|
||||
|
Екатерина - специалист по продаже а/м КАМАЗ
43118-010-10 (дв.740.30-260 л.с.) | 2 220 000 |
43118-6033-24 (дв.740.55-300 л.с.) | 2 300 000 |
65117-029 (дв.740.30-260 л.с.) | 2 200 000 |
65117-6010-62 (дв.740.62-280 л.с.) | 2 350 000 |
44108 (дв.740.30-260 л.с.) | 2 160 000 |
44108-6030-24 (дв.740.55,рест.) | 2 200 000 |
65116-010-62 (дв.740.62-280 л.с.) | 1 880 000 |
6460 (дв.740.50-360 л.с.) | 2 180 000 |
45143-011-15 (дв.740.13-260л.с) | 2 180 000 |
65115 (дв.740.62-280 л.с.,рест.) | 2 190 000 |
65115 (дв.740.62-280 л.с.,3-х стор) | 2 295 000 |
6520 (дв.740.51-320 л.с.) | 2 610 000 |
6520 (дв.740.51-320 л.с.,сп.место) | 2 700 000 |
6522-027 (дв.740.51-320 л.с.,6х6) | 3 190 000 |
Нужны самосвалы? Обратите внимание на Ford-65513-02. |
Контактная информация.
г. Набережные Челны, Промкомзона-2, Автодорога №3, база «Партнер плюс».
тел/факс (8552) 388373.
Схема проезда
Электротехническим устройством специального использования, работающим в автономном режиме от механического двигателя, является синхронный генератор. Прибор нашел применение в частном хозяйстве. Он используется для выработки электротока промышленной частоты. Кроме того, изобретение работает как генератор тока сварочного оборудования. Машина синхронного действия монтируется в дизельные и бензиновые электростанции.
Синхронный генератор. Устройство
Электрическая машина состоит из:
1. Статора.
2. Ротора.
3. Обмоток генератора.
4. Системы токового компаундирования.
5. Переключателя обмотки статора.
6. Выпрямителя сварочного тока.
7. Кабелей.
8. Сварочного устройства.
9. Обмоток ротора.
10. Регулируемого источника тока (постоянного).
Синхронный генератор используется в режимах: генератора тока 50 Гц., сварочного синхронного генератора, прибора с повышенной частотой. Изобретение дает возможность создавать малогабаритные электрические агрегаты универсального применения. Синхронный генератор приводит в действие оборудование в местах с отсутствием централизованных электросетей. Его можно использовать в фермерских хозяйствах вдали от населенных пунктов.
Характеристики синхронного генератора рассчитаны на создание электрогенератора с новыми потребительскими возможностями. Это значит, что при реализации данного изобретения, одно и то же устройство можно эксплуатировать как источник электропитания частотой 50 Гц и более, а также как поставщик тока, выпрямленного для дуговой сварки, он наделен круто подающей внешней характеристикой рабочей зоны. При этом обеспечиваются сварочные свойства, не уступающие трехобмоточным коллекторным сварочным генераторам постоянного тока.
Как работает синхронный генератор?
Принцип действия основан на электромагнитной индукции. Происходит преобразование энергии механической в электрическую. Электромашина работает как генератор (в его режиме). При этом частоты вращений магнитных полей статора и ротора одинаковые. На обмотки ротора подается напряжение, образуется магнитное поле. Вращаясь, оно проникает через обмотку статора и образует в ней ЭДС.
Ротор бывает фазного и короткозамкнутого типа, в зависимости от вида обмотки. Вспомогательная обмотка статора создает вращающееся магнитное поле. Оно индуцирует магнитное поле на роторе, которое наводит ЭДС. В момент запуска электрической станции ротор создает магнитное поле слабого напряжения. С усилением оборотов, ЭДС в обмотке возбуждения увеличивается. Обмоточное напряжение проникает на ротор через авторегулировочный блок. Контроль над выходящим напряжением осуществляется за счет изменения магнитного поля. Стабильность обеспечивается изменением магнитного поля ротора регулированием тока в его обмотке. Такой метод регулировки обеспечивает стабилизацию выходного напряжения прибора.
Преимущества и недостатки синхронного генератора
К первым относится постоянство исходящего напряжения. Минусом является возможность перегрузки при повышенной нагрузке. Регулятор может повысить силу тока в обмотке ротора. К недостаткам генератора синхронного типа можно также причислить наличие щеточного устройства. С течением времени оно будет нуждаться в обслуживании. В наше время этот недостаток удалось устранить.
Современные генераторы синхронного типа выпускают без щеточного узла. Оборудование нового поколения имеет длительный срок службы, надежность в работе в трудных условиях производства. Встроенные датчики и электроника обеспечивают функционирование в режиме реального времени. Новейшие технологические решения обеспечивают синхронному генератору высокую эффективность. Продукцию используют в промышленности и в оборудовании судов.
fb.ru
Синхронный генератор — это машина, преобразующая механическую энергию вращения в электрическую энергию переменного тока, где частота генерируемого тока пропорциональна скорости вращения ротора машины.
Синхронные генераторы делятся на генераторы повышенной и высокой частоты, гидротурбинные, паротурбинные генераторы.
1. Генератор высокой частоты способен преобразовывать механическую энергию вращения в энергию переменного электрического тока высокой частоты. Его действие основано на изменении магнитного потока, которое достигается вращением ротора относительно неподвижного статора. Генератор высокой частоты применяется для питания антенн длинноволновых радиотелеграфных станций на расстоянии до 3000 м. Попытки применять их для более коротких волн развития не получилось, так как требовалось увеличение частоты.
Высокую частоту в данных генераторах удается получить за счет увеличения числа полюсов и скорости вращения ротора. По способу действия генераторы высокой частоты делятся на индуктирующие ток в самой машине; генераторы, частота тока которых повышается с помощью статических умножителей; генераторы, частота машины которых увеличивается путем использования переменного тока, наведенного обратным полем статора в обмотке ротора; генераторы, в которых создание переменного тока происходит благодаря изменению индуктивности или емкости самой машины.
2. Гидротурбинный генератор — это генератор переменного или постоянного тока, который приводится в движение гидравлической турбиной. Гидротурбинный генератор — это синхронный генератор, ротор которого располагается на одном валу вместе с колесом турбины. Мощность такого генератора достигает 100 ООО кВт при скорости вращения до 1500 об/мин и напряжении до 16 ООО В. Синхронные гидротурбинные генераторы по своим размерам и весу больше всех других электрических машин. Только диаметр ротора достигает 15 м. Большое влияние на мощность турбины оказывает скорость ее вращения, маховый момент ротора и длина линии электропередачи. Чаще всего у синхронного гидротурбинного генератора вертикальная ось вращения, когда в подвесном подпятнике происходит осевое давление воды на рабочее колесо турбины. При этом подпятник располагается выше ротора генератора. В зонтичном синхронном генераторе подпятник располагается под ротором генератора и один из трех направляющих подшипников находится в турбине.
Обмотка переменного тока располагается на статоре, который охватывает закрепленный на валу явно полюсный ротор. Напор циркулирующего воздуха создается вентиляторами, расположенными на роторе, и самими полюсами ротора. Воздух передает свое тепло протекающей по трубкам воздухоохладителя воде. Для предотвращения поломки подпятника применяются воздушные или масляные колодочные тормоза, которые способны уменьшить время остановки до нескольких минут.
3. Паротурбинный генератор — это синхронный генератор переменного или постоянного тока, приводимый в движение паровой турбиной. Данные генераторы чаще всего бывают четырехполюсные и двухполюсные со скоростью вращения от 1500 до 3000 об/мин. Ротор синхронного паротурбинного генератора представляет собой массивный стальной цилиндр с прямоугольными пазами, в которых находится обмотка возбуждения. Центробежная сила обмотки воспринимается клиньями и большими бандажами кованой стали, охватывающими торцовые части обмотки. Корпус статора стальной неразъемный. В отличие от гидротурбинного синхронный паротурбинный генератор имеет диаметр до 1 м, но длину ротора до 6,5 м. Для работы паротурбинных генераторов малых мощностей применяется протяжная система вентиляции, где необходимый напор воздуха создается центробежными роторными вентиляторами.
При замкнутой системе вентиляции воздухоохладители располагаются под самим генератором. Возбудитель паротурбинного генератора соединяется с ротором посредством гибкой муфты и способен питать обмотку возбуждения через контактные кольца.
Данный генератор состоит из неподвижного якоря-статора и вращающегося индуктора-ротора. На внутренней поверхности статора в его пазах располагается обмотка переменного тока. Статор генератора выполнен из тонкой электротехнической стали, которая изолирована лаковой пленкой или бумагой. Все эти стальные листы укрепляются в станине машины. Ротор находится внутри статора и представляет собой стальной цилиндр, в пазах которого размещается обмотка возбуждения постоянного тока.
В тихоходных машинах ротор имеет форму колеса или звезды. В синхронных генераторах малой мощности иногда применяют конструкции с расположенной обмоткой переменного тока на роторе и обмоткой возбуждения на статоре. Синхронный генератор переменного тока используется обычно в качестве источника переменного тока постоянной частоты, что возможно при неизменной скорости вращения ротора. При симметричной трехфазной нагрузке синхронного генератора переменного тока по обмоткам статора протекает ток также трехфазно и симметрично. Данный ток способен создавать свое магнитное поле, ось которого вращается со скоростью, равной скорости вращения ротора. Поэтому данный генератор и получил название «синхронный генератор», так как подчеркивает синхронность вращения ротора и магнитного поля статора. Характер взаимодействия вращающегося магнитного поля статора с полем электромагнитов ротора зависит от сдвига фаз между токами нагрузки и ЭДС генератора. При этом механическая мощность преобразуется в электрическую.
В современных электрических установках синхронные генераторы зачастую работают параллельно на общую нагрузку, что возможно при строго синхронной скорости вращения генераторов. Это вполне осуществимо благодаря свойству синхронной машины автоматически поддерживать синхронизм. При параллельной работе синхронных генераторов при изменении режима одного из них начинается ответная реакция стремящегося восстановить нарушенный режим уравнительного тока. При уменьшении или увеличении тока возбуждения ток статора из-за возникновения реактивной составляющей возрастает. При нарушении синхронизма торможение одной машины и ускорение другой уменьшается. Возвращение ротора к синхронному вращению сопровождается затухающими колебаниями его угловой скорости вращения около ее значения. Иногда эти колебания нарушают спокойную работу машины, что называется качание. При правильном выборе махового момента генератора качание можно устранить с помощью медных стержней в полюсных наконечниках ротора. Опасные процессы могут возникнуть и при коротком замыкании, когда ток в обмотке статора возрастает в 15 раз, это приводит к возникновению индуктированного тока в обмотке возбуждения или может привести к механическим повреждениям синхронного генератора. Синхронные генераторы переменного тока находят применение в современных электрических установках.
enciklopediya-tehniki.ru
На современном рынке представлено несколько типов электрогенераторов: синхронные, асинхронные, инверторные. Несмотря на одно назначение, они обладают существенными отличиями, что оказывает непосредственное влияние на выработку энергии. Давайте разберемся в особенностях каждого типа генераторов.
В магазине нужно уточнять, к какому типу относится генератор: синхронному или асинхронному.
Электрогенератор синхронного типа представляет собой агрегат, работающий в режиме выработки электроэнергии. Его особенностью является равная частота вращения магнитного поля стартера по отношению к частоте вращения ротора. Магнитные полюса вместе с ротором генерируют вращающееся магнитное поле, которое после перехода через обмотку стартера образует в ней электродвижущую силу. В генераторе данного типа ротор является электромагнитом или постоянным магнитом.
Такая конструктивная особенность дает синхронному генератору такие преимущества, как:
Основным недостатком синхронных генераторов является их восприимчивость к влаге и пыли.
Генераторы синхронного типа рекомендуется использовать, если необходимо запитать приборы, обладающие высоким стартовым током, например, насосы, циркулярные пилы. Электростанции такого класса также желательно использовать для подключения бытовых приборов.
Мобильная электростанция асинхронного типа является двигателем, который для работы использует режим торможения. Это означает, что ротор и магнитное поле стартера оборачиваются в одном направлении, но с некоторой долей опережения. Вращающееся магнитное поле невозможно перенастроить, из-за чего выходная частота и напряжение всегда зависят от частоты вращения ротора.
Преимуществами генераторов асинхронного класса являются:
Главным негативным нюансом асинхронных электростанций является то, что они плохо переносят пусковые токи.
Выбирать дизельную электростанцию асинхронного типа рекомендуется для подключения электросварок, так как это гарантирует более ровный шов. Они устойчивы к влаге и пыли и поэтому могут бесперебойно работать на различных предприятиях, стройплощадках, улице. К асинхронным электростанциям следует подключать приборы, для которых напряжение и частота тока не играют важную роль.
В магазинах продаются как синхронные, так и асинхронные генераторы
Генератор инверторного типа – это механизм, в котором ток вырабатывается с помощью двигателя внутреннего сгорания, а далее он направляется в силовую электронику, где он трансформируется в постоянный и заряжает встроенный аккумулятор. После этого постоянный ток нужно снова трансформировать в переменный. Для этого в цепочке после аккумулятора имеется инвертор, который и генерирует на выходе 220 В при частоте в 50 Гц.
Преимущества такой конструкции заключаются в более экономном расходе топлива, ведь генератор может не поддерживать одинаковую скорость вращения вала. К тому же скорость оборотов может быть низкой, но этого будет хватать для полной зарядки аккумулятора. А чем ниже скорость вращения, тем меньше генератор потребляет топлива. Инверторная система позволяет получать стабильный уровень электроэнергии, и поэтому дополнительные меры защиты техники не понадобятся.
Инверторные генераторы считаются самыми экономичными, так как способны подстраиваться под фактическую нагрузку. Если она небольшая, то генератор самостоятельно переходит на экономную работу двигателя.
Среди недостатков инверторного генератора стоит отметить аккумулятор. Если он сломается, отремонтировать генератор уже не получится, и придется заменить его на новый. Также следует отметить и высокую стоимость генератора инверторного типа. За него придется заплатить в два раза больше, чем за синхронный или асинхронный тип.
Генератор инверторного типа необходим для подключения высокочувствительной техники: компьютеров, микроволновок, котельного оборудования, современной аудио- и видеотехники.
В итоге получается, что для подключения большей части бытовых приборов стоит использовать синхронные генераторы, для подключения оборудования рекомендуется покупать асинхронные модели, а для чувствительных приборов придется купить инверторную электростанцию.
fb.ru
Российский химико-технологический университет имени Д.И. Менделеева
Кафедра электротехники и электроники
Реферат на тему:
Магнитные цепи, синхронные машины, машины постоянного тока
Выполни студент группы П-21
Проверил:
Новикова Ирина Ивановна
Москва 2010
Содержание:
Синхронный генератор
Устройство синхронного генератора
Внешние характеристики синхронного генератора
Регулировочные характеристики синхронного генератора
Синхронный двигатель
Назначение и область применения
Устройство синхронного двигателя с возбуждением от постоянных магнитов
Пуск синхронного двигателя
Угловая и механическая характеристика синхронного двигателя
U-образная характеристика синхронного генератора
Основные понятия о магнитных цепях и методах их расчета
Магнитные силы переменной и постоянной магнитодвижущей силы
Катушка с ферромагнитным сердечником
Генераторы постоянного тока
Классификация генераторов постоянного тока
Характеристики генераторов
Сравнение внешних характеристик генераторов постоянного тока
Двигатели постоянного тока
Устройство, принцип действия
Пуск двигателей постоянного тока
Механические характеристики электродвигателей постоянного тока
Регулирование частоты вращение машин постоянного тока
Электрическим генератором называется любое устройство, предназначенное для преобразования механической энергии в электрическую. Это может быть паровая машина, водяная или ветряная установка особой конструкции, атомный реактор или двигатель внутреннего сгорания. В настоящее время в промышленности используется множество различных электрогенераторов, которые различают по типу первичного двигателя (турбинные, гидравлические и дизельные генераторы). Генераторы различаются по виду выхода электрического тока, (генераторы постоянного и переменного тока). Генераторы также подразделяются по способу возбуждения — магнитному, внешнему или самовозбуждению, которое бывает последовательным, параллельным и смешанным.
Синхронный генератор состоит из нескольких частей:
Статор
Статор синхронного генератора, как и других машин переменного тока, состоит из сердечника, набранного из листов электротехнической стали, в пазах которого укладывается обмотка переменного тока, и станины — чугунного или сварного из листовой стали кожуха.
2) Роторы синхронных машин по конструкции делятся на два типа:
а) явнополюсные (т. е. с явно выраженными полюсами) и
б) неявнополюсные (т. е. с неявно выраженными полюсами).
На изображении показаны схемы устройства синхронных генераторов с явнополюсным и неявнополюсным роторами.
Та или иная конструкция ротора диктуется соображениями механической прочности. У современных генераторов, вращающихся от быстроходных двигателей (паровая турбина), окружная скорость ротора может достигать 100—160 м/сек (в некоторых случаях 170 м/сек). Поэтому быстроходные генераторы имеют неявнополюсный ротор. Скорость вращения быстроходных генераторов составляет 3000 об/мин и 1500 об/мин.
К ободу ротора прикрепляются полюсы, на которые надеваются катушки возбуждения, соединяемые последовательно между собой. Концы обмотки возбуждения присоединяются к двум кольцам, укрепленным на валу ротора. На кольца накладываются щетки, к которым присоединяется источник постоянного напряжения. Обычно постоянный ток для возбуждения ротора дает генератор постоянного тока, сидящий на одном валу с ротором и называемый возбудителем. Мощность возбудителя равна 0,25—1% от номинальной мощности синхронного генератора. Номинальные напряжения возбудителей 60—350 В.
Схема 3х фазного генератора с самовозбуждением
Основным отличием генератора с самовозбуждением от обычного трехфазного генератора является то что в нем наличествуют селеновые выпрямители, подключенные к обмотке стартера. В первый момент слабое поле остаточного магнетизма вращающегося ротора индуктирует в обмотке статора незначительную переменную э.д.с. Селеновые выпрямители, подключенные к переменному напряжению, дают постоянный ток, который усиливает поле ротора, и напряжение генератора увеличивается.
На рис. 1 показаны внешние естественные характеристики трехфазного синхронного генератора, иллюстрирующие зависимость напряжения U г на его зажимах от тока обмотки статора Ir при заданном коэффициенте мощности приемников соs φ = const, неизменном токе возбуждения в обмотке ротора IB = const и постоянной частоте вращения ротора, чему отвечает неизменная частота переменного тока f=const. Эти характеристики могут исходить как из общей точки (0, Егx), отвечающей режиму холостого хода, так и пересекаться в точке (Iг ном, U г ном), соответствующей номинальной нагрузке.
Рис. 1.1. Внешние характеристики трехфазного синхронного генератора при изменении нагрузки с заданным коэффициентом мощности нагрузки: а - от режима холостого хода до номинальной; б - от номинальной до режима холостого хода.
Первые характеристики позволяют определить изменение напряжения генератора при увеличении нагрузки от режима холостого хода до номинального тока, а вторые - при снижении нагрузки от номинальной до режима холостого хода.
Основной естественной внешней характеристикой синхронного генератора считают кривую Uг (Iг), полученную при симметричном режиме, коэффициенте мощности приемников cos φ = 0,8 и φ > 0.
Для поддержания напряжения синхронного генератора неизменным при переменной нагрузке приходится регулировать ток возбуждения IB в обмотке ротора по закону, определяемому регулировочными характеристиками, крутизна которых зависит от характера нагрузки и ее коэффициента мощности (рис. 6.6). Так, при увеличивающемся токе нагрузки, отстающем по фазе от напряжения на угол φ > 0, возникает размагничивающее действие реакции якоря и соответствующая регулировочная характеристика поднимается, а при возрастающем токе нагрузки, опережающем по фазе напряжение на угол φ < 0, она снижается вследствие подмагничивающего действия реакции якоря.
studfiles.net
Электрические машины, преобразующие механическую энергию в электрическую, называют генераторами. Трехфазные синхронные генераторы являются единственным типом источников энергии, устанавливаемых на всех электрических станциях переменного тока, как малых, так и мощных систем. Наименование синхронные они получили благодаря синхронному вращению магнитных полей ротора и статора.
Принцип действия синхронного генератора основан на индуктировании э.д.с. в обмотке якоря в результате пересечения ее витков постоянным магнитным полем, создаваемым индуктором. При этом э. д. с. пропорцио-нальна числу витков W, частоте вращения ротора n, числу пар полюсов р и магнитному потоку индуктора Фm:
Е = 4,44 W f Фm ( 1 ) .
Частота переменной э. д. с: f = p · n / 60 , ( Гц ) ( 2 ).
Стандартная частота переменной э.д.с. в России как и большинстве стран мира принята 50 Гц. Поэтому при p = 1 ротор должен вращаться с п = 3000 об/мин.; при р = 2 — п = 1500 мин -1, при р = 3 — п = 1000 мин -1 и так далее. Вследствие этого э. д. с. генератора регулируют магнитным потоком Ф индуктора.
В генераторах основного исполнения ( в лаборатории, аудитория № 111 смотреть на разобранный генератор, установленный на столе) статор имеет чугунную станину, внутри которой установлен кольцевой магнитопровод, набранный из листов электротехнической стали. В пазах магнитопровода размещены одинаковые обмотки, смещенные по окружности статора одна относительно другой на 120 градусов. Эти обмотки называют фазными обмотками, а начала и концы соединены в лобовой части обмоток по схеме „звезда» или „треугольник». На клеммный щиток выведены соответственно 4 или 3 провода фаз генератора.
На роторе располагается обмотка возбуждения индуктора, укрепляемая на полюсах магнитопровода, набранного из листов электротехнической стали. Она питается постоянным током через щетки и контактные кольца от небольшого генератора постоянного тока (возбудителя), прикрепленного к одному из подшипниковых щитов генератора. (На электростанциях может быть отдельное исполнение возбудителя). Кроме того, на роторе генераторов небольшой мощности имеется крыльчатка для охлаждения обмоток и магнитопроводов. Ротор может иметь явно выраженные или неявно выраженные полюса.
Явнополюсными выполняют роторы тихоходных генераторов, предназначенных для работы с гидротурбинами. Неявнополюсными изготовляют роторы быстроходных (1500 - 3000 мин -1.) генераторов для паровых турбин и двигателей внутреннего сгорания.
На рис. 1 представлены роторы синхронных машин неявно полюсный (а) и явно полюсный (б):1 – сердечник ротора; 2 – обмотка возбуждения.
Синхронный генератор с самовозбуждением типа ПСГС - 6,25 имеет неподвижную магнитную систему (индуктор) и вращающийся якорь с обмоткой переменного трехфазного тока, подведенной к контактным кольцам. Станина выполнена из стальной трубы и представляет ярмо магнитной системы. К нему болтами прикреплены четыре полюса индуктоа. Они собраны из листов электротехнической стали толщиной 2 мм и скреплены между собой штифтами. Сердечники полюсов изолированы асбестовой бумагой, пропитанной в бакелитовом лаке. Катушки шунтовой обмотки возбуждения намотаны изолированным медным проводом круглого сечения, соединены
Рис. 2. Монтажная электрическая схема генератора ПСГС-6,25.
между собой последовательно, а концы — выведены на клеммное плато. Выводная коробка с клеммным плато расположена на станине. Для поглощения помех радиоприему, создаваемых генератором во время работы, применены конденсаторы. На внутренней стороне крышки выводной коробки наклеена монтажная схема генератора.
На ступице переднего подшипникового щита скомплектована траверса и прикреплена к ней при помощи болтов. К штырям траверсы прикреплены щеткодержатели. Их можно опускать вниз по мере изнашивания контактных колец.
На двух штырях траверсы собрана выпрямительная схема для питания цепей возбуждения. Она состоит из диодов, собранных по 3-фазной мостовой двухполупериодной схеме выпрямления (схема Ларионова). На каждом штыре закреплено по 6 диодов типа Д-205. На диоды напряжение подается с контактных колец через угольные щетки. Выпрямленное напряжение поступает на клеммное плато, а с него через регулировочный реостат на обмотки возбуждения полюсов индуктора.
Якорь состоит из цилиндрического сердечника — магнитопровода, 3-х фазной обмотки переменного тока, от которой выведены концы и соединены с контактными кольцами, центробежного вентилятора и вала с насаженными на него шариковыми подшипниками. Сердечник якоря набран из пластин электротехнической стали толщиной 0,5 мм, собран на валу, имеющем призматическую шпонку (она исключает проворачивание сердечника на валу). От продольного перемещения вдоль оси вала сердечник запрессован между якорными фланцами и закреплен упорным кольцом.
Обмотка переменного тока уложена в полузакрытых пазах якоря и закреплена в них текстолитовыми клиньями. На лобовые части обмотки с каждой стороны наложено по одному бандажу, состоящему из проволочных витков, спаянных между собой.
Техническая характеристика генератора ПСГС-6,25.: Ѕном =6,25 кВА; Uном =230 В; Iном =15,7 А; к.п.д.=76%; cosφ=0,8; f =0,8; nном =1500 мин-1.
Такими генераторами оснащены передвижные автомастерские для выработки электроэнергии в полевых условиях с целью выполнения ремонт-ных работ с применением электроинструмента, а также аварийного электроснабжения маломощных энергопотребителей (зернотоков, ферм и др.)
Рис. 3. Конструкция синхронного генератора малой мощности:
1 — кольца контактные; 2 — щеткодержатели; 3 — обмотка возбуждения ротора; 4 — полюсный наконечник; 5 — статор; 6 — вентилятор; 7 — вал ротора.
poznayka.org
Категория:
Передвижные электростанции
Назначение и устройство синхронных генераторовСинхронный генератор состоит из двух основных частей: неподвижного статора (якоря) с помещенной в нем обмоткой и подвижного (вращающегося) ротора (индуктора) с обмоткой возбуждения. Назначение обмотки возбуждения состоит в том, чтобы создать в генераторе первичное магнитное поле для наведения в обмотке статора электродвижущей силы (э. д. е)… Если ротор сихронного генератора привести во вращение с некоторой скоростью V и возбудить от источника постоянного тока, то поток возбуждения будет пересекать проводники обмотки статора и в фазах обмотки будут индуктироваться переменные э. д. с. При подключении нагрузки к данной обмотке в ней возникнет вращающееся магнитное поле. Это поле статора генератора будет вращаться в направлении, вращения поля ротора и с такой же скоростью, как поле ротора, в результате чего образуется общее вращающееся магнитное поле.
Скорость вращения магнитного поля синхронного генератора зависит от числа пар полюсов. При заданной частоте чем больше число пар полюсов, тем меньше скорость вращения магнитного поля, т.е. скорость вращения магнитного поля обратно пропорциональна числу пар полюсов. Так, например, при заданной частоте /=50 гц скорость вращения магнитного поля равна 3000 об/мин при числе пар полюсов р= 1, 1500 об/мин при р = 2V 1000 об/мин при р = 3 и т. д.
Статор генератора (рис. 1, а) состоит из сердечника, набранного из тонких листов электротехнической стали. Для ограничения вихревых токов листы стали изолированы пленкой лака толщиной 0,08-0,1 мм и прочно спрессованы в виде пакета, называемого пакетом активной стали. В каждом листе стали, выштампованы фигурные вырезы, благодаря чему в пакете, собранном из таких листов, образуются пазы, в которые и укладывается обмотка. Пазы для повышения электрической прочности обмотки и предохранения ее от механических -повреждений изолированы листами электрокартона с лакотканью или миканита. Пакет активной стали укреплен в чугунной или стальной станине генератора.
Рис. 1. Устройство и схема возбуждения синхронного генератора: а — статор, б — явнополюсный ротор (без обмотки полюсов), в — неявнополюсный ротор; 1 — статор (якорь), 2 — ротор (индуктор), 3- контактные кольца, 4 — полюс, 5 — полюсная катушка индуктора, 6 — возбудитель, 7 — шунтовой регулятор, 8 — щетки
Ротор синхронного генератора конструктивно может быть выполнен явнополюсным и неявнополюсным.
Явнополюсный ротор (рис. 1, б) имеет выступающие или, как говорят, явновыраженные полюсы. Такие роторы применяют в тихоходных генераторах со скоростью вращения не более 1000 об/мин. Сердечники полюсов этих роторов набирают обычно из листов электротехнической стали толщиной 1-2 мм, которые прочно скрепляют в пакет стяжными шпильками. На валу ротора полюсы крепят болтами или при помощи Т-образного хвостовика полюса, укрепляемого в специальных пазах, профре-зерованных в стальном теле ротора.
Обмотку возбуждения наматывают изолированным медным проводом соответствующего сечения. В роторах синхронных генераторов, предназначенных для работы в электроустановках, где в качестве первичных двигателей применяются дизели, предусматривается так называемая успокоительная обмотка. Успокоительная или как еще ее называют демпферная обмотка служит для успокоения свободных колебаний, возникающих при внезапных изменениях режима работы синхронных генераторов (резкие сбросы нагрузки, падение напряжения, изменение тока возбуждения и др.), особенно в тех случаях, когда несколько генераторов работают параллельно на общую сеть.
Неявнополюсным называют ротор, имеющий вид цилиндра без выступающих полюсов. Такие роторы выполняют обычно двух- или четырехполюсными.
Явнополюсные роторы для быстроходных машин не применяют из-за сложности изготовления крепления полюсов, способных выдерживать большие центробежные усилия.
Неявнополюоный ротор (рис. 1, в) состоит из вала и стальной поковки с профрезерованными в ней пазами, в которые уложена обмотка возбуждения. В остальном неявнополюсный ротор конструктивно выполнен так же, как и явнополюсный.
Конструкция проводников роторной обмотки выбирается в зависимости от типа ротора: для обмоток явнополюсных роторов применяют прямоугольные или круглые изолированные провода, а также голые медные полосы, гнутые на ребро и изолированные полосками миканита; обмотки неявнополюсных роторов выполняют из изолированных витков плоской твердокатаной меди, укладываемых в изолированные пазы роторов.
Концы обмотки ротора (индуктора) выведены и присоединены к контактным кольцам на валу ротора. К индуктору подводится постоянный ток от какого-либо внешнего источника. В качестве источника тока возбуждения синхронных генераторов мощностью до 20 кет применяют полупроводниковые выпрямители, а для более мощных генераторов — специальные машины постоянного тока (возбудители), помещаемые обычно на общем валу с ротором генератора или механически соединяемые с генератором посредством полумуфт. Возбудитель представляет собой генератор постоянного тока, мощность которого, как правило, составляет 1-3% номинальной мощности питаемого им генератора. Номинальное напряжение возбудителей невелико и у синхронных генераторов средней мощности не превышает 150 в. Постоянный ток для возбуждения синхронных генераторов может быть получен с помощью ртутных, полупроводниковых или механических выпрямителей. Для возбуждения синхронных генераторов мощностью до 20 кет чаще всего применяют селеновые или германиевые выпрямители.
Ток возбуждения в проходит от источника до индуктора по следующему пути: источник постоянного тока — неподвижные щетки на контактных кольцах, контактные кольца ротора — обмотки полюсов индуктора. Этот путь показан схематически на рис. 1, а. Синхронный генератор обладает свойством обратимости, т.е. может работать и в качестве электродвигателя, если обмотку его статора присоединить к сети трехфазного переменного тока.
Читать далее: Схема включения и принцип работы синхронного генератора
Категория: - Передвижные электростанции
stroy-technics.ru
Синхронные и асинхронные генераторы. Отличия и особенности
Эта статья будет посвящена такому вопросу как «различия между синхронными и асинхронными генераторами». Казалось бы вопрос довольно простой и не требует детального разбирательства, можно открыть учебник физики и все прочесть, да и в интернете должно быть много информации. Все верно, но учебник физики есть не у всякого, а в интернете слишком много противоречивой информации.
Различные сайты размещают у себя противоречивые определения одного и того же.
В этой статье мы дадим точное, максимально полное и понятное описание.
Про то, что такое электростанция, генератор и двигатель Вы уже прочти или же можете прочесть в статье на нашем сайте, которая так и называется: «Что такое генератор/электростанция».
Первое определение синхронного генератора будет техническим, а второе более практическим. Первое поможет понять устройство и принцип его работы, а второе применить знания и точнее определиться с типом генератора, который Вам необходим.
Синхронный генератор
I. Синхронный генератор – механизм, работающий в режиме генерации энергии, в котором частота вращения магнитного поля стартора равна частоте вращения ротора. Ротор с магнитными полюсами создает вращающееся магнитное поле, которое пересекая обмотку стартера, наводит в ней ЭДС.
В синхронном генераторе ротор выполнен в виде постоянного магнита или электромагнита. Число полюсов ротора может быть два, четыре и т.д., но ОБЯЗАТЕЛЬНО кратно двум. В бытовых электростанция чаще всего применяют ротор с двумя полюсами. Именно этим объясняется частота вращения двигателя электростанции – 3000 об/мин.
При старте электростанции, ротор создает слабое магнитное поле, но с ростом оборотов, увеличивается и ЭДС в обмотке возбуждения. Напряжение с этой обмотки через блок автоматической регулировки (AVR) поступает на ротор, контролируя выходное напряжение за счет изменения магнитного поля. Рассмотрим на примере: Подключение индуктивной нагрузки размагничивает генератор и снижает напряжение, а подключение емкостной нагрузки вызывает подмагничивание генератора и рост напряжения. Такое явление носит название «реакция якоря».
Обеспечение стабильного выходного напряжения происходит за счет изменения магнитного поля ротора путем регулирования тока в его обмотке. Это происходит за счет использования блока автоматической регулировки (AVR). Основным достоинством синхронного генератора является высокая стабильность выходного напряжения. Несовершенство синхронных генераторов – это возможность перегрузки по току, так как при превышении допустимой нагрузки, регулятор может слишком сильно поднять то к в обмотке ротора. Также синхронные генераторы требует периодического обслуживания, пусть и не очень частого.
II. Синхронный генератор – тип генератора, который способен кратковременно выдавать ток в 3-4 раза выше номинального. Также синхронные генераторы оптимальны для подключения оборудования с высокими стартовыми токами. Это электродвигатели, насосы, компрессоры, дисковые пилы и прочий электроинструмент. Для подключения сварочных аппаратов тоже желательно использовать электростанции с синхронными генераторами.
Асинхронный генератор
I.Асинхронный генератор – асинхронный двигатель, работающий в режиме торможения. В этом случае ротор вращается в одном направлении с магнитным полем стартера, но с опережением.
Различают короткозамкнутые и фазные роторы в зависимости от типа обмотки. Вращающееся магнитное поле, создаваемое вспомогательной обмоткой стартора, индуцирует на роторе магнитное поле, которое вращаясь вместе с ротором, наводит ЭДС в рабочей обмотке стартора, тоже принцип, что в синхронном генераторе. Вращающееся магнитное поле остается всегда неизменным и не поддается регулировке, поэтому частота и напряжение на выходе генератора зависят от частоты оборотов ротора, которые в свою очередь, зависят от стабильности работы двигателя электростанции.
Генераторы асинхронного типа имеют малую чувствительность к короткому замыканию и высокую степень защиты от внешних воздействий. О классах защиты мы поговорим немного позднее. Цена генераторов такого типа ниже, что является еще одним плюсом.
Асинхронные генераторы менее распространены из-за ряда недостатков: такой генератор потребляет намагничивающий ток значительной силы, поэтому для его работы требуются конденсаторы; ненадежность работы в экстремальных условиях; зависимость напряжения и частоты тока от устойчивости работы двигателя.
II. Асинхронный генератор – генератор, который можно использовать только с приборами не имеющими высоких стартовых токов и устойчивыми к незначительным перепадам напряжения. Такие генераторы стоят дешевле чем синхронные и имеют более высокий класс защиты от внешних условий.
Классы защиты генераторов
Этот параметр обозначается буквами (IP) и двумя цифрами, которые и несут смысловую нагрузку. Разберемся поподробнее.
Синхронные генераторы сейчас чаще всего соответствуют классу IP 23, тогда как асинхронные – IP 54. Хотя в последнее время все больше производителей начинают выводить на рынок синхронные генераторы с таким же высоким классом защиты (IP 54) как и у асинхронных генераторов. Такая разница в классах защиты объясняется конструктивными особенностями генераторов обоих типов. На синхронном генераторе находятся катушки индуктивности, а асинхронный генератор имеет более простую конструкцию (еще говорят «закрытую»), поскольку его ротор напоминает маховик.
Расшифровка:
• 0-защита отсутствует • 1-защита от предметов > 50 мм • 2-защита от предметов > 12 мм • 3-защита от предметов > 2.5 мм • 4-защита от предметов > 1 мм • 5-защита от пыли
Вторая цифра означает:
• 0-защита отсутствует • 1-защита от вертикально падающих капель воды • 2-защита от капель воды, падающих под углом 15 градусов к вертикали • 3-защита от брызг воды, падающих под углом 60 градусов к вертикали • 4-защита от водяной пыли, распыленной со всех сторон • 5-защита от струй воды со всех сторон
Надеемся, что после прочтения этой статьи Вам станет немного проще выбрать генератор, который подойдет Вам больше всего.
Специалисты интернет магазина
генераторов и электростанций «Мега-ватт»
Статор (англ. stator, от лат. sto — стою) электромашины, неподвижная часть электрической машины, выполняющая функции магнитопровода и несущей конструкции. Стартор состоит из сердечника и станины.
Ротор в технике [от лат. roto — вращаю (сь)], 1) вращаюшаяся часть двигателей и рабочих машин, на которой расположены органы, получающие энергию от рабочего тела
[3] Электродвижущая сила (ЭДС) — физическая величина, характеризующая работу сторонних (непотенциальных) сил в источниках постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль контура.
ЭДС можно выразить через напряжённость электрического поля сторонних сил (Eex). В замкнутом контуре (L) тогда ЭДС будет равна:
, где dl — элемент длины контура.
ЭДС, так же как и напряжение, измеряется в вольтах.
При вращении ротора его магнитное поле наводит в трёхфазной обмотке статора переменную эдс, частота которой f = р. п, где р и n — соответственно число пар полюсов и частота вращения ротора. Быстроходные С. г. (турбогенераторы) имеют малое число пар полюсов (р = 1, 2), а в тихоходных (гидрогенераторах) р достигает нескольких десятков. Величина эдс регулируется изменением тока в обмотке ротора.
Щеточный узел требует замены или ремонта.
www.mega-vatt.ru