Камаз 44108 тягач В наличии!
Тягач КАМАЗ 44108-6030-24
евро3, новый, дв.КАМАЗ 740.55-300л.с., КПП ZF9, ТНВД ЯЗДА, 6х6, нагрузка на седло 12т, бак 210+350л, МКБ, МОБ
 
карта сервера
«ООО Старт Импэкс» продажа грузовых автомобилей камаз по выгодным ценам
+7 (8552) 31-97-24
+7 (904) 6654712
8 800 1005894
звонок бесплатный

Наши сотрудники:
Виталий
+7 (8552) 31-97-24

[email protected]

 

Екатерина - специалист по продаже а/м КАМАЗ
+7 (904) 6654712

[email protected]

 

Фото техники

20 тонный, 20 кубовый самосвал КАМАЗ 6520-029 в наличии
15-тонный строительный самосвал КАМАЗ 65115 на стоянке. Техника в наличии
Традиционно КАМАЗ побеждает в дакаре

тел.8 800 100 58 94

Техника в наличии

тягач КАМАЗ-44108
Тягач КАМАЗ 44108-6030-24
2014г, 6х6, Евро3, дв.КАМАЗ 300 л.с., КПП ZF9, бак 210л+350л, МКБ,МОБ,рестайлинг.
цена 2 220 000 руб.,
 
КАМАЗ-4308
КАМАЗ 4308-6063-28(R4)
4х2,дв. Cummins ISB6.7e4 245л.с. (Е-4),КПП ZF6S1000, V кузова=39,7куб.м., спальное место, бак 210л, шк-пет,МКБ, ТНВД BOSCH, система нейтрализ. ОГ(AdBlue), тент, каркас, рестайлинг, внутр. размеры платформы 6112х2470х730 мм
цена 1 950 000 руб.,
КАМАЗ-6520
Самосвал КАМАЗ 6520-057
2014г, 6х4,Евро3, дв.КАМАЗ 320 л.с., КПП ZF16, ТНВД ЯЗДА, бак 350л, г/п 20 тонн, V кузова =20 куб.м.,МКБ,МОБ, со спальным местом.
цена 2 700 000 руб.,
 
КАМАЗ-6522
Самосвал 6522-027
2014, 6х6, дв.КАМАЗ 740.51,320 л.с., КПП ZF16,бак 350л, г/п 19 тонн,V кузова 12куб.м.,МКБ,МОБ,задняя разгрузка,обогрев платформы.
цена 3 190 000 руб.,

СУПЕР ЦЕНА

на АВТОМОБИЛИ КАМАЗ
43118-010-10 (дв.740.30-260 л.с.) 2 220 000
43118-6033-24 (дв.740.55-300 л.с.) 2 300 000
65117-029 (дв.740.30-260 л.с.) 2 200 000
65117-6010-62 (дв.740.62-280 л.с.) 2 350 000
44108 (дв.740.30-260 л.с.) 2 160 000
44108-6030-24 (дв.740.55,рест.) 2 200 000
65116-010-62 (дв.740.62-280 л.с.) 1 880 000
6460 (дв.740.50-360 л.с.) 2 180 000
45143-011-15 (дв.740.13-260л.с) 2 180 000
65115 (дв.740.62-280 л.с.,рест.) 2 190 000
65115 (дв.740.62-280 л.с.,3-х стор) 2 295 000
6520 (дв.740.51-320 л.с.) 2 610 000
6520 (дв.740.51-320 л.с.,сп.место) 2 700 000
6522-027 (дв.740.51-320 л.с.,6х6) 3 190 000


Перегон грузовых автомобилей
Перегон грузовых автомобилей
подробнее про услугу перегона можно прочесть здесь.


Самосвал Форд Нужны самосвалы? Обратите внимание на Ford-65513-02.

КАМАЗы в лизинг

ООО «Старт Импэкс» имеет возможность поставки грузовой автотехники КАМАЗ, а так же спецтехники на шасси КАМАЗ в лизинг. Продажа грузовой техники по лизинговым схемам имеет определенные выгоды для покупателя грузовика. Рассрочка платежа, а так же то обстоятельство, что грузовики до полной выплаты лизинговых платежей находятся на балансе лизингодателя, и соответственно покупатель автомобиля не платит налогов на имущество. Мы готовы предложить любые модели бортовых автомобилей, тягачей и самосвалов по самым выгодным лизинговым схемам.

Контактная информация.

г. Набережные Челны, Промкомзона-2, Автодорога №3, база «Партнер плюс».

тел/факс (8552) 388373.
Схема проезда



Глава 21. Параллельная работа синхронных генераторов. Параллельная работа генераторов


Параллельная работа генераторов постоянного тока

Общие положения

В ряде случаев целесообразно питать определенную группу потребителей от двух или нескольких генераторов постоянного тока, которые при этом работают совместно на общую сеть. В этом случае в периоды малых нагрузок можно часть генераторов отключить, чем достигается экономия на эксплуатационных расходах. Если должно быть обеспечено бесперебойное питание потребителей при всех условиях, то нужно иметь резервный генератор. Необходимая мощность резервного генератора при совместной работе нескольких генераторов будет меньше. Возможно также выведение генераторов в плановый или аварийный ремонт без какого-либо или без серьезного нарушения бесперебойного обеспечения потребителей электроэнергией.

Для совместной работы используются генераторы независимого, параллельного или смешанного возбуждения. При этом они подключаются к сети параллельно. Последовательное включение генераторов применяется в редких случаях.

При параллельной работе генераторов необходимо соблюсти следующие условия: 1) при включении генератора на параллельную работу с другими не должно возникать значительных толчков тока, способных вызвать нарушения в работе генераторов и потребителей; 2) генераторы должны нагружаться по возможности равномерно, пропорционально их номинальной мощности.

При нарушении последнего условия полное использование мощности всех генераторов невозможно: когда один генератор нагружается полностью, другие недогружены, а дальнейшее увеличение общей нагрузки невозможно, так как отдельные генераторы будут перегружаться. Кроме того, при неравномерной нагрузке генераторов суммарные потери всех генераторов могут быть больше, а общий коэффициент полезного действия (к. п. д.) – меньше, чем при равномерной нагрузке.

В параллельной работе генераторов независимого и параллельного возбуждения нет никаких существенных различий. Поэтому ниже сначала рассмотрим параллельную работу генераторов параллельного возбуждения, а затем укажем на особенности параллельной работы генераторов смешанного возбуждения.

Включение на параллельную работу

Схема параллельной работы двух генераторов параллельного возбуждения показана на рисунке 1. Пусть генератор 1 уже работает на сборные шины и необходимо подключить к этим шинам генератор 2.

Тогда надо соблюсти следующие условия: 1) полярность генератора 2 должна быть такой же, как и генератора 1 или шин Ш, т. е. положительный (+) и отрицательный (–) зажимы генератора 2 должны с помощью рубильника или другого выключателя Р2 соединиться с одноименными зажимами сборных шин; 2) электродвижущая сила (э. д. с.) генератора 2 должна равняться напряжению на шинах. При соблюдении этих условий при подключении генератора 2 к шинам с помощью рубильника не возникает никакого толчка тока и этот генератор после его включения будет работать без нагрузки, на холостом ходу.

Схема параллельной работы генераторов параллельного возбуждения
Рисунок 1. Схема параллельной работы генераторов параллельного возбуждения

Для выполнения и проверки этих условий включения поступают следующим образом. Генератор 2 приводят во вращение с номинальной скоростью и возбуждают до нужного напряжения. Его напряжение измеряют с помощью вольтметра V1 и вольтметрового переключателя П, для чего последний ставят в положение 2 – 2. Напряжение шин измеряют тем же вольтметром в положении переключателя Ш – Ш. Чтобы одновременно проверить соответствие полярностей, вольтметр V1 должен быть магнитоэлектрического типа. Тогда при включении вольтметра по схеме, изображенной на рисунке 1, отклонения его стрелки при правильной полярности генератора 2 и шин будут происходить в одну и ту же сторону. Если полярность генератора 2 неправильна, то необходимо переключить два конца от его якоря. Нужное значение напряжения генератора достигается путем регулирования его тока возбуждения iв2 с помощью реостата.

Возможен также другой способ контроля правильности условий включения – с помощью вольтметра V2, подключенного к зажимам одного полюса рубильника Р2. Если другой полюс (нож) рубильника включить, то при равенстве напряжений и правильной полярности генераторов показание вольтметра V2 будет равно нулю.

При включении генератора 2 с неправильной полярностью в замкнутой цепи, образованной якорями обоих генераторов (рисунок 1) и шинами, э. д. с. обоих генераторов будут складываться. Так как сопротивление этой цепи мало, то возникают условия, эквивалентные короткому замыканию, что приводит к аварии. При правильной полярности, но неравных напряжениях генераторов в указанной цепи возникает уравнительный ток

значение которого также может оказаться большим.

При включении нагрузки уравнительный ток вызывает увеличение тока одного генератора и уменьшение тока другого, в результате чего генераторы нагружаются неодинаково.

Параллельная работа генераторов параллельного возбуждения

При параллельной работе двух или более генераторов их напряжения U всегда равны, так как генераторы включены на общие шины. Поэтому для случая работы двух генераторов их уравнения можно записать в следующем виде:

U = Eа1 – Iа1 × Rа1 = Eа2 – Iа2 × Rа2,
(1)

где

Eа1 = ce1 × Фδ1 × n1;       Eа2 = ce2 × Фδ2 × n2.

После включения генератора 2 (рисунок 1) на шины его можно нагрузить током. Для этого нужно увеличить э. д. с. генератора Eа2, которая станет больше U, в результате чего в якоре генератора 2 возникнет ток Iа2 [смотрите уравнение (1)]. Тогда при неизменном токе нагрузки ток Iа1 уменьшается. Если э. д. с. Eа1 останется постоянной, то разность Eа1 – Iа1 × Rа1 не будет уже равна прежнему значению напряжения на шинах и U увеличится. Поэтому для поддержания U = const одновременно с увеличением Eа2 нужно уменьшать Eа1. Изменение Eа1 и Eа2 возможно двояким путем: изменением тока возбуждения iв или скорости вращения n. В обоих случаях генератор и его первичный двигатель изменят свою мощность. В эксплуатационных условиях обычно изменяют ток возбуждения. В этом случае первичный двигатель работает на своей естественной характеристике n = f(P). При изменении нагрузки двигателя его скорость также изменится и его регулятор в случае использования теплового или гидравлического двигателя изменит подачу топлива, пара или воды в двигатель.

Таким образом, если желательно, например, генератор 1 разгрузить и передать его нагрузку на генератор 2, то поступают следующим образом: уменьшают iв1 (или n1) и одновременно увеличивают iв2 (или n2) до тех пор, пока не будет I1 = 0. После этого генератор 1 можно отключить от сети. Если бы ток iв1 был уменьшен слишком сильно, то возникло бы положение, при котором Eа1 < U. При этом Iа1 и I1 изменили бы свой знак [смотрите уравнение (1)], т. е. свое направление. При этом генератор 1 стал бы работать в режиме двигателя, потребляя энергию от генератора 2. Для теплового или гидравлического первичного двигателя такой режим недопустим, так как может вызвать аварию двигателя.

Необходимо иметь ввиду, что вследствие малости Rа1 и Rа2 даже малые изменения токов iв1 и iв2 способны вызвать большие изменения токов генераторов, так как, согласно уравнению (1), изменения Eа1 и Eа2 при U = const должны компенсироваться изменениями Iа1 × Rа1 и Iа2 × Rа2. Поэтому регулирование токов возбуждения генераторов должно производиться осторожно и достаточно плавно. В условиях эксплуатации напряжение U часто регулируется автоматически регуляторами токов возбуждения генераторов. При этом характеристики регуляторов подбираются таким образом, чтобы обеспечить правильное распределение нагрузок между генераторами.

Параллельная работа генераторов в режиме внешних характеристик
Рисунок 2. Параллельная работа генераторов в режиме внешних характеристик

Если генераторы работают параллельно без регулирования токов возбуждения, то распределение нагрузок между ними зависит от вида их внешних характеристик. Пусть, например, внешние характеристики двух генераторов одинаковой мощности 1 и 2 изображаются кривыми 1 и 2 на рисунке 2. Если генераторы включены на параллельную работу при холостом ходе, то эти характеристики исходят из одной точки U0 на оси ординат. Если затем подключить к генераторам некоторую нагрузку, то напряжение упадет до некоторого значения U, общего для обоих генераторов. При этом генератор 1, имеющий более "мягкую" внешнюю характеристику, будет нагружаться меньшим током (I1), чем генератор 2 (I2), имеющий более "жесткую" характеристику. Зависимость U от общего тока нагрузки I = I1 + I2 изобразится на рисунке 2 в виде кривой 3.

Если мощности генераторов 1 и 2 различны, то более правильно о распределении нагрузки между ними можно судить, если начертить характеристики 1 и 2 на рисунке 2 в функции относительных токов:

При совпадении таких характеристик обоих генераторов распределение нагрузок между ними происходит пропорционально их номинальным мощностям, что является наиболее выгодным.

При трех и более параллельно работающих генераторах также имеют место описанные выше явления, и анализ их работы можно произвести аналогичным образом.

Параллельная работа генераторов смешанного возбуждения

Упрощенная схема параллельной работы двух генераторов смешанного возбуждения с согласным включением последовательных обмоток изображена на рисунке 3.

Схема параллельной работы генераторов смешанного возбуждения
Рисунок 3. Схема параллельной работы генераторов смешанного возбуждения с согласным включением последовательных обмоток

Если показанный на рисунке 3 уравнительный провод аб отсутствует, то устойчивая параллельная работа невозможна. Действительно, пусть при отсутствии этого провода ток I1 первого генератора по какой-либо случайной причине (например, вследствие увеличения скорости вращения генератора) несколько увеличился. Тогда действие последовательной обмотки возбуждения этого генератора усилится, его э. д. с. Eа1 возрастет, что вызовет дальнейшее увеличение I1, и т. д. Одновременно ток I2 и э. д. с. Eа2 второго генератора будут беспрерывно уменьшатся. В результате возможна значительная перегрузка генератора 1, а генератор 2 разгрузится и даже может перейти в двигательный режим.

При наличии уравнительного провода аб параллельная работа будет протекать нормально, так как случайное приращение тока якоря одного генератора распределится между последовательными обмотками возбуждения обоих генераторов и вызовет увеличение э. д. с. обоих генераторов.

Можно также перекрестить последовательные обмотки возбуждения обоих генераторов: обмотку генератора 1 включить последовательно в цепь якоря генератора 2 и наоборот.

Параллельная работа генераторов смешанного возбуждения со встречным включением последовательных обмоток происходит без подобных затруднений.

Источник: Вольдек А. И., "Электрические машины. Учебник для технических учебных заведений" – 3-е издание, переработанное – Ленинград: Энергия, 1978 – 832с.

www.electromechanics.ru

14 Параллельная работа генераторов

Параллельная работа генераторов. Как правило, генераторы включаются в сеть способом точной синхрони­зации при введенной блокировке от несинхронного включения.

При точной синхронизации соблюдаются условия:

напряжение на выводах генератора должно быть равно напря­жению сети UT= Uc;

частота включаемого генератора должна быть равна частоте сети

включение должно произойти в момент совпадения фаз гене­ратора и сети.

Для соблюдения этих условий на регуляторы напряжения и скорости генераторов воздействуют вручную или автоматически.

Недостатком этого метода является сложность процесса вклю­чения и его длительность.

При самосинхронизации синхронный генератор раз­ворачивают до частоты вращения, близкой к синхронной, и не­возбужденным включают в сеть. При этом обмотка возбуждения замыкается на разрядный резистор R (см. рис. 2.10), используемый для гашения поля, либо на специально предусмотренный для этой цели резистор. После включения генератора в сеть подается им­пульс на включение АГП, и генератор возбуждается.

При включении генератора в нем возникает ток:

где Uc — напряжение сети; x'd — переходное сопротивление гене­ратора; хсис — сопротивление системы.

Этот ток меньше тока КЗ на выводах генератора, тем не менее, возникающие электродинамические силы воздействуют на обмотки генератора и его конструктивные части. Возникающий асинхрон-

ный момент воздействует на ротор, и машина втягивается в син­хронизм за 2 — 3 с.

Преимущества метода самосинхронизации:

значительное упрощение операции включения;

быстрое включение генератора в сеть, что очень важно при аварии в системе;

возможность включения во время снижения напряжения и ча­стоты сети;

отсутствие опасности повреждения машины.

Недостатком метода самосинхронизации является значитель­ная посадка напряжения на шинах генераторного напряжения в мо­мент включения, поэтому этот способ синхронизации не реко­мендуется для электростанций с общими сборными шинами ге­нераторного напряжения.

15 Силовые трансформаторы и автотрансформаторы

Силовые трансформаторы предназначены для преобразо­вания электроэнергии переменного тока с одного напряжения на другое. Наибольшее распространение получили трехфазные трансформаторы, Предельная единичная мощность трансформаторов ограничи­вается массой, размерами, условиями транспортировки.

Однофазные трансформаторы применяются, если невозможно изготовление трехфазных трансформаторов необходимой мощно­сти или затруднена их транспортировка.

По количеству обмоток различного напряжения на каждую фазу трансформаторы разделяются на двухобмоточные и трехобмоточные (рис. 2.14, а, б). Кроме того, обмотки одного и того же напряжения, обычно низшего, могут состоять из двух и более параллельных ветвей, изолированных друг от друга и от за­земленных частей. Такие трансформаторы называют трансформа­торами с расщепленными обмотками (рис. 2.14, в). Об­мотки высшего, среднего и низшего напряжения принято сокра­щенно обозначать соответственно ВН, СН, НН.

Трансформаторы с расщепленными обмотками НН обеспе­чивают возможность присоединения нескольких генераторов к од­ному повышающему трансформатору. Такие укрупненные энер­гоблоки позволяют упростить схему распределительного устрой­ства (РУ) 330—500 кВ (подробнее изложено в подразд. 5.6). Транс­форматоры с расщепленной обмоткой НН получили широкое распространение в схемах питания собственных нужд крупных ТЭС с блоками 200—1200 МВт, а также на понижающих под­станциях с целью ограничения токов КЗ.

К основным параметрам трансформатора относятся: номиналь­ные мощность, напряжение, ток; напряжение КЗ; ток холостого хода; потери холостого хода и КЗ.

Номинальной мощностью трансформатора называется указан­ное в заводском паспорте значение полной мощности, на которую непрерывно может быть нагружен трансформатор в номинальных условиях места установки и охлаждающей среды при номинальных частоте и напряжении.

Номинальные напряжения обмоток — это напряжения первичной и вторичной обмоток при холостом ходе трансформатора

Номинальными токами трансформатора называются указанные в заводском паспорте значения токов в обмотках, при которых до­пускается длительная нормальная работа трансформатора.

Номинальный ток любой обмотки трансформатора определя­ют по ее номинальной мощности и номинальному напряжению.

Напряжение короткого замыкания ик — это напряжение, при подведении которого к одной из обмоток трансформатора при зам­кнутой накоротко другой обмотке в ней проходит ток, равный номинальному.

Ток холостого хода /х характеризует активные и реактивные потери в стали и зависит от магнитных свойств стали, конструк­ции и качества сборки магнитопровода и от магнитной индукции. Ток холостого хода выражается в процентах номинального тока трансформатора. В современных трансформаторах с холодноката­ной сталью токи холостого хода имеют небольшие значения.

Потери холостого хода Рх и короткого замыкания Рк определяют экономичность работы трансформатора

Элементы конструкции силовых трансформаторов

Мощный трансформатор высокого напряжения представляет собой сложное устройство, состоящее из большого числа конст­руктивных элементов, основными из которых являются: магнит­ная система (магнитопровод), обмотки, изоляция, выводы, бак, охлаждающее устройство, механизм регулирования напряжения, защитные и измерительные устройства, тележка.

В магнитной системе проходит магнитный поток транс­форматора (отсюда название «магнитопровод»). Магнитопровод является конструктивной и механической основой трансформа­тора. Он выполняется из отдельных листов электротехнической стали, изолированных друг от друга. Качество электротехничес­кой стали влияет на допустимую магнитную индукцию и потери в магнитопроводе.

Магнитопровод и его конст­руктивные детали составляют остов трансформатора. На осто­ве устанавливают обмотки и крепят проводники, соединя­ющие обмотки с вводами, составляя активную часть.

Рис. 2.16. Обмотки трансформатора:

а — концентрическая; б — чередую­щаяся

Обмотки трансформа­торов могут быть концентри­ческими и чередующимися. В первом случае обмотки НН и ВН выполняют в виде цилинд­ров и располагают на стержне концентрически одна относи­тельно другой (рис. 2.16, а). Та­кое выполнение принято в боль­шинстве силовых трансформаторов. Во втором случае обмотки ВН и НН выполняются в виде невысоких цилиндров с одинаковыми диаметрами и располагаются на стержне одна над другой (рис. 2.16, б). В такой обмотке значительное число паек, она менее компактна и применяется для специальных электропечных транс­форматоров или для сухих трансформаторов, так как обеспечивает лучшее охлаждение обмоток.

Обмотки трансформаторов должны обладать достаточной элек­трической и механической прочностью. Изоляция обмоток и от­водов от нее должна без повреждений выдерживать коммутацион­ные и атмосферные перенапряжения. Обмотки должны выдержи­вать электродинамические усилия, которые появляются при про­текании токов КЗ. Необходимо предусмотреть надежную систему охлаждения обмоток, чтобы не возникал недопустимый перегрев изоляции.

Изоляция трансформатора является ответственной частью, так как надежность работы трансформатора определяется в ос­новном надежностью его изоляции.

В масляных трансформаторах основной изоляцией является масло в сочетании с твердыми диэлектриками: бумагой, электро­картоном, гетинаксом, деревом (маслобарьерная изоляция).

Активную часть трансформатора вместе с отводами и переклю­чающими устройствами для регулирования напряжения помеща­ют в бак. Основные части бака — стенки, дно и крышка. Крышку используют для установки вводов, выхлопной трубы, крепления расширителя, термометров и других деталей. На стенке бака ук­репляют охладительные устройства — радиаторы.

В трансформаторах небольшой мощности бак выполняется с вер­хним разъемом: при ремонтах необходимо снять крышку транс­форматора, а затем поднять активную часть из бака.

Если масса активной части более 25 т, то она устанавливается на донную часть бака, а затем накрывается колоколообразной вер­хней частью бака и заливается маслом. Такие трансформаторы с нижним разъемом не нуждаются в тяжелых грузоподъемных ус­тройствах для выемки активной части, так как при ремонтах пос­ле слива масла поднимается верхняя часть бака, открывая доступ к обмоткам и магнитопроводу.

Расширитель трансформатора представляет собой цилинд­рический сосуд, соединенный с баком трубопроводом и служа­щий для уменьшения площади соприкосновения масла с возду­хом. Бак трансформатора полностью залит маслом, изменение объема масла при нагреве и охлаждении приводит к колебанию уровня масла в расширителе; при этом воздух вытесняется из рас­ширителя или всасывается в него.

Для контроля за работой трансформатора предусматриваются контрольно-измерительные и защитные устройства. К контрольным устройствам относят маслоуказатель и термометры

studfiles.net

Глава 21. Параллельная работа синхронных генераторов.

§ 21.1. Включение генераторов на параллельную работу.

На электрических станциях обычно устанавли­вают несколько синхронных генераторов, включае­мых параллельно для совместной работы (рис. 21.1). Наличие нескольких генераторов вместо одного суммарной мощности дает преимущества, объяс­няемые теми же соображениями, которые были из­ложены применительно к параллельной работе трансформаторов (см. § 2.2).

При включении синхронного генератора в сеть на параллельную работу необходимо соблюдать следующие условия: ЭДС генератора в момент подключения его к сети должна быть равна и проти­воположна по фазе напряжению сети (),частота ЭДС генератора должна быть равна часто­те переменного напряжения в сети ; порядок следо­вания фаз на выводах генератора должен быть таким же, что и на зажимах сети.

Приведение генератора в состояние, удовлетво­ряющее всем указанным условиям, называют син­хронизацией. Несоблюдение любого из условий син­хронизации приводит к появлению в обмотке статора больших уравнительных токов, чрезмерное значение которых может явиться причиной аварии.

Включить генератор в сеть с параллельно рабо­тающими генераторами можно или способом точной синхронизации, или способом самосинхронизации

Способ точной синхронизации. Сущность это­го способа состоит в том, что, прежде чем включить генератор в сеть, его приводят в состояние, удовле­творяющее всем вышеперечисленным условиям. Момент соблюдения этих условий, т. е. момент син­хронизации, определяют прибором, называемым синхроноскопом. По конструкции синхроноскопы разделяют на стрелочные и ламповые. Рассмотрим процесс синхронизации генераторов с применением лампового синхроноскопа, который состоит из трех ламп 1, 2, 3, расположенных в вершинах равносто­роннего треугольника.

При включении ламп по схеме «на погасание» (рис. 21.2, а) мо­мент синхронизации соответствует одновременному погасанию всех ламп. Предположим, что звезда ЭДС генератора враща­ется с угловой частотой , превышающей угловую частоту

враще­ния звезды напряжений сети .В этом случае напря­жение на лампах определяется геометрической суммой +;+;+(рис. 21.2, б).

Рис. 21.1. Включение синхронных генераторов

на параллельную работу:

Г1 - Г4 – синхронные генераторы, ПД1 -ПД4 - приводные двигатели

В момент сов­падения векторов звезды ЭДС с векторами звезды напряжений эта сумма достигает наибольшего значения, при этом лам­пы горят с наибольшим накалом (напряжение на лампах равно удвоенному напряжению сети). В последующие моменты времени звезда ЭДС обгоняет звезду напряже­ний, и напряжение на лампах уменьшается. В момент синхрониза­ции векторы ЭДС и напряжений занимают положение, при кото­ром , т.е. = 0, и все три лампы одновременно гаснут (рис. 21.2, в). При большой разности уг­ловых частот илампы вспыхивают час­то. Изменяя частоту вращения первичного двигателя, добиваются равенства , очем будет свидетельст­вовать погасание ламп на длительное время. В этот момент и следует замкнуть рубильник, после чего генератор окажется подключен­ным к сети.

Рис. 21.2. Ламповый синхроноскоп

Способ самосин­хронизации. Ротор не­возбужденного генера­тора приводят во вра­щение первичным дви­гателем до частоты вращения, отличающейся от синхронной не более чем на 2—5%, затем генератор подключают к сети. Для того чтобы избежать перенапряжений в обмотке ротора в момент подключения генератора к сети, ее замыкают на некоторое активное Сопротивление. Так как в момент подключения генератора к сети его ЭДС равна нулю (генератор не возбужден), то под действием напряжения сети в обмотке статора наблюдается резкий бросок тока, превышающий номинальное значение тока генератора. Вслед за включением обмотки статора в сеть подключают обмотку возбуждения к источнику постоянного тока и синхронный генера­тор под действием электромагнитного момента, действующего на его ротор, втягивается в синхронизм, т. е. частота вращения ротора становится синхронной. При этом ток статора быстро уменьшается.

При самосинхронизации в генераторе протекают сложные электромеханические переходные процессы, вызывающие значи­тельные механические воздействия на обмотки, подшипники и муфту, соединяющую генератор с турбиной. Влияние этих воздей­ствий на надежность генератора учитывается при проектировании синхронных генераторов. Способ самосинхронизации (грубой синхронизации) обычно применяют в генераторах при их частых включениях. Этот способ прост и легко автоматизируется.

studfiles.net

Глава 21. Параллельная работа синхронных генераторов.

§ 21.1. Включение генераторов на параллельную работу.

На электрических станциях обычно устанавли­вают несколько синхронных генераторов, включае­мых параллельно для совместной работы (рис. 21.1). Наличие нескольких генераторов вместо одного суммарной мощности дает преимущества, объяс­няемые теми же соображениями, которые были из­ложены применительно к параллельной работе трансформаторов (см. § 2.2).

При включении синхронного генератора в сеть на параллельную работу необходимо соблюдать следующие условия: ЭДС генератора в момент подключения его к сети должна быть равна и проти­воположна по фазе напряжению сети (),частота ЭДС генератора должна быть равна часто­те переменного напряжения в сети ; порядок следо­вания фаз на выводах генератора должен быть таким же, что и на зажимах сети.

Приведение генератора в состояние, удовлетво­ряющее всем указанным условиям, называют син­хронизацией. Несоблюдение любого из условий син­хронизации приводит к появлению в обмотке статора больших уравнительных токов, чрезмерное значение которых может явиться причиной аварии.

Включить генератор в сеть с параллельно рабо­тающими генераторами можно или способом точной синхронизации, или способом самосинхронизации

Способ точной синхронизации. Сущность это­го способа состоит в том, что, прежде чем включить генератор в сеть, его приводят в состояние, удовле­творяющее всем вышеперечисленным условиям. Момент соблюдения этих условий, т. е. момент син­хронизации, определяют прибором, называемым синхроноскопом. По конструкции синхроноскопы разделяют на стрелочные и ламповые. Рассмотрим процесс синхронизации генераторов с применением лампового синхроноскопа, который состоит из трех ламп 1, 2, 3, расположенных в вершинах равносто­роннего треугольника.

При включении ламп по схеме «на погасание» (рис. 21.2, а) мо­мент синхронизации соответствует одновременному погасанию всех ламп. Предположим, что звезда ЭДС генератора враща­ется с угловой частотой , превышающей угловую частоту

враще­ния звезды напряжений сети .В этом случае напря­жение на лампах определяется геометрической суммой +;+;+(рис. 21.2, б).

Рис. 21.1. Включение синхронных генераторов

на параллельную работу:

Г1 - Г4 – синхронные генераторы, ПД1 -ПД4 - приводные двигатели

В момент сов­падения векторов звезды ЭДС с векторами звезды напряжений эта сумма достигает наибольшего значения, при этом лам­пы горят с наибольшим накалом (напряжение на лампах равно удвоенному напряжению сети). В последующие моменты времени звезда ЭДС обгоняет звезду напряже­ний, и напряжение на лампах уменьшается. В момент синхрониза­ции векторы ЭДС и напряжений занимают положение, при кото­ром , т.е. = 0, и все три лампы одновременно гаснут (рис. 21.2, в). При большой разности уг­ловых частот илампы вспыхивают час­то. Изменяя частоту вращения первичного двигателя, добиваются равенства , очем будет свидетельст­вовать погасание ламп на длительное время. В этот момент и следует замкнуть рубильник, после чего генератор окажется подключен­ным к сети.

Рис. 21.2. Ламповый синхроноскоп

Способ самосин­хронизации. Ротор не­возбужденного генера­тора приводят во вра­щение первичным дви­гателем до частоты вращения, отличающейся от синхронной не более чем на 2—5%, затем генератор подключают к сети. Для того чтобы избежать перенапряжений в обмотке ротора в момент подключения генератора к сети, ее замыкают на некоторое активное Сопротивление. Так как в момент подключения генератора к сети его ЭДС равна нулю (генератор не возбужден), то под действием напряжения сети в обмотке статора наблюдается резкий бросок тока, превышающий номинальное значение тока генератора. Вслед за включением обмотки статора в сеть подключают обмотку возбуждения к источнику постоянного тока и синхронный генера­тор под действием электромагнитного момента, действующего на его ротор, втягивается в синхронизм, т. е. частота вращения ротора становится синхронной. При этом ток статора быстро уменьшается.

При самосинхронизации в генераторе протекают сложные электромеханические переходные процессы, вызывающие значи­тельные механические воздействия на обмотки, подшипники и муфту, соединяющую генератор с турбиной. Влияние этих воздей­ствий на надежность генератора учитывается при проектировании синхронных генераторов. Способ самосинхронизации (грубой синхронизации) обычно применяют в генераторах при их частых включениях. Этот способ прост и легко автоматизируется.

studfiles.net

Параллельная работа генераторов, преимущества и рекомендации

Параллельная работа генераторов используется не только при проведении технического обслуживания электростанции, которая является основным источником энергии. Она может быть осуществлена и по ряду других причин. К ним относятся: обеспечение повышенной надежности питания ответственных потребителей, компенсация увеличения потребляемой мощности, а также многие другие.

Параллельная работа генераторов переменного тока подразумевает под собой совместную работу электрогенераторов при общей нагрузке. Необходимость в параллельной работе возникает, когда нагрузка питания колеблется в широких пределах, а также для повышения надежности системы электроснабжения.

Схема параллельного соединения генераторов

Схема параллельного соединения генераторов

Когда необходимо параллельное подключение?

Если оборудование было выбрано исходя из максимально возможной нагрузки, то в случае ее снижения оно будет работать не на полную мощность. Кроме того, КПД генератора при небольших нагрузках намного ниже номинального, поэтому можно говорить о том, что работа при небольшой нагрузке является неэкономичной: снижается моторесурс, наблюдается повышенный износ оборудования, увеличенный расход топлива. В этом случае целесообразно использовать несколько генераторов и в зависимости от нагрузки включать необходимое количество для параллельной работы.

Установка одного прибора имеет и другой недостаток. При выходе его из строя полностью прекращается питание установки. Этот недостаток можно компенсировать параллельным включением нескольких приборов. Иногда параллельную работу используют, когда мощность нагрузки превышает допустимую мощность электрооборудования.

Нужно отметить, что в случае использования генератора для резервного электроснабжения параллельная работа НЕВОЗМОЖНА. Дело в том, что резервное электроснабжение уже изначально направлено на питание нагрузки от одного генератора переменного тока. Именно поэтому параллельная работа возможна лишь в случае постоянного электроснабжения.

Варианты параллельного подключения

Параллельная работа с другим электрогенератором используется для повышения надежности системы электроснабжения и для компенсации роста мощности в пиковые часы. Параллельная работа с сетью используется редко в случаях, если нужно обеспечить бесперебойность питания на период проведения технического обслуживания основного источника питания. В этом случае генератор работает с сетью кратковременно, только в период перевода нагрузки на на данную генераторную установку и обратно.

Основные достоинства

  • Параллельная работа позволяет расширить рабочие мощностные диапазоны оборудования
  • При помощи подключения дополнительного оборудования и распределения нагрузки между ними можно обеспечить эффективную работу.
  • Всегда можно дополнить установку генераторами для увеличения суммарной мощности в случае роста энергопотребления.
  • Повышается надежность системы и предотвращаются перебои с электроэнергией , что невозможно сделать при использовании одного мощного электрогенератора.

www.best-generators.ru

Параллельная работа генераторов

На электрических станциях всегда устанавливают несколько турбо- или гидроагрегатов, которые работают совместно в параллельном соединении на общие шины генераторного или повышенного напряжения.

В результате этого выработка электроэнергии на электростанциях производится несколькими параллельно работающими генераторами и такая совместная их работа имеет много ценных преимуществ.

Параллельная работа генераторов:

1. повышает гибкость эксплуатации оборудования электростанций и подстанций, облегчает проведение планово-предупредительных ремонтов генераторов, основного оборудования и соответствующих РУ при минимуме необходимого резерва.

2. повышает экономичность работы электростанции, так как дает возможность распределять наиболее рационально суточный график нагрузки между агрегатами, чем достигается наилучшее использование мощности и повышается к. п. д.; на ГЭС дает возможность наиболее полно использовать мощность водяного потока в период паводков и летней и зимней межени;

3. повышает надежность и бесперебойность работы электростанций и электроснабжения потребителей.

Принципиальная схема параллельной работы генераторов

 

Для увеличения производства и улучшения распределения электроэнергии многие электростанции объединяются для параллельной работы в мощные энергетические системы.

В нормальном режиме эксплуатации генераторы присоединены на общие шины (генераторного или повышенного напряжения) и вращаются синхронно. Их роторы вращаются с одинаковой угловой электрической скоростью.

паралельная работа геренаторов формула

При параллельной работе мгновенные значения напряжений на выводах обоих генераторов должны быть равны по величине и обратны по знаку.

Для подключения генератора на параллельную работу с другим генератором (или с сетью) нужно произвести его синхронизацию, т. е. отрегулировать скорость вращения и возбуждение подключаемого генератора в соответствии с работающим.

Генераторы, работающий и включаемый на параллельную работу, должны быть сфазированы, т. е. иметь одинаковый порядок чередования фаз.Как видно из рис. 1, при параллельной работе генераторы по отношению друг к другу включены навстречу, т. е. их напряжения U1 и U2 на выключателе будут прямо противоположны. По отношению же к нагрузке генераторы работают согласно, т. е. их напряжения U1 и U2 совпадают. Эти условия параллельной работы генераторов отражены на диаграммах рисунка:

 

условия параллельной работы генераторов

Существуют два метода синхронизации генераторов: точная синхронизация и грубая синхронизация, или самосинхронизация.

Условия точной синхронизации генераторов.

При точной синхронизации возбужденный генератор подключают к сети (шинам) выключателем В (рис. 1) при достижении условий синхронизма — равенства мгновенных значений их напряжений U1 = U2

При раздельной работе генераторов их мгновенные фазные напряжения будут соответственно равны:

 

Отсюда вытекают условия, необходимые для параллельного включения генераторов. Для включаемого и работающего генераторов требуется: 1. равенство действующих значений напряжений U1 = U2 2. равенство угловых частот ω1 = ω2 или f1 = f2 3. совпадение напряжений по фазе ψ1 = ψ2 или Θ= ψ1 -ψ2 =0.

Точное выполнение этих требований создает идеальные условия, которые характеризуются тем, что в момент включения генератора уравнительный ток статора будет равен нулю. Однако следует отметить, что выполнение условий точной синхронизации требует тщательной подгонки сравниваемых величин напряжения частоты и фазных углов напряжения генераторов.

В связи с этим на практике невозможно полностью выполнить идеальные условия синхронизации; они выполняются приближенно, с некоторыми небольшими отклонениями. При невыполнении одного из указанных выше условий, когда U2, на выводах разомкнутого выключателя связи В будет действовать разность напряжений:

 

Векторные диаграммы для случаев отклонения от условий точной синхронизации: а — Действующие напряжения генераторов не равны; б — угловые частоты не равны:

При включении выключателя под действием этой разности потенциалов в цепи потечет уравнительный ток, периодическая составляющая которого в начальный момент будет:

Рассмотрим два случая отклонения от условий точной синхронизации, показанные на диаграмме (рис. векторные диаграммы для случаев отклонения):1. действующие напряжения генераторов U1 и U2 не равны, остальные условия соблюдаются;

2. генераторы имеют одинаковые напряжения, но вращаются с разными скоростями, т. е. их угловые частоты ω1 и ω2 не равны, и имеет место несовпадение напряжений по фазе. Как видно из диаграммы на рис. 3, а, неравенство действующих значений напряжений U1 и U2 обусловливает возникновение уравнительного тока I”ур, который будет почти чисто индуктивным, так как активные сопротивления генераторов и соединительных проводников сети весьма малы и ими пренебрегают. Этот ток не создает толчков активной мощности, а, следовательно, и механических напряжений в деталях генератора и турбины. В связи с этим при включении генераторов на параллельную работу разность напряжений может быть допущена до 5—10%, а в аварийных случаях — до 20%.

При равенстве действующих значений напряжений U1 = U2, но при расхождении угловых частот Δω=ω1 – ω2 ≠ 0 или Δf=f1 – f2 ≠ 0 происходит смещение векторов напряжений генераторов и сети (или 2-го генератора) на некоторый угол Θ, меняющийся во времени. Напряжения генераторов U1 и U2 в рассматриваемом случае будут отличаться по фазе не на угол 180°, а на угол 180°—Θ (рис. 3, б).

На выводах разомкнутого выключателя В, между точками а и б, будет действовать разность напряжений ΔU. Как и в предыдущем случае, наличие напряжения может быть установлено при помощи электрической лампочки, а действующую величину этого напряжения можно измерить вольтметром, включенным между точками а и б. Если замкнуть выключатель В, то под действием разности напряжений ΔU возникает уравнительный ток I”ур, который в отношении U2 будет почти чисто активным и при включении генераторов на параллельную работу вызовет сотрясения и механические напряжения в валах и других деталях генератора и турбины. При ω1 ≠ ω2 синхронизация получается вполне удовлетворительной, если скольжение s0<0,l% и угол Θ ≥ 10°.

Вследствие инерционности регуляторов турбины нельзя осуществить длительное равенство угловых частот ω1 = ω2, и угол Θ между векторами напряжений, характеризующий относительное положение обмоток статора и ротора генераторов, не остается постоянным, а непрерывно меняется; его мгновенное значение будет Θ=Δωt. На векторной диаграмме (рис. 4) последнее обстоятельство выразится в том, что с изменением угла сдвига фаз в между векторами напряжений U1 и U2 будет также изменяться ΔU. Разность напряжений при этом ΔU называется напряжением биений. Векторная диаграмма синхронизации генераторов при неравенстве частот:

Векторная диаграмма синхронизации генераторов при неравенстве частот.

Мгновенное значение напряжений биений Δu представляет собой разность мгновенных значений напряжений u1 и u2 генераторов.Предположим, что достигнуто равенство действующих значений U1=U2, фазные углы начала отсчета времени ψ1 и ψ2 тоже равны.Тогда можно написать:

Напряжение биений гармонически изменяется с частотой, равной полусумме сравниваемых частот, и с амплитудой, изменяющейся во времени в зависимости от угла сдвига фаз Θ:

Из векторной диаграммы для некоторого определенного значения угла Θ можно найти действующее значение напряжения биений:

Учитывая изменение угла Θ с течением времени, можно написать выражение для огибающей по амплитудам напряжения биений, которое дает изменение амплитуд напряжения во времени:

Как видно из векторной диаграммы на рис. 4 и последнего уравнения, амплитуда напряжения биений ΔU изменяется от 0 до 2Um. Наибольшая величина ΔU будет в тот момент, когда векторы напряжения U1 и U2 (рис. 4) совпадут по фазе и угол Θ = π, а наименьшая — когда эти напряжения будут отличаться по фазе на 180° и угол Θ = 0. Период кривой биений равен:

При включении генератора на параллельную работу с мощной системой значение хс системы мало и им можно пренебречь (хс ≈ 0), тогда уравнительный ток:

а ударный ток:

В случае неблагоприятного включения в момент Θ = π ударный ток в обмотке статора включаемого генератора может достигнуть двойного значения ударного тока трехфазного короткого замыкания на выводах генератора.

Активная составляющая уравнительного тока, как видно из векторной диаграммы, равна:

xn----8sbnaarbiedfksmiphlmncm1d9b0i.xn--p1ai

Параллельная работа генераторов постоянного тока. — МегаЛекции

Содержание

1. Параллельная работа генераторов постоянного тока......................................3

2. Реле обратного тока.............................................................................................6

3. Главный распределительный щит постоянного тока.......................................7

Литература.............................................................................................................11

Вариант 1

Параллельная работа генераторов постоянного тока.

 

Под параллельной работой понимается работа нескольких генераторов на общую нагрузку. Необходимость в параллельной работе возникает при переменном характере нагрузки, когда она меняется в течение суток или времён года, а также для повышения надежности элек­троснабжения потребителей.

Если выбрать генератор исходя из максимально возможной нагрузки, то в часы снижения нагрузки генератор будет работать недогруженным. КПД генератора при небольших нагрузках гораздо ниже оптимального, поэтому работа генератора при нагрузках, значительно меньших номинальной, неэкономична.

В этом случае целесообразно установить несколько генераторов и в зависимости от нагрузки включить то или иное их количество на параллельную работу. При этом можно обеспечить работу каждого генератора с нагрузкой, близкой к номинальной, с высоким КПД.

Установка одного генератора имеет ещё и тот недостаток, что при выходе его из строя полностью прекращается питание нагрузки. Этот недостаток отсутствует при параллельном включении нескольких генераторов. Иногда к параллельной работе генераторов прибегают и в том случае, когда мощность нагрузки превышает предельную мощность генераторов.

Включение на параллельную работу второго генератора должно быть произведено так, чтобы не нарушался режим работы сети, т.е. чтобы при включении генератора не возникали в ней большие толчки тока и напряжения. Для осуществления этого необходимо выполнить два условия:

1) ЭДС подключаемого генератора должна быть равна напряжению сети. При этом ток в якоре генератора после его включения в сеть будет равен нулю. Достигнуть равенства можно, изменив ток возбуждения у подключаемого генератора. Контроль этого условия производится поочередным измерением напряжения в сети и на выводах генератора;

2) полярность подключаемого генератора должна соответствовать полярности сети. Это означает, что к выводу сети, имеющему, например, полярность « + », должен быть подключен вывод генератора той же полярности. Аналогично должны подключаться выводы с полярностью «-». При невыполнении этого условия в контуре, образованном якорями генераторов, их ЭДС будут суммироваться и возникнет ток, равный току короткого замыкания на выводах машины. Напряжение на шинах при этом равно нулю. Ток может вызвать повреждение генераторов.

Проверку соответствия полярности можно произвести двумя способами:

1) с помощью вольтметра магнитоэлектрической системы. Направление отклонения стрелки этого прибора зависит от полярности подведенного к нему напряжения. Если измерить вольтметром напряжение в сети, а затем на соответствующих выводах генератора, то отклонение стрелки прибора в одну и ту же сторону будет свидетельствовать, что полярности одинаковые;

2) подключением вольтметра к выводам одного ножа рубильника. Другой нож этого рубильника должен быть замкнут. При соответствии полярностей генератора и сети показание вольтметра равно нулю. При несоответствии полярностей следует поменять между собой выводы генератора или сети, подходящие к рубильнику.

Если выполнены условия включения генератора на параллельную работу, то у подключённого генератора ток равен нулю. Теперь требуется часть нагрузки с первого генератора перевести на второй - подключённый. При этом необходимо сохранить напряжение на шинах неизменным.

Для того чтобы произвести перераспределение токов, необходимо изменить ЭДС путем воздействия на цепи возбуждения генераторов. Для увеличения нагрузки генератора его ток возбуждения следует повышать, а для уменьшения нагрузки - снижать. Перераспределение нагрузки можно было бы осуществить путем воздействия только на ток возбуждения одного из генераторов, но в этом случае напряжение на шинах не будет оставаться постоянным. Если в процессе работы из-за спада нагрузки потребуется один из генераторов отключить, то для этого предварительно следует его ток нагрузки перераспределить между другими работающими генераторами и только тогда, когда он станет равным нулю, произвести отключение. При переводе нагрузки следует иметь в виду, что из-за малых сопротивлений цепи якоря генераторов небольшие изменения токов возбуждения (а следовательно, и ЭДС) могут вызвать значительные изменения токов нагрузки. Поэтому при переводе нагрузки токи воз­буждения следует регулировать плавно, контролируя изменение токов в цепях якорей.

Если в процессе работы нагрузка сети будет изменяться, то при отсутствии регулировки токов возбуждения параллельно работающих генераторов распределение нагрузки между ними будет происходить в общем случае непропорционально их номинальным мощностям. На распределение нагрузки между параллельно работающими генераторами существенное влияние оказывают их внешние характеристики.

Для распределения тока между параллельно работающими генераторами пропорционально номинальным мощностям желательно, чтобы их внешние характеристики были одинаковыми. При сопоставлении внешних характеристик генераторов различной мощности следует строить их в функции относительного тока, т. е. выраженного в долях номинального тока данного генератора. Неравномерное распределение тока между генераторами можно выправить регулировкой токов возбуждения.

При уменьшении нагрузки параллельно работающих генераторов один из генераторов может перейти в двигательный режим. Переход в двигательный режим произойдет тогда, когда E<U. При этом ток цепи якоря меняет направление и генератор потребляет энергию, вырабатываемую другими генераторами.Переход генератора в двигательный режим является нежелательным, а в некоторых случаях и опасным, поэтому в цепи генератора устанавливаются автоматические выключатели, отключающие генератор, как только его ток изменит свой знак.

До сих пор рассматривалась параллельная работа генераторов независимого возбуждения, но все сказанное справедливо и для генераторов параллельного и смешанного возбуждения. Однако параллельная работа генераторов смешанного возбуждения при согласном включении обмоток имеет свои особенности.

При параллельном включении генераторов смешанного возбуждения возможна неустойчивая работа генераторов, которая заключается в произвольном колебании тока в цепях их якорей. Происходит это по следующим причинам. Известно, что ЭДС генератора пропорциональна частоте вращения я и магнитному потоку. Если, например, частота вращения якоря первого генератора мгновенно повысится, то это вызовет увеличение ЭДС, а следовательно, и тока якоря этого генератора. Возросший ток якоря, протекая по последовательной обмотке возбуждения, увеличит магнитный поток машины, что приведёт к ещё большему увеличению ЭДС и тока якоря. Это в свою очередь вызовет дальнейшее увеличение ЭДС и т. д. В результате этого первый генератор будет воспринимать на себя все большую нагрузку, разгружая пои этом второй генератор.

Сильное увеличение нагрузки первого генератора повлечет за собой уменьшение частоты вращения сочленённого с ним первичного двигателя, вследствие чего процесс пойдет в обратном направлении: первый генератор будет разгружаться, а второй, наоборот, нагружаться. Таким образом может возникнуть колебательный процесс переброски нагрузочного тока с одного генератора на другой.

Чтобы исключить появление колебательного процесса, в схему включения генераторов на параллельную работу добавляют уравнительный провод, которым объединяют точки соединения последовательных обмоток возбуждения с обмотками якоря.

При наличии уравнительного провода последовательные обмотки возбуждения генераторов оказываются включенными параллельно друг другу, поэтому при увеличении тока якоря одного из генераторов ток будет распределяться между последователь­ными обмотками обратно пропорционально их сопротивлениям. При этом увеличиваются ЭДС и ток как одного, так и другого генератора и колебательного процесса происходить не будет.

При наличии уравнительного провода параллельная работа генераторов смешанного возбуждения при согласном включении обмоток протекает так же, как и других генераторов. Для улучшения работы по такой схеме сопротивление уравнительного провода следует брать минимально возможным.

 

Реле обратного тока.

Напряжение генератора может изменяться в зависимости от числа оборотов якоря от нуля до некоторого наибольшего значения, поддерживаемого регулятором напряжения или третьей щёткой. В то же время напряжение на полюсах батареи изменяется незначительно, и как только оно превысит напряжение генератора, появится разрядный ток.

При длительном прохождении тока из батареи через генератор могут перегреться обмотки, испортиться изоляция и т.д. Кроме того, бесцельно разряжается и истощается батарея. Поэтому в цепь генератор - аккумуляторная батарея включают реле обратного тока. Назначение реле - автоматически включать батарею на зарядку, как только напряжение генератора превысит напряжение батареи, и отключать батарею от генератора, когда его напряжение станет меньше напряжения батареи.

Реле обратного тока состоит из ярма с сердечником , на котором расположены две обмотки: тонкая и толстая; тонкая обмотка включена параллельно генератору, а толстая - последовательно между генератором и потребителями.

Часть тока из генератора ответвляется в тонкую обмотку реле, и поэтому сердечник реле намагничивается. Путь тока по обмоткам реле: положительная щетка - масса - тонкая обмотка - толстая обмотка - отрицательная щетка.

Когда напряжение генератора достигнет нормальной величины (7,0-7,5 в при напряжении батареи 6 в и 13,0-13,5 в при напряжении батареи 12 в), магнитная сила сердечника увеличивается настолько, что он притягивает якорёк; контакты соединяются и цепь генератор - батарея замыкается. Путь тока генератора к батарее: положительная щетка - масса - батарея - провод - амперметр - провод - ярмо - якорёк - контакты - толстая обмотка - провод - отрицательная щетка.

Когда напряжение генератора снизится, ток пойдёт из батареи в генератор по тем же проводникам, но в обратном направлении. Вследствие изменения направления тока в толстой обмотке сердечник реле размагничивается и контакты размыкаются под действием пружины.

Когда двигатель не работает или работает на малых оборотах, контакты реле разомкнуты, все включенные потребители питаются током батареи. После замыкания контактов потребители и аккумуляторная батарея питаются током генератора или (при большой мощности потребителей) генератора и батареи совместно.

Реле обратного тока, регулятор напряжения и ограничитель тока обычно устанавливаются на одной панели и в общем кожухе. Такой прибор называется реле-регулятором.

 

megalektsii.ru


© 2007—2018
423800, Набережные Челны , база Партнер Плюс, тел. 8 800 100-58-94 (звонок бесплатный)