коксы, битумы, нефтяные пеки (связующие, пропитывающие, брикетные, волокнообразующие и специальные).
Нефтехимическое сырье: арены (бензол, толуол, нафталин и др.), сырье для пиролиза (нефтезаводские и попутные нефтяные газы, прямогонные бензиновые фракции и др.),а также парафины и церезины.
Процесс переработки состоит из 3-х этапов: подготовка к переработке, переработка и очис
В зависимости от состава нефти и необходимости получения продуктов определенного качества различают физический и химические способы переработки нефтепродуктов.
В процессе физического способа (прямой перегонки) нефть разделяют на фракции по температурам кипения без разрушения молекулярной структуры. Процесс прямой перегонки состоит из: нагревания; испарения; конденсации; охлаждения при атмосферном давлении. В результате получают бензин (3-15%), лигроин (7-10%), керосин (8-20%), газойль (7-15%), масляные дистилляты (20-25%) и мазут (65-90%).
Химические способы переработки:
1) термический крекинг – процесс расширения длинных молекул тяжёлых углеводородов на более короткие молекулы низкокипящих фракций в условиях высоких температур (до 500—700 °С) и высокого давления. В результате получают светлое топливо из мазута или нефтяных остатков (гудрона или полугудрона), т.е. крекинг-бензин (30-35%). Полученные крекинг-бензины нестабильны и используются как составные части моторного топлива;
2) каталитический крекинг –протекает при высоких температурах и присутствии катализаторов. При нём значительно повышается качество полученных нефтепродуктов. Выход крекинг-бензина достигает 40-45%;
3) пиролиз – процесс получения жидкой смолы и газов из керосина. Из жидкой смолы в последующих стадиях переработки извлекают ценные ароматические водороды (бензол).
Очистка полученных нефтепродуктов с целью удаления смолистых веществ, кислородных или сернистых соединений, являющихся вредными примесями, снижающими качество нефтепродуктов, является последним этапом переработки.
Продукты переработки нефти делятся на два типа:
Основными свойствами нефтепродуктов, влияющими на условия транспортирования, хранения и выполнения операций по наливу и сливу, являются: плотность, вязкость, температура плавления и вспышки, испаряемость, коррозионность, токсичность и некоторые другие.
1) Плотность. Зависит от содержания лёгких фракций и изменяется в пределах 650-1060 кг/м3 и является качественной и количественной характеристикой продуктов переработки нефти. Влияет на использование цистерн по грузоподъёмности, скорость истечения по выполнению операций по наливу и сливу, возможность разогрева вязких нефтепродуктов паром, продолжительность отстоя нефтепродуктов после разогрева. Меняется при изменении температуры окружающей среды. Зависимость от температуры приводит к изменению объёма груза в цистерне.
2) Вязкость. Определяет текучесть нефтепродуктов и оказывает влияние на условия выполнения операций по сливу и наливу их ж/д цистерн. Различают динамическую, кинематическую и условную.
studfiles.net
Химический состав нефтиСоединения сырой нефти – это сложные вещества, состоящие из пяти элементов – C, H, S, O и N, содержание этих элементов колеблется в диапазонах 82–87% (С), 11–15% (H), 0,01–6% (S), 0–2% (O) и 0,01–3% (N).Углеводороды – основные компоненты нефти и природного газа. Метан Ch5 – простейший углеводород, одновременно является основным компонентом природного газа.
Все углеводороды могут быть подразделены на алифатические (с открытой молекулярной цепью) и циклические, а по степени ненасыщенности углеродных связей – на парафины и циклопарафины, олефины, ацетилены и ароматические углеводороды. Парафиновые углеводороды (общей формулы Cnh3n + 2) относительно стабильны и неспособны к химическим взаимодействиям. Соответствующие олефины (Cnh3n) и ацетилены (Cnh3n – 2) обладают высокой химической активностью: минеральные кислоты, хлор и кислород реагируют с ними и разрывают двойные и тройные связи между атомами углерода и переводят их в простые одинарные; возможно, благодаря их высокой реакционной способности такие углеводороды отсутствуют в природной нефти. Соединения с двойными и тройными связями образуются в крекинг-процессе при удалении водорода из парафиновых углеводородов во время деструкции последних при высоких температурах.
Циклопарафины составляют важную часть нефти. Они имеют то же относительное количество атомов углерода и водорода, что и олефины. Циклопарафины (называемые также нафтенами) менее реакционноспособны, чем олефины, но более, чем парафины с открытой углеродной цепью. Часто они представляют собой главную составную часть низкокипящих дистиллятов (бензин, керосин и лигроин), полученных из сырой нефти.
Ароматические углеводороды имеют циклическое строение; циклы состоят из шести атомов углерода, соединенных попеременно одинарной и двойной связью. В легких нефтепродуктах из дистиллятов каменноугольного дегтя ароматические углеводороды присутствуют в больших количествах, чем в первичных и крекинг-дистиллятах нефти. Они входят в состав бензина. Они могут быть получены дегидрированием циклогексанов нефти с использованием катализаторов и высоких температур. Ароматические углеводороды нежелательны с точки зрения экологии.
Сернистые соединения. Наряду с углеводородами нефти содержат органические соединения серы, кислорода и азота. Сернистые соединения имеют характер либо открытых, либо замкнутых цепей. Примером первых являются алкил-сульфиды и меркаптаны.Многие сернистые соединения нефти представляют собой производные тиофена – гетероциклического соединения, молекула которого построена как бензольное кольцо, где две CH-группы заменены на атом серы. Большая часть сернистых соединений сосредоточена в тяжелых фракциях нефти, соответствующих гидрированным тиофенам и тиофанам. Сера существенно ухудшает качество нефти и ухудшает экологию. Сернистые соединения обычно имеют резкий неприятный запах и часто коррозионноактивны как в природном виде, так и в виде продуктов горения. Существует много технологий сероочистки.
Кислородные соединения. Некоторые имеющиеся в нефти кислородные соединения относятся к нафтеновым кислотам. Соединения этого типа встречаются довольно часто, и содержание их в некоторой нефти России достигает более 1%. Медьсодержащие нафтены используются как консерванты дерева, а кобальт -, марганец - и свинецсодержащие – как отвердители красок и лаков.Фенолы (производные ароматических углеводородов, в которых присутствует гидроксильная группа ОН), обычно являются продуктом крекинг-процессов, поскольку большей частью обнаруживаются в крекинг-дистиллятах и лишь частично в первичных дистиллятах. Промышленное производство креозолов (производных ароматических углеводородов, в которых присутствуют как гидроксильная, так и метильная группы), из крекинг-дистиллятов нефти экономически выгодно, даже несмотря на их низкое содержание (менее 0,01%).Азотсодержащие соединения. Содержание азота в нефти изменяется от следов до 3%. Азотсодержащие соединения в нефти представлены соединениями ряда хинолина, частично или полностью насыщенными водородом и другими органическими радикалами; эти соединения, как правило, находятся в высококипящих фракциях сырой нефти, начиная с керосина.Неорганические соединения. Почти вся нефть содержат небольшое количество неорганических соединений, которые остаются в виде золы после сгорания нефти. Зола содержит кремнезем, алюминий, известь, оксиды железа и марганца. Используя такие методы, как экстракция растворителем, иногда выгодно получать соединения ванадия из сажи, образующейся при сгорании ванадийсодержащей нефти. Однако, как правило, использование нефтяной золы ныне весьма ограничено.Очистка и переработка нефтиОбычная сырая нефть из скважины – это зеленовато-коричневая легко воспламеняющаяся маслянистая жидкость с резким запахом. На промыслах она хранится в крупных резервуарах, откуда транспортируется танкерами или по трубопроводам в резервуары перерабатывающих заводов. На многих заводах различные типы сырой нефти разделяются по их свойствам согласно результатам предварительной лабораторной переработки. Она указывает приблизительное количество бензина, керосина, смазочных масел, парафина и мазута, которое можно выработать из данной нефти. Химически нефть различна и изменяется от парафиновой, которая состоит большей частью из парафиновых углеводородов, до нафтеновой или асфальтеновой, которая содержат в основном циклопарафиновые углеводороды; существует много промежуточных или смешанных типов. Парафиновая нефть по сравнению с нафтеновой или асфальтеновой содержит больше бензина и меньше серы и является главным сырьем для получения смазочных масел и парафинов. Нафтеновые типы сырой нефти содержат меньше бензина, но больше серы и мазута, а также асфальта.Сырая нефть содержит некоторое количество растворенного газа, который соответствует по составу и строению природным газам и состоит из легких парафиновых углеводородов. Жидкая фаза сырой нефти содержит сотни углеводородов и других соединений, имеющих точку кипения от 38° С до примерно 430° С, причем процентное содержание каждого из углеводородов невелико. Например, бензиновая фракция может содержать до 200 индивидуальных углеводородов, однако в типичном бензине присутствует лишь около 60 углеводородов – от метана с точкой кипения –161° С до мезитилена (ароматического углеводорода), с точкой кипения 165° С. Они включают парафины, циклопарафины и ароматические соединения, но олефины отсутствуют. Огромный труд, необходимый для анализа состава углеводородов бензинов, делает практически невозможным проведение этих исследований при обычных шаблонных определениях. Что касается соединений, кипящих при температурах выше 165° С, присутствующих в керосине и высококипящих дистиллятах и остатках, трудности идентификации отдельных компонентов возрастают из-за большого количества соединений, перекрывания их температур кипения и возрастающей тенденции высококипящих соединений к разрушению при нагревании. Поэтому все горючие нефтяные продукты подразделяются на фракции по температурным пределам их кипения и по плотности, а не по химическому составу.Соединения, присутствующие в асфальтах и подобных им тяжелых остаточных продуктах, чрезвычайно сложны. Анализы показывают, что они представляют собой полициклические соединения.
ПерегонкаПериодическая перегонка. На начальных этапах развития нефтехимической промышленности сырая нефть подвергалась так называемой периодической перегонке в вертикальном цилиндрическом перегонном аппарате. Процессы дистилляции были неэффективны, потому что отсутствовали ректификационные колонны и не получалось чистого разделения продуктов перегонки.Трубчатые перегонные аппараты. Развитие процесса периодической перегонки привело к использованию общей ректификационной колонны, из которой с различных уровней отбирались дистилляты с разной температурой кипения. Эта система используется и сегодня. Поступающая нефть нагревается в змеевике примерно до 320° С, и разогретые продукты подаются на промежуточные уровни в ректификационной колонне. Такая колонна может иметь от 30 до 60 расположенных с определенным интервалом поддонов и желобов, каждый из которых имеет ванну с жидкостью. Через эту жидкость проходят поднимающиеся пары, которые омываются стекающим вниз конденсатом. При надлежащем регулировании скорости обратного стекания (т.е. количества дистиллятов, откачиваемых назад в колонну для повторного фракционирования) возможно получение бензина наверху колонны, керосина и светлых горючих дистиллятов, точно определенных интервалов кипения на последовательно снижающихся уровнях. Обычно для того, чтобы улучшить дальнейшее разделение, остаток от перегонки из ректификационной колонны подвергают вакуумной дистилляции.
Конструкция ректификационных колонн в нефтеперерабатывающей промышленности становится произведением искусства, в котором ни одна деталь не остается без внимания. Путем очень точного контроля температуры, давления, а также потоков жидкостей и паров разработаны методы сверхтонкого фракционирования. Эти колонны достигают высоты 60 м и выше и позволяют разделять химические соединения, точка кипения которых отличается менее чем на 6° С. Они изолированы от внешних атмосферных воздействий, а все этапы дистилляции автоматически контролируются. Процессы в некоторых таких колоннах происходят в условиях высоких давлений, в других – при давлениях, близких к атмосферному; аналогично температуры изменяются от экстремально высоких до значений ниже –18° С.
Термический крекингСклонность к дополнительному разложению более тяжелых фракций сырой нефти при нагреве выше определенной температуры привела к очень важному успеху в использовании крекинг-процесса. Когда происходит разложение высококипящих фракций нефти, углерод-углеродные связи разрушаются, водород отрывается от молекул углеводородов и тем самым получается более широкий спектр продуктов по сравнению с составом первоначальной сырой нефти. Например, дистилляты, кипящие в интервале температур 290–400° С, в результате крекинга дают газы, бензин и тяжелые смолоподобные остаточные продукты. Крекинг-процесс позволяет увеличить выход бензина из сырой нефти путем деструкции более тяжелых дистиллятов и остатков, образовавшихся в результате первичной перегонки.Выход кокса определяется природой перерабатываемого сырья и степенью рециклизации наиболее тяжелых фракций.Как правило, из исходного крекируемого объема образуется примерно 15–25% лигроина и 35–50% газойля (т.е. легкого дизельного топлива) наряду с крекинг-газами и коксом. Последний используется в основном как топливо, исключая образующиеся специальные виды кокса (один из них является продуктом обжига и используется при производстве углеродных электродов). Коксование до сих пор пользуется популярностью главным образом как процесс подготовки исходного материала для каталитического крекинга.
Каталитический крекингКатализатор – это вещество, которое ускоряет протекание химических реакций без изменения сути самих реакций. Каталитическими свойствами обладают многие вещества, включая металлы, их оксиды, различные соли. Процесс Гудри. Исследования Э.Гудри огнеупорных глин как катализаторов привели к созданию в 1936 эффективного катализатора на основе алюмосиликатов для крекинг-процесса.Среднекипящие дистилляты нефти в этом процессе нагревались и переводились в парообразное состояние; для увеличения скорости реакций расщепления, т.е. крекинг-процесса, и изменения характера реакций эти пары пропускались через слой катализатора. Реакции происходили при умеренных температурах 430–480° С и атмосферном давлении в отличие от процессов термического крекинга, где используются высокие давления. Процесс Гудри был первым каталитическим крекинг-процессом, успешно реализованным в промышленных масштабах.
Целью большинства крекинг-процессов является достижение оптимального выхода бензина. При крекинге происходят распад тяжелых молекул, а также сложные процессы синтеза и перестройки структуры молекул углеводородов. Влияние разных катализаторов различно. Некоторые из них, такие, как оксиды хрома и молибден, ускоряют реакцию дегидрогенизации (отщепление водорода). Глины и специальные алюмосиликатные составы, используемые в промышленном каталитическом крекинге, способствуют ускоренному разрыву углерод-углеродных связей больше, чем отрыву водорода. Они также способствуют изомеризации линейных молекул в разветвленные. Эти составы замедляют полимеризацию (см. ниже) и образование дегтя и асфальта, так что нефти не просто деструктурируются, а обогащаются полезными компонентами.
РиформингРиформинг – это процесс преобразования линейных и нециклических углеводородов в бензолоподобные ароматические молекулы. Ароматические углеводороды имеют более высокое октановое число, чем молекулы других углеводородов, и поэтому они предпочтительней для производства современного высокооктанового бензина.При термическом риформинге, как и при каталитическом крекинге, основная цель состоит в превращении низкооктановых бензиновых компонентов в более высокооктановые. Процесс обычно применяется к парафиновым фракциям прямой перегонки, кипящим в пределах 95–205° С. Более легкие фракции редко подходят для таких превращений.Существуют два основных вида риформинга – термический и каталитический. В первом соответствующие фракции первичной перегонки нефти превращаются в высокооктановый бензин только под воздействием высокой температуры; во втором преобразование исходного продукта происходит при одновременном воздействии, как высокой температуры, так и катализаторов. Более старый и менее эффективный термический риформинг используется кое-где до сих пор, но в развитых странах почти все установки термического риформинга заменены на установки каталитического риформинга.Если бензин является предпочтительным продуктом, то почти весь риформинг осуществляется на платиновых катализаторах, нанесенных на алюминийоксидный или алюмосиликатный носитель.Большинство установок риформинга – это установки с неподвижным слоем. (Процесс каталитического риформинга, в котором используется стационарный катализатор, называется платформингом.) Но под действием давления около 50 атм (при получении бензина с умеренным октановым числом) активность платинового катализатора сохраняется примерно в течение месяца. Установки, в которых используется один реактор, приходится останавливать на несколько суток для регенерации катализатора. В других установках используется несколько реакторов с одним добавочным, где проводится необходимая регенерация. Жизнь платинового катализатора сокращается при наличии серы, азота, свинца и других «ядов». Там, где эти компоненты представляют проблему, обычно до входа в реактор проводят предварительную обработку смеси водородом (т.н. гидроочистка, когда до подачи в реактор нефтяных погонов – бензинов прямой перегонки – их пропускают через водородсодержащие газы, которые связывают вредные компоненты и снижают их содержание до допустимых пределов). Некоторые реакторы с неподвижным слоем заменяются на реакторы с непрерывной регенерацией катализатора. В этих условиях катализатор перемещается через реактор и непрерывно регенерируется.Реакции, в результате которых при каталитическом риформинге повышается октановое число, включают:1) дегидрирование нафтенов и их превращение в соответствующие ароматические соединения;2) превращение линейных парафиновых углеводородов в их разветвленные изомеры;3) гидрокрекинг тяжелых парафиновых углеводородов в легкие высокооктановые фракции;4) образование ароматических углеводородов из тяжелых парафиновых путем отщепления водорода.Большинство богатых водородом газов, выделяющихся в этих установках, используются при гидрокрекинге и т.п.
Другие процессы производства бензинаКроме крекинга и риформинга существует несколько других важных процессов производства бензина. Первым из них, который стал экономически выгодным в промышленных масштабах, был процесс полимеризации, который позволил получить жидкие бензиновые фракции из олефинов, присутствующих в крекинг-газах.
Полимеризация. Полимеризация пропилена – олефина, содержащего три атома углерода, и бутилена – олефина с четырьмя атомами углерода в молекуле дает жидкий продукт, который кипит в тех же пределах, что и бензин, и имеет октановое число от 80 до 82. Нефтеперерабатывающие заводы, использующие процессы полимеризации, обычно работают на фракциях крекинг-газов, содержащих олефины с тремя и четырьмя атомами углерода.
Алкилирование. В этом процессе изобутан и газообразные олефины реагируют под действием катализаторов и образуют жидкие изопарафины, имеющие октановое число, близкое к таковому у изооктана. Вместо полимеризации изобутилена в изооктен и затем гидрогенизации его в изооктан, в данном процессе изобутан реагирует с изобутиленом и образуется непосредственно изооктан.Все процессы алкилирования для производства моторных топлив производятся с использованием в качестве катализаторов либо серной, либо фтороводородной кислоты при температуре сначала 0–15° C, а затем 20–40° С.
Изомеризация. Другой важный путь получения высокооктанового сырья для добавления в моторное топливо – это процесс изомеризации с использованием хлорида алюминия и других подобных катализаторов.Изомеризация используется для повышения октанового числа природного бензина и нафтенов с прямолинейными цепями. Улучшение антидетонационных свойств происходит в результате превращения нормальных пентана и гексана в изопентан и изогексан. Процессы изомеризации приобретают важное значение, особенно в тех странах, где каталитический крекинг с целью повышения выхода бензина проводится в относительно незначительных объемах. При дополнительном этилировании, т.е. введении тетраэтилсвинца, изомеры имеют октановые числа от 94 до 107 (в настоящее время от этого способа отказались ввиду токсичности образующихся летучих алкилсвинцовых соединений, загрязняющих природную среду).
ГидрокрекингРанние работы по получению жидкого топлива из углей путем гидрирования под высоким давлением (процесс Бергуса) проводились главным образом в Германии с использованием весьма сильных катализаторов, таких, как оксиды молибдена, которые либо нечувствительны к присутствию серы, либо в значительной степени сохраняют свою активность после прошедшей сульфатизации. Для этого были необходимы следующие параметры: давление до 280 атм, температура около 450° С и катализатор.Давления, используемые в современных процессах гидрокрекинга, составляют от примерно 70 атм для превращения сырой нефти в сжиженный нефтяной газ (LP-газ) до более чем 175 атм, когда происходят полное коксование и с высоким выходом превращение парообразной нефти в бензин и реактивное топливо. Процессы проводят с неподвижными слоями (реже в кипящем слое) катализатора. Процесс в кипящем слое применяется исключительно для нефтяных остатков – мазута, гудрона. В других процессах также использовались остаточное топливо, но в основном – высококипящие нефтяные фракции, а кроме того, легкокипящие и среднедистиллятные прямогонные фракции. Катализаторами в этих процессах служат сульфидированные никель-алюминиевые, кобальт-молибден-алюминиевые, вольфрамовые материалы и благородные металлы, такие, как платина и палладий, на алюмосиликатной основе.Там, где гидрокрекинг сочетается с каталитическим крекингом и коксованием, не менее 75–80% сырья превращается в бензин и реактивное топливо. Выработка бензина и реактивных топлив может легко изменяться в зависимости от сезонных потребностей. При высоком расходе водорода выход продукции на 20–30% выше, чем количество сырья, загружаемого в установку. С некоторыми катализаторами установка работает эффективно от двух до трех лет без регенерации.Необходимость уменьшения загрязнения воздуха в промышленных районах обусловливает значительное увеличение использования процессов гидрирования для десульфатизации дистиллятов и остаточных топлив. Процессы гидрокрекинга, предназначенные главным образом для удаления серы при невысоких требованиях к выходу продукции, известны как «гидроочистка».Газообразные легкие фракции, прежде всего, проходят через вакуумную установку для сжижения, затем полученный на этой стадии газойль проходит десульфуризацию гидроочисткой, прежде чем вновь смешивается с некоторыми вакуумными остатками и другими низкосернистыми легкими фракциями сырой нефти.
Очистка легких продуктовГидроочистка в настоящее время – наиболее распространенный метод гидрогенизации олефинов и повышения качества легких продуктов за счет удаления серы и других примесей. По экономическим причинам, а также из-за проблем, связанных с примесями воздуха и воды, применяются и другие методы, например использование сульфида свинца в качестве катализатора в регенеративных растворителях и предварительное рафинирование с применением высоковольтных электропечей для лучшего отделения очищающего реагента от получаемого продукта.
Масла и смазкиНефтяная промышленность поставляет масла и смазки, различающиеся по вязкости от жидких, почти как вода, до консистенции патоки. Как и в случае с другими нефтяными фракциями и продуктами, появились новые методы их производства – экстракция и деасфальтизация растворителями и др.
Экстракция растворителями. К промышленным растворителям относятся хлорекс, фурфурол (побочный продукт переработки овсяной шелухи), нитробензол, фенолы, метилэтилкетоны и пр. Экстракция растворителями осуществляется обычно в режиме противотока (поток масел идет в одном направлении, а растворителя – в противоположном), что позволяет проводить выборочное растворение и более глубокую очистку. При еще более избирательной процедуре колонна наполняется пористой средой (выполненной, например, в виде перфорированных пластин).
Сжиженный пропан. Эффективность обработки смазочных масел повышается при использовании сжиженного пропана под давлением. Этот парафиновый углеводород (точка кипения –42° С) практически не оказывает растворяющего действия на асфальты и очень слабо растворяет твердые парафины при низких температурах. Тем не менее, регулируя и подбирая температуру и соотношения растворитель/масла, можно успешно удалять асфальт и твердые парафины.Депарафинизация растворителями. Депарафинизация растворителями – важный этап производства смазочных масел. Депарафинизация неочищенных или очистка смазочных масел дает разнообразные продукты – от светлых веретенных масел до тяжелых вакуумных смазок и товарных парафинов. Наиболее широко используются для депарафинизации смеси метилэтилкетона и толуола или бензола и ацетона.
Крекинг-газВторичные газообразные продукты получаются из нефти в результате различных процессов крекинга. Тяжелые фракции при крекинге дают бензин, а бензиновые фракции умеренно крекируются с увеличением октанового числа. Газы, получающиеся при этих процессах, могут составлять 2–10% (масс.) от крекируемой нефти; они заметно отличаются от природных нефтяных газов. Главная их особенность – наличие олефинов, которые полностью отсутствуют в природных газах. В газах высокотемпературного крекинга может содержаться 50% олефинов, включая этилен, пропилен и бутилены. Как правило, олефины составляют более 10–25%. Крекинг-газы обычно содержат также небольшое количество водорода. Температура крекинга 540° С или выше при невысоком давлении благоприятна для образования этилена, а более умеренные температуры 455–480° С и высокое давление – для образования меньшего количества этилена и пропорционально большего количества пропилена и бутиленов.
БензинБензин – самый важный продукт переработки нефти; из сырой нефти производится до 50% бензина. Эта величина включает природный бензин, бензин крекинг-процесса, продукты полимеризации, сжиженные нефтяные газы и все продукты, используемые в качестве промышленных моторных топлив. Каждому процессу переработки нефти предъявляются требования по количеству и качеству производимого бензина.Состав. Промышленный бензин представляет собой смесь углеводородов в интервале точки кипения 30–200° C. Некоторые бутаны, кипящие при температуре ниже 38° С, имеет высокое давление паров. Углеводороды в бензине включают многие изопарафины, а также ароматические углеводороды и нафтены, а в бензинах, полученных при крекинге, содержится от 15 до 25% олефинов. Октановое число углеводородов снижается в следующем порядке: изопарафины > ароматические > олефины > нафтены > н-парафины. Имеются различия между компонентами каждой из этих групп, зависящие от структуры молекул и точки кипения. Различные компоненты дают свой вклад в октановое число бензиновых смесей.Крекинг-бензины содержат значительный процент тех компонентов, при смешении которых образуется моторное топливо. Однако их прямое использование во многих странах законодательно ограничивается, поскольку они содержат заметное количество олефинов, а именно олефины являются одной из главных причин образования фотохимического смога.Классификация бензинов. Бензины классифицируются по разным основаниям, включая интервалы температур кипения, октановое число, содержание серы.Интервалы температур кипения. Большинство бензинов кипит в интервале 30–200° С. 50%-ная точка, т.е. температура, при которой кипит половина компонентов смеси и которая определяет состав смеси во время прогрева двигателя, а частично и при разгоне транспортного средства, располагается в пределах 98–104° С. Высокое содержание низкокипящих компонентов, таких, как бутаны и пентаны, обусловливает исключительно высокое давление паров и в теплое время является причиной образования паровых пробок, когда газовые пузырьки препятствуют течению топлива по узким трубам двигателей и тепловых установок. В то же время недостаток низкокипящих компонентов служит причиной трудностей запуска двигателя зимой. 90%-ная точка кипения бензина определяет время прогрева двигателя и эффективность использования топлива.Октановое число. Октановое число – наиболее важная характеристика бензина. Оно обычно определяется в одноцилиндровой стационарной установке, снабженной различными приборами для регистрации склонности к детонации. Нормальный гептан (семь атомов углерода в линейной цепи) детонирует очень легко; для него принято нулевое октановое число. Изооктан (восемь атомов углерода в разветвленной цепи) не детонирует до тех пор, пока не будут достигнуты экстремальные условия давления, температуры и нагрузки; для него произвольно установлено октановое число 100. При испытании бензина с неизвестными детонационными свойствами его сравнивают со смесью гептана и изооктана, имеющей такую же способность к детонации, как и испытуемый бензин; октановое число бензина – это процентное содержание изооктана в такой смеси. Октановое число, определенное таким образом, не всегда соответствует характеристике в многоцилиндровом двигателе в дорожных условиях при изменяющихся скоростях, нагрузках и ускорениях.В нефтяной промышленности используются два метода, делающие это сравнение более реальным, – моторный метод и исследовательский метод. Октановое число определяется как среднее из двух таких определений.Присадки. Практически все бензины содержат различные присадки, в том числе ингибиторы смолообразования и небольшое количество красителя. Законодательством многих промышленно развитых стран существенно снижен допустимый уровень соединений свинца в бензине (этилированный бензин, т.е. содержащий добавки тетраэтилсвинца, повышающие октановое число бензина, составляет менее 20% от всего бензина, вырабатываемого в США).
КеросинКеросин – это легчайшее и наиболее летучее жидкое топочное топливо. Первоначально керосин использовался только для освещения, теперь он употребляется как топливо в пекарнях, отопительных и нагревательных приборах, оборудовании ферм, а также как компонент моторного топлива. Хороший керосин должен иметь особый цвет (приблизительно 250–300 мм по шкале Штаммера для нефтепродуктов), достаточную вязкость для устойчивой и равномерной пропитки фитиля, должен гореть ясным высоким пламенем без копоти или отложения твердых углистых осадков на фитиле, копоти в дымоходах и на ламповом стекле. Безопасность керосина при использовании в осветительных лампах определяется стандартным тестом на вспышку. Керосин медленно нагревают в небольшой стеклянной или металлической чашке и к поверхности периодически прикасаются пламенем до тех пор, пока не появится небольшой дымок, соответствующий точке воспламенения.
Другие продуктыДизельное топливо. Промежуточные нефтяные дистилляты, кипящие при температурах выше, чем керосин, но ниже, чем смазочные масла, представляют собой горючее для средне- и высокоскоростных дизельных двигателей.Цетановое число. Дизельные топлива оцениваются их цетановым числом – это реальное измерение легкости воспламенения под действием температуры и давления, а не способности горения. При этом топливо сравнивается со смесью цетана – парафинового углеводорода с 16-ю атомами углерода, который легко воспламеняется под давлением, и a-метилнафталина, который не возгорается. Процент цетана в смеси, показывающий ту же воспламеняемость, что и дизельное топливо в стандартных условиях испытания, называется цетановым числом. Парафиновые топлива более подходят для дизельных двигателей, поскольку они легко воспламеняются под давлением без дополнительной искры зажигания. Однако в связи с возрастающей потребностью в дистиллятах прямой перегонки для других целей, кроме получения дизельного топлива, увеличивается использование тяжелых дистиллятов с более низким цетановым числом, получаемых при каталитическом крекинге. Повышение надежности воспламенения низкокачественных дизельных топлив, улучшение воспламеняемости, более известное как увеличение цетанового числа, достигается добавлением специальных масел. Они включают такие компоненты, как органические оксиды и пероксиды. Небольшие добавки амилнитрата удовлетворительно улучшают качество топлив.
Реактивные топлива. Реактивные нефтяные топлива могут быть керосиновые либо нафтеновые. Они состоят главным образом из бензина прямой перегонки или керосина в топливах керосинового типа либо топливах №1 нафтенового типа.
Топливо для отопления зданий. Использование легких дистиллятов в качестве бытового топлива постоянно возрастает, так как они удобнее и чище по сравнению, например, с углем. Конкуренцию им составляют природный газ и электричество.
Мазут. Большинство промышленных котельных и тепловых электростанций используют в качестве топлив черные вязкие остаточные продукты переработки нефти – топочный мазут. В большинстве случаев это продукты крекинга, хотя имеются и продукты прямой перегонки.
Парафиновые воски являются главным средством для защиты оборудования от действия воды. Все они имеют водяно-белый цвет и температуру плавления в пределах 50–95° С. Микрокристаллические воски используются как изоляция в самых разнообразных отраслях, таких, как электротехническая промышленность и промышленность средств связи, а также при печати, гравировке и т.д. Вазелин, состоящий из тяжелых нефтяных остатков и парафиновых восков, производится фильтрованием цилиндровых дистиллятов и применяется в технике (в качестве антикоррозионной смазки и др.) и медицине (главным образом для изготовления мазей).
Химические продукты из нефтиПолучение нефтепродуктов путем фракционирования. Нефтяная промышленность – это главный производитель химикатов. Ее первые успехи в разделении индивидуальных углеводородов были достигнуты при фракционировании природного газа и природного бензина. Первыми компонентами, выделенными таким путем, были метан, этан, пропан, нормальный бутан, изобутан и пентины. Соответствующим образом спроектированные ректификационные колонны дают возможность выделять из крекинг-газов небольшие фракции с узким диапазоном температур кипения, которые служат первичным сырьем для химического производства, – это углеводороды, имеющие от одного до пяти атомов углерода (как парафины, так и олефины).
Химические продукты, получаемые окислением природного газа. Большое число химикатов производится в промышленных количествах путем окисления природного газа. Они включают метиловый (древесный) спирт, этиловый (пищевой) спирт, пропиловый спирт (с тремя атомами углерода), формальдегид, ацетон, метилэтилкетон, муравьиную кислоту, уксусную кислоту. Из этих компонентов, первично содержащих кислород, производятся многие другие продукты, хорошо известные в органической химии.Химические продукты, получаемые из олефинов. Олефины в крекинг-газах и низкокипящих фракциях нефти легко реагируют с хлором, хлороводородной кислотой, серной кислотой и другими реагентами, образуя новые исходные вещества для дальнейшей переработки и производства большого числа химических продуктов. Из этого сырья производятся фреоны, гликоли, глицерин, каучук, пластмассы, инсектициды, спирты и моющие средства.Химические продукты, получаемые с помощью других процессов. Аммиак синтезируется из водорода, получаемого при крекинге природного газа, и азота, извлекаемого дистилляцией из сжиженного воздуха. Азотная кислота и нитрат аммония, используемые для производства удобрений и взрывчатых веществ, также получаются из аммиака.
neftegaz.ru
Категория:
Ремонт топливной аппаратуры автомобилей
Основные способы переработки нефтиАвтомобильные топлива, смазочные масла и специальные жидкости являются продуктами переработки нефти. Перед переработкой нефть очищают от механических примесей обезвоживают и обессоливают, после чего подвергают переработке прямой перегонкой или деструктивными методами (вторичные процессы с изменением структуры углеводородов).
Схема разделения нефти на фракции различными методами переработки показана на рис. 1. На рисунке указаны средние температуры выкипания получаемых продуктов.
На нефтеперерабатывающих заводах переработка нефти ведется в установках непрерывного действия, где осуществляются одновременно процессы атмосферной перегонки нефти и вакуумной перегонки мазута. При нагреве нефти первыми-закипают и испаряются наиболее легкие углеводороды, которые отбираются и используются в качестве сжиженных газов и бензина. Затем закипают более тяжелые углеводороды, из которых получают лигроин, керосин и дизельные топлива. В конце прямой перегонки остаются самые тяжелые углеводороды, образующие мазут.
Рис. 1. Схема разделения нефти на фракции
Прямая перегонка происходит по следующей схеме (рис. 2). В трубчатой печи нефть нагревается до определенной температуры и поступает в ректификационную колонну, где переходит в парообразное состояние и разделяется на ректификационных тарелках на отдельные фракции.
Тарелки представляют собой перфорированные пластины с патрубками и колпачками. Через них легкие углеводороды в парообразном состоянии проходят в верхнюю часть колонны, а более тяжелые конденсируются и стекают на тарелки, расположенные ниже. Таким образом, на каждую ректификационную тарелку снизу поступают пары углеводородов, а сверху на ней уже находятся углеводороды в жидкой фазе, которые могут быть отобраны в соответствии с их температурой конденсации через систему теплообменников. Так, фракции бензинов отбираются при температурах от 30 до 200 °С, керосинов — от 150 до 300, дизельных топлив — от 200 до 300, мазутов — выше 350 °С.
Рис. 2. Схема установки для перегонки нефти и мазута: 1 — трубчатая печь, 2 — ректификационная колонна, 3 — ректификационные тарелки, 4, б-теплообменники, 5 — вакуумная колонна
Прямая перегонка является первой частью более глубокого процесса переработки нефти. После отбора фракций, кипящих при температурах до 300°С, оставшиеся мазутные фракции подвергают вторичной переработке в вакуумной колонне, в результате чего происходит расщепление крупных молекул углеводородов на более мелкие с получением масляных дистиллятов — соляровых, веретенных, машинных и цилиндровых. Машинные дистилляты являются основой для получения автомобильных масел.
Для увеличения выхода из нефти светлых нефтепродуктов (бензина, дизельного топлива) газойлевые фракции и гудрон подвергают также вторичным процессам переработки, которые называют крекингами. В переводе с английского слово «крекинг» означает расколоть, расщеплять. Применительно к процессу переработки нефти крекинг представляет процесс расщепления высокомолекулярных углеводородов на низкомолекулярные типа бензинов. Процессы крекинга позволяют получать до 75% бензина из нефти. В нефтеперерабатывающей промышленности применяют в настоящее время термический и каталитический крекинги.
Термический крекинг — это технологический процесс, в котором используется действие высокой температуры (470—540 °С) и давление 2,0—7,0 МПа для расщепления молекул тяжелых углеводородов мазутных фракций на более легкие, входящие в состав газа, бензина, керосина и др. При термическом крекинге из мазута удается получить до 40% бензиновых фракций, однако бензины термического крекинга содержат значительное количество непредельных углеводородов, что ухудшает их химическую стабильность.
Более совершенным процессом, позволяющим получать высококачественные нефтепродукты, является каталитический крекинг.
Каталитический крекинг — процесс превращения высококипящих фракций (газойля, мазута) в высокооктановые компоненты бензинов, протекающий при температуре 450—500 °С, давлении, близком к атмосферному, и в присутствии катализатора, ускоряющего расщепление молекул исходного сырья.
Разновидностью каталитического крекинга является гидрокрекинг, который позволяет расщеплять даже тяжелые молекулы гудрона под давлением водорода и в присутствии новых эффективных катализаторов. Выход светлых нефтепродуктов из нефти при использовании гидрокрекинга можно довести до 90%.
Читать далее: Топливо для карбюраторных двигателей
Категория: - Ремонт топливной аппаратуры автомобилей
stroy-technics.ru
1) дегидрирование нафтенов и их превращение в соответствующие ароматические соединения; 2) превращение линейных парафиновых углеводородов в их разветвленные изомеры; 3) гидрокрекинг тяжелых парафиновых углеводородов в легкие высокооктановые фракции; 4) образование ароматических углеводородов из тяжелых парафиновых путем отщепления водорода.
Большинство богатых водородом газов, выделяющихся в этих установках, используются при гидрокрекинге и т.п.ДРУГИЕ ПРОЦЕССЫ ПРОИЗВОДСТВА БЕНЗИНАКроме крекинга и риформинга существует несколько других важных процессов производства бензина. Первым из них, который стал экономически выгодным в промышленных масштабах, был процесс полимеризации, который позволил получить жидкие бензиновые фракции из олефинов, присутствующих в крекинг-газах.Полимеризация. Полимеризация пропилена - олефина, содержащего три атома углерода, и бутилена - олефина с четырьмя атомами углерода в молекуле дает жидкий продукт, который кипит в тех же пределах, что и бензин, и имеет октановое число от 80 до 82. Нефтеперерабатывающие заводы, использующие процессы полимеризации, обычно работают на фракциях крекинг-газов, содержащих олефины с тремя и четырьмя атомами углерода.Алкилирование. В этом процессе изобутан и газообразные олефины реагируют под действием катализаторов и образуют жидкие изопарафины, имеющие октановое число, близкое к таковому у изооктана. Вместо полимеризации изобутилена в изооктен и затем гидрогенизации его в изооктан, в данном процессе изобутан реагирует с изобутиленом и образуется непосредственно изооктан. Все процессы алкилирования для производства моторных топлив производятся с использованием в качестве катализаторов либо серной, либо фтороводородной кислоты при температуре сначала 0-15° C, а затем 20-40° С.Изомеризация. Другой важный путь получения высокооктанового сырья для добавления в моторное топливо - это процесс изомеризации с использованием хлорида алюминия и других подобных катализаторов. Изомеризация используется для повышения октанового числа природного бензина и нафтенов с прямолинейными цепями. Улучшение антидетонационных свойств происходит в результате превращения нормальных пентана и гексана в изопентан и изогексан. Процессы изомеризации приобретают важное значение, особенно в тех странах, где каталитический крекинг с целью повышения выхода бензина проводится в относительно незначительных объемах. При дополнительном этилировании, т.е. введении тетраэтилсвинца, изомеры имеют октановые числа от 94 до 107 (в настоящее время от этого способа отказались ввиду токсичности образующихся летучих алкилсвинцовых соединений, загрязняющих природную среду).ГИДРОКРЕКИНГРанние работы по получению жидкого топлива из углей путем гидрирования под высоким давлением (процесс Бергуса) проводились главным образом в Германии с использованием весьма сильных катализаторов, таких, как оксиды молибдена, которые либо нечувствительны к присутствию серы, либо в значительной степени сохраняют свою активность после прошедшей сульфатизации. Для этого были необходимы следующие параметры: давление до 280 атм, температура ок. 450° С и катализатор. Давления, используемые в современных процессах гидрокрекинга, составляют от примерно 70 атм для превращения сырой нефти в сжиженный нефтяной газ (LP-газ) до более чем 175 атм, когда происходят полное коксование и с высоким выходом превращение парообразной нефти в бензин и реактивное топливо. Процессы проводят с неподвижными слоями (реже в кипящем слое) катализатора. Процесс в кипящем слое применяется исключительно для нефтяных остатков - мазута, гудрона. В других процессах также использовались остаточное топливо, но в основном - высококипящие нефтяные фракции, а кроме того, легкокипящие и среднедистиллятные прямогонные фракции. Катализаторами в этих процессах служат сульфидированные никель-алюминиевые, кобальт-молибден-алюминиевые, вольфрамовые материалы и благородные металлы, такие, как платина и палладий, на алюмосиликатной основе. Там, где гидрокрекинг сочетается с каталитическим крекингом и коксованием, не менее 75-80% сырья превращается в бензин и реактивное топливо. Выработка бензина и реактивных топлив может легко изменяться в зависимости от сезонных потребностей. При высоком расходе водорода выход продукции на 20-30% выше, чем количество сырья, загружаемого в установку. С некоторыми катализаторами установка работает эффективно от двух до трех лет без регенерации. Необходимость уменьшения загрязнения воздуха в промышленных районах США, Западной Европы и Японии обусловливает значительное увеличение использования процессов гидрирования для десульфатизации дистиллятов и остаточных топлив. Процессы гидрокрекинга, предназначенные главным образом для удаления серы при невысоких требованиях к выходу продукции, известны как "гидроочистка". Газообразные легкие фракции прежде всего проходят через вакуумную установку для сжижения, затем полученный на этой стадии газойль проходит десульфуризацию гидроочисткой, прежде чем вновь смешивается с некоторыми вакуумными остатками и другими низкосернистыми легкими фракциями сырой нефти.ОЧИСТКА ЛЕГКИХ ПРОДУКТОВГидроочистка в настоящее время - наиболее распространенный метод гидрогенизации олефинов и повышения качества легких продуктов за счет удаления серы и других примесей. По экономическим причинам, а также из-за проблем, связанных с примесями воздуха и воды, применяются и другие методы, например использование сульфида свинца в качестве катализатора в регенеративных растворителях и предварительное рафинирование с применением высоковольтных электропечей для лучшего отделения очищающего реагента от получаемого продукта. МАСЛА И СМАЗКИНефтяная промышленность поставляет масла и смазки, различающихся по вязкости от жидких, почти как вода, до консистенции патоки. Как и в случае с другими нефтяными фракциями и продуктами, появились новые методы их производства - экстракция и деасфальтизация растворителями и др.Экстракция растворителями. К промышленным растворителям относятся хлорекс, фурфурол (побочный продукт переработки овсяной шелухи), нитробензол, фенолы, метилэтилкетоны и пр. Экстракция растворителями осуществляется обычно в режиме противотока (поток масел идет в одном направлении, а растворителя - в противоположном), что позволяет проводить более выборочное растворение и более глубокую очистку. При еще более избирательной процедуре колонна наполняется пористой средой (выполненной, например, в виде перфорированных пластин).Сжиженный пропан. Эффективность обработки смазочных масел повышается при использовании сжиженного пропана под давлением. Этот парафиновый углеводород (т.кип. -42° С) практически не оказывает растворяющего действия на асфальты и очень слабо растворяет твердые парафины при низких температурах. Тем не менее, регулируя и подбирая температуру и соотношения растворитель/масла, можно успешно удалять асфальт и твердые парафины.Депарафинизация растворителями. Депарафинизация растворителями - важный этап производства смазочных масел. Депарафинизация неочищенных или очистка смазочных масел дает разнообразные продукты - от светлых веретенных масел до тяжелых вакуумных смазок и товарных парафинов. Наиболее широко используются для депарафинизации смеси метилэтилкетона и толуола или бензола и ацетона.КРЕКИНГ-ГАЗВторичные газообразные продукты получаются из нефти в результате различных процессов крекинга. Тяжелые фракции при крекинге дают бензин, а бензиновые фракции умеренно крекируются с увеличением октанового числа. Газы, получающиеся при этих процессах, могут составлять 2-10% (масс.) от крекируемой нефти; они заметно отличаются от природных нефтяных газов. Главная их особенность - наличие олефинов, которые полностью отсутствуют в природных газах. В газах высокотемпературного крекинга может содержаться 50% олефинов, включая этилен, пропилен и бутилены. Как правило, олефины составляют более 10-25%. Крекинг-газы обычно содержат также небольшое количество водорода. Температура крекинга 540° С или выше при невысоком давлении благоприятна для образования этилена, а более умеренные температуры 455-480° С и высокое давление - для образования меньшего количества этилена и пропорционально большего количества пропилена и бутиленов.БЕНЗИНБензин - самый важный продукт переработки нефти; из сырой нефти производится до 50% бензина. Эта величина включает природный бензин, бензин крекинг-процесса, продукты полимеризации, сжиженные нефтяные газы и все продукты, используемые в качестве промышленных моторных топлив. Каждому процессу переработки нефти предъявляются требования по количеству и качеству производимого бензина.Состав. Промышленный бензин представляет собой смесь углеводородов в интервале т.кип. 30-200° C. Некоторые бутаны, кипящие при температуре ниже 38° С, имеет высокое давление паров. Углеводороды в бензине включают многие изопарафины, а также ароматические углеводороды и нафтены, а в бензинах, полученных при крекинге, содержится от 15 до 25% олефинов. Октановое число углеводородов снижается в следующем порядке: изопарафины > ароматические > олефины > нафтены > н-парафины. Имеются различия между компонентами каждой из этих групп, зависящие от структуры молекул и точки кипения. Различные компоненты дают свой вклад в октановое число бензиновых смесей. Крекинг-бензины содержат значительный процент тех компонентов, при смешении которых образуется моторное топливо. Однако их прямое использование во многих странах законодательно ограничивается, поскольку они содержат заметное количество олефинов, а именно олефины являются одной из главных причин образования фотохимического смога.Классификация бензинов. Бензины классифицируются по разным основаниям, включая интервалы температур кипения, октановое число, содержание серы.Интервалы температур кипения. Большинство бензинов кипит в интервале 30-200° С. 50%-ная точка, т.е. температура, при которой кипит половина компонентов смеси и которая определяет состав смеси во время прогрева двигателя, а частично и при разгоне транспортного средства, располагается в пределах 98-104° С. Высокое содержание низкокипящих компонентов, таких, как бутаны и пентаны, обусловливает исключительно высокое давление паров и в теплое время является причиной образования паровых пробок, когда газовые пузырьки препятствуют течению топлива по узким трубам двигателей и тепловых установок. В то же время недостаток низкокипящих компонентов служит причиной трудностей запуска двигателя зимой. 90%-ная точка кипения бензина определяет время прогрева двигателя и эффективность использования топлива.Октановое число. Октановое число - наиболее важная характеристика бензина. Оно обычно определяется в одноцилиндровой стационарной установке, снабженной различными приборами для регистрации склонности к детонации. Нормальный гептан (семь атомов углерода в линейной цепи) детонирует очень легко; для него принято нулевое октановое число. Изооктан (восемь атомов углерода в разветвленной цепи) не детонирует до тех пор, пока не будут достигнуты экстремальные условия давления, температуры и нагрузки; для него произвольно установлено октановое число 100. При испытании бензина с неизвестными детонационными свойствами его сравнивают со смесью гептана и изооктана, имеющей такую же способность к детонации, как и испытуемый бензин; октановое число бензина - это процентное содержание изооктана в такой смеси. Октановое число, определенное таким образом, не всегда соответствует характеристике в многоцилиндровом двигателе в дорожных условиях при изменяющихся скоростях, нагрузках и ускорениях. В нефтяной промышленности используются два метода, делающие это сравнение более реальным, - моторный метод и исследовательский метод. Октановое число определяется как среднее из двух таких определений.Присадки. Практически все бензины содержат различные присадки, в том числе ингибиторы смолообразования и небольшое количество красителя. Законодательством многих промышленно развитых стран существенно снижен допустимый уровень соединений свинца в бензине (этилированный бензин, т.е. содержащий добавки тетраэтилсвинца, повышающие октановое число бензина, составляет менее 20% от всего бензина, вырабатываемого в США).КЕРОСИНКеросин - это легчайшее и наиболее летучее жидкое топочное топливо. Первоначально керосин использовался только для освещения, теперь он употребляется как топливо в пекарнях, отопительных и нагревательных приборах, оборудовании ферм, а также как компонент моторного топлива. Хороший керосин должен иметь особый цвет (приблизительно 250-300 мм по шкале Штаммера для нефтепродуктов), достаточную вязкость для устойчивой и равномерной пропитки фитиля, должен гореть ясным высоким пламенем без копоти или отложения твердых углистых осадков на фитиле, копоти в дымоходах и на ламповом стекле. Безопасность керосина при использовании в осветительных лампах определяется стандартным тестом на вспышку. Керосин медленно нагревают в небольшой стеклянной или металлической чашке и к поверхности периодически прикасаются пламенем до тех пор, пока не появится небольшой дымок, соответствующий точке воспламенения.ДРУГИЕ ПРОДУКТЫДизельное топливо. Промежуточные нефтяные дистилляты, кипящие при температурах выше, чем керосин, но ниже, чем смазочные масла, представляют собой горючее для средне- и высокоскоростных дизельных двигателей.Цетановое число. Дизельные топлива оцениваются их цетановым числом - это реальное измерение легкости воспламенения под действием температуры и давления, а не способности горения. При этом топливо сравнивается со смесью цетана - парафинового углеводорода с 16-ю атомами углерода, который легко воспламеняется под давлением, и a-метилнафталина, который не возгорается. Процент цетана в смеси, показывающий ту же воспламеняемость, что и дизельное топливо в стандартных условиях испытания, называется цетановым числом. Парафиновые топлива более подходят для дизельных двигателей, поскольку они легко воспламеняются под давлением без дополнительной искры зажигания. Однако в связи с возрастающей потребностью в дистиллятах прямой перегонки для других целей, кроме получения дизельного топлива, увеличивается использование тяжелых дистиллятов с более низким цетановым числом, получаемых при каталитическом крекинге. Повышение надежности воспламенения низкокачественных дизельных топлив, улучшение воспламеняемости, более известное как увеличение цетанового числа, достигается добавлением специальных масел. Они включают такие компоненты, как органические оксиды и пероксиды. Небольшие добавки амилнитрата удовлетворительно улучшают качество топлив.Реактивные топлива. Реактивные нефтяные топлива могут быть керосиновые либо нафтеновые. Они состоят главным образом из бензина прямой перегонки или керосина в топливах керосинового типа либо топливах №1 нафтенового типа.Топливо для отопления зданий. Использование легких дистиллятов в качестве бытового топлива постоянно возрастает, так как они удобнее и чище по сравнению, например, с углем. Конкуренцию им составляют природный газ и электричество.Мазут. Большинство промышленных котельных и тепловых электростанций используют в качестве топлив черные вязкие остаточные продукты переработки нефти - топочный мазут. В большинстве случаев это продукты крекинга, хотя имеются и продукты прямой перегонки. Парафиновые воски являются главным средством для защиты оборудования от действия воды. Все они имеют водяно-белый цвет и температуру плавления в пределах 50-95° С. Микрокристаллические воски используются как изоляция в самых разнообразных отраслях, таких, как электротехническая промышленность и промышленность средств связи, а также при печати, гравировке и т.д. Вазелин, состоящий из тяжелых нефтяных остатков и парафиновых восков, производится фильтрованием цилиндровых дистиллятов и применяется в технике (в качестве антикоррозионной смазки и др.) и медицине (главным образом для изготовления мазей).ХИМИЧЕСКИЕ ПРОДУКТЫ ИЗ НЕФТИПолучение нефтепродуктов путем фракционирования. Нефтяная промышленность - это главный производитель химикатов. Ее первые успехи в разделении индивидуальных углеводородов были достигнуты при фракционировании природного газа и природного бензина. Первыми компонентами, выделенными таким путем, были метан, этан, пропан, нормальный бутан, изобутан и пентины. Соответствующим образом спроектированные ректификационные колонны дают возможность выделять из крекинг-газов небольшие фракции с узким диапазоном температур кипения, которые служат первичным сырьем для химического производства, - это углеводороды, имеющие от одного до пяти атомов углерода (как парафины, так и олефины). Химические продукты, получаемые окислением природного газа. Большое число химикатов производится в промышленных количествах путем окисления природного газа. Они включают метиловый (древесный) спирт, этиловый (пищевой) спирт, пропиловый спирт (с тремя атомами углерода), формальдегид, ацетон, метилэтилкетон, муравьиную кислоту, уксусную кислоту. Из этих компонентов, первично содержащих кислород, производятся многие другие продукты, хорошо известные в органической химии. Химические продукты, получаемые из олефинов. Олефины в крекинг-газах и низкокипящих фракциях нефтей легко реагируют с хлором, хлороводородной кислотой, серной кислотой и другими реагентами, образуя новые исходные вещества для дальнейшей переработки и производства большого числа химических продуктов. Из этого сырья производятся фреоны, гликоли, глицерин, каучук, пластмассы, инсектициды, спирты и моющие средства. Химические продукты, получаемые с помощью других процессов. Аммиак синтезируется из водорода, получаемого при крекинге природного газа, и азота, извлекаемого дистилляцией из сжиженного воздуха. Азотная кислота и нитрат аммония, используемые для производства удобрений и взрывчатых веществ, также получаются из аммиака.См. также НЕФТЕХИМИЧЕСКИЕ ПРОДУКТЫ.ЛИТЕРАТУРАЭрих В.Н. и др. Химия и технология нефти и газа. Л., 1985 Конь М.Я. и др. Нефтеперерабатывающая и нефтехимическая промышленность за рубежом. М., 1986Энциклопедия Кольера. — Открытое общество. 2000.
Основные стадии технологии переработки нефти — Нефтеперерабатывающий завод компании Shell в Калифорнии Цель переработки нефти (нефтепереработки) производство нефтепродуктов, прежде всего, различных топлив (автомобильных, авиационных, котельных и т. д.) и сырья для последующей химической… … Википедия
ХИМИЯ ОРГАНИЧЕСКАЯ. КЛАССЫ СОЕДИНЕНИЙ — Органические соединения (углеводороды и их производные) можно разделить на два типа: ациклические (или алифатические, т.е. с открытой углеродной цепью) и циклические; последние в свою очередь подразделяются на алициклические, в молекулах которых… … Энциклопедия Кольера
ХИМИЯ — совокупность наук, предмет к рых составляют соединения атомов и превращения этих соединений, происходящие с разрывом одних и образованием других межатомных связей. Различные химия, науки отличаются тем, что они занимаются либо разными классами… … Философская энциклопедия
Химия — I Химия I. Предмет и структура химии Химия одна из отраслей естествознания, предметом изучения которой являются химические элементы (Атомы), образуемые ими простые и сложные вещества (молекулы (См. Молекула)), их превращения и… … Большая советская энциклопедия
Химия — I Химия I. Предмет и структура химии Химия одна из отраслей естествознания, предметом изучения которой являются химические элементы (Атомы), образуемые ими простые и сложные вещества (молекулы (См. Молекула)), их превращения и… … Большая советская энциклопедия
Органическая химия — В Викисловаре есть статья «органическая химия» Органическая химия раздел химии, изучающий со … Википедия
Российский государственный университет нефти и газа имени И. М. Губкина — (РГУНиГ) … Википедия
Переработка нефти — Нефтеперерабатывающий завод компании Shell в Калифорнии Цель переработки нефти (нефтепереработки) производство нефтепродуктов … Википедия
Зелёная химия — (Green Chemistry) научное направление в химии, к которому можно отнести любое усовершенствование химических процессов, которое положительно влияет на окружающую среду. Как научное направление, возникло в 90 е годы XX века. Новые схемы… … Википедия
КОЛЛОИДНАЯ ХИМИЯ — область химии, изучающая дисперсные системы и поверхностные явления, возникающие на границе раздела фаз. Поскольку частицы дисперсной фазы и окружающая их дисперсионная среда имеют очень большую пов сть раздела фаз (в высокодисперсных системах… … Химическая энциклопедия
dic.academic.ru
Образовавшаяся в месторождении нефть, просачиваясь через рыхлые породы, задерживается в сдвигах плотных пород и формируется в залежи. Для ее добычи к залежам бурятся скважины. С каждым годом растет глубина нефтяных скважин. Если в 1935 г. средняя глубина скважин составляла 860 м, то в настоящее время- 3000 м. Современная нефтедобывающая техника позволяет бурить скважины глубиной 5000-7000 м и более. Предпринимаются попытки к бурению еще более глубоких скважин. Так, например, в северо-западной части Кольского полуострова впервые в мире производится бурение скважины, проектная глубина которой составляет 15 тыс. м.
Добыча нефти осуществляется двумя способами: фонтанным и глубинно-насосным. При фантанном способе добычи нефть под пластовым давлением до 40 МПа поднимается к устью скважины и через специальную арматуру высокого давления поступает на очистку. Производительность этого способа 2-40 т нефти в сутки. Фонтанный способ добычи применим только в начальный период существования скважины, когда давление в пласте достаточно высокое.
По мере истощения залежей давление падает и скважину переводят на глубинно-насосный способ добычи, при котором на дно, скважины опускается специальный насос, обеспечивающий подачу нефти вверх к устью скважины. Производительность этого способа- 3-5 т нефти в сутки. Поэтому при эксплуатации залежи стремятся как можно дольше поддерживать высокое давление в пласте, применяя различные методы воздействия: закачку в нефтяные пласты газа, воды, горячего пара, а также гидравлический разрыв пласта и др.
Сочетая различные способы добычи, удается извлечь из залежи 4-50 % находящейся в ней нефти.
Нефть, добываемая из скважин, содержит растворенные газообразные углеводороды, воду, примеси твердых частиц, которые увлекаются ею при движении из пласта. Поэтому перед переработкой нефть подвергают очистке.
Выходящая из скважины нефть, направляется в специальные испарители, где происходит отделение попутных газов. Вода находится в нефти как в свободном состоянии, так и в виде эмульсии - капелек размером 0,1-0,01 мм, заключенных в оболочку из смолистых или маслянистых веществ- эмульгаторов. Свободная вода отделяется от нефти в отстойниках вместе с механическими примесями. Если нефть образует с водой устойчивые эмульсии, их разрушают, обрабатывая нефть специальными дезмульгаторами или переменным электрическим полем высокого напряжения (30-45 тыс. вольт).
После очистки нефть направляют на нефтеперерабатывающие заводы. Существуют физический и химический способы переработки нефти.
Физические способы позволяют разделить на фракции вещества, входящие в состав нефти, не вызывая химических превращений этих веществ. При этом способе углеводородный химический состав выделяемых фракций не меняется. Разделение на фракции основано на различии таких физических свойств компонентов, как температура кипения, температура кристаллизации, растворимость. В основе физических способов лежат законы испарения и конденсации смеси веществ с различными температурами кипения.
Наибольшее распространение из физических способов переработки получила прямая перегонка, которая основана на различных температурах кипения веществ, входящих в состав нефти.
Химические способы переработки связаны с химическим превращением компонентов нефти и нефтепродуктов под действием температуры, давления, катализаторов. При этих способах переработки происходит изменение структуры молекул, и получаемые продукты по химическому составу и свойствам резко отличаются от исходной нефти и нефтепродуктов.
Наибольшее распространение среди химических способов получили термический крекинг, каталитический крекинг, риформинг.
Состав продуктов крекинга и риформинга определяются не только качеством исходной нефти, но и условиями осуществления процессов: температурой, давлением, видом катализатора.
Термический крекинг проводится при температурах относительно высоких. Он может быть осуществлен в жидкой и паровой фазах. В зависимости от этого различают жидкофазный и паро-фазный крекинги.
Жидкофазный крекинг ведут при температуре 470-540 °С и давлении до 7 ПМа в установках, состоящих из трубчатых печей для нагрева сырья и ректификационных колонн.
Основным сырьем жидкофазного термического крекинга является мазут, из которого получают до 30-35 % бензина, 10-15 % крекинг-газов и 50-55 % крекинг-остатка, использующегося в основном как котельное топливо. По сравнению с бензинами прямой перегонки в крекинг-бензине большее содержание непредельных углеводородов.
Парофазный крекинг (пиролиз) производится при температуре 650-1200°С и давлении, близком к атмосферному, с целью получения газообразных непредельных и ароматических углеводородов, использующихся в качестве сырья для органического синтеза. Пиролизу подвергаются легкие фракции прямой перегонки нефти, попутные газы нефтепереработки, попутные газы нефтедобычи, крекинг-газы.
Каталитический крекинг тяжелого нефтяного сырья проводят в паровой фазе на катализаторе при температурах 450-500 °С и давлении 0,1-0,2 МПа. Катализатором этого процесса являются синтетические алюмосиликаты. Достоинствами каталитического крекинга являются высокие выходы бензиновых фракций (до 70%) и газообразных углеводородов (12-15 %), являющихся сырьем для органического синтеза. Сырьем каталитического крекинга является широкая вакуумная фракция с температурой кипения 300-500 °С.
Бензины каталитического крекинга состоят в основном из ароматических, нафтеновых и изопарафиновых углеводородов.
Риформипг - разновидность каталитического крекинга. Каталитическому риформингу подвергают бензиновые фракции прямой перегонки нефти, выкипающие от 60 до 180 °С. Процесс ведут в присутствии платинового катализатора (платина на окиси алюминия) при температуре 470-510 °С и давлении 1,5- 5 МПа. Если давление риформинга не превышает 3 МПа, основными продуктами процесса являются бензол, толуол и ксилол, служащие сырьем для органического синтеза.
Если же давление риформинга близко к 5,0 МПа, получают ароматические изопарфиновые углеводороды, входящие в состав высококачественных бензиновых фракций.
Наряду с жидкими продуктами каталитического риформинга образуются газообразные (метан, этан, пропан и др.), использующиеся для органического синтеза. Выход высококачественных бензинов при риформинге составляет 58-60 %.
Наиболее крупномасштабными способами переработки нефти, реализованными на практике, являются прямая перегонка, термический и каталитический крекинг и нефти и нефтепродуктов. В промышленности в зависимости от состава перерабатываемой нефти, а также назначения нефтепродуктов реализованы три варианта схем переработки нефти: топливный, топливно-масляный и нефтехимический. В качестве примера рассмотрим топливно-масляный вариант переработки нефти, реализуемый с целью получения автомобильных топлив и масел (рис. 4.3.1.).
Рис. 4.3.1. Блок-схема топливно-масляного варианта переработки нефти.
катализатор
бензиновые фракции
бензин
керосиновые фракции
реактивное топливо
нефть
мазут
газойлевые фракции
дизельное топливо
соляровый дистиллят
масляный дистиллят
гудрон
1- атмосферная перегонка нефти; 2- вакуумная перегонка нефти; 3- термический крекинг мазута; 4- каталитический крекинг; 5- рифарминг.
На первой стадии подготовленная нефть нагревается в трубчатых печах до 300 — 350 °С и подается в ректификационную колонну первой ступени под давлением, близким к атмосферному, где происходит испарение легкокипящих фракций (1). Пары, поднимаясь вверх по колонне, постепенно охлаждаются жидкостью (флегмой), стекающей сверху. При соприкосновении паров с жидкостью происходит разделение смеси на фракции по температурам кипения в результате многократного чередования процессов испарения жидкости и конденсации ее паров (ректификация). Пары бензина как наиболее низкокипящие фракции (до 170 °С) выходят сверху колонны, охлаждаются и конденсируются. Часть жидкого бензина выводится как готовый продукт, а часть его подается на орошение колонны (флегмы). По высоте колонны отбираются и другие продукты - лигроин (160-200 °С), керосин (200-300 °С), газойль (300-350 °С).
Остаток от перегонки нефти (мазут) подвергается дальнейшей разгонке в вакуумной трубчатке (2). Его нагревают в трубчатой печи второй ступени до 400-420 °С и подают в ректификационную колонну, работающую под вакуумом. Вакуум необходим для снижения температуры кипения масляных дистиллятов, поскольку температура кипения углеводородов, входящих в состав мазута, при атмосферном давлении выше температуры его разложения. В вакуумной трубчатке происходит разделение мазута на масляные дистилляты - соляровый (350-400 °С), масляный (400-490 °С) и остаток- гудрон.
Первую и вторую стадии описанного технологического процесса объединяют под понятием прямой перегонки нефти, а оборудование, использующееся для осуществления этих стадий, называют атмосферно-вакуумными трубчатками (АВТ). Фракционный состав прямой перегонки: легких фракций- 45 %, масла- 25 %, гудрона- 30%.
Основным недостатком прямой перегонки нефти являются низкие выход и качество бензиновых фракций, поэтому прямая перегонка нефти рассматривается как один из предварительных способов переработки нефти.
Для увеличения количества производимых бензинов в рассматриваемой технологической схеме часть мазута прямой перегонки нефти используется как сырье для дальнейшей переработки с целью получения светлых фракций. Для этого мазут подвергают термическому жидкофазному крекингу О), который ведут при температуре 470-540 °С и давлении до 7 МПа. При термическом крекинге мазут нагревается в трубчатой печи, где часть его (2/3) крекируется. Смесь продуктов крекинга и непрореагировавшего сырья проходит через испаритель, в котором отделяется крекинг-остаток - вещества, не способные крекироваться. Легкие продукты поступают в ректификационную колонну на разделение. При термическом крекинге мазута выход крекинг-бензинов – 30-35 %, крекин-газа - 10-15 %, крекинг-остаток -50-55 %.
Для дальнейшего увеличения выхода высококачественных бензинов на четвертой стадии технологического процесса соляровый дистиллят, получаемый при вакуумной перегонке мазута, с температурой кипения 350-400 °С нагревается до 500 °С и подвергается каталитическому крекингу (4). Каталитический крекинг осуществляют в установках, состоящих из реактора и регенератора. В реакторе происходит процесс крекинга, а в регенераторе - восстановление каталитической активности используемого катализатора. По мере эксплуатации установки катализатор теряет свою активность из-за отложения на его поверхности смолистых веществ. Поэтому продукты крекинга выводятся из реактора вместе с отработавшим катализатором, отделяются от него и направляются в ректификационную колонну на разделение. Катализатор поступает в регенератор, где в токе горячего воздуха выжигают кокс, и активность катализатора восстанавливается.
Каталитический крекинг на современных цеолитсодержащих катализаторах позволяет получить до 70 % бензина и около 15-20 % легкого газойля, который может служить компонентом дизельного топлива.
Учитывая, что в настоящее время требования некоторых потребителей к качеству бензинов настолько высоки, что их удовлетворение возможно лишь с помощью специальных процессов, не дающих увеличения выхода бензина из нефти, в рассматриваемой технологической схеме бензины атмосферной перегонки нефти подвергаются риформингу (5). Процесс риформинга осуществляется в установках, аналогичных установкам каталитического крекинга.
Сырье (бензиновая фракция прямой перегонки) нагревается в теплообменнике и нагревательной печи до температуры 380-420 °С и поступает в реактор, где под давлением 3,5 МПа и при воздействии платинового катализатора подвергается гидроочистке. Очищенное сырье после освобождения от сероводорода, углеводородных газов и воды нагревается в печи до температуры 500-520 °С и поступает в реакторы, где под давлением более 4 МПа происходит его реформирование. Полученные при риформинге бензины содержат до 58 % ароматических углеводородов, остальное - алканы и нафтены в основном изомерного строения.
studfiles.net
Обратная связь
ПОЗНАВАТЕЛЬНОЕ
Сила воли ведет к действию, а позитивные действия формируют позитивное отношение
Как определить диапазон голоса - ваш вокал
Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими
Целительная привычка
Как самому избавиться от обидчивости
Противоречивые взгляды на качества, присущие мужчинам
Тренинг уверенности в себе
Вкуснейший "Салат из свеклы с чесноком"
Натюрморт и его изобразительные возможности
Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.
Как научиться брать на себя ответственность
Зачем нужны границы в отношениях с детьми?
Световозвращающие элементы на детской одежде
Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия
Как слышать голос Бога
Классификация ожирения по ИМТ (ВОЗ)
Глава 3. Завет мужчины с женщиной
Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.
Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.
Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.
Министерство образования и науки РФ
ГОУ ВПО
«воронежская государственная технологическая академия»
Кафедра технологии органического синтеза
И высокомолекулярных соединений
ОБЩая ХИМИЧЕСКая ТЕХНОЛОГИя
Теоретические основы процесса
Пиролиз углеводородов
Для студентов, обучающихся по направлениям 240500 – «Химическая технология
высокомолекулярных соединений и полимерных материалов», 240800 – «Энерго- и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии»,
240900 – «Биотехнология» (специальности 240502 – «Технология переработки пластических масс и эластомеров», 240801 – «Машины и аппараты химических производств», 240902 – «Пищевая биотехнология»). Предназначено для закрепления теоретических
знаний дисциплин цикла ОПД. Может быть использовано для подготовки инженеров-экологов по направлению 280200 – «Защита окружающей среды» (специальности 280201 – «Охрана окружающей среды и рациональное использование природных ресурсов»)
при изучении дисциплины «Промышленная экология»
________________
Воронеж
Лабораторная работа
Пиролиз углеводородов
Главным источником жидких и твердых углеводородов, используемых в процессах органического синтеза и других отраслях промышленности, является нефть.
Сырая нефть представляет собой маслянистую жидкость от темно-коричневого до зеленого цвета или почти бесцветную. Нефть состоит, главным образом, из алканов (насыщенных углеводородов), имеющих неразветвленное, разветвленное и циклическое строение с числом атомов углерода от 5 до 40. Промышленное название алканов линейного строения – парафины, циклоалканов – нафтены. Кроме того, в состав нефти входят ароматические углеводороды, кислород-содержащие и сернистые соединения.
Общие формулы перечисленных низкокипящих соединений (до 360 °С) приведены ниже: | |
СnН2n+2 | - парафиновые углеводороды; |
СnН2n | - нафтены; |
СnН2n-6 | - моноциклические ароматические, бензольные |
углеводороды; | |
СnН2n-8 | - нафтеноароматические углеводороды; |
СnН2n-12 | - бициклические ароматические углеводороды. |
К высококипящим относятся высокомолекулярные парафи-новые углеводороды, моно-, би-, и трициклические циклопарафи-новые углеводороды, би- и трициклические ароматические углеводо-роды и др.
В сыром виде нефть используется мало. Ее перерабатывают, разделяя на множество составных частей. Фракционный состав определяется температурой начала и конца кипения фракций.
Газовая фракция представляет собой простейшие алканы – этан, пропан, бутан. Эта фракция имеет промышленное название нефтяной газ и может быть использована в качестве газообразного горючего или подвергнута сжижению под давлением с целью получения сжиженного нефтяного газа, который используется в качестве жидкого топлива или как сырье для получения этилена на крекинг-установках.
Бензиновая фракция представляет собой смесь различных углеводородов, в том числе неразветвленных и разветвленных алканов и используется для получения различных сортов моторного топлива, который применяют в качестве топлива для поршневых карбюраторных двигателей с искровым зажиганием (самолеты, автотранспорт и др.) Такой бензин должен обладать определенными свойствами (фракционный состав, давление насыщенных паров, достаточная детонационная стойкость, химическая стабильность, отсутствие коррозии аппаратуры).
Детонационная стойкость – важная характеристика бензина. К.П.Д. двигателя внутреннего сгорания тем выше, чем больше степень сжатия смеси паров бензина и воздуха в цилиндре. Однако степень сжатия ограничена характером горения смеси паров в цилиндре. При некоторых степенях сжатия наступает детонация, при которой скорость распространения пламени резко увеличивается (до 2500 м/с). Это сопровождается стуком в цилиндре, перегревом, черным дымом на выхлопе.
Склонность бензина к детонации характеризуется октановым числом, которое определяется сравнением детонационных свойств бензина со свойствами смеси, состоящей из изооктана и гептана нормального строения. Принимают, что мало склонный к детонации изооктан имеет октановое число 100, а н-гептан, чрезвычайно склонный к детонации, имеет октановое число 0. Октановое число бензина равно процентному содержанию изооктана в стандартной смеси изооктана и н-гептана, которая детонирует при той же степени сжатия, что и испытуемый бензин. Чем больше октановое число, тем выше качество бензина. Октановое число бензиновой фракции получаемой из сырой нефти не превышает 60. Характеристики горения бензина улучшаются при добавлении в него антидетонационной присадки, например тетраэтилсвинца, который входит в состав этиловой жидкости. При горении бензина, содержащего эту присадку, образуются частицы свинца, замедляющие определенные стадии горения и препятствующие детонации. Высококачественный бензин, с высоким содержание ароматических углеводородов и углеводородов построения и, соответственно, большим октановым числом (80) получают в результате крекинга нефтепродуктов.
Лигроин. Большую часть лигроина, получаемого при ректификации нефти, подвергают дальнейшей переработке для получения ненасыщенных газообразных углеводородов, используемых в органическом синтезе, и некоторого дополнительного количества бензина.
Керосин. Эта фракция состоит из алканов, нафталинов и ароматических углеводородов. Основная часть этой фракции используется как горючее для реактивных самолетов. Часть ее подвергается очистке для использования в качестве источника насыщенных углеводородов - парафинов, а другая подвергается крекингу с целью получения бензина.
Газойль (соляровый дистиллят). Фракция носит название дизельного топлива и используется в качестве горючего для дизельных двигателей. Газойль используют как топливо для промышленных печей, часть фракции подвергают крекингу для получения нефтяного газа и бензина.
Мазут. Большая часть используется в качестве жидкого топлива для нагревания котлов и получения пара на промышленных предприятиях. Некоторую часть мазута подвергают вакуумной ректификации для получения дистиллятов, из которых в дальнейшем после очистки получают смазочные масла и парафиновые воски.
Используя процесс коксования (термического разложения без доступа воздуха при 450-500 °С) можно получить из мазута некоторое количество жидкого топлива (бензина и др.) и беззольного нефтяного кокса.
Методы переработки нефти и жидких нефтепродуктов можно разделить на физические и химические. Начальной стадией переработки нефти является прямая перегонка при атмосферном давлении (атмосферная перегонка), при которой из нефти выделяют газовую фракцию, бензин, лигроин, керосин, газойль. Остаток от атмосферной перегонки (мазут) подвергают далее вакуумной перегонке для получения дистиллятов смазочных масел (соляровое, веретенное, машинное, легкое цилиндровое, тяжелое цилиндровое), остаток от перегонки мазута — гудрон (таблица 1).
Таблица 1 – Выход дистиллятов на двухступенчатых атмосферно-
вакуумных установках перегонки нефти
Дистиллят | Температура, °С | Выход, мас.д., % | ||
Туймазинская нефть | Ромашкинская нефть | Грозненская (парафинистая) нефть | ||
Бензин | до 170 | 20,0 | 18,6 | 14,5 |
Лигроин | 160-200 | - | - | 7,5 |
Керосин | 200-250 | 10,0 | 9,5 | 18,0 |
Дизельное | ||||
топливо | 240-350 | 17,5 | 17.5 | 5,0 |
Масла | 230-370 | 25,0 | 25,4 | 25,0 |
Гудрон | 350-370 | 25,0 | 26,5 | 27-30 |
В технической литературе для приведенных выше процессов разделения нефти традиционно используется термин – перегонка. Однако более верно отражает существо происходящих процессов термин «ректификация». Ректификация – это непрерывный процесс многократного испарения жидкости с последующей ее конденсацией. Число испарений определяется конструкцией ректификационной колонны (числом тарелок в колонне). Непрерывность процесса - основная отличительная черта ректификации от процесса перегонки. Ректификация мазута в условиях вакуума (Р = 0,01 МПа) осуществ-ляется с целью снижения температуры кипения входящих в состав мазута углеводородов. При этом обеспечивается возможность ведения процесса при более низких, по сравнению с условиями ректификации температурах (400-420 °С). В таких условиях снижается вероятность побочных реакций, приводящих к глубокой термической деструкции.
Физические методы основаны на различии физических свойств, входящих в ее состав углеводородов - температурах кипения и кристаллизации, растворимости.
Химические методы основаны на способности углеводородов, входящих в состав нефти, претерпевать глубокие химические превращения под влиянием температуры, давления, катализаторов.
Аппаратура, применяемая для осуществления физических и химических процессов переработки нефти, должна обеспечивать, во-первых, нагревание сырья до высокой температуры, при которой достигается достаточная скорость процесса и, во-вторых, разделение получаемых продуктов. Нагревание нефти производится, главным образом, в трубчатых печах, а разделение продуктов нефтеперера-ботки – в ректификационных колоннах. Наибольшее распространение получили колонны с барботажными колпачками. Каталитические процессы проводят в контактных аппаратах разнообразной конструкции.
Сырая нефть и продукты ее переработки нередко оказываются загрязнителями окружающей среды. В качестве последних могут быть:
- сырая нефть, разлитая в результате аварий;
- оксид углерода (II). Он образуется при неполном сгорании различных видов топлив в воздухе. Оксид углерода (II) прочно соединяется с гемоглобином крови, препятствуя её насыщению кислородом, оказывает токсическое действие;
- не полностью сгоревшие углеводороды. Они образуются при неполном сгорании топлив. На ярком солнечном свету они могут приводить к образованию фотохимического смога;
соединения свинца. Они попадают в атмосферу вследствие использования тетраэтилсвинца в качестве антидетонационной добавки к бензинам;
- твердые частицы углерода и не полностью сгоревших углеводородов, попадают в атмосферу в результате неполного сгорания топлив и могут принимать участие в образовании смога;
- оксиды азота и серы. Соединения азота и серы присутствуют в качестве примесей во многих видах углеводородных топлив. Они вступают в реакцию с кислородом воздуха и образуют кислые оксиды, которые являются причиной выпадения кислотных дождей.
Химические методы переработки нефти
Химические методы переработки нефти включают в себя процессы крекинга и риформинга.
Крекингом называется вторичный процесс переработки нефтепродуктов, проводимый с целью повышения общего выхода бензина. Применение вторичных процессов в нефтепереработке позволяет увеличить на 30-35 % выход светлых продуктов (моторных топлив), повысить их антидетонационные свойства и термическую стабильность, а также расширить диапазон производимого переработкой нефти химического сырья. В процессе крекинга крупные молекулы высококипящих фракций сырой нефти расщепляются на меньшие молекулы. Способность к расщеплению под воздействием температуры определяется температурной зависимостью изобарно-изотермического потенциала образования. Изобарно-изотермический потенциал взаимного превращения связан с константой равновесия уравнением
ΔG° = -R T lnKp
и может быть определен по разности ординат соответствующих прямых. Так как система всегда стремится перейти в состояние с наименьшей энергией, то, например, при температуре 700 °С (рис. 1) наиболее устойчив бензол, затем циклогексан, гексен и гексан.
Как видно на рисунке 1 при низких температурах стабильность уменьшается в ряду:
парафины > нафтены > олефины > ароматические углеводороды.
При высокой температуре порядок меняется:
ароматические углеводороды > олефины > нафтены > парафины.
Следовательно, при повышенной температуре в первую очередь разрушаются парафиновые и нафтеновые углеводороды и происходит накопление ароматических углеводородов в продуктах крекинга.
Скорость крекинга приближенно описывается уравнением первого порядка
где kср–усредненная константа скорости реакции; х –степень разложения.
Усредненная константа kср уменьшается по мере углубления процесса, что объясняется замедлением расщепления устойчивых молекул сырья.
Крекинг нефтепродуктов может быть термическим и каталитическим.
Термический крекинг разделяют на жидкофазный (протекает в системе жидкость–пар) и парофазный (в паровой фазе). Жидкофазный ведут при температуре 470-540 °С и давлении до 7 МПа, парофазный – при температуре более 550 °С и давлении близком к атмосферному.
Таблица 2 – Сравнение условий протекания и образующихся
продуктов
Процесс | Условия | Механизм | Получаемые продукты |
Термический | 470-540 °С Р=2-7 МПа | свободно-радикальный | газ состоит из этилена, пропилена, жидкая фракция содержит олефины, ароматические продукты |
Каталитический | 450-520 С Р=0,2 МПа | ионный | в газе много водорода, мало этилена, жидкая фракция содержит много шопарафинов и арома-тических углеводородов |
Пиролиз - парофазный крекинг нефтепродуктов, проводимый при температурах 670-720 °С и давлении, близком к атмосферному. Сырьем для него служат углеводородные газы, легкие, средние и тяжелые продукты нефтепереработки, в результате пиролиза получают газообразные олефины, являющиеся сырьем для органического синтеза и жидкие продукты с высоким содержанием ароматических углеводородов. Процесс пиролиза развивается по мере нагрева сырья вплоть до образования метана, углерода и водорода, а также продуктов уплотнения ароматических углеводородов (бензол, толуол, ксилол). Поэтому кроме жидких и газообразных продуктов при пиролизе образуются сажа и кокс (твердая фаза). Характер продуктов пиролиза и его скорость зависят от качества исходного сырья, температуры процесса, времени контакта. Чем ниже температура кипения исходного нефтепродукта, тем выход ароматических углеводородов выше.
В отличие от термического, каталитический крекинг проводят в паровой фазе при 450-500 °С и 0,2 МПа. В этих условиях из тяжелого нефтяного сырья получают бензины с повышенным октановым числом (77-78). В качестве катализаторов используют алюмосили-каты. Достоинство каталитического крекинга - возможность переработки сернистых жидких продуктов, в результате получают бензины с низким содержанием серы, а сернистые соединения переходят в газовую фазу.
При термическом крекинге происходит распад углеводородов по связи С-С и претерпевают изменения следующие классы соединений:
- парафиновые углеводороды разлагаются на предельные и непредельные углеводороды:
- нафтеновые углеводороды дегидрогенизируются ароматичес-ких углеводородов:
- от разветвленных ароматических углеводородов, образующих-ся в процессе крекинга, отщепляются боковые цепи с образованием олефинов:
- непредельные соединения дегидрируются с образованием диенов:
- диеновые углеводороды взаимодействуют с олефинами с образованием ароматических углеводородов:
- образование сажи происходит в результате распада углеводородов до элементарного углеводорода:
- кокс получается при глубокой конденсации ароматических соединений с отщеплением водорода (дегидроконденсация) по типу:
.
Бензины термического крекинга имеют сравнительно небольшое октановое число (70) и характеризуются низкой химической устойчивостью (из-за большого числа непредельных углеводородов) и не могут непосредственно использоваться в автомобильных двигателях. Для этого нужна дополнительная переработка и стабилизация крекинг-бензинов.
Последовательность реакций в условиях каталитического крекинга: превращение олефинов → нафтенов → ароматических углеводородов с боковыми цепями.
Зависимость выхода бензина каталитического крекинга от времени пребывания сырья в реакторе и температуры представлена на рисунке 2.
Рисунок 2 – Зависимость выхода бензина от времени пребывания
сырья в реакторе (1) и температуры (2)
Степень превращения за один проход не может быть достигнута в связи с наблюдаемыми зависимостями х от τ и t более 50-70 % за один проход. В связи с этим возникает необходимость организации циклического процесса с выводом из зоны реакции образовавшихся продуктов и возвратом непревращенного сырья в рецикл.
Относительный выход жидких продуктов (бензина или крекинг-остатка или смолы пиролиза), газа (крекинг-газа и газа пиролиза) и твердого остатка (кокс или сажа) зависит от трех основных факторов: вида сырья (рисунок 3), температуры (рисунок 4) и времени контакта (рисунок 5).
Таким образом, в зависимости от целевого назначения процесса подбирают сырье, температуру и время контакта, так кокс получают из тяжелых остатков при температуре 500-550 °С и большой продолжительности под давлением.
Для получения бензинов или олефинов берут среднюю фракцию проводя процесс при 500-550 °С и времени контакта, обеспечи-вающим лишь частичное превращение с последующим рециклом.
Пиролиз, предназначенный для получения низших олефинов, проводят при 800-900 °С и малом времени контакта, с разбавлением сырья водяным паром. В качестве сырья может использоваться ряд от этана до сырой нефти.
Коксование — процесс термического разложения нефтяных остатков (мазута, битума, гудрона, крекинг-остатка и др.) без доступа воздуха при температуре 450-500 °С. Коксование нефтяных остатков проводят с целью получения дополнительного количества жидкого топлива и беззольного нефтяного кокса, который служит топливом, сырьём при получении электродов и т.д.
Каталитический риформинг, применяемый для пере-работки легких нефтяных фракций, проводится, в отличие от крекинга, под давлением в среде водорода, в присутствии катализатора.
megapredmet.ru