Камаз 44108 тягач В наличии!
Тягач КАМАЗ 44108-6030-24
евро3, новый, дв.КАМАЗ 740.55-300л.с., КПП ZF9, ТНВД ЯЗДА, 6х6, нагрузка на седло 12т, бак 210+350л, МКБ, МОБ
 
карта сервера
«ООО Старт Импэкс» продажа грузовых автомобилей камаз по выгодным ценам
+7 (8552) 31-97-24
+7 (904) 6654712
8 800 1005894
звонок бесплатный

Наши сотрудники:
Виталий
+7 (8552) 31-97-24

[email protected]

 

Екатерина - специалист по продаже а/м КАМАЗ
+7 (904) 6654712

[email protected]

 

Фото техники

20 тонный, 20 кубовый самосвал КАМАЗ 6520-029 в наличии
15-тонный строительный самосвал КАМАЗ 65115 на стоянке. Техника в наличии
Традиционно КАМАЗ побеждает в дакаре

тел.8 800 100 58 94

Техника в наличии

тягач КАМАЗ-44108
Тягач КАМАЗ 44108-6030-24
2014г, 6х6, Евро3, дв.КАМАЗ 300 л.с., КПП ZF9, бак 210л+350л, МКБ,МОБ,рестайлинг.
цена 2 220 000 руб.,
 
КАМАЗ-4308
КАМАЗ 4308-6063-28(R4)
4х2,дв. Cummins ISB6.7e4 245л.с. (Е-4),КПП ZF6S1000, V кузова=39,7куб.м., спальное место, бак 210л, шк-пет,МКБ, ТНВД BOSCH, система нейтрализ. ОГ(AdBlue), тент, каркас, рестайлинг, внутр. размеры платформы 6112х2470х730 мм
цена 1 950 000 руб.,
КАМАЗ-6520
Самосвал КАМАЗ 6520-057
2014г, 6х4,Евро3, дв.КАМАЗ 320 л.с., КПП ZF16, ТНВД ЯЗДА, бак 350л, г/п 20 тонн, V кузова =20 куб.м.,МКБ,МОБ, со спальным местом.
цена 2 700 000 руб.,
 
КАМАЗ-6522
Самосвал 6522-027
2014, 6х6, дв.КАМАЗ 740.51,320 л.с., КПП ZF16,бак 350л, г/п 19 тонн,V кузова 12куб.м.,МКБ,МОБ,задняя разгрузка,обогрев платформы.
цена 3 190 000 руб.,

СУПЕР ЦЕНА

на АВТОМОБИЛИ КАМАЗ
43118-010-10 (дв.740.30-260 л.с.) 2 220 000
43118-6033-24 (дв.740.55-300 л.с.) 2 300 000
65117-029 (дв.740.30-260 л.с.) 2 200 000
65117-6010-62 (дв.740.62-280 л.с.) 2 350 000
44108 (дв.740.30-260 л.с.) 2 160 000
44108-6030-24 (дв.740.55,рест.) 2 200 000
65116-010-62 (дв.740.62-280 л.с.) 1 880 000
6460 (дв.740.50-360 л.с.) 2 180 000
45143-011-15 (дв.740.13-260л.с) 2 180 000
65115 (дв.740.62-280 л.с.,рест.) 2 190 000
65115 (дв.740.62-280 л.с.,3-х стор) 2 295 000
6520 (дв.740.51-320 л.с.) 2 610 000
6520 (дв.740.51-320 л.с.,сп.место) 2 700 000
6522-027 (дв.740.51-320 л.с.,6х6) 3 190 000


Перегон грузовых автомобилей
Перегон грузовых автомобилей
подробнее про услугу перегона можно прочесть здесь.


Самосвал Форд Нужны самосвалы? Обратите внимание на Ford-65513-02.

КАМАЗы в лизинг

ООО «Старт Импэкс» имеет возможность поставки грузовой автотехники КАМАЗ, а так же спецтехники на шасси КАМАЗ в лизинг. Продажа грузовой техники по лизинговым схемам имеет определенные выгоды для покупателя грузовика. Рассрочка платежа, а так же то обстоятельство, что грузовики до полной выплаты лизинговых платежей находятся на балансе лизингодателя, и соответственно покупатель автомобиля не платит налогов на имущество. Мы готовы предложить любые модели бортовых автомобилей, тягачей и самосвалов по самым выгодным лизинговым схемам.

Контактная информация.

г. Набережные Челны, Промкомзона-2, Автодорога №3, база «Партнер плюс».

тел/факс (8552) 388373.
Схема проезда


Механические свойства металлов и методы их испытаний. Механические испытания металлов


Механические испытания металлов

Цель работы: ознакомиться с испытательным оборудованием для определения основных механических характеристик; провести механические испытания предложенных марок сталей; по результатам испытаний определить предел прочности, предел текучести, предел пропорциональности, относительное удлинение, относительное сужение.

Приборы и оборудование: образцы, применяемые для различных видов испытаний; диаграммы растяжения.

Основные понятия. Механические свойства - это характеристики материала, определяющие его поведение под действием приложенных внешних механических сил.

Механические свойства металлов определяют испытаниями специальных образцов.

Испытания механических свойств проводят при различных нагрузках – статических, динамических и циклических. Статические нагрузки медленно возрастают от нуля до максимальной величины; динамические возрастают быстро, за доли секунд; циклические нагрузки характеризуются многократным изменением по направлению или по величине. В соответствии с характером действующих нагрузок различают статические, динамические и усталостные испытания.

К статическим испытаниям обычно относят испытания на растяжение, сжатие, изгиб и на твердость; к динамическим – испытания на удар; циклическим способом проводят различные испытания металла на усталость.

По длительности приложения нагрузки механические испытания делятся на кратковременные и длительные. В большинстве случаев проводят кратковременные испытания длительностью несколько минут. Длительные испытания проводят, как правило, для определения механических свойств металлов, которым предстоит работать в особо ответственных конструкциях и сложных условиях в течение длительного периода времени.

В зависимости от температуры различают испытания при пониженной (ниже 0ºС), обычной (20ºС) и повышенной (выше 20ºС) температурах. Температуру испытания выбирают в зависимости от рабочей температуры изделий.

Испытание на растяжение. Механические свойства металлов наиболее полно могут быть установлены при статических испытаниях на растяжение гладких образцов. Испытание на растяжение проводят на специальных круглых образцах, а для листового материала на плоских образцах (см. рис.14), в соответствии с ГОСТ 1497-84.

Рис. 14. Образцы для испытаний на разрыв:

а – круглый; б - плоский

Расчетная длина круглого образца l0 , мм обычно берется равной десяти или пяти диаметрам. Диаметр рабочей части нормального круглого образца равняется 20 мм. Образцы других размеров называют пропорциональными. Стандартные размеры которых приведены в табл.5.

Таблица 5

Стандартные размеры образцов

Наименование образца

Расчетная длина

l0,мм

Диаметр образца d0, мм

Площадь поперечного сечения F0,мм2

Кратность

l0

d0

Нормальный длинный

200

20

314

10

Нормальный короткий

100

20

314

5

Пропорциональный длинный

11,3 F0

Произвольный

Произвольный

10

Пропорциональный

5,65 F0

Произвольный

Произвольный

5

При испытании на растяжение образец, установленный в захватах машины, деформируется при плавно возрастающей нагрузке и характеристики свойств металла определяют в условиях одноосного напряженного состояния.

Образцы из разных материалов разрушаются в результате испытаний различно.

В процессе испытаний на растяжение на разрывных машинах записывается диаграмма в координатах нагрузка (Р, Н)– удлинение

(∆l, мм) образца (диаграмма растяжения).

Такая диаграмма вычерчивается автоматическим устройством, при постепенном увеличении растягивающего усилия вплоть до разрыва испытываемого образца. Диаграммы растяжения будут иметь вид, показанный на рис. 15.

При растяжении образец удлиняется, а его поперечное сечение непрерывно уменьшается.

Усилие, приходящееся на 1 мм2 поперечного сечения образца, называется напряжением и обозначается σ, МПа.

Рис 15. Типы диаграмм растяжения:

а – без площадки текучести; б – с площадкой текучести.

Напряжения, характеризующие сопротивление металла деформированию, подразделяются на условные и истинные.

Условные напряжения  определяются как отношение действующей нагрузкиР, Н к площади поперечного сечения до испытанияF0 , мм2 (8):

. (8)

Истинные напряжения S, МПа, представляют собой отношение действующей нагрузки Р, Н, отрезокОЕк площади поперечного сечения в данный моментF, мм2 (9):

. (9)

Диаграмма растяжения образца из низкоуглеродистой стали представлена на рис. 16.

Рис. 16. Кривая растяжения низкоуглеродистой стали

Определение характеристик прочности. Максимальное напря- жение, до которого сохраняется прямолинейная зависимость между нагрузкой и деформацией, или, иначе говоря, остается справедливым закон Гука (10), называетсяпределом пропорциональности:

. (10)

Напряжение, при котором без заметного увеличения нагрузки образец продолжает деформироваться, называется физическим пределом текучести. Участок «вс» на диаграмме растяжения (рис.16) называетсяплощадкой текучести. Наименьшая нагрузка на участке текучестиРт,Н, отнесенная к первоначальной площади поперечного сеченияF0, мм2, определяет значение физического предела текучести (11):

(11)

Так как для ряда материалов на диаграмме растяжения нет площадки текучести (см. рис. 15, а) , то в этом случае определяется условный предел текучести0,2 , мм.

Под условным пределом текучести 0,2 понимают напряжение, при котором остаточная деформация составляет 0,2% от первоначальной расчетной длины образцаl0 . Условный предел текучести определяется по формуле

. (12)

Для определения условного предела текучести на диаграмме растяжения по оси абсцисс от начала координат откладывают величину, равную 0,2% от l0 (отрезок ОЕ на рис.17).

Рис.17. Схема определения условного предела текучести

Через точку Е проводят прямую, параллельную участку пропор- циональности диаграммы. Ордината точки А пересечения этой прямой с диаграммой растяжения определяет нагрузку, соответствующую условному пределу текучести.

Предел текучести является обязательной характеристикой металла по ГОСТу.

Точка В на диаграмме растяжения отвечает максимальной нагрузке, выдерживаемой образцом при испытании. В этой точке деформация из равномерной переходит в местную, и на образце начинает образовываться шейка.

Напряжение, отвечающее максимальной нагрузке РВ в процессе испытания, называетсяпределом прочности (13):

. (13)

Разрушение образца при растяжении происходит в точке К при нагрузке РК, Н. Отношение этой нагрузки к площади поперечного сечения образца после разрушенияFК, мм2,представляет собойистинное сопротивление разрыву (14):

. (14)

Определение характеристик пластичности.Абсолютное оста- точное удлинениеlК, мм (15), определяется разностью между длиной образца после разрываlК, мм, и его первоначальной длинойl0,мм:

. (15)

Относительное удлинение, % (17), представляет собой отношение абсолютного удлинения к первоначальной длине образца

(16)

где  - относительное удлинение, %.

Для получения одинаковых значений относительного удлинения для одного и того же материала, испытываемого на различных образцах, необходимо чтобы образцы имели определенное соотношение между расчетной длиной l0, мм, и площадью поперечного сечения (или диаметром). Относительное удлинение, определенное на длинном образце (l0/d0=10),обозначается через10 % , а на коротком образце – через5, %.

Относительное сужение , % - характеристика пластичности, которая определяется как отношение абсолютного уменьшения площади поперечного сечения образца в месте разрыва к начальной площади сечения образца (17):

(17)

где F0 – начальное поперечное сечение образца,FК – площадь сечения образца в шейке после разрыва.

Относительное сужение характеризует способность к местной пластической деформации в направлении, перпендикулярном действию сил. Оно определяется только для образцов круглого сечения.

Изменение размеров образца в результате растяжения показано на

рис. 18.

Рис. 18. Образцы стали:

а - до растяжения; б - после разрыва

Характеристики материалов В,0,2, ,  являются базовыми; они включаются в ГОСТ на постановку конструкционных материалов, в сертификаты, в паспорта приемочных испытаний, входят в расчеты прочности.

Определение ударной вязкости.В условиях эксплуатации конструкционные материалы испытывают более сложное нагружение, чем при статических испытаниях гладких образцов. В особенности это относится к металлам, которые под влиянием определенных условий службы склонны переходить в хрупкое состояние при действии низких температур, наличия концентраторов напряжений, увеличения абсолютных размеров, повышения скорости деформирования и других факторов.

Ударные испытания надрезанных образцов проводятся для оценки вязкости материалов и установления склонности его к переходу в хрупкое состояние.

Под вязкостью понимают способность материала поглощать работу внешних сил за счет пластической деформации.

Ударная вязкостьравна работе, затраченной при динамическом разрушении надрезанного образца, отнесенной к площади поперечного сечения в месте надреза.

Ударную вязкость определяют на маятниковом копре, принципиальная схема которого приведена на рис. 19. Груз весом Q , первоначально поднятый на высотуН, свободно падает и в нижнем положении разрушает установленный на опорах образец квадратного сечения. Часть кинетической энергии падающего груза расходуется на разрушение образца, а ее оставшаяся часть идет на поднятие груза на высотуh.

Груз весом Qпервоначально поднят на высотуН, свободно падает и в нижнем положении разрушает установленный на опорах образец квадратного сечения. Часть кинетической энергии падающего груза расходуется на разрушение образца, а ее оставшаяся часть идет на поднятие груза на высотуh.

Рис.19. Схема действия копра и эскиз образца

Энергия, затраченная на разрушение образца, подсчитывается по формуле (18):

(18)

Ударная вязкость определяется из выражения (19):

(19)

Выгодное отличие испытаний на ударную вязкость состоит в совмещении при испытаниях концентрации напряжений (надрез) и ударной изгибающей нагрузки, позволяющем создать большую неравномерность поля напряжений.

Для определения ударной вязкости применяют надрезанные посередине длины образцы различных типов (рис. 20).

Испытания проводят в соответствии с ГОСТ 9454-78 на образцах с концентраторами напряжений трех видов:

U с радиусомR=1мм;

V cрадиусомR=0,25мм;

Т – усталостная трещина.

В зависимости от формы надреза ударная вязкость обозначается KCU, KCV илиKCT.

Поскольку наиболее распространены испытания на удар образцов с

U-образным надрезом, в справочниках чаще всего проводится обозначение ударной вязкостиKCU, МДж/м2.

Рис. 20. Образцы для испытаний на удар:

а – U-образный надрез; б – V-образный надрез; в – образец с трещиной

Определение предела выносливости. Многие детали машин и механизмов в процессе эксплуатации подвергаются повторно-переменным (циклическим) напряжениям, что может вызвать образование трещин и разрушение даже при напряжениях ниже0,2.

Разрушение металлов и сплавов в результате многократного повторно-переменного напряжения носит название усталости,а свойство металлов сопротивляться усталости называетсявыносливостью (ГОСТ 23207-78).

Природа усталостного разрушения заключается в следующем. Металлы, как известно, состоят из большого числа различно ориентированных зерен, которые вследствие анизотропии оказывают неодинаковое сопротивление действию внешних сил. Зерна, неблагоприятно расположенные по отношению к направлению действия внешних сил, оказываются слабыми, и пластичная деформация в них произойдет при напряжениях ниже предела текучести, в других же зернах приложенная нагрузка вызовет лишь упругую деформацию.

Многократная пластическая деформация при действии повторно-переменных нагрузок приводит к образованию микротрещины, которая, увеличиваясь, превращается в зону усталостного разрушения.

Исследования на усталость проводят для определения предела выносливости, под которым понимают максимальное напряжение цикла, которое выдерживает материал, не разрушаясь при достаточно большом числе повторно-переменных нагружений (циклов).

Предел выносливости при симметричном цикле обозначается -1. Предел выносливости чаще определяют на вращающемся образце (гладком или с надрезом) с приложением изгибающей нагрузки по симметричному циклу.

Для этого используют не менее десяти образцов, каждый из которых испытывается до разрушения только на одном уровне напряжений.

По результатам испытаний отдельных образцов в координатах «напряжение-число циклов» строят кривую, по которой и определяют предел выносливости -1 (рис. 21).

Для тех металлов и сплавов, у которых нет горизонтального участка выносливости, испытания, ограничивают определением «ограниченного предела выносливости», который для сталей равен 10 млн., а для цветных сплавов 100 млн. циклов.

-1

Напряжение  / мм2

Рис. 21.Схема испытания и кривая выносливости

studfiles.net

МЕТАЛЛОВ ИСПЫТАНИЯ | Энциклопедия Кругосвет

Содержание статьи

МЕТАЛЛОВ ИСПЫТАНИЯ. Цель испытания материалов состоит в том, чтобы оценить качество материала, определить его механические и эксплуатационные характеристики и выявить причины потери прочности.

Химические методы.

Химические испытания обычно состоят в том, что стандартными методами качественного и количественного химического анализа определяется состав материала и устанавливается наличие или отсутствие нежелательных и легирующих примесей. Они нередко дополняются оценкой стойкости материалов, в частности с покрытиями, к коррозии под действием химических реагентов. При макротравлении поверхность металлических материалов, особенно легированных сталей, подвергают селективному воздействию химических растворов для выявления пористости, сегрегации, линий скольжения, включений, а также гросс-структуры. Присутствие серы и фосфора во многих сплавах удается обнаружить методом контактных отпечатков, при котором поверхность металла прижимается к сенсибилизированной фотобумаге. С помощью специальных химических растворов оценивается подверженность материалов сезонному растрескиванию. Проба на искру позволяет быстро определить тип исследуемой стали.

Методы спектроскопического анализа особенно ценны тем, что позволяют оперативно проводить качественное определение малых количеств примесей, которые невозможно обнаружить другими химическими методами. Такие многоканальные приборы с фотоэлектрической регистрацией, как квантометры, полихроматоры и квантоваки, автоматически анализируют спектр металлического образца, после чего индикаторное устройство указывает содержание каждого присутствующего металла. См. также ХИМИЯ АНАЛИТИЧЕСКАЯ.

Механические методы.

Механические испытания обычно проводят для выяснения поведения материала в определенном напряженном состоянии. Такие испытания дают важную информацию о прочности и пластичности металла. В дополнение к стандартным видам испытаний может применяться специально разработанное оборудование, воспроизводящее те или иные специфические условия эксплуатации изделия. Механические испытания могут проводиться в условиях либо постепенного приложения напряжений (статической нагрузки), либо ударного нагружения (динамической нагрузки).

Виды напряжений.

По характеру действия напряжения разделяются на растягивающие, сжимающие и сдвиговые. Скручивающие моменты вызывают особый вид сдвиговых напряжений, а изгибающие моменты – сочетание растягивающих и сжимающих напряжений (обычно при наличии сдвиговых). Все эти различные виды напряжений могут быть созданы в образце с помощью стандартного оборудования, позволяющего определять предельно допустимые и разрушающие напряжения.

Испытания на растяжение.

Это – один из самых распространенных видов механических испытаний. Тщательно подготовленный образец помещают в захваты мощной машины, которая прикладывает к нему растягивающие усилия. Регистрируется удлинение, соответствующее каждому значению растягивающего напряжения. По этим данным может быть построена диаграмма напряжение – деформация. При малых напряжениях заданное увеличение напряжения вызывает лишь небольшое увеличение деформации, соответствующее упругому поведению металла. Наклон линии напряжение – деформация служит мерой модуля упругости, пока не будет достигнут предел упругости. Выше предела упругости начинается пластическое течение металла; удлинение быстро увеличивается до разрушения материала. Предел прочности при растяжении – это максимальное напряжение, которое металл выдерживает в ходе испытания.См. также МЕТАЛЛОВ МЕХАНИЧЕСКИЕ СВОЙСТВА.

Испытания на ударную вязкость.

Один из самых важных видов динамических испытаний – испытания на ударную вязкость, которые проводятся на маятниковых копрах с образцами, имеющими надрез, или без надреза. По весу маятника, его начальной высоте и высоте подъема после разрушения образца вычисляют соответствующую работу удара (методы Шарпи и Изода).

Испытания на усталость.

Такие испытания имеют целью исследование поведения металла при циклическом приложении нагрузок и определение предела выносливости материала, т.е. напряжения, ниже которого материал не разрушается после заданного числа циклов нагружения. Чаще всего применяется машина для испытания на усталость при изгибе. При этом наружные волокна цилиндрического образца подвергаются действию циклически меняющихся напряжений – то растягивающих, то сжимающих.

Испытания на глубокую вытяжку.

Образец листового металла зажимается между двумя кольцами, и в него вдавливается шаровой пуансон. Глубина вдавливания и время до разрушения являются показателями пластичности материала.

Испытания на ползучесть.

В таких испытаниях оценивается совместное влияние длительного приложения нагрузки и повышенной температуры на пластическое поведение материалов при напряжениях, не превышающих предела текучести, определяемого в испытаниях малой длительности. Надежные результаты могут быть получены лишь на оборудовании, обеспечивающем точный контроль за температурой образца и точное измерение очень малых изменений размеров. Длительность испытаний на ползучесть обычно составляет несколько тысяч часов.

Определение твердости.

Твердость чаще всего измеряют методами Роквелла и Бринелля, при которых мерой твердости служит глубина вдавливания «индентора» (наконечника) определенной формы под действием известной нагрузки. На склероскопе Шора твердость определяется по отскоку бойка с алмазным наконечником, падающего с определенной высоты на поверхность образца. Твердость – очень хороший показатель физического состояния металла. По твердости данного металла зачастую можно с уверенностью судить о его внутренней структуре. Испытания на твердость часто берут на вооружение отделы технического контроля на производствах. В тех случаях, когда одной из операций является термообработка, нередко предусматривается сплошной контроль на твердость всей продукции, выходящей с автоматической линии. Такой контроль качества невозможно осуществить другими описанными выше методами механических испытаний.

Испытания на излом.

В таких испытаниях образец с шейкой разрушают резким ударом, а затем излом исследуют под микроскопом, выявляя поры, включения, волосовины, флокены и сегрегацию. Подобные испытания позволяют приблизительно оценить размер зерна, толщину закаленного слоя, глубину цементации или разуглероживания и другие элементы гросс-структуры в сталях.

Оптические и физические методы.

Микроскопическое исследование.

Металлургический и (в меньшей степени) поляризационный микроскопы часто позволяют надежно судить о качестве материала и его пригодности для рассматриваемого вида применения. При этом удается определить структурные характеристики, в частности размеры и форму зерен, фазовые соотношения, наличие и распределение диспергированных инородных материалов.

Радиографический контроль.

Жесткое рентгеновское или гамма-излучение направляется на испытуемую деталь с одной стороны и регистрируется на фотопленке, расположенной по другую сторону. На полученной теневой рентгено- или гаммаграмме выявляются такие несовершенства, как поры, сегрегация и трещины. Произведя облучение в двух разных направлениях, можно определить точное расположение дефекта. Такой метод часто применяется для контроля качества сварных швов.

Магнитно-порошковый контроль.

Этот метод контроля пригоден лишь для ферромагнитных металлов – железа, никеля, кобальта – и их сплавов. Чаще всего он применяется для сталей: некоторые виды поверхностных и внутренних дефектов удается выявить нанесением магнитного порошка на предварительно намагниченный образец.

Ультразвуковой контроль.

Если в металл послать короткий импульс ультразвука, то он частично отразится от внутреннего дефекта – трещины или включения. Отраженные ультразвуковые сигналы регистрируются приемным преобразователем, усиливаются и представляются на экране электронного осциллографа. По измеренному времени их прихода к поверхности можно вычислить глубину дефекта, от которого отразился сигнал, если известна скорость звука в данном металле. Контроль проводится весьма быстро и зачастую не требует выведения детали из эксплуатации. См. также УЛЬТРАЗВУК.

Специальные методы.

Существует ряд специализированных методов контроля, имеющих ограниченную применимость. К ним относится, например, метод прослушивания со стетоскопом, основанный на изменении вибрационных характеристик материала при наличии внутренних дефектов. Иногда проводят испытания на циклическую вязкость для определения демпфирующей способности материала, т.е. его способности поглощать вибрации. Она оценивается по работе, превращающейся в теплоту в единице объема материала за один полный цикл обращения напряжения. Инженеру, занимающемуся проектированием строений и машин, подверженных вибрациям, важно знать демпфирующую способность конструкционных материалов. См. также СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ.

www.krugosvet.ru

Лабораторная работа №3 Механические испытания металлов

Цель работы: ознакомиться с испытательным оборудованием для определения основных механических характеристик; провести механические испытания предложенных марок сталей; по результатам испытаний определить предел прочности, предел текучести, предел пропорциональности, относительное удлинение, относительное сужение.

Приборы и оборудование: образцы, применяемые для различных видов испытаний; диаграммы растяжения.

Основные понятия.

Механические свойства - это характеристики материала, определяющие его поведение под действием приложенных внешних механических сил.

Механические свойства металлов определяют испытаниями специальных образцов.

Испытания механических свойств проводят при различных нагрузках – статических, динамических и циклических. Статические нагрузки медленно возрастают от нуля до максимальной величины; динамические возрастают быстро, за доли секунд; циклические нагрузки характеризуются многократным изменением по направлению или по величине. В соответствии с характером действующих нагрузок различают статические, динамические и усталостные испытания.

К статическим испытаниям обычно относят испытания на растяжение, сжатие, изгиб и на твердость; к динамическим – испытания на удар; циклическим способом проводят различные испытания металла на усталость.

По длительности приложения нагрузки механические испытания делятся на кратковременные и длительные. В большинстве случаев проводят кратковременные испытания длительностью несколько минут. Длительные испытания проводят, как правило, для определения механических свойств металлов, которым предстоит работать в особо ответственных конструкциях и сложных условиях в течение длительного периода времени.

В зависимости от температуры различают испытания при пониженной (ниже 0ºС), обычной (20ºС) и повышенной (выше 20ºС) температурах. Температуру испытания выбирают в зависимости от рабочей температуры изделий.

Испытание на растяжение

Механические свойства металлов наиболее полно могут быть установлены при статических испытаниях на растяжение гладких образцов. Испытание на растяжение проводят на специальных круглых образцах, а для листового материала на плоских образцах (см. рис.14), в соответствии с ГОСТ 1497-84.

Рис.14. образцы для испытаний на разрыв:

а – круглый; б - плоский

расчетная длина круглого образца l0 , мм обычно берется равной десяти или пяти диаметрам. Диаметр рабочей части нормального круглого образца равняется 20 мм. Образцы других размеров называют пропорциональными. Стандартные размеры которых приведены в табл.5.

При испытании на растяжение образец, установленный в захватах машины, деформируется при плавно возрастающей нагрузке, и характеристики свойств металла определяют в условиях одноосного напряженного состояния.

Образцы из разных материалов разрушаются в результате испытаний различно.

В процессе испытаний на растяжение на разрывных машинах записывается диаграмма в координатах нагрузка (Р, Н)– удлинение

(∆l, мм) образца (диаграмма растяжения).

Такая диаграмма вычерчивается автоматическим устройством, при постепенном увеличении растягивающего усилия вплоть до разрыва испытываемого образца. Диаграммы растяжения будут иметь вид, показанный на рис. 15.

При растяжении образец удлиняется, а его поперечное сечение непрерывно уменьшается.

Усилие, приходящееся на 1 мм2 поперечного сечения образца, называется напряжением и обозначается σ, МПа.

studfiles.net

Испытания металлов

Испытания металлов – это перечень исследований, проводимых на специальном оборудовании, с целью определения комплекса физико-механических свойств металла.

Коррозионные испытания в этой статье рассматривать не будем, о них поговорим отдельно.

Методы испытания металлов можно разделить на две основные группы: механические, определяющие физические свойства, и аналитические, определяющие состав и структуру металла.

Из группы механических испытаний можно выделить три основных вида:

  • Испытания на растяжение или сжатие, определяют предел прочности, предел текучести при растяжении и при сжатии, кроме того, параллельно узнают данные пластических характеристик – относительное удлинение и сужение. Испытанию подвергают как специально изготовленные стандартные образцы (ГОСТ 1497-84), так и изделия в натурную величину – арматура, прутки или участки труб, если говорить об испытании на сплющивание.
  • Испытание на ударный изгиб или так называемые ударные (динамические) испытания. В результате таких испытаний определяют ударную вязкость металла, испытывают стандартные образцы по ГОСТ 9454-78.
  • Измерение твердости металлов и сплавов. Твердость можно определять и на специальных образцах, и на самом изделии, все зависит от метода измерения твердости. Для Роквелла не нужна особая подготовка поверхности, как и для Бриннеля. А вот для измерения твердости по Виккерсу, нужно готовить специальный шлиф.

Теперь, что касается аналитических испытаний металлов. Их два основных вида:

  • Химический анализ, с его помощью определяют состав и количество элементов, из которых состоит металл или сплав. В зависимости от задач используют различные методы определения содержания элементов. Подробнее можно почитать в других наших статьях.
  • При металлографическом анализе изучают структурное состояние металла. Ведь именно структура металла определяет все его механические свойства.

Мы в Компании «Металл-экспертиза» всегда подберем необходимый перечень испытаний, для решения любой Вашей задачи.

<<<предыдущая статья     следующая статья>>>

metall-expertiza.ru

Механические свойства металлов и методы их испытаний

Механические свойства металлов.При эксплуатации на кон­струкции, детали или инструменты действуют различные внешние усилия (нагрузки). Все действующие нагрузки можно разделить на три группы:

а) постоянно плавно возрастающие и плавно уменьша­ющиеся;

б) ударные;

в) знакопеременные.

Под действием сил металл способен изменять свою форму и раз­меры, т. е. деформироваться.

 

 

Рис. 2. Виды деформаций стержня: а — растяжение;

б — сжатие; в — изгиб; г — кручение; д — срез

 

Деформации могут быть упругими и пластическими (остаточными). Упру­гие деформации исчезают после сня­тия нагрузки, а пластические остают­ся.

Величины деформаций зависят от значения действующих сил, а виды — от направления приложения сил. Наи­более часто встречаются следующие

основные виды деформаций: растяжение, сжатие, изгиб, кручение и срез. На практике металл подвер­гается одному или нескольким видам деформаций в зависимости от прила­гаемых сил.

При выборе металла для изготовле­ния конструкций, деталей, инструментов исходят из его механических свойств. Механическими свойствами называется совокупность качеств, характеризующих способность металлов противостоять деформации при приложении сил. К механическим свойствам относятся прочность, упругость, плас­тичность, твердость, вязкость, усталостная прочность (выносли­вость) и др. Чтобы определить механические свойства металла, его испытывают в лабораториях на специальных машинах.

Испытание металлов на растяжение.Испытание металлов на растяжение позволяет определить наиболее важ­ные механические свойства металлов: прочность, упругость и плас­тичность (рис.3).

 

Рис. 3. Диаграмма растяжения металлов:

а - пластичных; б - хрупких

Прочность — способность металлов сопротивляться разрушению под действием внешних нагрузок. Упругость — способность метал­лов восстанавливать первоначальную форму и размеры после пре­кращения действия нагрузок, вызвавших их изменение. Пластич­ность— способность металлов необратимо изменять свою форму и размеры, не разрушаясь под действием нагрузок. Противоположным свойством пластичности является хрупкость.

Известно, что груз приложенный к металлическому стержню, вызывает в нем растягивающие напряжения, которые определяют как отношение нагрузки к площади поперечного сечения стержня

σ = P/F,

 

где σ — напряжение, Па;

Р — нагрузка, Н;

F— площадь попереч­ного сечения, м2.

Сравнение прочности и упругости металлов проводят по величи­не предельных напряжений.

Прочность обычно определяется пределом прочности, который равен отношению максимальной (наибольшей) нагрузки, вызвав­шей разрушение стержня, к площади его первоначального попереч­ного сечения:

σ В= Рmах / Fо

 

где Рmах — максимальная нагрузка, Н;

Fо— площадь первоначаль­ного поперечного сечения стержня, м2.

Предел прочности, называемый также временным сопротивлени­ем, — важнейшая характеристика. Если напряжения в изделии, кон­струкции или инструменте превзойдут предел прочности, то они раз­рушаются.

Упругость оценивается пределом упругости, который равен от­ношению наибольшей нагрузки, не вызывающей остаточных дефор­маций стержня, к площади его первоначального поперечного се­чения

σуп = Руп/Fо,

 

где Руп — наибольшая нагрузка, не вызывающая остаточных де­формаций, Н.

Если напряжения в деталях превзойдут предел упругости, то они изменят свою форму и размеры, что может иметь катастрофические последствия.

Пластичность металлов характеризуется относительным удлине­нием и относительным поперечным сужением.

Относительным удлинением называется отношение приращения длины стержня после разрыва к его первоначальной длине:

ι - ι0

δ = ──────100

ι 0

где ι0 — первоначальная длина образца, мм;

ι— длина образца после разрыва, мм;

ι — ι0=۵ι — абсолютное удлинение, мм.

Относительным сужением называется отношение уменьшения площади поперечного сечения стержня после разрыва к первона­чальной площади его поперечного сечения:

 

F0 - F

Ψ = ────── 100

F0

где Fо — первоначальная площадь поперечного сечения стержня;

F— площадь поперечного сечения стержня после разрыва, мм2;

Fо—F = ۵F — абсолютное сужение, мм2.

Чем больше значение относительного удлинения и сужения, тем пластичнее металл. У хрупких металлов эти величины незначитель­ны или равны нулю. Хрупкость металла является отрицательным свойством, а пластичность положительным.

Испытание металлов на растяжение проводят на разрывных ма­шинах, которые обеспечивают приложение к образцам статических, т.е. постоянных или плавно возрастающих нагрузок.

Хрупкие металлы (чугун, закаленная сталь и др.), работающие на изгиб, испытывают не только на растяжение, но и на изгиб. При этом определяют предел прочности на изгиб (σИЗГ) по соответствующим формулам. Испытания проводят на разрывных машинах, имеющих для этого специальные приспособления в виде двух опор, на которые укладывают образец. Посредине образ­ца создают равномерно повышающуюся нагрузку до его разру­шения.

Предел прочности на изгиб — важнейшая характеристика ме­таллов конструкций, работающих на изгиб. Испытанию на изгиб подвергают большинство судостроительных металлов.

Испытание металлов на твердость. Твердостью называется спо­собность металла оказывать сопротивление проникновению в него другого более твердого материала.

В настоящее время применяют разнообразные методы испытания металлов на твердость. Наиболее распространены методы, при ко­торых в металл под действием статической нагрузки вдавливают специальный наконечник-индентор (шарик, конус или пирамиду). Эти методы называют по фамилии их авторов: Бринелля, Роквелла и Виккерса. Твердость определяют также ударным вдавливанием шарика (метод Польди) и методом упругой отдачи бойка (метод Шора).

Приближенно твердость можно оценить и по углублениям, ос­тавляемым чертилкой, кернером, зубилом и другими режущими ин­струментами. О твердости судят по глубине отпечатка, оставленно­го на металле наконечником или режущими инструментами. Чем больше глубина отпечатка при одинаковой нагрузке на внедряе­мый материал одинакового размера, тем меньше твердость и нао­борот.

Испытывая металл на твердость, можно просто и быстро опре­делить его механические свойства, причем не только в лаборатори­ях, но и на производстве. По величине твердости можно приближенно судить и о других механических свойствах металлов: прочности, износостойкости и т.п., а также обрабатываемости. Чем металл тверже, тем его труднее обрабатывать.

В зависимости от твердости выбирают металлы для изготовления тех или иных деталей, конструкций, инструментов. Рассмотрим наиболее распространенные методы испытания металлов на твердость.

Метод Бринелля заключается во вдавливании под действием статической нагрузки в поверхность испытуемого образца стального шарика диаметром 2,5; 5 или 10 мм.

Твердость по методу Бринелля выражается в числах твердости НВ (Н — твердость, В — Бринелля).

Испытание на твердость по методу Бринелля проводится на при­борах с применением плоских или круглых образцов и деталей. Для получения точных результатов на поверхности образцов не должно быть ржавчины, окалины, вмя­тин и т. п.

Метод Роквелла заключается во вдавливании под действием статической нагрузки в поверхность испытуемого ме­талла алмазного конуса или стального закаленного шарика диамет­ром 1,59 мм.

В приборах (твердомерах) Роквелла в отличие от при­боров Бринелля число твердости определяют непосредственно по шкале индикатора.

Числа твердости по Роквеллу не имеют размерности и обозначаются символом HR (Н — твердость, R — Роквелл). К символу до­бавляется обозначение шкалы индикатора (А, В или С), по которой измерялась твердость, и соответствующее числовое значение твер­дости.

По методу Роквелла можно испытывать мягкие и твердые ме­таллы, а также готовые изделия, так как отпечатки от наконечника незначительны. Испытание занимает мало времени (не более 50 с), не требует никаких измерений; показания читаются непосредствен­но по шкале индикатора.

Метод Виккерсазаключается во вдавливании под действием статической нагрузки в поверхность испытуемого металла четырех­гранной алмазной пирамиды.

Метод Польдизаключается во вдавливании стального шарика под действием динамической (ударной) нагрузки в поверхность испытуемого металла и эталонного образца.

По соотношению площадей или диаметров отпечатков расчетным путем по таблицам определяют твердость металла. Она будет тем меньше, чем больше отпечаток на испытуемом металле по сравнению с отпечатком на эталонном образце, и наоборот.

Испытание металлов на ударную вязкость. Ударной вязкостью (динамической прочностью) называется способность металлов оказывать сопротивление действию ударных (динамических) нагрузок.

Многие детали машин, конструкции и инструменты испытывают при эксплуатации ударные нагрузки. Например, судовые конструкции подвергаются ударам волн, льда и т. п. Поэтому при их изго­товлении необходимо учитывать эту важнейшую характеристику.

Металлы, легко разрушающиеся под действием ударной нагруз­ки, называются хрупкими. Они непригодны для изготовления дета­лей, работающих в условиях ударных нагрузок. Вязкими называ­ются металлы, разрушающиеся при значительных ударных нагруз­ках и значительных пластических деформациях.

Испытание металлов на ударную вязкость проводят на механиз­мах, называемых маятниковыми копрами. Оно заключа­ется в ударном изломе (изгибе) маятником копра образца и в под­счете израсходованной работы на разрушение образца.

Маятник поднимают на некоторую высоту Н. С этой высоты он свободно падает разрушает образец и снова поднимается на неко­торую высоту h. Работа, затраченная на разрушение образца,

 

А = P(H — h) или А =Pι(cosβ — cosα),

 

где Р — сила тяжести (вес) маятника, Н;

Н — высота подъема маятника до удара, м;

h — высота подъема маятника после удара, м;

l- длина маятника, м.

Ударную вязкость металла определяют по величине удельной ударной вязкости аH, равной отношению работы, затраченной на разрушение образца, к площади его поперечного сечения в месте разрушения:

 

аH = А/F

 

где А — работа, затраченная на разрушение образца, Дж;

F — пло­щадь поперечного сечения образца в месте разрушения, м2.

Современный маятниковый копер имеет шкалу, градуированную непосредственно в единицах работы. Если поднять маятник на не­которую высоту Н, то стрелка покажет запас энергии маятника до удара РН вджоулях. После разрушения образца маятник поднимается на некоторую высоту h, в это время стрелка покажет запас энергии-маятника Ph после удара. Таким образом, ударная вязкость

 

аH = (РН — Ph)/F.

Ударная вязкость зависит не только от рода металла, но и от его температуры, химического состава, структуры и т. д. Например, две марки стали, с разной структурой могут иметь совершенно, различ­ные значения ударной вязкости, но почти одинаковые другие меха­нические свойства.

Испытание металлов на усталостную прочность (выносли­вость).Многие детали машин и механизмов, некоторые конструк­ции и инструменты при эксплуатации подвергаются действию пере­менных нагрузок, т. е. меняющихся по значению, направлению или по значению и направлению одновременно. Таким нагрузкам под­вергаются, например, корпуса судов детали машин (валы, оси, ша­туны, коленчатые валы).

В результате длительного воздействия переменных нагрузок прочность металла уменьшается и деталь, конструкция или инстру­мент разрушается. Разрушение металла часто наступает при напря­жениях, которые значительно меньше, чем предел прочности, а иногда даже меньше, чем предел текучести.

Способность металлов сопротивляться усталостному разруше­нию называется усталостной прочностью (выносливостью). Пока­зателем ее является предел усталости (выносливости), который определяют в ходе испытания на специальных машинах. Испытания проводят на переменный изгиб, растяжение-сжатие и кручение.

Чаще всего применяют способ испытания изгибом при вращении (рис. 4). В этом случае один конец образца закрепляют в патроне, а к другому через шарикоподшипник подвешивают груз. При вра­щении наружные волокна образца попеременно будут испытывать растягивающие и сжимающие усилия. При достижении некоторого числа перемен (циклов) образец разрушается. Число циклов опре­деляют по установленному на станке счетчику.

 

Рис. 4. Схема испытания образца на усталост­ную прочность: 1 — патрон станка; 2 — образец;

Подшипник качения

 

Пределом усталости металлов называется максимальное напря­жение, при котором образец еще выдерживает неограниченное чис­ло циклов, не разрушаясь. Пределы усталости обозначают:

при из­гибе — σ-1;

при растяжении-сжатии — σ-1p;

при кручении — τ-1.

Между пределом усталости и пределом прочности существует следующая приблизительная зависимость:

 

σ-1 == 0,47σв; σ-1p = 0,32σв; τ-1 = 0,22σв.

 

Усталостная прочность зависит от значения переменных напря­жений, состояния поверхностей деталей и других факторов. Ее сле­дует учитывать при создании, например, быстроходных судов, сверх­звуковых самолетов, космических кораблей, мощных турбин, испы­тывающих при эксплуатации переменные нагрузки.

Металлы, работающие в сложных условиях, испытывают при повышенных и пониженных температурах, в условиях коррозии, при истирании и т. д.

Технологические свойства характеризуют способность металлов поддаваться технологической обработке, целью которой является придание металлам определенных форм, размеров и свойств. К ним относятся: литейные свойства, ковкость, свариваемость, прокаливаемость, обрабатываемость резанием и др. Поведение металла при технологической обработке определяют по технологическим пробам.

Технологические пробы применяют главным образом для опре­деления пригодности материала к тому или иному способу обра­ботки. О результатах технологических испытаний судят по состоя­нию поверхности после испытания (отсутствие трещин, надрывов, изломов). Наиболее распространены следующие технологические пробы: на изгиб в холодном и нагретом состоянии; на перегиб и выдавливание; на осадку; на раздачу и обжатие труб; искро­вая.

К физическим свойствам металлов и сплавов относятся: плот­ность, температура плавления, теплопроводность, электро-провод­ность, тепловое расширение, удельная теплоемкость и способность намагничиваться (табл. 1).

Химические свойства — способность металлов и сплавов сопро­тивляться воздействию окружающей среды, которое проявляется в различных формах. Под влиянием кислорода воздуха и влаги ме­таллы подвергаются коррозии: чугун и сталь ржавеют; бронза покрывается зеленым слоем оксида меди; сталь при нагреве в печах без защитной атмосферы окисляется, превращаясь в окалину, а в серной кислоте растворяется.

Металлы и сплавы, стойкие против окисления при высокой тем­пературе нагрева, называются жаростойкими или окалиностойкими. Из них изготовляют такие детали, как клапаны двигателей внутрен­него сгорания и др. Золото, серебро и нержавеющие стали слабо поддаются коррозии.

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

zdamsam.ru

Контроль структуры и свойств металла

Механические свойства характеризуют способность материала сопротивляться деформации и разрушению под действием приложенных нагрузок.

По характеру изменения во времени действующей нагрузки механи­ческие испытания могут быть статическими (на растяжение, сжатие, изгиб, кручение), динамическими (на ударный изгиб) и циклическими (на усталость).

По воздействию температуры на процесс их делят на испытания при комнатной температуре, низкотемпературные и высокотемпературные (на длительную прочность, ползучесть).

 

Статические испытания  проводятся при воздействии на образец с определенной скоростью постоянно действующей нагрузки. Скорость деформации составляет от 10-4 до 10-1 с-1. Статические испытания на растяже­ние относятся к наиболее распространенным. Свойства, определяемые при этих испытаниях, приведены в многочисленных стандартах по техническим условиям на материалы. К статическим относятся испытания на растяжение, сжатие, изгиб, кручение.

 

Динамические испытания  характеризуются приложением к образцу ударной нагрузки и значительной скоростью деформации. Длительность ис­пытания не превышает сотен долей секунды. Скорость деформации состав­ляет около 102 с-1. Динамические испытания чаще всего проводят по схеме ударного изгиба образцов с надрезом.

 

Циклические испытания  характеризуются многократными измене­ниями нагрузки по величине и по направлению. Примером испытаний явля­ются испытания на усталость, они длительны и по их результату определяют число циклов до разрушения при разных значениях напряжения. В конечном итоге находят предельные напряжения, который образец выдерживает без разрушения в течение определенного числа циклов нагружения.

 

Испытания на твердость.

Простейшим механическим свойством является твердость. Методы определения твердости в зависимости от скоро­сти приложения нагрузки делятся на статические и динамические, а по спо­собу ее приложения - на методы вдавливания и царапания. Методы опреде­ления твердости по Бринеллю, Роквеллу, Виккерсу относятся к статическим методам испытания.

 

Твердость - это способность материала сопротивляться вдавливанию в него более твердого тела (индентора) под действием внешних сил.

При испытании на твердость в поверхность материалов вдавливают пирамиду, конус или шарик (индентор), в связи с чем различают методы ис­пытаний, соответственно, по Виккерсу, Роквеллу и Бринеллю. Кроме того, существуют менее распространенные методы испытания твердости: метод упругого отскока (по Шору), метод сравнительной твердости (Польди) и не­которые другие.

При испытании материалов на твердость не изготавливают стандарт­ных специальных образцов, однако к размерам и поверхности образцов и изделий предъявляются определенные требования.

 

Твердость по Виккерсу (ГОСТ 2999-75)  устанавливают путем вдавли­вания в металл индентора - алмазной пирамиды с углом при вершине 136° под действием постоянной нагрузки Р: 1; 2; 2,5; 3; 5; 10; 20; 30; 50 или 100 кгс и выдержки под нагрузкой в течение 10-15 с. Для определения твердости черных металлов и сплавов используют нагрузки от 5 до 100 кгс, медных сплавов - от 2,5 до 50 кгс, алюминиевых сплавов - от 1 до 100 кгс. После снятия нагрузки с помощью микроскопа прибора находят длину диагонали отпечатка, а твердость HVрассчитывают по формуле

 

HV = 1,854*P/d2

 

где Р - нагрузка, кгс; d- диагональ отпечатка, мм.

Имеется таблица зависимости твердости от величины нагрузки и дли­ны диагонали. Поэтому на практике вычислений не производят, а пользуются готовой расчетной таблицей. Твердость по Виккерсу HVизмеряется в кгс/мм2, Н/мм2 или МПа. Значение твердости по Виккерсу может изменяться от HV2060 до HV5 при нагрузке 1 кгс.

 

По методу Бриннелля  вдавливают в образец или изделие стальной закаленный шарик диаметром 10, 5 или 2,5 мм под действием нагрузок 3000, 1000, 750, 500, 250, 62,5 кгс и др. (ГОСТ 9012-59, рис. 1.). Полученный круглый отпечаток на образце измеряют под лупой и по таблицам находят величину твердости по Бринеллю, значение которой не превышает 450 НВ. Твердость по Бринеллю почти совпадает со значениями твердости по Виккерсу.

 

Твердость НВ - это также величина напряжений сопротивления вдавливанию:

 

HB=P/Fot=P/πDt=2P/πD(D-√(D2-d2))

 

где P- нагрузка, кгс;

Fot- площадь отпечатка, мм2;

t- глубина сегмента отпечатка;

D- диаметр шарика, мм;

d- диаметр отпечатка, мм.

 

Твердость по Бринеллю НВ (по умолчанию) имеет размерность кгс/мм2, например, твердость алюминиевого спла­ва равна 70 НВ. При нагрузке, определяе­мой в ньютонах, твердость по Бринеллю измеряется в МПа. Например, твердость отожженной стали равна 207 НВ при на­грузке 3000 кгс, диаметре шарика 10 мм, диаметре отпечатка 4,2 мм или, учитывая коэффициент перевода: 1 Н = 9,8 кгс,

НВ = 2 028 МПа.

 

 

Рис. 1. Схема определения твердости по Бринеллю

 

По методу Роквелла  (ГОСТ 9013-59) вдавливают алмазный конус с углом при вершине 120° (шкалы А и С) или стальной шарик диаметром 1,5875 мм (шкала В).

При этом определяют твердость, соответственно, HRA, HRC и HRB. В на­стоящее время измерение твердости по методу Роквелла является наиболее распространенным методом, потому что при использовании твердомеров Ро­квелла не требуется измерять отпечаток, число твердости считывается со шкалы прибора сразу после снятия основной нагрузки.

Метод заключается во вдавливании в испытуемый образец индентора под действием двух последовательно прикладываемых нагрузок - предвари­тельной Р0 и основной Р1 которая добавляется к предварительной, так что общая нагрузка Р = Р0 + Р1 После выдержки в течение нескольких секунд ос­новную нагрузку снимают и измеряют остаточную глубину проникновения индентора, который при этом продолжает находиться под действием предва­рительной нагрузки. Перемещение основной стрелки индикатора на одно де­ление шкалы соответствует перемещению индентора на 0,002 мм, которое принимается за единицу твердости.

На рис. 2 представлена схема измерения твердости по методу Рок­велла алмазным или твердосплавным конусом. При испытаниях измеряют глубину восстановленного отпечатка. Шкалы А и С между собой совпадают, поскольку испытания проводят одним и тем же индентором - алмазным ко­нусом, но при разных нагрузках: 60 и 150 кгс соответственно. Твердость в этом случае определяется как

HRC= t/0,002=100-(H-h)/0,002

 

По шкале В (нагрузка 100 кгс, шарик)

HRB = 130-(H-h)/0,002

 

 

Рис. 2. Схема определения твердости по Роквеллу (индентор - конус)

 

На практике значения твердости по Роквеллу не рассчитываются по формулам, а считываются с соответствующей (черной или красной) шкалы прибора. Шкалы HRC и HRA используются для высокой твердости, HRB -для низкой. Число твердости по Роквеллу измеряют в условных единицах, оно является мерой глубины вдавливания индентора под определенной на­грузкой.

 

Испытание на растяжение  материалов проводят в соответствии с ГОСТ 1497-84 «Методы испытаний на растяжение». Стандарт устанавливает методы статических испытаний на растяжение черных и цветных металлов для определения при температуре 20 °С пределов пропорциональности, уп­ругости, текучести, временного сопротивления разрыву, относительного уд­линения и относительного сужения, модуля упругости.

Для испытаний применяют плоские и цилиндрические образцы, выре­занные из детали или специально изготовленные. Размеры образцов регла­ментированы указанным стандартом, они подчиняются геометрическому по­добию и могут быть короткими и длинными. Для цилиндрического образца берется соотношение начальной рабочей длины l0 и исходного диаметра d0 : l0= 5d0- короткий образец, l0= 10d0 - длинный образец. Для плоского образцаберется соотношение рабочей длины l0 и площади поперечного сечения F0:

l0= 5,65√F0 - короткий образец, l0= 11,3√F0  - длинный образец. Цилиндри­ческие образцы изготавливаются диаметром 3 мм и более. Образцы состоят из рабочей части длиной l0  и головок, форма и размер которых соответствуют захватам машины (рис. 3).

 

 

 

Рис. 3. Цилиндрические и плоские образцы до (а) и после (б) испытания на растяжение

 

 

Растяжение образца проводят на специальных машинах, позволяющих фиксировать величину прилагаемой нагрузки и изменение длины образца при растяжении. Эти же машины дают возможность записывать изменение длины образца при увеличении нагрузки (рис. 4), т.е. первичную диаграмму испытания на растяжение в координатах: нагрузка Р, Н, кН; и абсолютное удлинение образца А, мм.

 

 

Рис. 4. Первичная диаграмма растяжения

 

Измеряя величину нагрузки в характерных точках диаграммы испы­таний на растяжение (рис.4), определяют следующие параметры механиче­ских свойств материалов:

σ пц- предел пропорциональности, точка р;

σ 0,05 - предел упругости, точка е;

σ т - предел текучести физический, точка s;

σ 0,2- предел текучести условный;

σ в - временное сопротивление разрыву, или предел прочности, точка b.

 

Значения 0,05 и 0,2 в записи предела упругости и текучести соответ­ствуют величине остаточной деформации ∆l в процентах от l0 при растяжении образца. Напряжения при испытании на растяжение вычисляют путем деления нагрузки Р, соответствующей характерной точке на диаграмме, на площадь первоначального поперечного сечения F0 рабочей части испытуемо­го образца:

σпц=Pпц / F0 ; σ0,05=P 0,05 / F0 ; σт=Pт / F0 , или σв=P max / F0 ;

 

 

Площадь поперечного сечение F0определяется по следующим формулам:

для цилиндрического образца

 

F0 = πd02/ 4

 

для плоского образца

 

F0 = a0*b0

 

где а0 - первоначальная толщина; b0 - первоначальная ширина образца.

В точке k устанавливают напряжение сопротивления разрушению материала.

Предел пропорциональности и предел упругости определяют с помо­щью тензометра (прибор для определе­ния величины деформации). Предел текучести физический и условный рассчи­тывают, находя нагрузку по диаграмме растяжения. Если на диаграмме нет площадки текучести, то для вычисления условного предела текучести необходи­мо провести графические построения на диаграмме (рис. 1.5). Вначале находят величину остаточной деформации, рав­ную 0,2 % от l0, далее отмечают отрезок на оси деформации, равный 0,2 % от l0, и проводят линию, параллельную пропорциональному участку диаграммы рас­тяжения, до пересечения с кривой растяжения.

 

 

Рис. 5. Определение предела текучести

 

Нагрузка P0,2 соответствует точке их пересечения. Физический и условный предел текучести характери­зуют способность материала к началу пластической деформации, т.е. сопротивление малой пластической деформации.

Предел прочности можно подсчитать, используя показания силоизмерителя, по максимальной нагрузке Рmax при разрыве либо найти Рmax (Рв) по первичной диаграмме растяжения. Характер деформации при растяжении вязких и хрупких материалов существенно различается.

Хрупкие материалы после достижения максимальной нагрузки быстро разрушаются без значительной пластической деформации, поэтому σв для

хрупких материалов является характеристикой сопротивления разрушению, а для пластичных - характеристикой сопротивления деформации.

Напряжение разрушения определяют как истинное. При этом нагруз­ку разрушения делят на конечную площадь поперечного сечения образца после разрушения FK:

 

Sк=Pк/Fк

 

Все рассчитанные таким образом величины являются характеристи­ками прочности материала.

 

Пластичность, т.е. способность деформироваться без разрушения, характеризуется изменениями размеров образца. При испытании на разрыв определяют следующие характеристики пластичности:

относительное удлинение

 

δ=(lk-l0)/ l0*100%

 

относительное сужение

 

Ψ=(F0к-F)/ F0*100%

 

где lк, Fк — соответственно, длина рабочей части и площадь поперечного сече­ния образца после разрыва.

Рассчитанные характеристики механических свойств после испытания на растяжение заносятся в протокол.

 

Испытания на ударный изгиб.

Ударная вязкость  характеризует удельную работу, затрачиваемую на разрушение при ударе образца с надре­зом. Ударная вязкость испытывается на маятниковом копре с постоянным запасом работы маятника по ГОСТ 9454-78 «Металлы. Метод испытания на ударный изгиб при пониженной, комнатной и повышенной температурах». Стандарт распространяется на черные и цветные металлы и сплавы и уста­навливает метод испытания при температурах от -100 до +1000 °С. Метод основан на разрушении ударом маятникового копра образца с концентрато­ром напряжений. В результате испытания определяют полную работу, затра­ченную при ударе К, или ударную вязкость КС.

Используют образцы прямоугольной формы с концентратором типа U, V, Т (усталостная трещина). Наиболее распространенными образцами являются образцы размерами 55x10x10 мм с U-концентратом 2x2 мм (рис. 6).

 

 

Рис. 6. Стандартный образец с U-образным надрезом для испытаний на ударный изгиб

 

На разрушение ударом образца затрачивается только часть энергии маятника, в связи с чем маятник после разрушения образца продолжает дви­гаться, отклоняясь на определенный угол. Чем больше величина работы, за­трачиваемой на разрушение образца, тем на меньший угол он отклоняется от вертикали после разрушения. По величине этого угла и определяют работу удара К или работу, затраченную на разрушение образца. Работу разрушения К относят к площади поперечного сечения образца Soв месте излома и тем самым находят КС - ударную вязкость:

 

KC = K/S0,

 

где Kизмеряется в Дж (кгс*м), S0— в м2 (см2).

В зависимости от вида концентратора ударная вязкость обозначается

KCU, KCV, КСТ и имеет размерность МДж/м2 (МДж/см2) или кгс*м/см2.

 

 

 

markmet.ru


© 2007—2018
423800, Набережные Челны , база Партнер Плюс, тел. 8 800 100-58-94 (звонок бесплатный)