|
||||
|
Екатерина - специалист по продаже а/м КАМАЗ
43118-010-10 (дв.740.30-260 л.с.) | 2 220 000 |
43118-6033-24 (дв.740.55-300 л.с.) | 2 300 000 |
65117-029 (дв.740.30-260 л.с.) | 2 200 000 |
65117-6010-62 (дв.740.62-280 л.с.) | 2 350 000 |
44108 (дв.740.30-260 л.с.) | 2 160 000 |
44108-6030-24 (дв.740.55,рест.) | 2 200 000 |
65116-010-62 (дв.740.62-280 л.с.) | 1 880 000 |
6460 (дв.740.50-360 л.с.) | 2 180 000 |
45143-011-15 (дв.740.13-260л.с) | 2 180 000 |
65115 (дв.740.62-280 л.с.,рест.) | 2 190 000 |
65115 (дв.740.62-280 л.с.,3-х стор) | 2 295 000 |
6520 (дв.740.51-320 л.с.) | 2 610 000 |
6520 (дв.740.51-320 л.с.,сп.место) | 2 700 000 |
6522-027 (дв.740.51-320 л.с.,6х6) | 3 190 000 |
Нужны самосвалы? Обратите внимание на Ford-65513-02. |
Контактная информация.
г. Набережные Челны, Промкомзона-2, Автодорога №3, база «Партнер плюс».
тел/факс (8552) 388373.
Схема проезда
Виталий Кабышев, 18 октября 2007. | |
Достоинство гидротрансформаторной трансмиссии заключается, конечно же, в удобстве управления тягой автомобиля. В упрёк таким трансмиссиям можно поставить медлительность, невысокий КПД и относительно небольшой ресурс. Хотя надо отдать им должное — современные коробки отличаются завидной «скорострельностью». |
Не падайте в обморок, ничего сложного здесь нет. Сейчас всё растолкуем. Но сначала давайте определимся с терминологией. Дело в том, что многие по ошибке автоматической коробкой передач называют два агрегата, соединённых воедино: собственно саму коробку и гидротрансформатор.
Гидротрансформатор состоит из двух лопастных машин — центробежного насоса и центростремительной турбины. Между ними расположен направляющий аппарат — реактор. Насосное колесо жёстко связано с коленчатым валом двигателя, турбинное — с валом коробки передач. Реактор же, в зависимости от режима работы, может свободно вращаться, а может быть заблокирован при помощи обгонной муфты.
Полезная энергия в гидротрансформаторной трансмиссии расходуется на перелопачивание (и нагрев) масла гидротрансформатором. Также немало энергии «жрёт» насос, который создаёт рабочее давление в управляющих магистралях. Отсюда более низкий КПД. Именно по этой причине механические роботизированные коробки и вариаторы более предпочтительны.
Гидротрансформатор является идеальным демпфером крутильных колебаний и способен гасить сильные толчки, которые передаются от двигателя на трансмиссию и наоборот. Это, кстати, очень благоприятно сказывается на ресурсе двигателя, трансмиссии и ходовой части. Но хлопот гидротрансформатор тоже может принести массу. Например, он не позволяет завести автомобиль с «толкача».
Передача крутящего момента от двигателя к коробке передач осуществляется потоками рабочей жидкости (масла), которая отбрасывается лопатками насосного колеса на лопасти колеса турбинного. Между насосным колесом и турбиной обеспечены минимальные зазоры, а их лопастям придана специальная геометрия, которая формирует непрерывный круг циркуляции рабочей жидкости. Так что получается, что жёсткая связь между двигателем и трансмиссией отсутствует. Это обеспечивает работу двигателя и остановку автомобиля с включённой передачей, а также способствует плавности передачи тягового усилия.
Схема устройства гидротрансформатора
Масло в гидротрансформаторе двигается по такой вот замысловатой траектории. Чтобы увеличить скорость и повысить крутящий момент на турбинном колесе, реактор блокируется. Правда, при этом КПД передачи несколько снижается.
Надо сказать, что по описанной выше схеме работает гидромуфта, которая просто передаёт крутящий момент, не трансформируя его величину. Чтобы изменять момент, в конструкцию гидротрансформатора введён реактор. Это такое же колесо с лопатками, но оно, имея связь с картером (корпусом) коробки передач, не вращается (заметим, до определённого момента). Лопатки реактора расположены на пути, по которому масло возвращается из турбины в насос, и они имеют особый профиль. Когда реактор неподвижен (гидротрансформаторный режим), он увеличивает скорость потока рабочей жидкости, циркулирующей между колёсами. Чем выше скорость движения масла, тем выше его кинетическая энергия, тем она большее оказывает воздействие на турбинное колесо. Благодаря этому эффекту момент, развиваемый на валу турбинного колеса, удаётся значительно поднять.
Гидротрансформатор ZF и многодисковое сцепление Sachs, блокирующее насосное и турбинное колёса.
Представьте себе стандартную ситуацию — передача в коробке уже включена, а мы стоим на месте и жмём себе на педаль тормоза! Что происходит в этом случае? Турбинное колесо находится в неподвижном состоянии, а момент на нём в полтора-два раза выше (в зависимости от конструкции) того, что развивает двигатель на этих оборотах. Кстати, момент на выходном валу гидротрансформатора будет тем больше, чем будут выше обороты двигателя. Стоит отпустить педаль тормоза, и автомобиль тронется. Разгон будет продолжаться до тех пор, пока момент на колёсах не сравняется с моментом сопротивления движению машины.
Алюминиевый селектор управления автоматической трансмиссией BMW X5.
Когда турбинное колесо приближается по оборотам к скорости вращения насосного колеса, реакторное колесо освобождается и начинает вращаться вместе с двумя «напарниками». В этом случае говорят, что гидротрансформатор перешёл в режим гидромуфты. Так снижаются потери, и увеличивается КПД гидротрансформатора.
А поскольку в некоторых случаях надобность в преобразовании крутящего момента и скорости отпадает, в определённые моменты гидротрансформатор и вовсе может быть заблокирован при помощи фрикционного сцепления. Этот режим помогает довести КПД передачи практически до единицы, проскальзывание между лопаточными колёсами в этом случае исключено по определению.
Но представьте себе такую ситуацию. Вы едете по прямой с постоянной скоростью и вдруг начинаете подниматься в горку. Скорость автомобиля начнёт падать, а нагрузка на ведущие колёса увеличится. На это изменение тут же отреагирует гидротрансформатор. Как только станет уменьшаться частота вращения турбины, реакторное колесо начнёт автоматически затормаживаться, в результате скорость циркуляции рабочей жидкости возрастёт, что автоматически приведёт к увеличению крутящего момента, который будет передаваться на вал от турбинного колеса (читай на колёса). В некоторых случаях увеличившегося момента хватит для того, чтобы преодолеть подъём без перехода на низшую передачу.
Поскольку гидротрансформатор не может преобразовывать скорость вращения и передаваемый крутящий момент в широких пределах, к нему присоединяют многоступенчатую коробку передач, которая, вдобавок ко всему, способна обеспечить и реверсивное вращение (иными словами — задний ход). Те коробки, которые работают в паре с гидротрансформаторами, обычно включают в себя ряд планетарных передач и имеют много общего с привычными нам «ручными» коробками.
Когда передача работает в режиме повышения частоты, двигатель вращает водило. Выходной вал передачи при этом соединён с солнечной шестернёй, в это время кольцевая шестерня зафиксирована.Если кольцевую шестерню отпустить и в это время при помощи фрикциона её зафиксировать относительно водила, передача получится прямой.Передача получается понижающей в том случае, когда движок приводит в действие солнечную шестерню, и при этом водило зафиксировано. Мощность при этом снимается с кольцевой шестерни.
В механической коробке шестерни находятся в постоянном зацеплении, при этом ведомые — свободно вращаются на вторичном валу. Включая какую-либо передачу, мы механически блокируем соответствующую шестерню на ведомом валу. Работа автоматической коробки передач построена на таком же принципе. Но планетарные передачи (или редукторы) имеют некоторые интересные особенности. Они включают в себя несколько элементов: водило, сателлиты, солнечную и кольцевую шестерни.
Планетарная передача
Приводя во вращение одни элементы и фиксируя другие, такие редукторы позволяют менять передаточные отношения, то есть скорость вращения и передаваемое через планетарную передачу усилие. Приводятся планетарные передачи от выходного вала гидротрансформатора, а их соответствующие элементы фиксируются при помощи фрикционных лент или фрикционных пакетов (в механической коробке эту роль играют синхронизаторы и блокирующие муфты).
Планетарные передачи. Водило (1), сателлиты (2), шлицы солнечной шестерни (3).
Включается передача следующим образом. На фрикцион давит гидравлический толкатель, который в свою очередь приводится в действие давлением рабочей жидкости, той самой, что используется в гидротрансформаторе. Давление это создаётся специальным насосом, а распределяется оно между соответствующими фрикционами передач под неусыпным контролем электроники при помощи специальной системы электромагнитных клапанов — соленоидов в соответствии с алгоритмом работы коробки.
Пакеты фрикционов состоят из нескольких колец — неподвижных и подвижных. Они свободно вращаются друг относительно друга до тех пор, пока не возникнет необходимость включить передачу. Гидравлический толкатель зажмёт фрикционы тогда, когда в соответствующей магистрали будет создано рабочее давление. Подвижные элементы фрикциона, жёстко связанные, например, с водилом планетарной передачи, будут застопорены, водило остановится, передача включится.
Существенное отличие АКПП от обычных механических коробок заключается в том, что передачи в них переключаются практически без разрыва потока мощности. Одна выключилась, другая почти в тот же момент включилась. Сильные рывки при переключениях практически исключены, поскольку их гасит уже упомянутый выше гидротрансформатор. Хотя, надо отметить, современные коробки со спортивной настройкой не могут похвастать плавной работой. Толчки при их работе обусловлены более быстрой сменой передач: такой расклад позволяет отыграть некоторое количество времени при разгоне, но приводит к ускоренному износу фрикционов. На трансмиссии и ходовой части в целом это тоже сказывается не лучшим образом.
Автоматическая трансмиссия Audi Q7
В автоматических трансмиссиях первого поколения системы управления были целиком гидравлическими. В дальнейшем гидравлику оставили только в качестве исполнительной части системы управления, задавать же алгоритм работы стала электроника. Благодаря ей возможно реализовывать различные алгоритмы работы коробки — режим резкого ускорения, спортивный, экономичный, зимний…
Одна из последних разработок компании ZF — восьмиступенчатая гидромеханическая коробка передач. Как сообщают сами создатели, коробка позволяет экономить до 6% топлива по сравнению с аналогичными шестиступенчатым «автоматом» и 14% по сравнению с пятиступенчатым. Всё логично, большое количество передач позволяет увеличить время, при котором двигатель работает в наиболее «эффективном» режиме и удельный расход топлива минимален. Теряется время на лишние переключения? Совсем немного.
В спортивном режиме, например, тяга двигателя используется на все сто процентов. Включение каждой последующей передачи происходит при частотах коленчатого вала, близких к частотам, на которых развивается максимальный крутящий момент. При дальнейшем ускорении частота вращения коленчатого вала доводится до максимальных значений, при которых двигатель развивает максимальную мощность. И так далее. Автомобиль в этом случае развивает значительно большие ускорения по сравнению с теми, что осуществляются при работе «экономичной» или «нормальной» программ.
Управляющие клапаны гидравлического блока управления.
На большинстве современных автомобилей с автоматической трансмиссией те или иные алгоритмы управления активизируются в зависимости от манеры вождения. Электроника адаптирует работу тандема двигатель-трансмиссия самостоятельно. Компьютер, анализируя информацию от многочисленных датчиков, принимает решение о переключении передач в те или иные моменты, в зависимости от требуемого характера переключений. Если манера движения размеренная и плавная, контроллер делает соответствующие поправки, при которых двигатель не выводится на мощностные режимы работы, что положительно сказывается на расходе топлива. Как только водитель «занервничал» и начал чаще и резче нажимать на педаль газа, искусственный интеллект тут же понимает, что ускорения и разгоны нужно производить резвее, и силовой агрегат сразу же начнёт работать по «спортивной» программе. Если же водитель станет педалировать плавно, «умная» электроника переведёт коробку и двигатель в штатный режим работы.
Шестиступенчатая трансмиссия полноприводной Audi A8
Всё большее количество автомобилей оснащается коробками, в которых наряду с автоматическим предусмотрен и полуавтоматический режим управления. Здесь команды на переключение передач даёт водитель, а сами переключения обеспечивает система управления. Но это совсем не означает, что электроника позволит вам сильно разгуляться. Часто скорость перехода с одной передачи на другую в этом режиме увеличивают, но многие производители, заботясь о ресурсе силового агрегата, время переключений оставляют таким же, как в автоматическом режиме. Машиностроители называют эти системы по-разному — Autostick, Steptronic, Tiptronic.
Американцы любят устанавливать селектор автоматической трансмиссии на рулевую колонку. Европейцы и японцы ставят их на центральный тоннель.
Кстати, с недавних пор некоторые АКПП можно тюнинговать. А возможно это стало благодаря перепрограммированию блоков управления двигателем и коробки. В угоду скорости разгона в программе управления АКПП меняют моменты перехода с передачи на передачу и существенно сокращают время переключений.
На новом Mitsubishi Lancer управлять коробкой в ручном режиме можно и при помощи селектора, и посредством удобных магниевых подрулевых переключателей.
Электроника из года в год становится всё умнее. Компьютеры научили анализировать степень износа фрикционов и генерировать соответствующее давление, необходимое для включения каждой муфты. Регистрируя давление, можно прогнозировать степень износа фрикционных дисков, а следовательно, и коробки в целом. Блок управления постоянно контролирует исправность системы, записывая в свою память коды неисправностей тех элементов, в которых происходили сбои в процессе работы.
Четырёхступенчатая коробка и гидротрансформатор Hydra-Matic 2002 4T65-E (M76) концерна GM в составе силового агрегата устанавливаются на автомобиле поперечно.
В некоторых форс-мажорных случаях блок управления начинает работать по обходной программе. Обычно в аварийном режиме в коробке передач запрещаются все переключения, и включается какая-либо одна передача, как правило, — вторая или третья. Эксплуатировать, в этом случае автомобиль не рекомендуется (да и не получится), но доехать своим ходом до мастерской программа поможет. Все типы коробок способны доставлять радость владельцам автомобилей своей службой при пробеге в 200 тысяч километров с лишним. Но есть одно «но» — безотказная работа возможна при правильной эксплуатации и регулярном квалифицированном ТО.
«R» — reverse, по-русски — задний ход.
«N» — нейтраль. В этом режиме двигатель и ведущие колёса не связаны. Автомобиль может двигаться накатом, его можно также буксировать без вывешивания ведущей оси.
Режим «D» или «Drive» разрешает движение. В этом режиме смена передач осуществляется автоматически.
«S», «Sport», «PWR», «Power» или «Shift» — спортивный режим. Самый динамичный и самый расточительный. При разгонах двигатель «загоняется» в режим максимальной мощности. Скорость перехода с одной передачи на другую (в зависимости от конструкции и программы) может быть увеличена. Двигатель в этом случае всегда находится в тонусе, как правило, работая на оборотах, которые не ниже тех, на которых развивается максимальный крутящий момент. Забудьте об экономичности.
«Kick-down» — режим, в котором осуществляется переход на пониженную передачу для осуществления интенсивного ускорения, например, при обгоне. Резкий подхват происходит за счёт того что двигатель выводится в режим максимальной отдачи, и за счёт большего передаточного отношения понижающей передачи. Чтобы трансмиссия перешла в этот режим, по педали газа нужно хорошенько топнуть. В трансмиссиях более старшего поколения для срабатывания «кикдауна» нужно было обязательно нажать педаль газа, что называется, «в пол» до характерного щелчка.
При работе в режиме «Overdrive» или «O/D» повышающая передача будет включаться чаще, переводя двигатель на пониженные обороты. «Овердрайв» обеспечивает экономичное передвижение, но его активация может привести к существенной потере в динамике.
«Norm» реализует наиболее сбалансированный режим движения. Переключения на повышающие передачи, как правило, происходят по достижении средних оборотов и на оборотах несколько выше средних.
Если поставить селектор напротив «1» (L, Low), «2» или «3», ваша коробка не будет переходить выше выбранной передачи. Режимы востребованы в тяжёлых дорожных условиях, например, при движении по горным дорогам, при буксировке прицепа или другого автомобиля. В этом случае двигатель может работать в области средних и высоких нагрузок без перехода на повышающую передачу.
«W», «Winter», «Snow» — так называемый «зимний» режим работы АКПП. В целях предотвращения пробуксовки ведущих колёс трогание с места осуществляется со второй передачи. Дабы не спровоцировать лишние проскальзывания, переход с одной передачи на другую в этом случае тоже может осуществляться более мягко и при более низких оборотах. Разгон при этом может быть не слишком динамичным.
Наличие значков «+» и «-» определяет совсем не полюсность, а возможность ручного переключения передач. Разные производители «перемешивать» передачи позволяют по-разному: селектором управления АКПП, кнопками на руле или подрулевыми переключателями… В этом режиме электроника не позволит перейти на те передачи, которые, по её мнению, неуместны в данный момент. При работе со знаками «сложения» и «вычитания» скорость смены ступеней не будет выше той, что определена программой в режиме «Sport». Достоинство ручного режима — возможность действовать на опережение.
www.drive.ru
В последнее время большим спросом начали пользоваться автомобили с автоматическими коробками передач. И сколько бы ни говорили автомобилисты, что АКПП – это ненадежный механизм, который дорог в обслуживании, статистика утверждает обратное. С каждым годом машин с МКПП становится меньше. Удобство «автомата» оценили многие водители. Что касается дорогого обслуживания, самая ответственная деталь в этой коробке - гидротрансформатор АКПП. Фото механизма и его устройство – далее в нашей статье.
В конструкцию автоматической коробки передач помимо данного элемента входит множество других систем и механизмов. Но основную функцию (это передача крутящего момента) выполняет именно гидротрансформатор АКПП. В просторечии его называют «бубликом» за счет характерной формы конструкции.
Стоит отметить, что на автоматических коробках для переднеприводных авто гидротрансформатор АКПП включает в себя дифференциал и главную передачу. Помимо функции передачи крутящего момента «бублик» принимает на себя все вибрации и удары от маховика двигателя, тем самым сглаживая их до минимума.
Давайте рассмотрим, как устроен гидротрансформатор АКПП. Данный элемент состоит из нескольких узлов:
Все эти механизмы помещены в единый корпус. Насос непосредственно связан с коленвалом двигателя. Турбина сопрягается с шестернями коробки передач. Реакторное колесо размещено между насосом и турбиной. Также в конструкции колеса «бублика» имеются лопасти особой формы. Работа гидротрансформатора АКПП основана на перемещении специальной жидкости внутри (трансмиссионного масла). Поэтому АКПП включает в себя также масляные каналы. Кроме этого, здесь есть свой радиатор. Для чего он нужен, рассмотрим немного позже.
Что касается муфт, блокировочная предназначена для фиксации положения гидротрансформатора в определенном режиме (например, «паркинг»). Муфта свободного хода служит для вращения реакторного колеса в обратной стороне.
Как действует данный элемент в коробке? Все действия «бублика» осуществляются по замкнутому циклу. Так, главная рабочая жидкость здесь – это «трансмиссионка». Стоит отметить, что она отличается по вязкости и составу от тех, что используются в механических коробках. Во время работы гидротрансформатора смазка поступает от насоса на турбинное колесо, а затем – на реакторное.
Благодаря лопастям жидкость начинает быстрее вращаться внутри «бублика», тем самым увеличивая крутящий момент. Когда частота вращения коленвала увеличивается, угловая скорость турбины и насосного колеса выравнивается. Поток жидкости меняет свое направление. Когда автомобиль набрал уже достаточную скорость, «бублик» будет работать только в режиме гидромуфты, то есть передавать лишь крутящий момент. Когда скорость движения увеличивается, ГТФ блокируется. При этом замывается муфта, и передача момента от маховика на коробку производится напрямую, с одинаковой частотой. Элемент разъединяется снова при переключении на следующую передачу. Так заново происходит сглаживание угловых скоростей до того момента, как скорость вращения турбин не сравняется.
Теперь о радиаторе. Для чего в автоматических коробках он выведен отдельно, ведь на «механике» такой системы не применяют? Все очень просто. На механической коробке масло выполняет лишь смазывающую функцию.
При этом его заливают лишь наполовину. Жидкость содержится в поддоне КПП, и в ней смачиваются шестерни. В автоматической коробке масло выполняет функцию передачи крутящего момента (откуда пошло название «мокрое сцепление»). Здесь нет фрикционных дисков – вся энергия идет через турбины и масло. Последнее постоянно двигается в каналах под высоким давлением. Соответственно, маслу необходимо охлаждаться. Для этого и предусмотрен в такой трансмиссии собственный теплообменник.
Выделяют следующие поломки трансмиссии:
Выяснить, какой именно элемент вышел из строя, без демонтажа коробки и ее разбора довольно трудно. Однако предугадать серьезный ремонт можно по нескольким признакам. Так, если наблюдаются неисправности гидротрансформатора АКПП или тормозной ленты, коробка будет «пинаться» при переключении режимов. Машина начинает дергаться, если вы ставите ручку с одного режима на другой (причем когда нога находится на педали тормоза). Также коробка входит сама в аварийный режим. Машина двигается только на трех передачах. Это говорит о том, что коробке нужна серьезная диагностика.
Что касается замены гидротрансформатора, она выполняется при полном демонтаже коробки (отсоединяются приводные валы, «колокол» и прочие детали). Этот элемент – самая дорогая составляющая любой АКПП. Цена на новый ГДТ начинается от 600 долларов для бюджетных моделей авто. Поэтому важно знать, как правильно использовать коробку, чтобы максимально отсрочить ремонт.
Считается, что ресурс у данной трансмиссии на порядок ниже, чем у механики. Однако специалисты отмечают, что при должном обслуживании узла вам не потребуется ремонт или замена гидротрансформатора АКПП. Так, первая рекомендация – это своевременная замена масла. Регламент – 60 тысяч километров. И если на МКПП масло залито на весь срок эксплуатации, то в «автомате» оно является рабочей жидкостью. Если смазка черная или имеет запах гари, ее нужно срочно заменить.
Вторая рекомендация касается соблюдения температурных режимов. Не стоит слишком рано начинать движение – температура масла коробки должна быть не ниже 40 градусов. Для этого переведите рычаг по всем режимам с задержкой в 5-10 секунд. Так вы прогреете коробку и подготовите ее к эксплуатации. На холодном масле ездить нежелательно, так же как и на сильно горячем. В последнем случае жидкость будет буквально гореть (при замене вы услышите запах гари). АКПП не подходит для дрифта и жесткой эксплуатации. Также не стоит на ходу включать нейтральную передачу, а затем снова включать «драйв». Так вы сломаете тормозную ленту и ряд других важных элементов в коробке.
Итак, мы выяснили, что собой представляет гидротрансформатор АКПП. Как видите, это весьма ответственный узел в коробке. Именно через него передается крутящий момент на коробку, а затем на колеса. И поскольку масло здесь является рабочей жидкостью, нужно соблюдать регламенты его замены. Так коробка будет радовать вас долгим ресурсом и плавными переключениями.
fb.ru
Гидротрансформатор (турботрансформатор) или конвертор крутящего момента (англ. torque converter) — устройство, служащее для передачи и преобразования, в отличие от гидромуфты, крутящего момента от двигателя внутреннего сгорания к коробке передач и, следовательно, позволяющее автоматически бесступенчато изменять крутящий момент и частоту вращения, передаваемые коробке передач. Чаще всего используется с АКПП или вариаторами. В СССР, а позднее в СНГ использовались и частью еще используются в гидродинамических трансмиссиях автомобилей «Волга», «Чайка» и ЗИЛ, многоцелевых тягачах МЗКТ и КЗКТ, семействе БелАЗ, автобусах ЛАЗ-695Ж и ЛиАЗ-677, на тракторах ДТ-175С и Т-330 и на ряде тепловозов маневровых (ТГМ3, ТГМ6, ТГК2) и магистральных - ТГ102, ТГ16, ТГ22. Кроме того, в СССР гидротрансформаторы использовались в трансмиссиях некоторых типов экскаваторов с канатным приводом рабочих органов.
В мировой практике нашли гораздо более широкое применение.
Они широко используются на специальных грузовых шасси, предназначенных для изготовления коммунальной спецтехники, на городских автобусах, на вилочных погрузчиках и легковых автомобилях. Чаще всего работают с планетарными коробками передач, хотя встречаются и сочетания с обычными двух- и трехвальными конструкциями. Популярность снабженных гидротрансформатором машин в зависимости от региона может очень сильно различаться. Так, на конец ХХ века в Западной Европе около 20 % легковых автомобилей имели гидротрансформатор. Подавляющее большинство гидротрансмиссий средней и большой мощности в Европе разработано и строится фирмой Voith в Германии.В то же время в США их доля составляла порядка 80 %. В последние годы из легкового автомобилестроения гидротрансформаторы вытесняются автоматизированными или «роботизированными» механическими коробками передач.
Состоит из насосного колеса, статора (реактора), турбинного колеса и механизма блокировки. Все детали собраны в общем корпусе, расположенном на маховике двигателя автомобиля. Гидротрансформатор наполнен маслом, которое активно перемешивается при его работе.
Принципиальная схема гидротрансформатораНасосное колесо жёстко связано с корпусом гидротрансформатора, при вращении вала двигателя оно создает внутри гидротрансформатора поток масла, который вращает колесо статора (реактора) и турбину.
Конструктивным отличием гидротрансформатора от гидромуфты является наличие реактора.
Статор (реактор) связан с насосным колесом через обгонную муфту. При значительной разнице оборотов насоса и турбины, статор (реактор) автоматически блокируется и передает на насосное колесо больший объём жидкости. Благодаря статору (реактору) происходит увеличение крутящего момента до трёх раз[1] при старте с места.
Турбина жёстко связана с валом АКПП.
Благодаря тому, что передача крутящего момента внутри гидротрансформатора происходит без жесткой кинематической связи, исключаются ударные нагрузки на трансмиссию и автомобиль приобретает большую плавность хода. Негативным эффектом гидротрансформатора является «проскальзывание» турбинного колеса по отношению к насосному — это приводит к повышенному выделению тепла (в некоторых режимах гидротрансформатор может выделять больше тепла, чем сам двигатель) и увеличению расхода топлива.
Моменты вращения на насосном и турбинном колёсах в подавляющем большинстве режимов не равны друг другу, в отличие от гидромуфты, у которой моменты вращения всегда можно считать равными.
Для повышения топливной экономичности, в конструкцию современных гидротрансформаторов вводится механизм блокировки, позволяющий жёстко связать насос и турбину. Блокировка включается автоматически при достижении достаточной скорости (как правило, более 70 км/ч). Однако, в электронно-управляемых АКПП момент включения блокировки определяет компьютер, поэтому она может быть включена практически в любой момент, согласно управляющей программе. Благодаря механизму блокировки при движении по шоссе расход топлива автомобилей, оснащённых АКПП, не превышает аналогичного для моделей с МКПП. Также блокировка гидротрансформатора применяется, подобно МКПП, для торможения двигателем и экономии топлива. В этом случае впрыск топлива прекращается на время блокировки. На тракторах блокировка гидротрансформатора используется для запуска двигателя трактора «с толкача», либо когда трактор работает в стационарном режиме.
1. Гидравлика, гидромашины и гидроприводы: Учебник для машиностроительных вузов/ Т. М. Башта, С. С. Руднев, Б. Б. Некрасов и др. — 2-е изд., перераб. — М.: Машиностроение, 1982.
2. Гейер В. Г., Дулин В. С., Заря А. Н. Гидравлика и гидропривод: Учеб для вузов. — 3-е изд., перераб. и доп. — М.: Недра, 1991.
3. Лепешкин А. В., Михайлин А. А., Шейпак А. А. Гидравлика и гидропневмопривод: Учебник, ч.2. Гидравлические машины и гидропневмопривод. / под ред. А. А. Шейпака. — М.: МГИУ, 2003. — 352 страниц
dic.academic.ru
Многие из Вас наверняка знают элементарные вещи об устройстве механической коробки передач - Вы знаете, что двигатель подключен к передаче путём сцепления, ведь без этой связи автомобиль не сможет прийти к полной остановке, разумеется, не убив двигатель. Но автомобили с автоматической коробкой передач не имеют сцепления, которое отключало бы трансмиссию от двигателя. Вместо этого в них используется удивительное устройство под названием гидротрансформатор. Может быть, его устройство Вам покажется несколько сложным, но то, что он делает и какое удобство доставляет, просто очень интересно!
В этой статье мы узнаем, почему автоматическая коробка передач автомобиля так нуждается в гидротрансформаторе, как работает гидротрансформатор и его некоторые недостатки.
Так же, как и в случае с ручной трансмиссией, автомобилю с автоматической коробкой передач необходимо найти способ, чтобы одновременно держать двигатель работающим (крутящимся коленчатым валом), а колеса и шестерни в коробке передач остановленными.Автомобили с МКПП используют для этого сцепление, которое полностью отключает двигатель от коробки передач, а вот автоматическая коробка передач использует гидротрансформатор.
Гидротрансформатор является одним из видов гидромуфты, которая позволяет двигателю вращаться независимо от трансмиссии. Если двигатель вращается медленно, например, когда автомобиль работает на холостом ходу на красном сигнале светофора, количество крутящего момента, который передаётся через гидротрансформатор, очень мало, и его достаточно, чтобы удержать автомобиль на месте путём лишь лёгкого давления на тормозную педаль.
Как показано на рисунке выше, существуют четыре компонента внутри очень крепкого корпуса гидротрансформатора:
Корпус гидротрансформатора крепится болтами к маховику двигателя, то есть корпус всегда крутится с той же скоростью, с какой крутится коленвал двигателя. Плавники, которые составляют насос гидротрансформатора, крепятся к корпусу, поэтому они также вращаются с одинаковой скоростью, что и двигатель. Гидротрансформатор в разрезе на рисунке ниже показывает, как всё это связано внутри гидротрансформатора.
Насос внутри гидротрансформатора является одним из видов центробежных насосов. В то время как он вращается, жидкость движется направленно от центра к краям, примерно как вращающийся барабан стиральной машины во время отжима бросает воду и одежду по своим стенкам. В то же время, так как жидкость устремляется от центра, в это центре создаётся вакуум, который привлекает ещё больше жидкости.
Затем жидкость поступает в лопасти турбины, которая связана с передачей. Именно турбина заставляет передачу крутиться, что в основном и приводит в движение Ваш автомобиль. Так как же жидкость (точнее, масло) поступает из насоса к турбине?! Дело в том, что в то время, как жидкость эта устремляется от центра к краям насоса, она встречает на своём пути лопасти насоса, которые направлены таким образом, что жидкость рикошетит о них и направляется уже вдоль оси вращения насоса прочь от него - к турбине, которая как раз и расположена напротив насоса.
Чтобы ещё проще представить принцип работы гидротрансформатора, представим ситуацию с расположенными друг напротив друга на небольшом расстоянии (допустим, около одного метра) комнатными вентиляторами и направленными друг напротив друга - если включить один из вентиляторов, то он за счёт своих искривлённых лопастей погонит воздух от себя к вентилятору, который стоит напротив него, а тот, в свою очередь, начнёт вращаться, потому как его лопасти также искривлены и поток воздуха толкает их все в какую-либо одну сторону (именно в ту сторону, в какую и начнёт вращаться вал вентилятора).
Но мы всё ещё двигаемся далее: жидкость выходит из турбины в её центре, двигаясь опять же в другом - противоположном направлении, чем то, в котором она когда-то вошла в турбину - то есть снова по направлению к насосу. И вот здесь заключается большая проблема - дело в том, что по своей конструкции (точнее, по конструкции своих лопастей, насос и турбина вращаются в противоположные стороны, и, если жидкости будет разрешено попасть обратно в насос, то это будет сильно замедлять двигатель. Вот почему гидротрансформатор имеет статор, который, благодаря своей конструкции, изменяет направление движения масла, и, таким образом, остаточная энергия, которая возвращается от турбины к насосу, идёт в дело - немного помогая двигателю раскручивать насос.
Важно отметить, что скорость вращения турбины никогда не будет равной скорости вращения насоса, а КПД в гидротрансформаторе даже близко не будет стоять к механическим шестерёнчатым механизмам, передающим крутящий момент. Именно поэтому у автомобиля с АКПП значительно более высокий расход топлива. Для борьбы с этим эффектом, большинство автомобилей имеет гидротрансформатор, снабжённый блокировочной муфтой . Когда требуется, чтобы две половинки гидротрансформатора (насос и турбина) вращались с одинаковой скоростью (это происходит, например, когда автомобиль движется на высокой скорости), блокировочная муфта блокирует их вместе намертво, что исключает проскальзывание насоса относительно турбины и, таким образом, повышает эффективность расхода топлива.
howcarworks.ru
Схема гидротрансформатора:1 — блокировочная муфта;2 — турбинное колесо;3 — насосное колесо;4 — реакторное колесо;5 — механизм свободного хода
Гидротрансформатор был изобретен немецким профессором Феттингером в 1905 г. Прежде чем найти применение на автомобилях, гидротрансформатор использовался на судах и тепловозах.Простейший гидротрансформатор, выполнен в виде камеры тороидальной формы и включает в себя три лопастных колеса: насосное, вал которого соединен с коленчатым валом двигателя; турбинное, соединенное с трансмиссией, и реактор, установленный в корпусе гидротрансформатора.Гидротрансформатор заполняется специальной жидкостью. Каждое колесо имеет наружный и внутренний торцы, между которыми располагаются профилированные лопасти, образующие каналы для протока жидкости. Все колеса гидротрансформатора максимально приближены друг к другу, а вытеканию жидкости препятствует специальное уплотнение.При вращении коленчатого вала двигателя вращается насосное колесо, которое перемещает жидкость, находящуюся между его лопастями. Жидкость не только вращается относительно оси гидротрансформатора, но и за счет воздействия на нее центробежных сил перемещается вдоль лопастей насосного колеса по направлению от входа к выходу, что сопровождается увеличением кинетической энергии потока. На выходе из насосного колеса поток жидкости попадает на турбинное колесо, оказывая силовое воздействие на его лопасти. Затем поток попадает в реактор, пройдя который, возвращается к входу в насосное колесо. Таким образом, жидкость постоянно перемещается по замкнутому кругу циркуляции, образованному проточными частями всех трех лопастных колес, и находится с ними в силовом взаимодействии. При этом насос передает энергию двигателя потоку, а тот, в свою очередь, — турбине.Если бы между насосным и турбинным колесами отсутствовал реактор, то такая конструкция (гидромуфта) осуществляла бы перенос энергии от двигателя к трансмиссии гидравлическим способом, без возможности изменения крутящего момента. Расположенный между колесами гидротрансформатора неподвижный реактор, имеет лопасти специального профиля, которые изменяют направление потока жидкости, выходящей из турбинного колеса и направляют его под определенным углом на лопасти насосного колеса. Это позволяет значительно увеличить передаваемый от двигателя в трансмиссию крутящий момент.Любой гидротрансформатор характеризуется определенным КПД, передаточным отношением, которое показывает соотношение угловых скоростей его колес, и коэффициентом трансформации, показывающим, во сколько раз увеличивается значение крутящего момента. Максимальный коэффициент трансформации зависит от конструкции гидротрансформатора и может составлять до 2,4 (при неподвижном турбинном колесе). При увеличении частоты вращения вала двигателя увеличивается угловая скорость насосного и турбинного колес, а увеличение крутящего момента в гидротрансформаторе плавно уменьшается. Когда угловая скорость турбинного колеса приближается к угловой скорости насосного, поток жидкости, поступающей на лопасти реактора, изменяет свое направление на противоположное.Для того чтобы реактор на этом режиме не создавал помех потоку жидкости, его устанавливают на муфте свободного хода, и он начинает свободно вращаться (гидротрансформатор переходит на режим гидромуфты), что позволяет, в свою очередь, снизить потери. Такие гидротрансформаторы называют комплексными.КПД гидротрансформатора определяет экономичность его работы. Максимальное значение КПД гидротрансформатора может быть от 0,85 до 0,97, но обычно находится в диапазоне от 0,7 до 0,8. В комплексном гидротрансформаторе на режиме гидромуфты можно получить максимальное значение КПД — 0,97.Изменение режимов работы гидротрансформатора происходит автоматически. Если увеличивать нагрузку на выходе из гидротрансформатора, то происходит уменьшение угловой скорости турбины, что приводит к увеличению коэффициента трансформации.
Детали гидротрансформатора:1 — насосное колесо;2 — турбинное колесо;3 — крышки муфты свободного хода;4 — часть корпуса гидротрансформатора;5 — остатки рабочей жидкости с продуктами механического износа деталей;6 — колесо реактора;7 — муфта свободного хода реактора;8 — упорная шайба турбинного колеса;9 — упорный подшипник реактора;10 — поршень блокировки гидротрансформатора
К сожалению, гидротрансформатор имеет малый диапазон передаточных чисел, не обеспечивает движения задним ходом, не разобщает двигатель от трансмиссии (необходима сложная система опорожнения проточных частей от рабочей жидкости). Поэтому за гидротрансформатором устанавливают специальную коробку передач, которая компенсирует указанные недостатки. Такая гидромеханическая передача является бесступенчатой и позволяет получить любое передаточное число в заданном диапазоне.В гидромеханических передачах в основном применяются механические планетарные коробки передач, которые легко поддаются автоматизации, но иногда используют и обычные ступенчатые коробки передач с автоматическим управлением.Первые американские ГМП легковых автомобилей имели двухступенчатую передачу, причем низшая передача включалась вручную. Однако впоследствии одной автоматической передачи оказалось явно недостаточно и появились ГМП с двумя и тремя автоматическими передачами. Для повышения топливной экономичности, гидротрансформаторы стали делать блокирующимися — после разгона на высшей передаче насосное и турбинное колеса жестко соединялись фрикционной муфтой. Затем в конце 1980-х гг. блокировку гидротрансформатора стали применять на всех передачах, кроме первой.
Современная четырехступенчатая ГМП автомобиля классической компоновки
wiki.zr.ru
Гидротрансформатор является составляющей частью АКПП. Он обеспечивает осуществление передачи момента силы от двигателя непосредственно к установленной трансмиссии. В силу своей внешней особенности, другое название гидротрансформатора – бублик.
Гидротрансформатор в разобранном виде
Устройство гидротрансформатора и его функционирование. Бублик в автомобильной системе располагается между автоматической трансмиссией и силовой установкой. Следует выделить следующие составляющие гидротрансформатора:
Схема гидротрансформатора
Комплектующие детали, относящиеся к гидротрансформатору, рассчитаны на продолжительный рабочий срок.
Особенность принципа работы гидротрансформатора заключается в том, что задействуются во время передвижения все составляющие элементы бублика. В частности, залитая жидкость начинает двигаться направленно от центра к краям. Увеличивается момент силы. Турбинное колесо раскручивает с определенной скоростью горючее, чтобы то попало на реактивное колесо. Оно способствует ускорению потока масла.
Необходимость ремонта гидротрансформатора возникает при ухудшении управляемости транспортного средства. Перечислим основные признаки неисправности гидротрансформатора:
В случае появления вибрации, следует проверить клапаны гидроблока, состояние масляного фильтра. Если фильтрующий элемент забит, он должен быть немедленно заменен. В большинстве случаев замена масляного фильтра осуществляется вместе с маслом.
Неисправность может крыться в изношенных подшипниках. Как правило, со стороны КПП тз-за этого появляется характерный звук, который проходит, при наборе оборотов. В данном случае необходимо совершение разборки гидротрансформатора. Недопустимым является совершение поездки, если отмечается проскальзывание турбинного колеса по отношению к насосному.
С такой проблемой, как течь сальников хозяин транспортного средства может столкнуться после 150000 км пробега. При аккуратной эксплуатации машины, подтеки могут появиться к 200000 км пробега. К данному времени сальник теряет свою эластичность, из-за чего водитель сталкивается с утечкой жидкости. В результате, установленный насос будет испытывать колоссальные нагрузки, так как не будет поступать оптимального количества масла.
Любые симптомы, признаки неисправности гидротрансформатора необходимо своевременно устранить. Это будет являться гарантией того, что в автомобильной системе не возникнет более серьезной неисправности, на ликвидацию которой понадобятся большие финансовые затраты. Как правило, бублик теряет свою рабочую способность в ходе износа его составляющих деталей.
Доверить устранение поломки гидротрансформатора следует механикам, которые работают в профессиональном сервисном центре. Они помогут не только с разборкой гидротрансформатора, но и с его сборкой, при которой требуется сварка. В завершении восстановленное устройство проверяется на герметичность.
Замена гидротрансформатора должна происходить в специально созданных для этого условиях. Профессиональное оборудование для ремонта гидротрансформаторов имеется только на проверенных станциях. В частности, обязательно применение автоматического станка, который может осуществлять сварочные работы, когда нужен ремонт гидротрансформатора. Не следует медлить с ремонтом, если буксует гидротрансформатор.
Своевременный уход за автомобильной системой позволит продлить ресурс бублика. Данная запчасть не является дешевой комплектующей деталью. Учитывая это, многие автовладельцы, которые столкнулись с проблемами работы гидротрансформатора, решают его восстановить.
Во время ремонта гидротрансформатора своими руками, данное устройство необходимо демонтировать из штатного места. Требуется его промывка, дефектовка. В качестве моющего средства следует применить специальный растворитель. В данном случае автовладелец должен иметь не только соответствующий опыт, но и располагать специальными инструментами, рабочим оборудованием. Следует отметить, что самостоятельный ремонт гидротрансформатора может заключаться в замене сальников, втулок, фрикционных накладок.
prokpp.ru
Гидротрансформатор выполняет важную роль в автоматической коробке передач, он занимает пространство между корпусом силового агрегата и трансмиссией авто. Гидротрансформатор в АКПП работает, как муфта сцепления – передает вращение от работающего мотора непосредственно на автомат. Внешнее сходство гидротрансформатора АКПП с характерной формой тора позволяет называть данное устройство бубликом. Гидротрансформатор автоматической коробки передач – составная часть гидросистемы трансмиссии. Управление его работой осуществляется при помощи специального гидроблока.
Основное предназначение гидротрансформатора АКПП – это обеспечение плавного и своевременного перехода автоматической трансмиссии с одной передачи на другую. Первые образцы гидротрансформаторов для КПП были созданы в ХХ веке. С целью модернизации устройства ГТР, применялись новые технологии. Гидротрансформаторы АКПП становились более сложными по конструкции.
Помимо обеспечения плавности перехода на различные передачи, новые гидротрансформаторынаделены дополнительной функцией сцепления. При этом в момент переключения скоростей (понижающей либо повышающей) гидротрансформатор размыкает непосредственную связь двигателя внутреннего сгорания с коробкой передач. Гидротрансформатор АКПП частично принимает на себя силу крутящего момента. Именно это обеспечивает уникальную плавность при переключении скоростей.
В отличие от механической КПП, в автомате передача крутящего момента осуществляется не под воздействием механического трения между фрикционными дисками гидротрансформатора АКПП. Соединение двигателя и автоматической коробки передач происходит, благодаря давлению трансмиссионной жидкости. Срабатывает эффект вращения мельницы от ветра.Устройство гидротрансформатора обеспечивает сохранение целостности автоматической коробки и защиту от механических повреждений за счет важной функции – амортизации.
Фрикционные диски гидротрансформатора АКПП образуют сборный пакет, состоящий из деталей мобильного и неподвижного типов. При включении передачи в магистралях создается необходимое давление. При помощи специального устройства – гидравлического толкателяфрикционы гидротрансформатора АКПП взаимно сжимаются, включается заданная скорость.
Современный гидротрансформатор блокируется при сравнивании скоростей оборотов валов – входного и выходного. На практике это случается после развития скорости транспортного средства, равной более 70 км/час. Тормозная накладка поршня гидротрансформатора замедляет вращение масляной жидкости. Валы двигателя внутреннего сгорания и коробки передач взаимно фиксируются. Силовой агрегат и трансмиссия образуют единое целое, происходит синхронное вращение валов.
Когда гидротрансформатор полностью передает вращение на АКПП от силового агрегата, потери мощности равны нулю. Данная функция гидротрансформатора напоминает действие педали механизма сцепления на коробке перемены передач механического типа.
Во время работы гидротрансформатора кинетическая энергия двигателя расходуется на движение масла, которое разогревается от трения. При взаимном касании фрикциона со стальным диском происходит интенсивное истирание накладки, фрагменты износа в виде пыли попадают в масляный состав гидротрансформатора. Стабильность работы автоматической трансмиссии и ходовой части находится в прямой зависимости от степени износа фрикционных накладок и смазочного материала.
Гидротрансформатор АКПП передает мощность от двигателя внутреннего сгорания непосредственно на узлы и детали автоматической трансмиссии. Принцип работы АКПП –гидротрансформатор не только передает вращение на коробку передач, он эффективно погашает амплитуду вибраций и сводит к минимуму силы механических ударов со стороны маховика.
Работа «бублика» осуществляется по замкнутому циклу. Смазочное вещество является главным рабочим материалом гидротрансформатора. Его вязкостные характеристики существенно отличаются от свойств масла, используемого в МКПП. При работе гидротрансформатора АКПП смазочное вещество под воздействием насосного колеса принудительно подается на лопатки реактора и турбины. Лопатки создают дополнительные завихрения и ускоряют движение масла,скорость вращения рабочих колес гидротрансформатора существенно падает, момент соответственно возрастает.
Ускорение вращения коленвала способствует выравниванию скоростей колеса насоса и турбины гидротрансформатора. При большой скорости автомобиля гидротрансформатор только передает крутящий момент по аналогии с работой гидромуфты. При блокировке ГТР вращение передается напрямую от силового агрегата на АКПП.
При переходе на другую передачу элементы гидротрансформатора разъединяются. Процесс сглаживания угловых скоростей возобновляется до окончательного выравнивания вращенияработающих турбин.
Функционирование гидротрансформатора происходит под постоянным контролем электронного блока управления ЭБУ. Датчики, установленные на гидротрансформаторе, подают сигналы на ЭБУ. Исходя из поступающих данных, формируются выходные управляющие команды. Если электронные приборы сообщают об ошибке, это означает, что возникли какие-то проблемы с ГТР.
Важно: Признаки неисправностей гидротрансформатора АКПП могут проявляться как в механической, так и электронной частях механизма. При экстренной остановке коробки-автомата необходимо провести тщательную диагностику с последующим ремонтом элементов гидротрансформатора.
На представленной схеме показано в разрезе, из чего состоит гидротрансформатор автоматической коробки перемены передач.
Спираль справа – схематическое изображение траектории движения масла внутри корпуса гидротрансформатора.
Здесь изображен принцип работы гидротрансформатора в различных режимах.
Гидротрансформатор занимает лидирующие позиции по надежности среди различных узлов и деталей АКПП. Он полностью вырабатывает заявленный эксплуатационный срок. Однако, это не означает, что ГТР вечен. С помощью характерных симптомов опытные водители могут определить место возможных поломок в гидротрансформаторе и автоматической коробке передач.
Появившиеся признаки и неполадки в гидротрансформаторе АКПП игнорировать не рекомендуется. Если вовремя не заменить изношенный фрикцион блокировки, гидротрансформатор начнет чрезмерно перегреваться, выходной вал коробки передач – вибрировать, масляный насос преждевременно выйдет из строя. Соответственно, прекратится подача масла в гидроблок и к пакетам сцепления АКПП.
Совет: При смене масляного фильтра рекомендуется производить полную замену масла в автоматической коробке передач и двигателе внутреннего сгорания одновременно. В случае, когда на контрольном щупе замечены следы пыли алюминия, следует проверить муфту свободного хода, которая изготовлена из данного материала, а также степень выработки торцовой шайбы.
Если на остановке при работающем моторе остро ощущается запах оплавленного пластика, это свидетельствует о чрезмерном перегреве гидротрансформатора. Основная причина повышения температуры ГТР – снижение объема смазочного материала (эффект масляного голодания гидротрансформатора и автоматической коробки передач). Охлаждающая система автоматической коробки передач тоже часто отказывает в работе. Причина дефекта СО кроется в чрезмерной засоренности теплообменника гидротрансформатора. После замены масла и тщательного обследования системы охлаждения неприятный запах гидротрансформатора улетучится.
Для многих автовладельцев ремонт гидротрансформатора АКПП является сложной процедурой.Не все люди обладают необходимыми знаниями, свободным временем, желанием, чтобы качественно восстановить функции гидротрансформатора своими руками. Самая большая сложность в ремонте гидротрансформатора состоит в его демонтаже с автомобиля. Профессиональные механики обладают набором специальных инструментов и приспособлений, чтобы благополучно снять гидротрансформатор с коробки передач.
Непосредственный ремонт гидротрансформатора АКПП начинается с механического разрезания корпуса на токарном станке и внимательной диагностики состояния каждого механизма. В процессе ремонта гидротрансформатора необходимо заменить следующие элементы:
Перед разрезанием и диагностикой демонтированного гидротрансформатора рекомендуется слить масло в подготовленный тазик, а также тщательно промыть фрикционы и другие составляющие устройства.
Важно: Кольца и уплотнительные сальники гидротрансформатора необходимо менять на новые детали, даже при кажущемся удовлетворительном их состоянии. Во избежание протечек смазочного материала, устанавливать старые уплотнения категорически не рекомендуется.
Замена гидротрансформатора – лучшее решение. Однако, подавляющее большинство владельцев авто склоняются к тому, чтобы не покупать новый корпус или гидротрансформатор АКПП в сборе. В этом случае производится сваривание частей корпусной детали. При этом соблюдается главное условие: обеспечение абсолютной герметичности сварного шва корпуса гидротрансформатора. После установки отремонтированного устройства на автоматическую коробку передач производится балансировка этого бублика в сборе.
Мероприятие по замене гидротрансформатора АКПП сопровождается частичной или полнойзаменой трансмиссионного масла во всей системе.
Случаются поломки гидротрансформатора АКПП, которые не подлежат восстановлению. Автомеханики рекомендуют установить новый гидротрансформатор взамен поврежденного механизма.
Совет: Опытные мастера утверждают, ремонт гидротрансформатора автоматической коробки передач не отличается большой сложностью. Однако, перед самостоятельным проведением восстановительных работ в условиях гаража автовладельцам нужно внимательно ознакомиться с особенностями конструкции гидротрансформатора, методами диагностики, ремонта и пр. Для успешного проведения ремонта гидротрансформатора своими руками не помешает обзавестись специальными инструментами и необходимым оборудованием.
Чтобы увидеть, как производится ремонт гидротрансформатора АКПП на одном из специализированных предприятий, предлагается ознакомиться с материалами видео ролика, посвященного данной теме https://www.youtube.com/watch?v=hNXUsosCFh5.
Износ тормозной прокладки фрикциона – наиболее часто является причиной, приводящей к ремонту гидротрансформатора:
Замена прокладки гидротрансформатора необходима для обеспечения герметичности системы и предотвращения утечек трансмиссионного масла. Если ее не заменить вовремя, возникают неприятные последствия:
Автомеханики сервисных компаний в процессе диагностики ГТР часто выявляют дополнительные дефекты в гидротрансформаторах автоматических коробок передач:
Почти все перечисленные дефекты выявляются только при вскрытии корпусной детали гидротрансформатора. После определения поломок производится их замена на новые рабочие элементы.
Если ремонт гидротрансформатора производится в условиях специализированных мастерских, оснащенных современным оборудованием, технологическими приспособлениями, оригинальными запчастями, восстановленный гидротрансформатор будет служить в течение длительного срока. Время эксплуатации отремонтированного механизма составляет около 80% от первоначального ресурса. Частичная либо полная замена трансмиссионного масла также входит в перечень ремонтных услуг. Длительность ремонта гидротрансформатора автоматической коробки передач в среднем занимает три рабочих дня.
По мнению квалифицированных специалистов, поломанный гидротрансформатор невозможно полноценно восстановить без разрезания корпуса.
При самостоятельном обслуживании бублика в гаражных условиях нужно избегать применения концентрированных растворителей и прочих чистящих, моющих средств. Это вызвано тем, что структура резиновых уплотнителей гидротрансформатора быстро разрушается под воздействием агрессивных веществ.
motoran.ru