|
||||
|
Екатерина - специалист по продаже а/м КАМАЗ
43118-010-10 (дв.740.30-260 л.с.) | 2 220 000 |
43118-6033-24 (дв.740.55-300 л.с.) | 2 300 000 |
65117-029 (дв.740.30-260 л.с.) | 2 200 000 |
65117-6010-62 (дв.740.62-280 л.с.) | 2 350 000 |
44108 (дв.740.30-260 л.с.) | 2 160 000 |
44108-6030-24 (дв.740.55,рест.) | 2 200 000 |
65116-010-62 (дв.740.62-280 л.с.) | 1 880 000 |
6460 (дв.740.50-360 л.с.) | 2 180 000 |
45143-011-15 (дв.740.13-260л.с) | 2 180 000 |
65115 (дв.740.62-280 л.с.,рест.) | 2 190 000 |
65115 (дв.740.62-280 л.с.,3-х стор) | 2 295 000 |
6520 (дв.740.51-320 л.с.) | 2 610 000 |
6520 (дв.740.51-320 л.с.,сп.место) | 2 700 000 |
6522-027 (дв.740.51-320 л.с.,6х6) | 3 190 000 |
Нужны самосвалы? Обратите внимание на Ford-65513-02. |
Контактная информация.
г. Набережные Челны, Промкомзона-2, Автодорога №3, база «Партнер плюс».
тел/факс (8552) 388373.
Схема проезда
Генератор превращает механическую энергию в электрическую путем вращения проволочной катушки в магнитном поле. Электрический ток вырабатывается и тогда, когда силовые линии движущегося магнита пересекают витки проволочной катушки {рисунок справа). Электроны {голубые шарики) перемещаются по направлению к положительному полюсу магнита, а электрический ток течет от положительного полюса к отрицательному. До тех пор, пока силовые линии магнитного поля пересекают катушку (проводник), в проводнике индуцируется электрический ток.
Аналогичный принцип работает и при перемещении проволочной рамки относительно магнита {дальний рисунок справа), т. е. когда рамка пересекает силовые линии магнитного поля. Индуцированный электрический ток течет таким образом, что его поле отталкивает магнит, когда рамка приближается к нему, и притягивает, когда рамка удаляется. Каждый раз, когда рамка изменяет ориентацию относительно полюсов магнита, электрический ток также изменяет свое направление на противоположное. Все то время, пока источник механической энергии вращает проводник (или магнитное поле), генератор будет вырабатывать переменный электрический ток.
Простейший генератор переменного тока состоит из проволочной рамки, вращающейся между полюсами неподвижного магнита. Каждый конец рамки соединен со своим контактным кольцом, скользящим по электропроводной угольной щетке (рисунок над текстом). Индуцированный электрический ток течет к внутреннему контактному кольцу, когда соединенная с ним половина рамки проходит мимо северного полюса магнита, и, наоборот, к внешнему контактному кольцу, когда мимо северного полюса проходит другая половина рамки.
Одним из наиболее экономически выгодных способов выработки сильного переменного тока является использование одного магнита, вращающегося относительно нескольких обмоток. В типичном трехфазном генераторе три катушки расположены равноудалено от оси магнита. Каждая катушка вырабатывает переменный ток, когда мимо нее проходит полюс магнита (правый рисунок).
Когда магнит вдвигается в проволочную катушку, он индуцирует в ней электрический ток. Этот ток заставляет стрелку гальванометра отклоняться в сторону от нулевого положения. Когда магнит вынимается из катушки, электрический ток изменяет свое направление на противоположное, и стрелка гальванометра отклоняется в другую сторону от нулевого положения.
Магнит не будет индуцировать электрический ток до тех пор, пока его силовые линии не начнут пересекать проволочную петлю. Когда полюс магнита вдвигается в проволочную петлю, в ней индуцируется электрический ток. Если магнит прекращает движение, электрический ток (голубые стрелки) также прекращается (средняя диаграмма). Когда магнит вынимается из проволочной петли, в ней индуцируется электрический ток, текущий в противоположном направлении.
information-technology.ru
В трехфазном генераторе имеются три одинаковые обмотки, расположенные под углом 120° друг к другу. В обмотках возникают сдвинутые на 120° переменные напряжения. Это — трехфазный ток.
Из соотношения
\[ U_{m}[\sin(ωt) + sin(ωt + 120°) + sin(ωt - 120°)] = 0 \]
следует:
Трехфазный ток (напряжение) - алгебраическая сумма трех токов (напряжений) в каждый момент времени равна нулю.
трехфазный генератор — трехфазный ток
Чтобы сократить число проводов, необходимых для передачи трехфазного тока, обмотки генератора (их называют фазными обмотками) соединяют особым образом.
Три фазных обмотки соединяются последовательно, так что образуется замкнутый контур.
Соединение треугольником в трехфазном генераторе
Для напряжения между обмотками (линейного напряжения) и тока в проводниках справедливы соотношения
Линейное напряжение:
\[ U_{12} = U_{13} = U_{23} = Фазное напряжение генератора \]
Линейный ток:
\[ I_{1} = I_{2} = I_{3} = \sqrt{3} · (Фазный ток) \]
При соединении звездой все три фазные обмотки соединяются в одной точке — центре звезды. Эта точка заземляется, и провод, соединяющий центр звезды с землей, служит четвертым, так называемым нулевым проводником.
Соединение звездой в трехфазном генераторе
При соединении звездой напряжения и токи связаны следующими соотношениями:
Линейное напряжение:
\[ U_{12} = U_{13} = U_{23}= \sqrt{3} · (Фазное напряжение генератора) \]
Фазное напряжение:
\[ U_{10} = U_{20} = U_{30} \]
и
Линейный ток:
\[ I_{1} = I_{2} = I_{3} = (Фазный ток) \]
Ток в нулевом проводнике:
\[ I_{0} = 0 \]
В осветительной сети фaзное напряжение равно 220 В, линейное напряжение равно
\[ \sqrt{3} · 220 (В) = 380 (В) \]
стр. 674 |
www.fxyz.ru
Генераторы переменного тока, которые еще часто называют альтернаторами, представляют собой электромеханические устройства, предназначенные для преобразования механической энергии в электрическую. Принцип работы множества из них основывается на вращении магнитного поля. Современные генераторы имеют довольно простую конструкцию и способны производить электроэнергию высокого напряжения.
Большой востребованностью в современной энергетике стали пользоваться электромеханические генераторы вращающегося типа.
Принцип их работы основывается на возникновении электродвижущей силы в проводнике, который находится под воздействием переменного магнитного поля. Все генераторы состоят из двух основных частей: индуктора, в котором создается магнитное поле, и якоря, создающего электродвижущую силу. Неподвижный элемент генератора носит название статор, а вращающийся — ротор. В генераторах переменного тока ротор выполняет функции индуктора.
Конструктивно индуктор представляет собой электромагнитную систему, в состав которой входит 2 полюса или больше и обмотка возбуждения. Эту обмотку питает постоянный ток возбуждения. В некоторых случаях используются индукторы, основой которых являются постоянные магниты.
Во всем современном мире подавляющую часть электроэнергии получают с использованием синхронных альтернаторов.
(Альтернатор) Электрический генератор — это устройство, в котором не электрические виды энергии преобразуются в электрическую энергию.
Вращающийся индуктор в таких устройствах образует магнитное поле, индуцирующее в статоре (как правило, с трехфазной обмоткой) электродвижущую силу переменного типа. Численно частота такой силы совпадает с количеством оборотов ротора за определенный промежуток времени.
Трехфазное напряжение, которое производится трехфазным генератором, можно стабилизировать за счет применения трех однофазных стабилизаторов, подсоединенных по схеме «звезда».
Для современных потребителей, предъявляющих высокие требования к полнофазному питанию, это не самое лучшее решение, поскольку при отключении одного из стабилизаторов при аварийной ситуации отключается одна фаза.
Подобной ситуации можно избежать, используя синхронизатор, который в случае отсутствия одной фазы или двух просто отключает нагрузку. Существуют в настоящее время также трехфазные стабилизаторы напряжения, установка которых производится намного проще.
Генераторы переменного тока (альтернаторы) широко применяются в поликлиниках, детских садиках, морозильных складах, больницах и многих других местах и учреждениях, в которых требуется поддержание стабильного электроснабжения.
Такое оборудование можно использовать также на строительных объектах в случае невозможности подсоединения к централизованной электросети. Они позволяют снабжать электричеством домашние сети коттеджей и загородных домов.
lidol.ru
В настоящее время электрическая энергия переменного тока вырабатывается, передается и распределяется между отдельными токоприемниками в системе трехфазных цепей.
Принцип соединения проводов.
Системой трехфазных цепей называют такую совокупность электрических цепей, в которой токоприемники получают питание от общего трехфазного генератора.
Трехфазным называется генератор, который имеет обмотку, состоящую из трех частей. Каждая часть этой обмотки называется фазой. Поэтому эти генераторы и получили название трехфазные. Следует отметить, что термин «фаза» в электротехнике имеет два значения:
Рис. 1. Схема трехфазного генератора.
Для уяснения принципа действия трехфазного генератора обратимся к модели, схематически изображенной на рисунке 1. Модель состоит из статора, изготовленного в виде стального кольца, и ротора - постоянного магнита. На кольце статора расположена трехфазная обмотка с одинаковым числом витков в каждой фазе. Фазы обмотки смещены в пространстве одна относительно другой на угол 120°.Представим себе, что ротор модели генератора приведен во вращение с постоянной скоростью против движения часовой стрелки. Вследствие непрерывного движения полюсов постоянного магнита относительно проводников обмотки статора в каждой ее фазе будет наводиться ЭДС.
Применяя правило правой руки, можно убедиться, что ЭДС, наводимая в фазе обмотки северным полюсом вращающегося магнита, будет действовать в одном направлении, а наводимая южным полюсом - в другом. Следовательно, ЭДС фазы генератора будет переменной.
Крайние точки (зажимы) каждой фазы генератора всегда размечают: одну крайнюю точку фазы называют началом, а другую - концом. Начала фаз обозначают латинскими буквами A, B, C, а концы их - соответственно X, Y, Z. Наименования «начало» и «конец» фазы дают, руководствуясь следующим правилом: положительная ЭДС генератора действует в направлении от конца фазы к ее началу.
ЭДС генератора условимся считать положительной, если она наведена северным полюсом вращающегося магнита. Тогда разметка зажимов генератора для случая вращения его ротора против движения часовой стрелки должна быть такой, как показано на рисунке 1.
При постоянной скорости вращения полюсов ротора амплитуда и частота ЭДС, создаваемых в фазах обмотки статора, сохраняются неизменными. Однако в каждое мгновение величина и направление действия ЭДС одной из фаз отличаются от величины и направления действия ЭДС двух других фаз. Это объясняется пространственным смещением фаз. Все явления во второй фазе повторяют явления в первой фазе, но с опозданием.
Рис. 2. Кривые мгновенных значений трехфазной системы Э.Д.С.
Говорят, что ЭДС второй фазы отстает во времени от ЭДС первой фазы. Они, например, в разное время достигают своих амплитудных значений. Действительно, наибольшее значение ЭДС, наведенной в какой-либо фазе, будет в тот момент, когда центр полюса ротора проходит середину этой фазы. В частности, для момента времени, соответствующего расположению ротора, показанному на рисунке 1, электродвижущая сила первой фазы генератора будет положительной и максимальной.
Положительное максимальное значение ЭДС второй фазы наступит позже, когда ротор повернется на угол 120°. Поскольку за один оборот двухполюсного ротора генератора происходит полный цикл изменения ЭДС, то время T одного оборота является периодом изменения ЭДС. Очевидно, что для поворота ротора на 120° необходимо время, равное одной трети периода (T/3).
Следовательно, все стадии изменения ЭДС второй фазы наступают позже соответствующих стадий изменения ЭДС первой фазы на одну треть периода. Такое же отставание в периодическом изменении ЭДС наблюдается в третьей фазе по отношению ко второй. Разумеется, что по отношению к первой фазе периодические изменения ЭДС третьей фазы совершаются с опозданием на две трети периода (2/3 T).
Рис.3. Схема несвязанной трехфазной цепи.
Путем придания соответствующей формы полюсам магнитов можно добиться изменения ЭДС во времени по закону, близкому к синусоидальному.Следовательно, если изменение ЭДС первой фазы генератора происходит по закону синусаe1 = Eмsin?t ,то закон изменения ЭДС второй фазы может быть записан формулойe2 = Eм sin? (t ? T/3) , а третьей - формулой e3 = Eм sin? (t ? 2/3 T).
Сказанное иллюстрирует график рисунка 2.
Таким образом, можно сделать следующий вывод: при равномерном вращении полюсов ротора во всех трех фазах генератора наводятся переменные ЭДС одинаковой частоты и амплитуды, периодические изменения которых по отношению друг к другу совершаются с запаздыванием на 1/3 периода.
Трехфазный генератор служит источником питания как однофазных, так и трехфазных электрических устройств. Однофазные токоприемники, как известно, имеют два внешних зажима. К ним относятся, например, осветительные лампы, различные бытовые приборы, электросварочные аппараты, индукционные печи, электродвигатели с однофазной обмоткой.
Трехфазные устройства в общем случае имеют шесть внешних зажимов. Каждое такое устройство состоит из трех (обычно одинаковых) электрических цепей, которые называются фазами. Примерами трехфазных токоприемников могут служить электрические дуговые печи с тремя электродами или электродвигатели с трехфазной обмоткой.
Трехфазную цепь называют несвязанной, если каждая фаза генератора независимо от других соединена двумя проводами со своим токоприемником (рис. 3). Основной недостаток несвязанной трехфазной цепи заключается в том, что для передачи энергии от генератора к приемникам нужно применять шесть проводов. Число проводов может быть уменьшено до четырех или даже до трех, если фазы генератора и токоприемников соединить между собой соответствующим способом. В этом случае трехфазную цепь называют связанной трехфазной цепью.
Рис.4. Трехфазная обмотка, соединенная звездой: а - схема соединения, б - схема обмотки.
На практике почти всегда применяют связанные трехфазные цепи как более совершенные и экономичные. Существует два основных способа соединения фаз генератора и фаз приемников: соединение звездой и соединение треугольником.При соединении фаз генератора звездой (рис. 4, а) все «концы» фазных обмоток X, Y, Z соединяют в одну общую точку 0, называемую нейтральной или нулевой точкой генератора.
На рисунке 4, б схематически показаны три фазы генератора в виде катушек, оси которых смещены в пространстве одна относительно другой на угол 120°.Напряжение между началом и концом каждой фазы генератора называют фазным напряжением, а между началами фаз - линейным.
Поскольку фазные напряжения изменяются во времени по синусоидальному закону, то линейные напряжения также будут изменяться по синусоидальному закону. Условимся за положительное направление действия линейных напряжений считать то направление, когда они действуют:
звездой: а - схема соединения, б - схема обмотки
Рис.5. Четырехпроводная трехфазная цепь.
Эти три условно положительных направления действия линейных напряжений на рисунке 4, б показаны стрелками.Расчеты и измерения показывают, что действующее значение линейного напряжения генератора, три фазы которого соединены в звезду, больше действующего значения фазного напряжения.
Для передачи энергии от генератора, соединенного звездой, к однофазным или трехфазным токоприемникам в общем случае нужны четыре провода. Три провода присоединяют к началам фаз генератора (A, B, C). Эти провода называют линейными проводами. Четвертый провод соединяют с нейтральной точкой (0) генератора и называют нейтральным (нулевым) проводом.
Трехфазная цепь с нейтральным проводом дает возможность использовать два напряжения генератора. Приемники в такой цепи можно включать между линейными проводами на линейное напряжение или между линейными проводами и нейтральным проводом на фазное напряжение.
Рис.6. Схема включения однофазных токоприемников в четырехпроводную сеть.
На рисунке 5 показана схема включения токоприемников, рассчитанных на фазное напряжение генератора. В этом случае фазы токоприемников будут иметь общую точку соединения - нейтральную точку 0’, а токи в линейных проводах (линейные токи) будут равны токам в соответствующих фазах нагрузки (фазным токам).
Каждая фаза нагрузки может быть образована как одним токоприемником, так и несколькими токоприемниками, включенными между собой параллельно (рис. 6).Если фазные токи и углы сдвига фаз этих токов по отношению к фазным напряжениям одинаковы, то такая нагрузка называется симметричной. Если хотя бы одно из указанных условий не соблюдается, то нагрузка будет несимметричной.
Симметричная нагрузка может быть создана, например, лампами накаливания одинаковой мощности. Допустим, что каждая фаза нагрузки образована тремя одинаковыми лампами (рис. 7).Путем непосредственных измерений можно убедиться, что при включении нагрузки звездой с нейтральным проводом напряжение на каждой фазе нагрузки Uф будет меньше линейного напряжения Uл подобно тому, как это было при включении звездой фаз обмоток генератора.
Рис. 7. Схема соединения симметричной нагрузки звездой.
На практике широкое распространение получили трехфазные цепи с нейтральными проводами при напряженияхUл = 380 В; Uф = 220 ВилиUл = 220 В; Uф = 127 В.
Из рисунка 7 видно, что ток в линейном проводе (Iл) равен току в фазе (Iф)Iл = Iф.
Величина тока в нейтральном проводе при симметричной нагрузке равна нулю, в чем можно убедиться также путем непосредственного измерения.
Но если ток в нейтральном проводе отсутствует, то зачем же нужен этот провод?
Для выяснения роли нейтрального провода проделаем следующий опыт. Допустим, что в каждой фазе нагрузки имеется по три одинаковых лампы и одному вольтметру, а в нейтральный провод включен амперметр (см. рис. 7). Когда в каждой фазе включены по три лампы, то все они находятся под одним и тем же напряжением и горят с одинаковым накалом, а ток в нейтральном проводе равен нулю.
Рис. 8. Схема осветительной сети жилого дома при соединении фаз нагрузки звездой.
Изменяя число включенных ламп в каждой фазе нагрузки, мы убедимся в том, что фазные напряжения не изменяются (все лампы будут гореть с прежним наклоном), но в нейтральном проводе появится ток.Отключим нейтральный провод от нулевой точки приемников и повторим все изменения нагрузки в фазах.
Теперь мы заметим, что большее напряжение будет приходиться на ту фазу, сопротивление которой больше других, то есть где включено меньшее количество ламп. В этой фазе лампы будут гореть с наибольшим накалом и даже могут перегореть. Это объясняется тем, что в фазах нагрузки с большим сопротивлением происходит и большее падение напряжения.
Следовательно, нейтральный провод необходим для выравнивания фазных напряжений нагрузки, когда сопротивления этих фаз различны.
Благодаря нейтральному проводу каждая фаза нагрузки оказывается включенной на фазное напряжение генератора, которое практически не зависит от величины тока нагрузки, так как внутреннее падение напряжения в фазе генератора незначительно. Поэтому напряжение на каждой фазе нагрузки будет практически неизменным при изменениях нагрузки.
Если сопротивления фаз нагрузки будут равными по величине и однородными, то нейтральный провод не нужен (рис. 7). Примером такой нагрузки являются симметричные трехфазные токоприемники.
Обычно осветительная нагрузка не бывает симметричной, поэтому без нейтрального провода ее не соединяют звездой (рис. 8). Иначе это привело бы к неравномерному распределению напряжений на фазах нагрузки: на одних лампах напряжение было бы выше нормального и они могли бы перегореть, а другие, наоборот, находились бы под пониженным напряжением и горели бы тускло.
По этой же причине никогда не ставят предохранитель в нейтральный провод, так как перегорание предохранителя может вызвать недопустимые перенапряжения на отдельных фазах нагрузки (см. рис. 8).
Рис. 9. Трехпроводная трехфазная цепь.
Если три фазы нагрузки включить непосредственно между линейными проводами, то мы получим такое соединение фаз токоприемников, которое называется соединением треугольником (рис. 9).
Допустим, что первая фаза нагрузки R1 включена между первым и вторым линейными проводами, вторая R2 - между вторым и третьим проводами, а третья R3 - между третьим и первым проводами. Каждый линейный провод соединен с двумя различными фазами нагрузки.
Соединять треугольником можно любые нагрузки. На рисунке 10 данатакая схема.
Рис. 10. Схема осветительной сети жилого дома при соединении фаз нагрузки треугольником.
Соединение треугольником осветительной нагрузки жилого дома показано на рисунке 11. При соединении фаз нагрузки треугольником напряжение на каждой фазе нагрузки равно линейному напряжению.Uл = Uф
Это соотношение сохраняется и при неравномерной нагрузке.
Линейный ток при симметричной нагрузке фаз, как показывают измерения, будет больше фазного тока.Однако следует иметь в виду, что при несимметричной нагрузке фаз это соотношение между токами нарушается.
Рис. 11. Схема осветительной сети жилого дома при соединении фаз нагрузки треугольником .
Принципиально можно соединять треугольником и фазы генератора, но обычно этого не делают. Дело в том, что для создания заданного линейного напряжения каждая фаза генератора при соединении треугольником должна быть рассчитана на напряжение большее, чем в случае соединения звездой. Более высокое напряжение в фазе генератора требует увеличения числа витков и усиленной изоляции для обмоточного провода, что увеличивает размеры и стоимость машины. Именно поэтому фазы трехфазных генераторов почти всегда соединяют звездой.
Приемники электрической энергии независимо от способа соединения обмоток генератора могут быть включены либо звездой, либо треугольником. Выбор того или иного способа соединения определяется величиной напряжения сети и номинальным напряжением приемников.
Поделитесь полезной статьей:
Topfazaa.ru
Написано 5 марта 2014от generator-prosto.
Если в магнитном поле вращать проводник, на его концах неизбежно будет возникать напряжение, изменяющееся по синусоидальному закону. Именно так устроены все генераторы переменного тока. Однако наиболее эффективным оказалось использование не одной катушки, а трех. В этом случае на выходе системы имеются одновременно 3 напряжения, сдвинутые между собой на 120º.
На практике наличие трехфазного напряжения оказывается очень удобным, в первую очередь, для работы двигателей. Дело в том, что процесс преобразования вращательного движения в электрический ток является обратимым. То есть, если подключить к клеммам генератора переменного тока напряжение, его ротор начнет вращаться.
Для вращения ротора двигателя необходимо не только наличие магнитного поля и переменного напряжения. Главным условием является, чтобы это поле было вращающимся. В этом случае ротор будет вовлечен в процесс и тоже начнет вращение.
Наиболее часто для обеспеченияпотребителей электроэнергией применяются электрические машины – трехфазные генераторы переменного тока. В большинстве случаев они представляют собой неподвижный статор, на стальном сердечнике которого намотаны 3 одинаковые обмотки, и ротор, приводимый во вращение посторонним источником, в качестве которого чаще всего используется турбина или двигатель внутреннего сгорания.
Между собой катушки могут соединяться «звездой». В этом случае, все начальные или же все конечные провода замыкаются в одной точке, а остальные образуют трехфазную сеть. При этом общий провод также может использоваться как нейтральный или нулевой.
Соединение «треугольником» предполагает последовательное замыкание конца первой катушки с началом второй, конца второй с началом третьей и, соответственно, конца третьей с началом первой. Таким образом, цепь замыкается в треугольник. Фазами такой системы будут точки соединения. Нулевой провод в схеме отсутствует.
Напряжение на выходе трехфазных генераторов переменного тока при заданной частоте вращения ротора может изменяться путем регулирования напряженности магнитного поля. С этой целью ротор выполняется в виде катушки, которая запитывается от источника постоянного тока через кольца и щетки. Изменяя напряжение на катушке при помощи регулятора, можно изменять, в конечном счете, напряжение на выходе генератора.
Кроме несомненного достоинства в виде готовой системы для создания вращающегося магнитного поля, трехфазные генераторы имеют и существенный недостаток: при подключении между фазами нагрузки различной мощности возникает так называемый «перекос фаз», то есть, за счет уменьшения напряжения между одними фазами начинает возрастать напряжение на других. Для нормального использования трехфазных сетей в них следует равномерно распределять нагрузку.
Популярные статьи:
Опубликовано в Виды бензогенераторовgenerator-prosto.ru
Трехфазная система переменного тока
Электростанции вырабатывают трехфазный переменный ток. Генератор трехфазного тока представляет собой как бы три объединенных вместе генератора переменного тока, работающих так, чтобы сила тока (и напряжение) изменялась у них не одновременно, а с отставанием на 1/3 периода. Это осуществляется за счет смещения катушек генераторов на 120° одна относительно другой (рис. справа).
Каждая часть обмотки генератора называется фазой. Поэтому генераторы, которые имеют обмотку, состоящую из трех частей, называют трехфазными.
Следует отметить, что термин «фаза» в электротехнике имеет два значения: 1) как величина, которая совместно с амплитудой определяет состояние колебательного процесса в данный момент времени; 2) в смысле наименования части электрической цепи переменного тока (например, часть обмотки электрической машины).
Некоторое наглядное представление о возникновении трехфазного тока дает установка, изображенная на рис. слева.Три катушки от школьного разборного трансформатора с сердечниками размещаются по окружности под углом 120° по отношению друг к другу. Каждая катушка соединена с демонстрационным гальванометром. В центре окружности на оси укрепляется прямой магнит. Если вращать магнит, то в каждой из трех цепей «катушка — гальванометр» возникает переменный ток. При медленном вращении магнита можно заметить, что наибольшее и наименьшее значения токов и их направления будут в каждый момент во всех трех цепях различными.
Таким образом, трехфазный ток представляет совместное действие трех переменных токов одинаковой частоты, но сдвинутых по фазе на 1/3 периода относительно друг друга.Каждая обмотка генератора может соединяться со своим потребителем, образуя несвязанную трехфазную систему. Выигрыша от такого соединения нет никакого по отношению к трем отдельным генераторам переменного тока, так как передача электрической энергии осуществляется с помощью шести проводов (рис. справа).
На практике получили два других способа соединения обмоток трехфазного генератора. Первый способ соединения получил название звезды (рис. слева, а), а второй — треугольника (рис. б).
При соединении звездой концы (или начала) всех трех фаз соединяются в один общий узел, а от начал (или концов) идут провода к потребителям. Эти провода называются линейными проводами. Общую точку, в которой соединяются концы фаз генератора (или потребителя), называют нулевой точкой, или нейтралью. Провод, соединяющий нулевые точки генератора и потребителя, называют нулевым проводом. Нулевой провод применяется в том случае, если в сети создается неравномерная нагрузка на фазы. Он позволяет уравнять напряжения в фазах потребителя.
Нулевой провод, как правило, применяется в осветительных сетях. Даже при наличии одинакового количества ламп равной мощности во всех трех фазах равномерная нагрузка не сохраняется, так как лампы могут включаться, выключаться не одновременно во всех фазах, могут перегорать, и тогда равномерность нагрузки фаз будет нарушена. Поэтому для осветительной сети применяется соединение в звезду, которая имеет четыре провода (рис. справа) вместо шести при несвязанной трехфазной системе.
При соединении в звезду различают два вида напряжения: фазное и линейное. Напряжение между каждым линейным и нулевым проводом равно напряжению между зажимами соответствующей фазы генератора и называется фазным (Uф), а напряжение между двумя линейными проводами — линейным напряжением (Uл).
Между фазными и линейными напряжениями можно установить соотношение:
Uл = √3 . Uф ≈ 1,73 . Uф ,
если рассмотреть треугольник напряжения (рис. слева).
Действительно,
Ил= ^ч-Т^-г-Т^-сойШ^ Сф-л/2 + 2-со5б0° = л/3 -Ц,
На практике широкое распространение получили трехфазные цепи с нейтральными проводами при напряжениях UЛ = 380 В; UФ = 220 В.
Поскольку в нулевом проводе при симметричной нагрузке сила тока равна нулю, то ток в линейном проводе равен току в фазе.При неравномерной нагрузке фаз по нулевому проводу проходит уравнительный ток относительно малой величины. Поэтому сечение этого провода должно быть значительно меньше, чем у линейного провода. В этом можно убедиться, если включить четыре амперметра в линейные и нулевой провода. В качестве нагрузки удобно использовать обычные электрические лампочки (рис. справа).
При одинаковой нагрузке в фазах ток в нулевом проводе равен нулю и надобность в этом проводе отпадает (например, равномерную нагрузку создают электродвигатели). В этом случае производят соединение в «треугольник», которое представляет собой последовательное соединение друг с другом начал и концов катушек генератора. Нулевой провод в этом случае отсутствует.При соединении обмоток генератора и потребителей «треугольником» фазные и линейные напряжения равны между собой, т.е. UЛ = UФ, а линейный ток в √3 раз больше фазного тока IЛ = √3.IФСоединение треугольником применяется как при осветительной, так и при силовой нагрузке. Например, в школьной мастерской станки можно включать в звезду или треугольник. Выбор того или иного способа соединения определяется величиной напряжения сети и номинальным напряжением приемников электрической энергии.Принципиально можно соединять треугольником и фазы генератора, но обычно этого не делают. Дело в том, что для создания заданного линейного напряжения каждая фаза генератора при соединении треугольником должна быть рассчитана на напряжение, в раз большее, чем в случае соединения звездой. Более высокое напряжение в фазе генератора требует увеличения числа витков и усиленной изоляции для обмоточного провода, что увеличивает размеры и стоимость машин. Поэтому фазы трехфазных генераторов почти всегда соединяют звездой. Двигатели же иногда в момент пуска включают звездой, а затем переключают на треугольник.
technologys.info
1. Генератор, имеющий пару простых катушек, будет давать ток, меняющийся по закону синуса. Для генераторов небольшой мощности этого бывает достаточно. Например, велосипедные динамомашины, а также генераторы переменного тока старых мотоциклов имеют одну пару катушек и дают однофазное напряжение, требующее лишь одной пары проводов. В автомобилях однофазные генераторы иногда применяются только на самых простых и дешевых моделях.
2. Нетрудно себе представить, что, если вокруг ротора расположить не одну, а несколько пар катушек, смещенных друг относительно друга на равные углы, то генератор в тех же габаритах произведет больше электричества. Это действительно так и генераторы обычно снабжаются тремя парами катушек или полюсов, расположенных в его статоре. Однако для отбора электрической мощности эти три пары катушек должны быть специальным образом соединены.
3. Если магнит совершит один оборот внутри статора, имеющего три пары катушек, то в каждой паре будет индуцирована э.д.с, синусоидальной формы, но эти три синусоиды будут смещены друг относительно друга. Если полный оборот ротора составляет 360°, то нетрудно сосчитать, что при равномерном размещении трех пар катушек в статоре, смещение э.д.с, составит 120° (см. рис. 3.5). Э.д.с, сгенерированные вращающимся магнитным полем, в каждой из катушек будут совершенно одинаковы, но они будут отстоять друг от друга на время, необходимое для поворота ротора от одной пары катушек к другой, т.е. от 1-й до 2-й, от 2-й до 3-й, от 3-й до 1-й и т.д.
Рис. 3.4. Напряжение на выходе генератора переменного тока.
Рис. 3.5. Трехфазный генератор переменного тока и напряжение на его выходах.
4. Концы катушек обычно соединяют в «звезду» или «треугольник» (см. рис. 3.6). Оба вида соединения широко используются в автомобильных генераторах переменного тока, но чаще применяется соединение в «звезду».
5. Соединение в «звезду» дает более высокое напряжение между любой парой выводов по сравнению с одной парой полюсов, однако оно не достигает удвоенного напряжения одной пары, поскольку между парами полюсов имеется смещение по времени (или сдвиг фаз). Реально напряжение на любой паре выводов (или, как его принято называть, линейное напряжение) составляет 1.732 от фазного напряжения (т.е. напряжения на выводах одной пары катушек).
При соединении катушек в «треугольник» линейное напряжение будет равно фазному, но зато линейный ток составит 1.732 тока одной пары катушек.
Поэтому в случаях, когда от генератора требуется получить большой ток, его катушки соединяют в «треугольник».
Рис. 3.6. Соединение катушек генератора переменного тока в звезду и треугольник.
Вы можете пропустить чтение записи и оставить комментарий. Размещение ссылок запрещено.
avto-remont-toyota.ru