Камаз 44108 тягач В наличии!
Тягач КАМАЗ 44108-6030-24
евро3, новый, дв.КАМАЗ 740.55-300л.с., КПП ZF9, ТНВД ЯЗДА, 6х6, нагрузка на седло 12т, бак 210+350л, МКБ, МОБ
 
карта сервера
«ООО Старт Импэкс» продажа грузовых автомобилей камаз по выгодным ценам
+7 (8552) 31-97-24
+7 (904) 6654712
8 800 1005894
звонок бесплатный

Наши сотрудники:
Виталий
+7 (8552) 31-97-24

[email protected]

 

Екатерина - специалист по продаже а/м КАМАЗ
+7 (904) 6654712

[email protected]

 

Фото техники

20 тонный, 20 кубовый самосвал КАМАЗ 6520-029 в наличии
15-тонный строительный самосвал КАМАЗ 65115 на стоянке. Техника в наличии
Традиционно КАМАЗ побеждает в дакаре

тел.8 800 100 58 94

Техника в наличии

тягач КАМАЗ-44108
Тягач КАМАЗ 44108-6030-24
2014г, 6х6, Евро3, дв.КАМАЗ 300 л.с., КПП ZF9, бак 210л+350л, МКБ,МОБ,рестайлинг.
цена 2 220 000 руб.,
 
КАМАЗ-4308
КАМАЗ 4308-6063-28(R4)
4х2,дв. Cummins ISB6.7e4 245л.с. (Е-4),КПП ZF6S1000, V кузова=39,7куб.м., спальное место, бак 210л, шк-пет,МКБ, ТНВД BOSCH, система нейтрализ. ОГ(AdBlue), тент, каркас, рестайлинг, внутр. размеры платформы 6112х2470х730 мм
цена 1 950 000 руб.,
КАМАЗ-6520
Самосвал КАМАЗ 6520-057
2014г, 6х4,Евро3, дв.КАМАЗ 320 л.с., КПП ZF16, ТНВД ЯЗДА, бак 350л, г/п 20 тонн, V кузова =20 куб.м.,МКБ,МОБ, со спальным местом.
цена 2 700 000 руб.,
 
КАМАЗ-6522
Самосвал 6522-027
2014, 6х6, дв.КАМАЗ 740.51,320 л.с., КПП ZF16,бак 350л, г/п 19 тонн,V кузова 12куб.м.,МКБ,МОБ,задняя разгрузка,обогрев платформы.
цена 3 190 000 руб.,

СУПЕР ЦЕНА

на АВТОМОБИЛИ КАМАЗ
43118-010-10 (дв.740.30-260 л.с.) 2 220 000
43118-6033-24 (дв.740.55-300 л.с.) 2 300 000
65117-029 (дв.740.30-260 л.с.) 2 200 000
65117-6010-62 (дв.740.62-280 л.с.) 2 350 000
44108 (дв.740.30-260 л.с.) 2 160 000
44108-6030-24 (дв.740.55,рест.) 2 200 000
65116-010-62 (дв.740.62-280 л.с.) 1 880 000
6460 (дв.740.50-360 л.с.) 2 180 000
45143-011-15 (дв.740.13-260л.с) 2 180 000
65115 (дв.740.62-280 л.с.,рест.) 2 190 000
65115 (дв.740.62-280 л.с.,3-х стор) 2 295 000
6520 (дв.740.51-320 л.с.) 2 610 000
6520 (дв.740.51-320 л.с.,сп.место) 2 700 000
6522-027 (дв.740.51-320 л.с.,6х6) 3 190 000


Перегон грузовых автомобилей
Перегон грузовых автомобилей
подробнее про услугу перегона можно прочесть здесь.


Самосвал Форд Нужны самосвалы? Обратите внимание на Ford-65513-02.

КАМАЗы в лизинг

ООО «Старт Импэкс» имеет возможность поставки грузовой автотехники КАМАЗ, а так же спецтехники на шасси КАМАЗ в лизинг. Продажа грузовой техники по лизинговым схемам имеет определенные выгоды для покупателя грузовика. Рассрочка платежа, а так же то обстоятельство, что грузовики до полной выплаты лизинговых платежей находятся на балансе лизингодателя, и соответственно покупатель автомобиля не платит налогов на имущество. Мы готовы предложить любые модели бортовых автомобилей, тягачей и самосвалов по самым выгодным лизинговым схемам.

Контактная информация.

г. Набережные Челны, Промкомзона-2, Автодорога №3, база «Партнер плюс».

тел/факс (8552) 388373.
Схема проезда



Асинхронный электродвигатель: конструкция и принцип работы. Привод асинхронного электродвигателя


принцип работы, устройство и конструкция

Жизнь в наше время невозможно представить без электрических двигателей. Широкое применение нашли эти агрегаты не только в промышленности, но и в быту — ведь электроприборы, которые призваны облегчить жизнь человека, в 95% случаев не обходятся без применения электродвигателей. И если даже сильно постараться, то представить себе жизнь без них вряд ли удастся.

Хотя первый опытный асинхронный двигатель был произведен Николой Тесла еще в конце 1880-х годов, в то время распространения он так и не получил ввиду слишком больших потерь электроэнергии при его работе. Да и показатели того двигателя в момент запуска были очень низкими.

Что же представляет собой асинхронный двигатель? По своей сути это устройство, преобразующее электрический ток в механическую энергию посредством магнитных полей, которые вращают ротор внутри статора. При этом частота вращения магнитных полей, которые создаются на обмотках статора, не равна тому же параметру сердечника. Именно поэтому они названы «двигатели асинхронные», т.е. «неодновременного вращения».

Что же касается видов этих агрегатов, то их различают несколько, но об этом чуть позже. Для начала имеет смысл разобрать достоинства и недостатки подобных двигателей, т.е. самого распространенного из них вида — устройства с короткозамкнутым ротором, обозначаемым как АДКЗ (асинхронный двигатель короткозамкнутого типа).

Асинхронный двигатель с короткозамкнутым ротором в разборе

Достоинства и недостатки

В первую очередь асинхронные электродвигатели достаточно просты в части устройства и изготовления, что не может не влиять на их стоимость, ведь в частности из-за невысокой цены этот мотор завоевал большую популярность среди покупателей. Так же важную роль играет и надежность АД, и их экономичность в области эксплуатационных затрат — они практически не требуют обслуживания. Конечно, это не говорит о том, что асинхронный электродвигатель можно установить и совсем забыть о периодических ревизиях, но все же их требуется достаточно мало, схема его достаточно неприхотлива.

Ну и конечно не стоит забывать о том, что для включения в сеть, т.е. для запуска и эксплуатации, не требуется каких-либо дополнительных устройств, таких как разнообразные преобразователи и т.п.

Но, при такой простоте и невысокой стоимости, естественно, не обошлось и без недостатков, которые нельзя назвать мелкими. Из них можно выделить следующие:

  • сравнительно небольшой пусковой момент;
  • значительные пусковые токи, а значит и энергозатраты при включении;
  • довольно низкий коэффициент полезного действия;
  • необходимую точность скорости довольно тяжело отрегулировать;
  • у асинхронного двигателя, имеющего короткозамкнутый привод (при включении в трехфазную сеть 50 Гц), скорость вращения не превышает 3000 об/мин;
  • большая зависимость крутящего момента от напряжения сети. К примеру, при понижении входного тока в 2 раза, скорость крутящего момента может упасть в 4 раза.

Но все вышеперечисленное относится только к моторам, имеющим строение на основе короткозамкнутого ротора, производство двигателей которыми не ограничивается. Попробуем рассмотреть более подробно асинхронные электродвигатели с короткозамкнутым ротором, а также другие типы подобных агрегатов, которые представлены на прилавках магазинов электротехники.

Короткозамкнутый ротор

АДКЗ

Ротор асинхронного двигателя, обмотка которого короткозамкнута, так же называют и «беличьим колесом» по причине того, что она похожа на цилиндрическую сетку, прутья которой замыкаются посредством двух колец с одного и другого торца.

Структура, как ротора, так и асинхронного статора является зубчатой. В АД небольших мощностей обмотка изготавливается простейшим способом — алюминиевый сплав в расплавленном состоянии заливается в углубления на роторе. Тем же способом, одновременно, заливаются и оба кольца, замыкающие «колесо», а также торцевой синхронизатор, осуществляющий вентиляционное охлаждение агрегата, т.е. с его помощью обеспечивается нормальная рабочая температура. При необходимости изготовления более мощных двигателей вместо алюминиевого сплава используют медь.

Асинхронные двигатели переменного тока с т.н. «двойной беличьей клеткой» для модернизации пусковой характеристики в настоящее время практически ушли в прошлое. Сейчас применяется схема, при которой пазы для проводников делаются глубже, причем внутренняя часть каждого из них имеет большее сечение, нежели внешняя. В результате подобной технологии изготовления ротора увеличивается пусковой момент и уменьшается ток, за счет более сильного активного сопротивления обмотки.

Области применения АДКЗ довольно обширны. К тому же, в последние годы все больше начали применяться частотные преобразователи, при помощи которых стало возможно плавное наращивание скорости, вследствие чего достигается больший пусковой момент и снижение тока, тем самым увеличивается коэффициент полезного действия асинхронного двигателя с короткозамкнутым ротором.

Так же очень интересна схема исполнения АДКЗ, в которой используется возможность изменения числа пар обмоток статора. Принцип работы асинхронного двигателя подразумевает, что подобным действием возможно изменение скорости его вращения.

На сегодняшний день подобные конструкции двигателей, несмотря на их недостатки, являются наиболее распространенными и востребованными. А вот остальные виды асинхронных двигателей уже более узконаправленны, и их применение не так значительно.

Фазный ротор

Массивный ротор в АД

Короткозамкнутый двигатель, принцип работы которого заключается в отсутствии обмотки как таковой. Ротор здесь состоит целиком из стали и одновременно является и проводником, и магнитопроводом. Вихревые токи, инициирующиеся вращающимся магнитным полем, взаимодействуют с потоками, создаваемыми статором, посредством чего и создается крутящий момент. Попробуем разобрать, какие же плюсы и минусы имеются у этих асинхронных двигателей.

Из преимуществ можно отметить низкую стоимость и простоту изготовления, довольно высокую механическую прочность (что очень важно для агрегатов с высокими скоростями вращения), а также наличие высокого пускового момента. Но при этом есть очень существенный недостаток —довольно большие энергопотери ротора при работе.

Интересны также и некоторые особенности, которые имеют подобные асинхронные двигатели, — это пологая механическая характеристика и сильный нагрев агрегата, независимо от нагрузки, что является довольно существенным минусом по причине резкого падения коэффициента полезного действия. Получается, что основная энергия тратится на нагрев, т.е. выработку тепла.

Конечно, разрабатываются и улучшения для подобных типов двигателей, такие как омеднение роторов или добавление с торцов колец из меди, но помогает подобная модернизация незначительно.

Также сюда можно отнести и пустотелые стальные роторы, которые изготавливаются для работы с меньшим нагревом.

Фазный ротор в асинхронном двигателе

Действия магнитных полей в статоре

Подобное устройство асинхронного электродвигателя является более сложным, т.к. их роторы имеют трехфазную обмотку, которая соединяется в «звезду». Подобные двигатели обладают возможностью плавной регулировки скорости, причем диапазон вращения достаточно широк. Внешняя цепь соединяется с вращающимся валом посредством специальных щеток, которые могут быть графитовыми или медно-графитовыми. Обмотка ротора выполняется из меди.

Подобный асинхронный электродвигатель подходит для использования с инверторами, реостатами для изменения скорости вращения и даже может работать в качестве синхронного двигателя при подаче на него прямого напряжения.

Возможности, которые имеют асинхронные двигатели с фазным ротором, довольно широки, но сложность при их изготовлении, а также довольно высокая стоимость не дали подобным устройствам более широкого распространения.

Двигатель Шраге-Рихтера

Этот тип является трехфазным коллекторным асинхронным двигателем, при этом питание на него поступает через ротор. Таким образом, подобные агрегаты называют также обращенными.

Асинхронный электродвигатель, у которого подобная схема, уже стал историей и практического применения на сегодняшний день не имеет.

Скорость вращения в них регулировалась специальным штурвалом, который перемещал щетки, в результате чего изменялась индуктивность. Подобная система довольно экономично изменяет скорость вращения ротора, но более подробно на таких агрегатах останавливаться не стоит.

Куда интереснее понять устройство асинхронного двигателя и принцип его работы.

Устройство и принцип действия

Как уже говорилось ранее, конструкция асинхронного двигателя достаточно проста — это ротор, или вращающаяся часть, и статор — неподвижная обмотка, внутри которой и создаются электромагнитные импульсы. Снаружи статор может иметь цельную либо сваренную оболочку из чугуна, алюминия, или его сплава, которая работает как радиатор охлаждения в процессе эксплуатации.

Асинхронный двигатель в разрезе

Принцип действия АД таков: напряжение, поступая на обмотки, создает магнитное поле. И т.к. угол сдвига фаз в асинхронном двигателе составляет 120 градусов, то поле, вырабатываемое ими, является вращающимся. Оно-то и создает крутящий момент, проходя через обмотки ротора. По сути, смысл работы тот же, что и у синхронных агрегатов, но тут не требуется создания на статоре дополнительного поля в виде магнитов.

Подключение асинхронных двигателей

Разобравшись, каков же принцип действия АД, можно переходить к подключению.

Существует две разновидности подключения асинхронного двигателя к сети 380 В, хотя от этого принцип его действия не меняется. Это может быть «звезда» либо «треугольник». Сейчас имеет смысл разобрать каждый из этих видов подробнее.

Подключение «звездой» происходит следующим образом: напряжение по фазным проводам подается к началу, а каждая обмотка асинхронного двигателя концом соединена с началом следующей таким образом, что создается некое подобие треугольника.

Нулевой провод при подключении трехфазных двигателей не требуется, им вполне хватает защитного заземления корпуса.

Подключение «звездой» немного отличается от предыдущего. Здесь концы всех обмоток соединены вместе, а напряжение подается также на начало. Интересно, что при подобном подключении в месте соединения всех трех обмоток по причине разности потенциалов возникает так называемый «технический ноль». Подобное физическое явление можно наблюдать и в жилах высоковольтного провода, где ноль находится точно по центру, в то время как по проводнику течет ток высокого напряжения.

Схемы подключений в «треугольник» и «звезда»

Есть ли альтернатива

Уже не секрет, что устройство трехфазного асинхронного двигателя предполагает затраты большого количества электроэнергии на вырабатывание тепла, а значит и коэффициент его полезного действия достаточно низок. Но на сегодняшний день альтернативы подобным агрегатам нет, а потому продолжается их использование, как в промышленности, так и в быту.

Конечно, с появлением инверторов, КПД их значительно возрос. Сейчас двигатели инверторного типа прекрасно работают в стиральных машинах, холодильниках и прочей технике, позволяя получить максимум результата при меньшем расходе электроэнергии.

Возможно, в будущем и появится что-то новое, что сможет заменить асинхронные двигатели, но пока это остается единственным в своем роде агрегатом, без которого различные производства невозможны. Именно этим и объясняется его востребованность и распространенность.

Похожие статьи:

domelectrik.ru

Асинхронный двигатель. Устройство и принцип действия однофазного и трехфазного асинхронного электродвигателя.

Асинхронные электродвигатели (АД) находят в народном хозяйстве широкое применение. По разным данным до 70% всей электрической энергии, преобразуемой в механическую энергию вращательного или поступательного движения, потребляется асинхронным двигателем. Электрическую энергию в механическую энергию поступательного движения преобразуют линейные асинхронные электродвигатели, которые широко используются в электрической тяге, для выполнения технологических операций. Широкое применение АД связано с рядом их достоинств. Асинхронные двигатели - это самые простые в конструктивном отношении и в изготовлении, надежные и самые дешевые из всех типов электрических двигателей. Они не имеют щеточноколлекторного узла либо узла скользящего токосъема, что помимо высокой надежности обеспечивает минимальные эксплуатационные расходы. В зависимости от числа питающих фаз различают трехфазные и однофазные асинхронные двигатели. Трехфазный асинхронный двигатель при определенных условиях может успешно выполнять свои функции и при питании от однофазной сети. АД широко применяются не только в промышленности, строительстве, сельском хозяйстве, но и в частном секторе, в быту, в домашних мастерских, на садовых участках. Однофазные асинхронные двигатели приводят во вращение стиральные машины, вентиляторы, небольшие деревообрабатывающие станки, электрические инструменты, насосы для подачи воды. Чаще всего для ремонта или создания механизмов и устройств промышленного изготовления или собственной конструкции применяют трехфазные АД. Причем в распоряжении конструктора может быть как трехфазная, так и однофазная сеть. Возникают проблемы расчета мощности и выбора двигателя для того или другого случая, выбора наиболее рациональной схемы управления асинхронным двигателем, расчета конденсаторов, обеспечивающих работу трехфазного асинхронного двигателя в однофазном режиме, выбора сечения и типа проводов, аппаратов управления и защиты. Такого рода практическим проблемам посвящена предлагаемая вниманию читателя книга. В книге приводится также описание устройства и принципа действия асинхронного двигателя, основные расчетные соотношения для двигателей в трехфазном и однофазном режимах.

Устройство и принцип действия асинхронных электродвигателей

1. Устройство трехфазных асинхронных двигателей

Трехфазный асинхронный двигатель (АД) традиционного исполнения, обеспечивающий вращательное движение, представляет собой электрическую машину, состоящую из двух основных частей: неподвижного статора и ротора, вращающегося на валу двигателя. Статор двигателя состоит из станины, в которую впрессовывают так называемое электромагнитное ядро статора, включающее магнитопровод и трехфазную распределенную обмотку статора. Назначение ядра - намагничивание машины или создание вращающегося магнитного поля. Магнитопровод статора состоит из тонких (от 0,28 до 1 Мм) изолированных друг от друга листов, штампованных из специальной электротехнической стали. В листах различают зубцовую зону и ярмо (рис. 1.а). Листы собирают и скрепляют таким образом, что в магнитопроводе формируются зубцы и пазы статора (рис. 1.б). Магнитопровод представляет собой малое магнитное сопротивление для магнитного потока, создаваемого обмоткой статора, и благодаря явлению намагничивания этот поток усиливает.

Магнитопровод статора

Рис. 1 Магнитопровод статора

В пазы магнитопровода укладывается распределенная трехфазная обмотка статора. Обмотка в простейшем случае состоит из трех фазных катушек, оси которых сдвинуты в пространстве по отношению друг к другу на 120°. Фазные катушки соединяют между собой по схемам звезда, либо треугольник (рис. 2).

Схемы соединения фазных обмоток трехфазного асинхронного двигателя в звезду и в треугольник

Рис 2. Схемы соединения фазных обмоток трехфазного асинхронного двигателя в звезду и в треугольник

Более подробные сведения о схемах соединения и условных обозначениях начал и концов обмоток представлены ниже. Ротор двигателя состоит из магнитопровода, также набранного из штампованных листов стали, с выполненными в нем пазами, в которых располагается обмотка ротора. Различают два вида обмоток ротора: фазную и короткозамкнутую. Фазная обмотка аналогична обмотке статора, соединенной в звезду. Концы обмотки ротора соединяют вместе и изолируют, а начала присоединяют к контактным кольцам, располагающимся на валу двигателя. На контактные кольца, изолированные друг от друга и от вала двигателя и вращающиеся вместе с ротором, накладываются неподвижные щетки, к которым присоединяют внешние цепи. Это позволяет, изменяя сопротивление ротора, регулировать скорость вращения двигателя и ограничивать пусковые токи. Наибольшее применение получила короткозамкнутая обмотка типа «беличьей клетки». Обмотка ротора крупных двигателей включает латунные или медные стержни, которые вбивают в пазы, а по торцам устанавливают короткозамыкающие кольца, к которым припаивают или приваривают стержни. Для серийных АД малой и средней мощности обмотку ротора изготавливают путем литья под давлением алюминиевого сплава. При этом в пакете ротора 1 заодно отливаются стержни 2 и короткозамыкающие кольца 4 с крылышками вентиляторов для улучшения условий охлаждения двигателя, затем пакет напрессовывается на вал 3. (рис. 3). На разрезе, выполненном на этом рисунке, видны профили пазов, зубцов и стержней ротора.

Ротор аснхронного двигателя с короткозамкнутой обмоткой

Рис. 3. Ротор аснхронного двигателя с короткозамкнутой обмоткой

Общий вид асинхронного двигателя серии 4А представлен на рис. 4 [2]. Ротор 5 напрессовывается на вал 2 и устанавливается на подшипниках 1 и 11 в расточке статора в подшипниковых щитах 3 и 9, которые прикрепляются к торцам статора 6 с двух сторон. К свободному концу вала 2 присоединяют нагрузку. На другом конце вала укрепляют вентилятор 10 (двигатель закрытого обдуваемого исполнения), который закрывается колпаком 12. Вентилятор обеспечивает более интенсивное отведение тепла от двигателя для достижения соответствующей нагрузочной способности. Для лучшей теплоотдачи станину отливают с ребрами 13 практически по всей поверхности станины. Статор и ротор разделены воздушным зазором, который для машин небольшой мощности находится в пределах от 0,2 до 0,5 мм. Для прикрепления двигателя к фундаменту, раме или непосредственно к приводимому в движение механизму на станине предусмотрены лапы 14 с отверстиями для крепления. Выпускаются также двигатели фланцевого исполнения. У таких машин на одном из подшипниковых щитов (обычно со стороны вала) выполняют фланец, обеспечивающий присоединение двигателя к рабочему механизму.

Общий вид асинхронного двигателя серии 4А

Рис. 4. Общий вид асинхронного двигателя серии 4А

Выпускаются также двигатели, имеющие и лапы, и фланец. Установочные размеры двигателей (расстояние между отверстиями на лапах или фланцах), а также их высоты оси вращения нормируются. Высота оси вращения - это расстояние от плоскости, на которой расположен двигатель, до оси вращения вала ротора. Высоты осей вращения двигателей небольшой мощности: 50, 56, 63, 71, 80, 90, 100 мм.

2. Принцип действия трехфазных асинхронных двигателей

Выше отмечалось, что трехфазная обмотка статора служит для намагничивания машины или создания так называемого вращающегося магнитного поля двигателя. В основе принципа действия асинхронного двигателя лежит закон электромагнитной индукции. Вращающееся магнитное поле статора пересекает проводники короткозамкнутой обмотки ротора, отчего в последних наводится электродвижущая сила, вызывающая в обмотке ротора протекание переменного тока. Ток ротора создает собственное магнитное поле, взаимодействие его с вращающимся магнитным полем статора приводит к вращению ротора вслед за полями. Наиболее наглядно идею работы асинхронного двигателя иллюстрирует простой опыт, который еще в XVIII веке демонстрировал французский академик Араго (рис. 5). Если подковообразный магнит вращать с постоянной скоростью вблизи металлического диска, свободно расположенного на оси, то диск начнет вращаться вслед за магнитом с некоторой скоростью, меньшей скорости вращения магнита.

принцип работы асинхронного двигателя

Рис. 5. Опыт Араго, объясняющий принцип работы асинхронного двигателя

Это явление объясняется на основе закона электромагнитной индукции. При движении полюсов магнита около поверхности диска в контурах под полюсом наводится электродвижущая сила и появляются токи, которые создают магнитное поле диска. Читатель, которому трудно представить проводящие контуры в сплошном диске, может изобразить диск в виде колеса со множеством проводящих ток спиц, соединенных ободом и втулкой. Две спицы, а также соединяющие их сегменты обода и втулки и представляют собой элементарный контур. Поле диска сцепляется с полем полюсов вращающегося постоянного магнита, и диск увлекается собственным магнитным полем. Очевидно, наибольшая электродвижущая сила будет наводиться в контурах диска тогда, когда диск неподвижен, и напротив, наименьшая, когда близка к скорости вращения диска. Перейдя к реальному асинхронному двигателю отметим, что короткозамкнутую обмотку ротора можно уподобить диску, а обмотку статора с магнитопроводом - вращающемуся магниту. Однако вращение магнитного поля в неподвижном статоре а осуществляется благодаря трехфазной системе токов, которые протекают в трехфазной обмотке с пространственным сдвигом фаз.

Алиев И.И.

www.eti.su

Какие бывают двигатели? Типы электродвигателей. Асинхронные двигатели

Типы электродвигателей В основу работы любых электродвигателей положен принцип электромагнитной индукции. Электродвигатель состоит из неподвижной части — статора (для асинхронных и синхронных движков переменного тока) либо индуктора (для движков постоянного тока) и подвижной части — ротора (для асинхронных и синхронных движков переменного тока) либо якоря (для движков постоянного тока). В роли индуктора на маломощных двигателях постоянного тока нередко используются постоянные магниты.

Все двигатели, грубо говоря можно поделить на два вида:двигатели постоянного токадвигатели переменного тока (асинхронные и синхронные)

Двигатели постоянного тока

По неким мнениям данный двигатель возможно еще назвать синхронной машиной постоянного тока с самосинхронизацией. Простой движок, являющийся машиной постоянного тока, состоит из постоянного магнита на индукторе (статоре), 1-го электромагнита с очевидно выраженными полюсами на якоре (двухзубцового якоря с явно выраженными полюсами и с одной обмоткой), щёточноколлекторного узла с 2-мя пластинами (ламелями) и 2-мя щётками. Простой двигатель имеет 2 положения ротора (2 "мёртвые точки"), из которых неосуществим самозапуск, и неравномерный крутящий момент. В первом приближении магнитное поле полюсов статора равномерное (однородное).

Данные двигатели с наличием щёточно-коллекторного узла бывают:

Колекторные - электрическое устройство, в котором датчиком положения ротора и переключателем тока в обмотках является одно и то же устройство — щёточно-коллекторный узел.

Бесколекторные - замкнутая электромеханическая система, состоящая из синхронного устройства с синусоидальным распределением магнитного поля в зазоре, датчика положения ротора, преобразователя координат и усилителя мощности. Более дорогой вариант в сравнение с колекторными двигателями.

Двигатели переменного тока

По типу работы данные двигатели делятся на синхронные и асинхронные двигатели. Принципное отличие заключается в том, что в синхронных машинах 1-ая гармоника магнитодвижущей силы статора перемещается со скоростью вращения ротора (по этому сам ротор крутится со скоростью вращения магнитного поля в статоре), а у асинхронных — есть и остается разница меж скоростью вращения ротора и скоростью вращения магнитного поля в статоре (поле крутится быстрее ротора).

Синхронный - двигатель переменного тока, ротор которого крутится синхронно с магнитным полем питающего напряжения. Эти движки традиционно применяются при огромных мощностях (от сотен киловатт и выше).Есть синхронные двигатели с дискретным угловым движением ротора — шаговые двигатели. У них данное положение ротора фиксируется подачей питания на соответствующие обмотки. Переход в другое положение исполняется путём снятия напряжения питания с одних обмоток и передачи его на другие обмотки двигателя.Ещё один вид синхронных движков — вентильный реактивный эл-двигатель, питание обмоток которого складывается с помощью полупроводниковых элементов.

Асинхронный - двигатель переменного тока, в котором частота вращения ротора различается от частоты крутящего магнитного поля, творимого питающим напряжением, второе название асинхронных машин - индукционные обосновано тем, что ток в обмотке ротора индуцируется вертящимся полем статора. Асинхронные машины сейчас оформляют огромную часть электрических машин. В главном они используются в виде электродвигателей и считаются ключевыми преобразователями электрической энергии в механическую, причём в основном используются асинхронные движки с короткозамкнутым ротором

По количеству фаз двигатели бывают:

  • однофазные
  • двухфазные
  • трехфазные

Самые популярные и шыроковостребованые двигатели которые применяются в производстве и бытовом хозяйстве:

Однофазный асинхронный двигатель с короткозамкнутым ротором

Однофазовый асинхронный движок имеет на статоре только 1 рабочую обмотку, на которую в ходе работы мотора подается переменный ток. Хотя для запуска мотора на его статоре есть и вспомогательная обмотка, которая краткосрочно подключается к сети через конденсатор либо индуктивность, или замыкается накоротко пусковыми контактами рубильника. Это нужно для создания исходного сдвига фаз, чтоб ротор начал крутиться, по другому пульсирующее магнитное поле статора не здвинуло б ротор с места.

Ротор такового мотора, как и любого иного асинхронного мотора с короткозамкнутым ротором, являет из себя цилиндрический сердечник с залитыми алюминием пазами, с сразу отлитыми вентиляционными лопастями.Таковой ротор именуется короткозамкнутым ротором. Однофазовые движки используются в маломощных устройствах, в том числе комнатные вентиляторы либо маленькие насосы.

Двухфазный асинхронный двигатель с короткозамкнутым ротором

Двухфазные асинхронные движки более эффективны при работе от однофазовой сети переменного тока. Они содержат на статоре две рабочие обмотки, находящиеся перпендикулярно, при этом одна из обмоток подключается к сети переменного тока напрямую, а вторая – через фазосдвигающий конденсатор, так выходит крутящееся магнитное поле, а вот без конденсатора ротор бы не двинулся с места.

Данные двигатели помимо прочего имеют короткозамкнутый ротор, а их использование еще обширнее, нежели у однофазовых. Тут уже и стиральные машинки, и разные станки. Двухфазные движки для питания от однофазовых сетей называют конденсаторными двигателями, потому что фазосдвигающий конденсатор считается часто обязательной их частью.

Трехфазный асинхронный двигатель с короткозамкнутым ротором

Трехфазный асинхронный двигатель имеет на статоре три рабочие обмотки, сдвинутые сравнительно друг друга так, что при подключении в трехфазную сеть, их магнитные поля получаются смещенными в пространстве сравнительно друг дружку на 120 градусов. При включении трехфазного мотора к трехфазной сети переменного тока, появляется крутящееся магнитное поле, приводящее в перемещение короткозамкнутый ротор.

Обмотки статора трехфазного мотора возможно соединить по схеме «звезда» либо «треугольник», при этом для питания мотора по схеме «звезда» потребуется напряжение выше, чем для схемы «треугольник», и на движке, потому, указываются 2 напряжения, к примеру: 127/220 либо 220/380. Трехфазные движки незаменимы для приведения в действие разных станков, лебедок, циркулярных пил, подъемных кранов, и т.п.

Трехфазный асинхронный двигатель с фазным ротором

Трехфазный асинхронный движок с фазным ротором имеет статор подобный описанным выше типам движков,  шихтованный магнитопровод с 3-мя уложенными в его пазы обмотками, но в фазный ротор не залиты дюралевые стержни, а уложена уже настоящая трехфазная обмотка, в соединении «звезда». Концы звезды обмотки фазного ротора выведены на три контактных кольца, насаженных на вал ротора, и электрически отделенных от него.

Посредством щеток, на кольца помимо прочего подается трехфазное переменное напряжение, и включение может быть осуществлено как впрямую, так и через реостаты. Непременно, движки с фазным ротором стоят подороже, хотя их пусковой момент под нагрузкой значительно повыше, нежели у типов движков с короткозамкнутым ротором. Именно в следствие завышенной силы и огромного пускового момента, данный вид движков отыскал использование в приводах лифтов и подъемных кранов, другими словами там, где прибор запускается под нагрузкой а не в холостую, как у двигателей с короткозамкнутым ротором.

elektt.blogspot.com

8. Электроприводы с асинхронным двигателем

ЭП с трехфазным асинхронным двигателем (АД) является самым массовым видом привода в промышленности, в коммунальном и сельском хозяйстве. Такое положение определяется простотой изготовления и эксплуатации АД, меньшими по сравнению с ДПТ массой, габаритными размерами и стоимостью, а также высокой надежностью в работе. В народном хозяйстве наибольшее распространение получили АД с короткозамкнутым ротором.

Основной областью применения АД вплоть до недавнего времени являлся нерегулируемый электропривод. В последние годы в связи с разработкой и выпуском электротехнической промышленностью тиристорных преобразователей частоты и напряжения стали создаваться регулируемые асинхронные ЭП с характеристиками, не уступающими по своим показателям ЭП постоянного тока.

8.1. Механические характеристики асинхронных двигателей

Основная схема включения трехфазного АД в сеть и соответствующая ей однофазная схема замещения с вынесенным контуром намагниченности показаны на рисунке 8.1 [1,2].

Рис.8.1. Схема включения (а) и однофазная схема замещения (б) АД

На схеме приняты следующие обозначения:

Uф – действующее значение фазного напряжения сети, В;

–фазные токи соответственного намагничивания, обмотки статора и приведенный ток ротора, А;

–индуктивное сопротивление контура намагничивания, Ом;

–активные фазные сопротивления обмоток, соответственно статора и ротора; последнее приведено к обмотке статора, Ом;

R1д и R2д – добавочные сопротивления в фазах статора и ротора;

–индуктивные фазные сопротивления, обусловленные полями рассеяния обмоток статора и ротора; последнее приведено к обмотке статора, Ом.

S – скольжение двигателя, определяется по выражению [1,4]:

, (8.1)

где – угловая скорость ротора, рад/с; – угловая скорость магнитного поля статора, называемая синхронной, рад/с.

(8.2)

В выражении (8.2):

–частота напряжения питающей сети, Гц; р – число пар полюсов двигателя.

Рассматриваемая схема замещения АД получена при определенных допущениях. В частности, ее параметры считаются не зависящими от режима работы, не учитываются насыщение магнитопровода, добавочные потери, а также влияние пространственных и временных высших гармонических составляющих (н.с.) обмоток статора и ротора.

При подведении к обмотке статора переменного трехфазного напряжения в статоре образуется вращающееся магнитное поле со скоростью . Это поле пересекает обмотку ротора и наводит в ней ЭДС [1]:

, (8.3)

где < 1 – обмоточный коэффициент, учитывающий уменьшение ЭДС ротора вследствие геометрического сложения ЭДС, и укорочение шага обмотки ротора;

–частота тока в обмотке ротора, Гц;

–число витков обмотки фазы ротора;

–максимальное значение магнитного потока статора, Вб.

Эта ЭДС создает ток в обмотке ротора

(8.4)

где – активное сопротивление фазной обмотки ротора;

–индуктивное сопротивление рассечения фазы роторной обмотки.

Взаимодействуя с полем статора, активный ток создает пусковой вращающий момент, и двигатель запускается, вращаясь в дальнейшем со скоростью

. (8.5)

При номинальном скольжении номинальная скорость .

Для обычных двигателей = 0,02÷0,06, для двигателей с повышенным скольжением = 0,08÷0,18.

Запуск электродвигателя происходит по следующей механической характеристике (рис. 8.2).

Рис. 8.2. Механическая характеристика АД

На рисунке 8.2 обозначено: Мп – пусковой момент; Мк – критический момент; Мн – номинальный момент; Sк – критическое скольжение.

Так как ЭДС, индуктированная в обмотке ротора в момент пуска имеет максимальное значение (при S=1, f2=50 Гц), то ток в обмотке ротора I2 = (4–8)Iн.д. (Iн.д – номинальный ток двигателя).

Однако на пусковой момент влияет не эта величина пускового тока (I2 = Iп)‭, а сдвиг фаз между током I2 и ЭДС Е2s ротора.

Если индуктивность обмотки ротора велика, то будет большим и сдвиг фаз между током ротора I2 и ЭДС ротора Е2s.

В момент пуска, когда ротор еще неподвижен, частота тока в обмотке ротора наибольшая (==50 Гц), и поэтому индуктивное сопротивление имеет наибольшее максимальное значение :

, (8.6)

где – индуктивность рассеяния фазы обмотки ротора.

Вращающий момент АД определяется по формуле [1]

, (8.7)

а коэффициент мощности - по выражению [1]

. (8.8)

В формуле (8.7): – обмоточный коэффициент; – угол сдвига фаз между ЭДС и током фазы обмотки ротора.

Таким образом, момент двигателя определяется активной слагающей пускового полного тока ротора .

Пусковой момент двигателя можно увеличить, если в момент пуска уменьшить сдвиг фаз меду током I2 и ЭДС E2S ротора. Это приведет к тому, что увеличится . ПриR2доб = 0 и ω = 0 = 0,1÷0,2. ПриR2доб ≠ 0 = 0,3–0,6. При ω = ωн = 0,8÷0,9. На практике этим способом часто пользуются. Для этого в цепь ротора вводят активное сопротивление, которое затем выводят как только двигатель увеличит скорость, либо применяют двигатель, у которого на роторе глубокие пазы для стержней, либо две клетки (две короткозамкнутые обмотки).

Таким образом, пусковой момент двигателя зависит от конструкции ротора.

При пуске АД с уменьшением скольжения от S = 1 до S = Sк уменьшаются частота и ЭДС Е2, полный ток I2 уменьшается очень медленно (всего на 29 % от I2п), а и активный токI2а значительно увеличиваются. При дальнейшем пуске АД от S = Sк до S = 0 токи I2 и I2а резко уменьшаются при незначительном росте . Такие изменения параметров в цепи ротора и определяют вид характеристики (рис. 8.2).

Для вывода уравнения механической характеристики и ее построения обычно пользуются схемой замещения двигателя (рис. 8.1б), рассматривая баланс мощности в двигателе.

Электромагнитная мощность Р12, передаваемая ротору от статора, определяется электромагнитным моментом М, развиваемым двигателем: Р12 = Мω0. Здесь, как и ранее, считается, что электромагнитный момент двигателя приблизительно равен моменту на его валу, т.е. не учитываются механические потери.

Мощность, передаваемую ротору, можно разделить на две составляющие: мощность, преобразуемую в механическую Рм, и мощность потерь ∆Рэл.2 в роторе. Первая составляющая может быть определена следующим образом: Рм = Мω. Вторая составляющая представляет собой электрические потери в обмотках ротора и потери на перемагничивание.

Как правило, потери в стали ротора существенно меньше электрических потерь, в связи с чем последними можно пренебречь. Тогда

Р12 =Рм + ∆Рэл.2, (8.9)

или Мω0 = Мω +∆Рэл.2.

Отсюда

∆Рэл.2 = М(ω0 – ω) = Мω0S. (8.10)

Учитывая, что

∆Рэл.2 = , (8.11)

где =, можно записать выражение для момента в виде

. (8.12)

Из схемы замещения [1,2]

, (8.13)

где – индуктивное фазное сопротивление короткого замыкания.

Выражение (8.13) представляет собой уравнение электромеханической характеристики двигателя , так как скольжение однозначно определяет величину скорости двигателя .

Отметим, что для АД обычно под электромеханическими и механическими характеристиками понимаются зависимости момента и тока от скольжения. В этом случае соответствующие уравнения получают более компактную форму записи и оказываются удобными для вычисления.

Подстановка (8.13) в (8.12) дает уравнение механической характеристики [1,2,3,4]:

. (8.14)

Максимальное значение момента Мк принято называть критическим (допустимым перегрузочным моментом). Соответствующее ему скольжение Sк также называется критическим. Для определения Sк необходимо решить уравнение вида , подставив в него М(S).

Решение этого уравнения дает:

. (8.15)

Подставляя значение в уравнение (8.14), находим:

. (8.16)

Знак (+) соответствует S > 0, а (–) – S < 0. Знаки «» в уравнении (8.16) означают, что максимум момента может иметь место при S > 0 в двигательном режиме или в режиме противовключения, а при S < 0 – в генераторном режиме.

Из уравнения (8.16) видно, что при работе в генераторном режиме с рекуперацией энергии критический момент больше, чем при работе в двигательном режиме или режиме противовключения.

Из уравнений (8.14) и (8.16) с учетом (8.15) может быть получена другая формула для механической характеристики:

, (8.17)

где .

Для крупных машин сопротивление невелико, поэтому практически . В этом случае получится формула, более удобная для расчетов [1,2]:

, (8.18)

Критическое скольжение можно определять по следующему выражению:

, (8.19)

где – коэффициент перегрузочной способности.

Для уравнения (8.18) достаточно знать лишь параметры, которые обычно указываются в каталогах, или могут быть найдены по данным каталогов, тогда как такие параметры, как и обычно неизвестны.

Анализ формулы (8.18) показывает, что при S > Sк (нерабочая часть характеристики) получается гипербола. Эта часть характеристики соответствует лишь пусковым и тормозным режимам.

При малых значениях скольжения (S < Sк) для М = f(S) получится уравнение прямой линии. Эта линейная часть характеристики является ее рабочей частью, на которой двигатель обычно работает в установившемся режиме. На этой же части характеристики находятся точки, соответствующие номинальным данным Мн, Iн, ωн, Sн … .

Величина номинального скольжения зависит от сопротивления ротора и мощности двигателя. Двигатель с малым сопротивлением (большой мощности) ротора имеет малые Sк и Sн и более жесткую механическую характеристику.

Анализ уравнений (8.15) и (8.16) показывает, что Мк и Sк уменьшаются с увеличением индуктивных сопротивлений обмоток и активного сопротивления обмотки статора.

Критическое скольжение не зависит от питающего напряжения и прямо пропорционально . Это свойство используется для увеличения пускового момента АД с фазным ротором при включении в цепь ротора добавочного сопротивления R2д (рис. 8.1а).

Механические характеристики АД с фазным ротором приведены на рисунке 8.3.

Рис. 8.3. Механические характеристики АД с фазным ротором

С увеличением сопротивления R2д снижается жесткость механических характеристик аналогично как и для ДПТ независимого возбуждения.

Момент Мк не зависит от активного сопротивления цепи ротора и пропорционален квадрату напряжения питающей сети. Снижение напряжения питающей сети на ~15 % приводит к уменьшению Мк и соответственно λ на 28 %.

studfiles.net

Привод лифтов от асинхронного электродвигателя с фазным ротором

Строительные машины и оборудование, справочник

Категория:

   Монтаж и эксплуатация лифтов

Привод лифтов от асинхронного электродвигателя с фазным ротором

Асинхронный электродвигатель с фазным ротором (рис. 54) отличается от двигателя с короткозамкнутым ротором тем, что его роторные обмотки делают трехфазными. Концы обмоток выводят на контактные кольца на валу ротора. На статоре двигателя укреплены три щетки, прижимаемые к кольцам пружинами. Через щетки и кольца роторные обмотки присоединяют к роторным пусковым резисторам, расположенным вне двигателя.

Введение дополнительных (пусковых) резисторов изменяет механическую характеристику асинхронного двигателя. На рис. 55, а показаны механические характеристики двигателя при различных сопротивлениях резисторов, введенных в цепь ротора. Характеристика ЗУ показывает зависимость движущего момента М двигателя от частоты вращения ротора п при полностью выведенных резисторах из цепи ротора. Характеристика ЗУ присуща двигателю при включенном контакторе ЗУ (см. следующий рисунок). Она называется естественной характеристикой двигателя.

При введении резисторов в цепь ротора (характеристики 1У, 2У и В/Н) движущий момент двигателя при малых скоростях увеличивается, а ток в обмотках ротора и статора уменьшается. Поэтому роторные резисторы вводят в основном для уменьшения токов при разгоне двигателя. Пусковые резисторы подключают к обмоткам ротора по схеме в звезду.

Схема электропривода лифта от асинхронного двигателя с фазным ротором показана на рис. 55, б. При неподвижной кабине как статорные контакторы В и Я, так и роторные контакторы 1У, 2У и ЗУ отключены и поэтому в цепь ротора введены все резисторы. Разгон двигателя (кабины) начинается после включения контактора В, причем движущий момент двигателя изменяется по характеристике В/Н.

Рис. 54. Асинхронный электродвигатель с фазным ротором: 1 — контактные кольца, 2 — щетки

Рис. 55. Асинхронный двигатель с фазным ротором:а — механические характеристики, б — схема электропривода лифта

Таким образом, лифт с приводом от асинхронного двигателя с фазным ротором тормозят (как и в случае привода от асинхронного короткозамк-нутого двигателя) при номинальной рабочей скорости кабины. Поэтому точность остановки кабины с этим приводом получается такой же, как и в случае привода от асинхронного короткозамк-нутого двигателя.

Двигатель с фазным ротором отличается от асинхронного двигателя с короткозамкнутым ротором более сложной конструкцией. Привод от такого двигателя сложнее привода с короткозамкнутым двигателем из-за использования роторных резисторов и контакторов. Двигатели с фазным ротором в лифтах применяют реже, чем короткозамкнутые двигатели. Электропривод от двигателя с фазным ротором используют только в случае ограниченной мощности трансформаторной подстанции, от которой лифтовая установка получает электроэнергию. При пуске двигатель с фазным ротором потребляет из сети меньшую мощность, чем двигатель с короткозамкнутым ротором.

Читать далее: Привод лифтов от двухскоростного короткозамкнутого асинхронного двигателя

Категория: - Монтаж и эксплуатация лифтов

Главная → Справочник → Статьи → Форум

stroy-technics.ru

конструкция и принцип работы :: SYL.ru

Наверняка все знают, что такое асинхронный электродвигатель. А кто-то даже может назвать области его применения. Стоит заметить, что именно эта электрическая машина на данный момент наиболее распространена в промышленности. Около 96% всех электродвигателей, которые применяются на фабриках и заводах, именно асинхронные. Причин для этого несколько, но среди основных – это то, что у них простая конструкция, их ремонт выполнить легко, а также у них высокий КПД. Но есть и недостаток – необходимо запитывать от трехфазной сети. Правда, на заводах это не является проблемой.

Конструкция асинхронного двигателя

Основа – это статор, который изготовлен из множества тонких пластин из специального сорта стали. Эти пластины все одинаковы и собраны таким образом, что все прорези совпадают. Благодаря этому можно провести намотку провода, который при работе генерирует магнитное поле. О том, какие требования предъявляются к обмотке, будет рассказано ниже. По обе стороны статора располагаются крышки. Выполнены они могут быть из различного металла – как из алюминия, так и из черного. Зависит все от конкретной модели электродвигателя.

Все без исключения асинхронники имеют в крышках подшипники. Они обеспечивают беспрепятственное вращение ротора. А вот о последнем стоит рассказать более детально, так как он является ключевой особенностью электродвигателя. Ротор в асинхронных машинах короткозамкнутый. Если проще сказать, то в нем имеется несколько витков очень толстого провода, концы которого соединены. Этот принцип позволяет магнитному полю, создаваемому статором, начать вращение ротора. Явление такое замечено было довольно давно – первый асинхронный электродвигатель был изготовлен в середине 19 столетия.

Статорная обмотка двигателя

Она служит для создания магнитного поля. По сути, статор имеет три обмотки – по числу фаз питающей сети. Наибольшее распространение имеет электродвигатель асинхронный трехфазный, так как его параметры идеально подходят для любого привода. Недостаток обмотки – она может выйти из строя, а говоря простым языком, сгореть. Правда, происходит это при перегреве либо превышении допустимой нагрузки на валу. Чтобы избежать превышения температуры, нужно следить за тем, чтобы на задней части устанавливалась крыльчатка, которая позволяет осуществлять обдув воздухом.

Поверх нее обязательно монтируется защитный кожух, который предотвратит попадание посторонних предметов, а также обезопасит пользование двигателем. Осуществляется проверка обмоток статора при помощи прибора, называемого мегомметр. Он позволяет проверить обмотку на наличие обрыва и короткого замыкания. Но если его нет в наличии, то вполне реально применить простой тестер. Зная эталонные характеристики асинхронных электродвигателей, а именно сопротивление обмоток, можно определить неисправность. Да и пользоваться электронным тестером намного безопаснее.

Способы включения электродвигателя в сеть

Если электрическая машина подключается к сети, то допускается соединять обмотки в две схемы – в звезду и треугольник. У каждой из них имеются свои особенности. Чтобы асинхронный электродвигатель работал в нормальном режиме при питании от трехфазного напряжения 380 Вольт, необходимо использовать подключение звездой. Схема треугольник используется намного реже, она необходима для подключения электродвигателей к некоторым моделям частотных преобразователей, а также при питании от 220 Вольт. При соединении звездой необходимо установить перемычки так, чтобы они располагались параллельно оси ротора.

Для соединения треугольником нужно, чтобы перемычки были перпендикулярно расположены к этой оси. Для наглядности посмотрите на схему соединения. Кроме того, чтобы асинхронный электродвигатель безопасно использовать, нужно применять защиту – автоматические выключатели. Их нужно выбирать, исходя из мощности двигателя. Причем необходимо учитывать ток запуска. Для управления двигателем используются магнитные пускатели. Они позволяют осуществить подключение двух кнопок – запуска и остановки. Более сложная конструкция из двух пускателей поможет сделать реверс движения (сменить порядок подключения фаз к обмоткам).

Характеристики асинхронников

Все данные электрического двигателя наносятся на планку, которая крепится к корпусу статора. На ней указывается не только модель и эмблема производителя, но и частота вращения, потребляемый ток, напряжение питания, а иногда и схема включения. Следовательно, не возникнет проблем с тем, как установить и подключить электродвигатель асинхронный трехфазный. Характеристики его все известны, осталось только сопоставить с реальной нагрузкой. Нужно внимательно следить за тем, чтобы мощность двигателя была сопоставима с той, которая необходима для работы конкретного механизма.

В противном случае выход из строя обмоток неизбежен. К счастью, данная процедура занимает немного времени (при условии наличия всех инструментов и приспособлений). Но нужно использовать медный провод, сечение которого точно такое же, какое было ранее. Для проверки того, как работает электродвигатель на механизме, нужно воспользоваться измерительными клещами. С их помощью вы можете увидеть, какой ток потребляет каждая фаза. Значение у всех трех должно быть практически равным. Если это не так, то обмотка вышла из строя.

Стоит ли использовать ПЧ?

Можно дать однозначный ответ – не просто стоит, а необходимо использовать преобразователи частоты, ведь с его помощью сможет работать в идеальном режиме электродвигатель асинхронный трехфазный. Характеристики частотника только следует подбирать, исходя из мощности мотора. Если двигатель имеет мощность 0,75 кВт, то ПЧ должен обеспечивать работу с запасом – установите лучше 1,5 кВт, надежность будет выше.

Правда, стоимость такого прибора значительно больше. При помощи преобразователей частоты можно изменять множество параметров привода, плюс ко всему, он является дополнительной защитой. Даже использовать в однофазной сети получится асинхронный двигатель. Существуют модели ПЧ, которые включаются в такую сеть, но на выходе у них три фазы, которые необходимы для работы двигателя.

www.syl.ru

Однофазный асинхронный электродвигатель

Однофазный асинхронный электродвигатель — это асинхронный электродвигатель, который работает от электрической сети однофазного переменного тока без использования частотного преобразователя и который в основном режиме работы (после пуска) использует только одну обмотку (фазу) статора.

Конструкция однофазного двигателя с вспомогательной или пусковой обмоткой

Основными компонентами любого электродвигателя являются ротор и статор. Ротор - вращающаяся часть электродвигателя, статор - неподвижная часть электродвигателя, с помощью которого создается магнитное поле для вращения ротора. Конструкция однофазного двигателя

Основные части однофазного двигателя: ротор и статор

Статор имеет две обмотки, расположенные под углом 90° относительно друг друга. Основная обмотка называется главной (рабочей) и обычно занимает 2/3 пазов сердечника статора, другая обмотка называется вспомогательной (пусковой) и обычно занимает 1/3 пазов статора.

Двигатель фактически является двухфазным, но так как рабочей является только одна обмотка, электродвигатель называют однофазным.

Ротор обычно представляет из себя короткозамкнутую обмотку, также из-за схожести называемой "беличьей клеткой". Медные или алюминиевые стержни которого с торцов замкнуты кольцами, а пространство между стержнями чаще всего заливается сплавом алюминия. Так же ротор однофазного двигателя может быть выполнен в виде полого немагнитного или полого ферромагнитного цилиндра.

Обмотки однофазного двигателя

Однофазный двигатель с вспомогательной обмоткой имеет 2 обмотки расположенные перпендикулярно относительно друг друга

Принцип работы однофазного асинхронного двигателя

Для того чтобы лучше понять работу однофазного асинхронного двигателя, давайте рассмотрим его только с одним витком в главной и вспомогательной обмотки.

Обмотки асинхронного двигателя

Проанализируем случай с двумя обмотками имеющими по оному витку

Рассмотрим случай когда в вспомогательной обмотки не течет ток. При включении главной обмотки статора в сеть, переменный ток, проходя по обмотке, создает пульсирующее магнитное поле, неподвижное в пространстве, но изменяющееся от +Фmах до -Фmах.

Запустить

Магнитное поле витка

Остановить

Пульсирующее магнитное поле

Пульсирующее магнитное поле

Если поместить ротор, имеющий начальное вращение, в пульсирующее магнитное поле, то он будет продолжать вращаться в том же направлении.

Чтобы понять принцип действия однофазного асинхронного двигателя разложим пульсирующее магнитное поле на два одинаковых круговых поля, имеющих амплитуду равную Фmах/2 и вращающихся в противоположные стороны с одинаковой частотой:

n<sub>пp</sub> = n<sub>oбp</sub> = f<sub>1</sub>∙60/p = n<sub>1</sub>,

  • где nпр – частота вращения магнитного поля в прямом направлении, об/мин,
  • nобр – частота вращения магнитного поля в обратном направлении, об/мин,
  • f1 – частота тока статора, Гц,
  • p – количество пар полюсов,
  • n1 – скорость вращения магнитного потока, об/мин

Запустить

Разложение пульсирующего магнитного потока

Остановить

Разложение пульсирующего магнитного поля

Разложение пульсирующего магнитного потока на два вращающихся

Действие пульсирующего поля на вращающийся ротор

Рассмотрим случай когда ротор, находящийся в пульсирующем магнитном потоке, имеет начальное вращение. Например, мы вручную раскрутили вал однофазного двигателя, одна обмотка которого подключена к сети переменного тока. В этом случае при определенных условиях двигатель будет продолжать развивать вращающий момент, так как скольжение его ротора относительно прямого и обратного магнитного потока будет неодинаковым.

Будем считать, что прямой магнитный поток Фпр, вращается в направлении вращения ротора, а обратный магнитный поток Фобр - в противоположном направлении. Так как, частота вращения ротора n2 меньше частоты вращения магнитного потока n1, скольжение ротора относительно потока Фпр будет:

s<sub>пp</sub> = (n<sub>1</sub> - n<sub>2</sub>)/n<sub>1</sub> = s,

  • где sпр – скольжение ротора относительно прямого магнитного потока,
  • n2 – частота вращения ротора, об/мин,
  • s – скольжение асинхронного двигателя
Магнитное поле однофазного двигателя

Прямой и обратный вращающиеся магнитные потоки вместо пульсирующего магнитного потока

Магнитный поток Фобр вращается встречно ротору, частота вращения ротора n2 относительно этого потока отрицательна, а скольжение ротора относительно Фобр

,

  • где sобр – скольжение ротора относительно обратного магнитного потока

Запустить

Магнитное поле пронизывающее ротор

Остановить

Вращающееся магнитное поле

Вращающееся магнитное поле пронизывающее ротор

Ток ротора асинхронного двигателя

Ток индуцируемый в роторе переменным магнитным полем

Согласно закону электромагнитной индукции прямой Фпр и обратный Фобр магнитные потоки, создаваемые обмоткой статора, наводят в обмотке ротора ЭДС, которые соответственно создают в короткозамкнутом роторе токи I2пр и I2обр. При этом частота тока в роторе пропорциональна скольжению, следовательно:

f2пр=f1sпр,

  • где f2пр – частота тока I2пр наводимого прямым магнитным потоком, Гц

f2обр=f1sобр,

  • где f2обр – частота тока I2обр наводимого обратным магнитным потоком, Гц

Таким образом, при вращающемся роторе, электрический ток I2обр, наводимый обратным магнитным полем в обмотке ротора, имеет частоту f2обр, намного превышающую частоту f2пр тока ротора I2пр, наведенного прямым полем.

Пример: для однофазного асинхронного двигателя, работающего от сети с частотой f1 = 50 Гц при n1 = 1500 и n2 = 1440 об/мин,

скольжение ротора относительно прямого магнитного потока sпр = 0,04;частота тока наводимого прямым магнитным потоком f2пр = 2 Гц;скольжение ротора относительно обратного магнитного потока sобр = 1,96;частота тока наводимого обратным магнитным потоком f2обр = 98 Гц

Магнитный момент действующий на ротор

Согласно закону Ампера, в результате взаимодействия электрического тока I2пр с магнитным полем Фпр возникает вращающий момент

Мпр=,

  • где Mпр – магнитный момент создаваемый прямым магнитным потоком, Н∙м,
  • сM — постоянный коэффициент, определяемый конструкцией двигателя

Электрический ток I2обр, взаимодействуя с магнитным полем Фобр, создает тормозящий момент Мобр, направленный против вращения ротора, то есть встречно моменту Мпр:

Мобр=,

  • где Mобр – магнитный момент создаваемый обратным магнитным потоком, Н∙м

Результирующий вращающий момент, действующий на ротор однофазного асинхронного двигателя,

M = M<sub>пр</sub> - M<sub>обр</sub>,

Справка: В следствие того, что во вращающемся роторе прямым и обратным магнитным полем будет наводиться ток разной частоты, моменты сил действующие на ротор в разных направлениях будут не равны. Поэтому ротор будет продолжать вращаться в пульсирующем магнитном поле в том направлении в котором он имел начальное вращение.

Тормозящее действие обратного поля

При работе однофазного двигателя в пределах номинальной нагрузки, то есть при небольших значениях скольжения s = sпр, крутящий момент создается в основном за счет момента Мпр. Тормозящее действие момента обратного поля Мобр — незначительно. Это связано с тем, что частота f2обр много больше частоты f2пр, следовательно, индуктивное сопротивление рассеяния обмотки ротора х2обр = x2sобр току I2обр намного больше его активного сопротивления. Поэтому ток I2обр, имеющий большую индуктивную составляющую, оказывает сильное размагничивающее действие на обратный магнитный поток Фобр, значительно ослабляя его.

,

  • где r2 - активное сопротивление стержней ротора, Ом,
  • x2обр - реактивное сопротивление стержней ротора, Ом.

Если учесть, что коэффициент мощности невелик, то станет, ясно, почему Мобр в режиме нагрузки двигателя не оказывает значительного тормозящего действия на ротор однофазного двигателя.

Моменты сил действующие на неподвижный ротор

С помощью одной фазы нельзя запустить ротор

Моменты сил действующие на вращающийся ротор

Ротор имеющий начальное вращение будет продолжать вращаться в поле создаваемом однофазным статором

Действие пульсирующего поля на неподвижный ротор

При неподвижном роторе (n2 = 0) скольжение sпр = sобр = 1 и Мпр = Мобр, поэтому начальный пусковой момент однофазного асинхронного двигателя Мп = 0. Для создания пускового момента необходимо привести ротор во вращение в ту или иную сторону. Тогда s ≠ 1, нарушается равенство моментов Мпр и Мобр и результирующий электромагнитный момент приобретает некоторое значение .

Пуск однофазного двигателя. Как создать начальное вращение?

Одним из способов создания пускового момента в однофазном асинхронном двигателе, является расположение вспомогательной (пусковой) обмотки B, смещенной в пространстве относительно главной (рабочей) обмотки A на угол 90 электрических градусов. Чтобы обмотки статора создавали вращающееся магнитное поле токи IA и IB в обмотках должны быть сдвинуты по фазе относительно друг друга. Для получения фазового сдвига между токами IA и IB в цепь вспомогательной (пусковой) обмотки В включают фазосмещающий элемент, в качестве которого используют активное сопротивление (резистор), индуктивность (дроссель) или емкость (конденсатор) [1].

После того как ротор двигателя разгонится до частоты вращения, близкой к установившейся, пусковую обмотку В отключают. Отключение вспомогательной обмотки происходит либо автоматически с помощью центробежного выключателя, реле времени, токового или дифференциального реле, или же вручную с помощью кнопки.

Таким образом, во время пуска двигатель работает как двухфазный, а по окончании пуска — как однофазный.

Подключение однофазного двигателя

С пусковым сопротивлением

Двигатель с расщепленной фазой - однофазный асинхронный двигатель, имеющий на статоре вспомогательную первичную обмотку, смещенную относительно основной, и короткозамкнутый ротор [2].

Однофазный асинхронный двигатель с пусковым сопротивлением - двигатель с расщепленной фазой, у которого цепь вспомогательной обмотки отличается повышенным активным сопротивлением.

Схема однофазного двигателя с пусковым сопротивлением

Омический сдвиг фаз, биффилярный способ намотки пусковой обмотки

Однофазный двигатель с разным сопротивлением обмоток

Разное сопротивление и индуктивность обмоток

Для запуска однофазного двигателя можно использовать пусковой резистор, который последовательно подключается к пусковой обмотки. В этом случае можно добиться сдвига фаз в 30° между токами главной и вспомогательной обмотки, которого вполне достаточно для пуска двигателя. В двигателе с пусковым сопротивлением разность фаз объясняется разным комплексным сопротивлением цепей.

Также сдвиг фаз можно создать за счет использования пусковой обмотки с меньшей индуктивностью и более высоким сопротивлением. Для этого пусковая обмотка делается с меньшим количеством витков и с использованием более тонкого провода чем в главной обмотке.

Отечественной промышленностью изготавливается серия однофазных асинхронных электродвигателей с активным сопротивлением в качестве фазосдвигающего элемента серии АОЛБ мощностью от 18 до 600 Вт при синхронной частоте вращения 3000 и 1500 об/мин, предназначенных для включения в сеть напряжением 127, 220 или 380 В, частотой 50 Гц.

С конденсаторным пуском

Двигатель с конденсаторным пуском - двигатель с расщепленной фазой, у которого цепь вспомогательной обмотки с конденсатором включается только на время пуска.

Схема однофазного двигателя с пусковым конденсатором

Ёмкостной сдвиг фаз с пусковым конденсатором

Чтобы достичь максимального пускового момента требуется создать круговое вращающееся магнитное поле, для этого требуется чтобы токи в главной и вспомогательной обмотках были сдвинуты друг относительно друга на 90°. Использование в качестве фазосдвигающего элемента резистора или дросселя не позволяет обеспечить требуемый сдвиг фаз. Лишь включение конденсатора определенной емкости позволяет обеспечить фазовый сдвиг 90°.

Среди фазосдвигающих элементов, только конденсатор позволяет добиться наилучших пусковых свойств однофазного асинхронного электродвигателя.

Двигатели в цепь которых постоянно включен конденсатор используют для работы две фазы и называются - конденсаторными. Принцип действия этих двигателей основан на использовании вращающегося магнитного поля.

Двигатель с экранированными полюсами - двигатель с расщепленной фазой, у которого вспомогательная обмотка короткозамкнута.

Статор однофазного асинхронного двигателя с экранированными полюсами обычно имеет явно выраженные полюса. На явно выраженных полюсах статора намотаны катушки однофазной обмотки возбуждения. Каждый полюс статора разделен на две неравные части аксиальным пазом. Меньшую часть полюса охватывает короткозамкнутый виток. Ротор однофазного двигателя с экранированными полюсами - короткозамкнутый в виде "беличьей" клетки.

При включении однофазной обмотки статора в сеть в магнитопроводе двигателя создается пульсирующий магнитный поток. Одна часть которого проходит по неэкранированной Ф', а другая Ф" - по экранированной части полюса. Поток Ф" наводит в короткозамкнутом витке ЭДС Ek, в результате чего возникает ток Ik отстающий от Ek по фазе из-за индуктивности витка. Ток Ik создает магнитный поток Фk, направленный встречно Ф", создавая результирующий поток в экранированной части полюса Фэ=Ф"+Фk. Таким образом, в двигателе потоки экранированной и неэкранированной частей полюса сдвинуты во времени на некоторый угол.

Пространственный и временной углы сдвига между потоками Фэ и Ф' создают условия для возникновения в двигателе вращающегося эллиптического магнитного поля, так как Фэ ≠ Ф'.

Пусковые и рабочие свойства рассматриваемого двигателя невысоки. КПД намного ниже, чем у конденсаторных двигателей такой же мощности, что связано со значительными электрическими потерями в короткозамкнутом витке.

Однофазный асинхронный двигатель с асимметричным магнитопроводом статора

Статор такого однофазного двигателя выполняется с ярко выраженными полюсами на не симметричном шихтованном сердечнике. Ротор - короткозамкнутый типа "беличья клетка".

Данный электродвигатель для работы не требует использования фазосдвигающих элементов. Недостатком данного двигателя является низкий КПД.

engineering-solutions.ru


© 2007—2018
423800, Набережные Челны , база Партнер Плюс, тел. 8 800 100-58-94 (звонок бесплатный)