|
||||
|
Екатерина - специалист по продаже а/м КАМАЗ
43118-010-10 (дв.740.30-260 л.с.) | 2 220 000 |
43118-6033-24 (дв.740.55-300 л.с.) | 2 300 000 |
65117-029 (дв.740.30-260 л.с.) | 2 200 000 |
65117-6010-62 (дв.740.62-280 л.с.) | 2 350 000 |
44108 (дв.740.30-260 л.с.) | 2 160 000 |
44108-6030-24 (дв.740.55,рест.) | 2 200 000 |
65116-010-62 (дв.740.62-280 л.с.) | 1 880 000 |
6460 (дв.740.50-360 л.с.) | 2 180 000 |
45143-011-15 (дв.740.13-260л.с) | 2 180 000 |
65115 (дв.740.62-280 л.с.,рест.) | 2 190 000 |
65115 (дв.740.62-280 л.с.,3-х стор) | 2 295 000 |
6520 (дв.740.51-320 л.с.) | 2 610 000 |
6520 (дв.740.51-320 л.с.,сп.место) | 2 700 000 |
6522-027 (дв.740.51-320 л.с.,6х6) | 3 190 000 |
Нужны самосвалы? Обратите внимание на Ford-65513-02. |
Контактная информация.
г. Набережные Челны, Промкомзона-2, Автодорога №3, база «Партнер плюс».
тел/факс (8552) 388373.
Схема проезда
Цель работы: ознакомиться с испытательным оборудованием для определения основных механических характеристик; провести механические испытания предложенных марок сталей; по результатам испытаний определить предел прочности, предел текучести, предел пропорциональности, относительное удлинение, относительное сужение.
Приборы и оборудование: образцы, применяемые для различных видов испытаний; диаграммы растяжения.
Основные понятия. Механические свойства - это характеристики материала, определяющие его поведение под действием приложенных внешних механических сил.
Механические свойства металлов определяют испытаниями специальных образцов.
Испытания механических свойств проводят при различных нагрузках – статических, динамических и циклических. Статические нагрузки медленно возрастают от нуля до максимальной величины; динамические возрастают быстро, за доли секунд; циклические нагрузки характеризуются многократным изменением по направлению или по величине. В соответствии с характером действующих нагрузок различают статические, динамические и усталостные испытания.
К статическим испытаниям обычно относят испытания на растяжение, сжатие, изгиб и на твердость; к динамическим – испытания на удар; циклическим способом проводят различные испытания металла на усталость.
По длительности приложения нагрузки механические испытания делятся на кратковременные и длительные. В большинстве случаев проводят кратковременные испытания длительностью несколько минут. Длительные испытания проводят, как правило, для определения механических свойств металлов, которым предстоит работать в особо ответственных конструкциях и сложных условиях в течение длительного периода времени.
В зависимости от температуры различают испытания при пониженной (ниже 0ºС), обычной (20ºС) и повышенной (выше 20ºС) температурах. Температуру испытания выбирают в зависимости от рабочей температуры изделий.
Испытание на растяжение. Механические свойства металлов наиболее полно могут быть установлены при статических испытаниях на растяжение гладких образцов. Испытание на растяжение проводят на специальных круглых образцах, а для листового материала на плоских образцах (см. рис.14), в соответствии с ГОСТ 1497-84.
Рис. 14. Образцы для испытаний на разрыв:
а – круглый; б - плоский
Расчетная длина круглого образца l0 , мм обычно берется равной десяти или пяти диаметрам. Диаметр рабочей части нормального круглого образца равняется 20 мм. Образцы других размеров называют пропорциональными. Стандартные размеры которых приведены в табл.5.
Таблица 5
Наименование образца | Расчетная длина l0,мм | Диаметр образца d0, мм | Площадь поперечного сечения F0,мм2 | Кратность l0 d0 |
Нормальный длинный | 200 | 20 | 314 | 10 |
Нормальный короткий | 100 | 20 | 314 | 5 |
Пропорциональный длинный | 11,3 F0 | Произвольный | Произвольный | 10 |
Пропорциональный | 5,65 F0 | Произвольный | Произвольный | 5 |
При испытании на растяжение образец, установленный в захватах машины, деформируется при плавно возрастающей нагрузке и характеристики свойств металла определяют в условиях одноосного напряженного состояния.
Образцы из разных материалов разрушаются в результате испытаний различно.
В процессе испытаний на растяжение на разрывных машинах записывается диаграмма в координатах нагрузка (Р, Н)– удлинение
(∆l, мм) образца (диаграмма растяжения).
Такая диаграмма вычерчивается автоматическим устройством, при постепенном увеличении растягивающего усилия вплоть до разрыва испытываемого образца. Диаграммы растяжения будут иметь вид, показанный на рис. 15.
При растяжении образец удлиняется, а его поперечное сечение непрерывно уменьшается.
Усилие, приходящееся на 1 мм2 поперечного сечения образца, называется напряжением и обозначается σ, МПа.
Рис 15. Типы диаграмм растяжения:
а – без площадки текучести; б – с площадкой текучести.
Напряжения, характеризующие сопротивление металла деформированию, подразделяются на условные и истинные.
Условные напряжения определяются как отношение действующей нагрузкиР, Н к площади поперечного сечения до испытанияF0 , мм2 (8):
. (8)
Истинные напряжения S, МПа, представляют собой отношение действующей нагрузки Р, Н, отрезокОЕк площади поперечного сечения в данный моментF, мм2 (9):
. (9)
Диаграмма растяжения образца из низкоуглеродистой стали представлена на рис. 16.
Рис. 16. Кривая растяжения низкоуглеродистой стали
Определение характеристик прочности. Максимальное напря- жение, до которого сохраняется прямолинейная зависимость между нагрузкой и деформацией, или, иначе говоря, остается справедливым закон Гука (10), называетсяпределом пропорциональности:
. (10)
Напряжение, при котором без заметного увеличения нагрузки образец продолжает деформироваться, называется физическим пределом текучести. Участок «вс» на диаграмме растяжения (рис.16) называетсяплощадкой текучести. Наименьшая нагрузка на участке текучестиРт,Н, отнесенная к первоначальной площади поперечного сеченияF0, мм2, определяет значение физического предела текучести (11):
(11)
Так как для ряда материалов на диаграмме растяжения нет площадки текучести (см. рис. 15, а) , то в этом случае определяется условный предел текучести0,2 , мм.
Под условным пределом текучести 0,2 понимают напряжение, при котором остаточная деформация составляет 0,2% от первоначальной расчетной длины образцаl0 . Условный предел текучести определяется по формуле
. (12)
Для определения условного предела текучести на диаграмме растяжения по оси абсцисс от начала координат откладывают величину, равную 0,2% от l0 (отрезок ОЕ на рис.17).
Рис.17. Схема определения условного предела текучести
Через точку Е проводят прямую, параллельную участку пропор- циональности диаграммы. Ордината точки А пересечения этой прямой с диаграммой растяжения определяет нагрузку, соответствующую условному пределу текучести.
Предел текучести является обязательной характеристикой металла по ГОСТу.
Точка В на диаграмме растяжения отвечает максимальной нагрузке, выдерживаемой образцом при испытании. В этой точке деформация из равномерной переходит в местную, и на образце начинает образовываться шейка.
Напряжение, отвечающее максимальной нагрузке РВ в процессе испытания, называетсяпределом прочности (13):
. (13)
Разрушение образца при растяжении происходит в точке К при нагрузке РК, Н. Отношение этой нагрузки к площади поперечного сечения образца после разрушенияFК, мм2,представляет собойистинное сопротивление разрыву (14):
. (14)
Определение характеристик пластичности.Абсолютное оста- точное удлинениеlК, мм (15), определяется разностью между длиной образца после разрываlК, мм, и его первоначальной длинойl0,мм:
. (15)
Относительное удлинение, % (17), представляет собой отношение абсолютного удлинения к первоначальной длине образца
(16)
где - относительное удлинение, %.
Для получения одинаковых значений относительного удлинения для одного и того же материала, испытываемого на различных образцах, необходимо чтобы образцы имели определенное соотношение между расчетной длиной l0, мм, и площадью поперечного сечения (или диаметром). Относительное удлинение, определенное на длинном образце (l0/d0=10),обозначается через10 % , а на коротком образце – через5, %.
Относительное сужение , % - характеристика пластичности, которая определяется как отношение абсолютного уменьшения площади поперечного сечения образца в месте разрыва к начальной площади сечения образца (17):
(17)
где F0 – начальное поперечное сечение образца,FК – площадь сечения образца в шейке после разрыва.
Относительное сужение характеризует способность к местной пластической деформации в направлении, перпендикулярном действию сил. Оно определяется только для образцов круглого сечения.
Изменение размеров образца в результате растяжения показано на
рис. 18.
Рис. 18. Образцы стали:
а - до растяжения; б - после разрыва
Характеристики материалов В,0,2, , являются базовыми; они включаются в ГОСТ на постановку конструкционных материалов, в сертификаты, в паспорта приемочных испытаний, входят в расчеты прочности.
Определение ударной вязкости.В условиях эксплуатации конструкционные материалы испытывают более сложное нагружение, чем при статических испытаниях гладких образцов. В особенности это относится к металлам, которые под влиянием определенных условий службы склонны переходить в хрупкое состояние при действии низких температур, наличия концентраторов напряжений, увеличения абсолютных размеров, повышения скорости деформирования и других факторов.
Ударные испытания надрезанных образцов проводятся для оценки вязкости материалов и установления склонности его к переходу в хрупкое состояние.
Под вязкостью понимают способность материала поглощать работу внешних сил за счет пластической деформации.
Ударная вязкостьравна работе, затраченной при динамическом разрушении надрезанного образца, отнесенной к площади поперечного сечения в месте надреза.
Ударную вязкость определяют на маятниковом копре, принципиальная схема которого приведена на рис. 19. Груз весом Q , первоначально поднятый на высотуН, свободно падает и в нижнем положении разрушает установленный на опорах образец квадратного сечения. Часть кинетической энергии падающего груза расходуется на разрушение образца, а ее оставшаяся часть идет на поднятие груза на высотуh.
Груз весом Qпервоначально поднят на высотуН, свободно падает и в нижнем положении разрушает установленный на опорах образец квадратного сечения. Часть кинетической энергии падающего груза расходуется на разрушение образца, а ее оставшаяся часть идет на поднятие груза на высотуh.
Рис.19. Схема действия копра и эскиз образца
Энергия, затраченная на разрушение образца, подсчитывается по формуле (18):
(18)
Ударная вязкость определяется из выражения (19):
(19)
Выгодное отличие испытаний на ударную вязкость состоит в совмещении при испытаниях концентрации напряжений (надрез) и ударной изгибающей нагрузки, позволяющем создать большую неравномерность поля напряжений.
Для определения ударной вязкости применяют надрезанные посередине длины образцы различных типов (рис. 20).
Испытания проводят в соответствии с ГОСТ 9454-78 на образцах с концентраторами напряжений трех видов:
U с радиусомR=1мм;
V cрадиусомR=0,25мм;
Т – усталостная трещина.
В зависимости от формы надреза ударная вязкость обозначается KCU, KCV илиKCT.
Поскольку наиболее распространены испытания на удар образцов с
U-образным надрезом, в справочниках чаще всего проводится обозначение ударной вязкостиKCU, МДж/м2.
Рис. 20. Образцы для испытаний на удар:
а – U-образный надрез; б – V-образный надрез; в – образец с трещиной
Определение предела выносливости. Многие детали машин и механизмов в процессе эксплуатации подвергаются повторно-переменным (циклическим) напряжениям, что может вызвать образование трещин и разрушение даже при напряжениях ниже0,2.
Разрушение металлов и сплавов в результате многократного повторно-переменного напряжения носит название усталости,а свойство металлов сопротивляться усталости называетсявыносливостью (ГОСТ 23207-78).
Природа усталостного разрушения заключается в следующем. Металлы, как известно, состоят из большого числа различно ориентированных зерен, которые вследствие анизотропии оказывают неодинаковое сопротивление действию внешних сил. Зерна, неблагоприятно расположенные по отношению к направлению действия внешних сил, оказываются слабыми, и пластичная деформация в них произойдет при напряжениях ниже предела текучести, в других же зернах приложенная нагрузка вызовет лишь упругую деформацию.
Многократная пластическая деформация при действии повторно-переменных нагрузок приводит к образованию микротрещины, которая, увеличиваясь, превращается в зону усталостного разрушения.
Исследования на усталость проводят для определения предела выносливости, под которым понимают максимальное напряжение цикла, которое выдерживает материал, не разрушаясь при достаточно большом числе повторно-переменных нагружений (циклов).
Предел выносливости при симметричном цикле обозначается -1. Предел выносливости чаще определяют на вращающемся образце (гладком или с надрезом) с приложением изгибающей нагрузки по симметричному циклу.
Для этого используют не менее десяти образцов, каждый из которых испытывается до разрушения только на одном уровне напряжений.
По результатам испытаний отдельных образцов в координатах «напряжение-число циклов» строят кривую, по которой и определяют предел выносливости -1 (рис. 21).
Для тех металлов и сплавов, у которых нет горизонтального участка выносливости, испытания, ограничивают определением «ограниченного предела выносливости», который для сталей равен 10 млн., а для цветных сплавов 100 млн. циклов.
-1
Напряжение / мм2
Рис. 21.Схема испытания и кривая выносливости
studfiles.net
МЕТАЛЛОВ ИСПЫТАНИЯ. Цель испытания материалов состоит в том, чтобы оценить качество материала, определить его механические и эксплуатационные характеристики и выявить причины потери прочности.
Химические испытания обычно состоят в том, что стандартными методами качественного и количественного химического анализа определяется состав материала и устанавливается наличие или отсутствие нежелательных и легирующих примесей. Они нередко дополняются оценкой стойкости материалов, в частности с покрытиями, к коррозии под действием химических реагентов. При макротравлении поверхность металлических материалов, особенно легированных сталей, подвергают селективному воздействию химических растворов для выявления пористости, сегрегации, линий скольжения, включений, а также гросс-структуры. Присутствие серы и фосфора во многих сплавах удается обнаружить методом контактных отпечатков, при котором поверхность металла прижимается к сенсибилизированной фотобумаге. С помощью специальных химических растворов оценивается подверженность материалов сезонному растрескиванию. Проба на искру позволяет быстро определить тип исследуемой стали.
Методы спектроскопического анализа особенно ценны тем, что позволяют оперативно проводить качественное определение малых количеств примесей, которые невозможно обнаружить другими химическими методами. Такие многоканальные приборы с фотоэлектрической регистрацией, как квантометры, полихроматоры и квантоваки, автоматически анализируют спектр металлического образца, после чего индикаторное устройство указывает содержание каждого присутствующего металла. См. также ХИМИЯ АНАЛИТИЧЕСКАЯ.
Механические испытания обычно проводят для выяснения поведения материала в определенном напряженном состоянии. Такие испытания дают важную информацию о прочности и пластичности металла. В дополнение к стандартным видам испытаний может применяться специально разработанное оборудование, воспроизводящее те или иные специфические условия эксплуатации изделия. Механические испытания могут проводиться в условиях либо постепенного приложения напряжений (статической нагрузки), либо ударного нагружения (динамической нагрузки).
По характеру действия напряжения разделяются на растягивающие, сжимающие и сдвиговые. Скручивающие моменты вызывают особый вид сдвиговых напряжений, а изгибающие моменты – сочетание растягивающих и сжимающих напряжений (обычно при наличии сдвиговых). Все эти различные виды напряжений могут быть созданы в образце с помощью стандартного оборудования, позволяющего определять предельно допустимые и разрушающие напряжения.
Это – один из самых распространенных видов механических испытаний. Тщательно подготовленный образец помещают в захваты мощной машины, которая прикладывает к нему растягивающие усилия. Регистрируется удлинение, соответствующее каждому значению растягивающего напряжения. По этим данным может быть построена диаграмма напряжение – деформация. При малых напряжениях заданное увеличение напряжения вызывает лишь небольшое увеличение деформации, соответствующее упругому поведению металла. Наклон линии напряжение – деформация служит мерой модуля упругости, пока не будет достигнут предел упругости. Выше предела упругости начинается пластическое течение металла; удлинение быстро увеличивается до разрушения материала. Предел прочности при растяжении – это максимальное напряжение, которое металл выдерживает в ходе испытания.См. также МЕТАЛЛОВ МЕХАНИЧЕСКИЕ СВОЙСТВА.
Один из самых важных видов динамических испытаний – испытания на ударную вязкость, которые проводятся на маятниковых копрах с образцами, имеющими надрез, или без надреза. По весу маятника, его начальной высоте и высоте подъема после разрушения образца вычисляют соответствующую работу удара (методы Шарпи и Изода).
Такие испытания имеют целью исследование поведения металла при циклическом приложении нагрузок и определение предела выносливости материала, т.е. напряжения, ниже которого материал не разрушается после заданного числа циклов нагружения. Чаще всего применяется машина для испытания на усталость при изгибе. При этом наружные волокна цилиндрического образца подвергаются действию циклически меняющихся напряжений – то растягивающих, то сжимающих.
Образец листового металла зажимается между двумя кольцами, и в него вдавливается шаровой пуансон. Глубина вдавливания и время до разрушения являются показателями пластичности материала.
В таких испытаниях оценивается совместное влияние длительного приложения нагрузки и повышенной температуры на пластическое поведение материалов при напряжениях, не превышающих предела текучести, определяемого в испытаниях малой длительности. Надежные результаты могут быть получены лишь на оборудовании, обеспечивающем точный контроль за температурой образца и точное измерение очень малых изменений размеров. Длительность испытаний на ползучесть обычно составляет несколько тысяч часов.
Твердость чаще всего измеряют методами Роквелла и Бринелля, при которых мерой твердости служит глубина вдавливания «индентора» (наконечника) определенной формы под действием известной нагрузки. На склероскопе Шора твердость определяется по отскоку бойка с алмазным наконечником, падающего с определенной высоты на поверхность образца. Твердость – очень хороший показатель физического состояния металла. По твердости данного металла зачастую можно с уверенностью судить о его внутренней структуре. Испытания на твердость часто берут на вооружение отделы технического контроля на производствах. В тех случаях, когда одной из операций является термообработка, нередко предусматривается сплошной контроль на твердость всей продукции, выходящей с автоматической линии. Такой контроль качества невозможно осуществить другими описанными выше методами механических испытаний.
В таких испытаниях образец с шейкой разрушают резким ударом, а затем излом исследуют под микроскопом, выявляя поры, включения, волосовины, флокены и сегрегацию. Подобные испытания позволяют приблизительно оценить размер зерна, толщину закаленного слоя, глубину цементации или разуглероживания и другие элементы гросс-структуры в сталях.
Металлургический и (в меньшей степени) поляризационный микроскопы часто позволяют надежно судить о качестве материала и его пригодности для рассматриваемого вида применения. При этом удается определить структурные характеристики, в частности размеры и форму зерен, фазовые соотношения, наличие и распределение диспергированных инородных материалов.
Жесткое рентгеновское или гамма-излучение направляется на испытуемую деталь с одной стороны и регистрируется на фотопленке, расположенной по другую сторону. На полученной теневой рентгено- или гаммаграмме выявляются такие несовершенства, как поры, сегрегация и трещины. Произведя облучение в двух разных направлениях, можно определить точное расположение дефекта. Такой метод часто применяется для контроля качества сварных швов.
Этот метод контроля пригоден лишь для ферромагнитных металлов – железа, никеля, кобальта – и их сплавов. Чаще всего он применяется для сталей: некоторые виды поверхностных и внутренних дефектов удается выявить нанесением магнитного порошка на предварительно намагниченный образец.
Если в металл послать короткий импульс ультразвука, то он частично отразится от внутреннего дефекта – трещины или включения. Отраженные ультразвуковые сигналы регистрируются приемным преобразователем, усиливаются и представляются на экране электронного осциллографа. По измеренному времени их прихода к поверхности можно вычислить глубину дефекта, от которого отразился сигнал, если известна скорость звука в данном металле. Контроль проводится весьма быстро и зачастую не требует выведения детали из эксплуатации. См. также УЛЬТРАЗВУК.
Существует ряд специализированных методов контроля, имеющих ограниченную применимость. К ним относится, например, метод прослушивания со стетоскопом, основанный на изменении вибрационных характеристик материала при наличии внутренних дефектов. Иногда проводят испытания на циклическую вязкость для определения демпфирующей способности материала, т.е. его способности поглощать вибрации. Она оценивается по работе, превращающейся в теплоту в единице объема материала за один полный цикл обращения напряжения. Инженеру, занимающемуся проектированием строений и машин, подверженных вибрациям, важно знать демпфирующую способность конструкционных материалов. См. также СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ.
www.krugosvet.ru
Цель работы: ознакомиться с испытательным оборудованием для определения основных механических характеристик; провести механические испытания предложенных марок сталей; по результатам испытаний определить предел прочности, предел текучести, предел пропорциональности, относительное удлинение, относительное сужение.
Приборы и оборудование: образцы, применяемые для различных видов испытаний; диаграммы растяжения.
Механические свойства - это характеристики материала, определяющие его поведение под действием приложенных внешних механических сил.
Механические свойства металлов определяют испытаниями специальных образцов.
Испытания механических свойств проводят при различных нагрузках – статических, динамических и циклических. Статические нагрузки медленно возрастают от нуля до максимальной величины; динамические возрастают быстро, за доли секунд; циклические нагрузки характеризуются многократным изменением по направлению или по величине. В соответствии с характером действующих нагрузок различают статические, динамические и усталостные испытания.
К статическим испытаниям обычно относят испытания на растяжение, сжатие, изгиб и на твердость; к динамическим – испытания на удар; циклическим способом проводят различные испытания металла на усталость.
По длительности приложения нагрузки механические испытания делятся на кратковременные и длительные. В большинстве случаев проводят кратковременные испытания длительностью несколько минут. Длительные испытания проводят, как правило, для определения механических свойств металлов, которым предстоит работать в особо ответственных конструкциях и сложных условиях в течение длительного периода времени.
В зависимости от температуры различают испытания при пониженной (ниже 0ºС), обычной (20ºС) и повышенной (выше 20ºС) температурах. Температуру испытания выбирают в зависимости от рабочей температуры изделий.
Механические свойства металлов наиболее полно могут быть установлены при статических испытаниях на растяжение гладких образцов. Испытание на растяжение проводят на специальных круглых образцах, а для листового материала на плоских образцах (см. рис.14), в соответствии с ГОСТ 1497-84.
Рис.14. образцы для испытаний на разрыв:
а – круглый; б - плоский
расчетная длина круглого образца l0 , мм обычно берется равной десяти или пяти диаметрам. Диаметр рабочей части нормального круглого образца равняется 20 мм. Образцы других размеров называют пропорциональными. Стандартные размеры которых приведены в табл.5.
При испытании на растяжение образец, установленный в захватах машины, деформируется при плавно возрастающей нагрузке, и характеристики свойств металла определяют в условиях одноосного напряженного состояния.
Образцы из разных материалов разрушаются в результате испытаний различно.
В процессе испытаний на растяжение на разрывных машинах записывается диаграмма в координатах нагрузка (Р, Н)– удлинение
(∆l, мм) образца (диаграмма растяжения).
Такая диаграмма вычерчивается автоматическим устройством, при постепенном увеличении растягивающего усилия вплоть до разрыва испытываемого образца. Диаграммы растяжения будут иметь вид, показанный на рис. 15.
При растяжении образец удлиняется, а его поперечное сечение непрерывно уменьшается.
Усилие, приходящееся на 1 мм2 поперечного сечения образца, называется напряжением и обозначается σ, МПа.
studfiles.net
Испытания металлов – это перечень исследований, проводимых на специальном оборудовании, с целью определения комплекса физико-механических свойств металла.
Коррозионные испытания в этой статье рассматривать не будем, о них поговорим отдельно.
Методы испытания металлов можно разделить на две основные группы: механические, определяющие физические свойства, и аналитические, определяющие состав и структуру металла.
Из группы механических испытаний можно выделить три основных вида:
Теперь, что касается аналитических испытаний металлов. Их два основных вида:
Мы в Компании «Металл-экспертиза» всегда подберем необходимый перечень испытаний, для решения любой Вашей задачи.
<<<предыдущая статья следующая статья>>>
metall-expertiza.ru
Механические свойства металлов.При эксплуатации на конструкции, детали или инструменты действуют различные внешние усилия (нагрузки). Все действующие нагрузки можно разделить на три группы:
а) постоянно плавно возрастающие и плавно уменьшающиеся;
б) ударные;
в) знакопеременные.
Под действием сил металл способен изменять свою форму и размеры, т. е. деформироваться.
Рис. 2. Виды деформаций стержня: а — растяжение;
б — сжатие; в — изгиб; г — кручение; д — срез
Деформации могут быть упругими и пластическими (остаточными). Упругие деформации исчезают после снятия нагрузки, а пластические остаются.
Величины деформаций зависят от значения действующих сил, а виды — от направления приложения сил. Наиболее часто встречаются следующие
основные виды деформаций: растяжение, сжатие, изгиб, кручение и срез. На практике металл подвергается одному или нескольким видам деформаций в зависимости от прилагаемых сил.
При выборе металла для изготовления конструкций, деталей, инструментов исходят из его механических свойств. Механическими свойствами называется совокупность качеств, характеризующих способность металлов противостоять деформации при приложении сил. К механическим свойствам относятся прочность, упругость, пластичность, твердость, вязкость, усталостная прочность (выносливость) и др. Чтобы определить механические свойства металла, его испытывают в лабораториях на специальных машинах.
Испытание металлов на растяжение.Испытание металлов на растяжение позволяет определить наиболее важные механические свойства металлов: прочность, упругость и пластичность (рис.3).
Рис. 3. Диаграмма растяжения металлов:
а - пластичных; б - хрупких
Прочность — способность металлов сопротивляться разрушению под действием внешних нагрузок. Упругость — способность металлов восстанавливать первоначальную форму и размеры после прекращения действия нагрузок, вызвавших их изменение. Пластичность— способность металлов необратимо изменять свою форму и размеры, не разрушаясь под действием нагрузок. Противоположным свойством пластичности является хрупкость.
Известно, что груз приложенный к металлическому стержню, вызывает в нем растягивающие напряжения, которые определяют как отношение нагрузки к площади поперечного сечения стержня
σ = P/F,
где σ — напряжение, Па;
Р — нагрузка, Н;
F— площадь поперечного сечения, м2.
Сравнение прочности и упругости металлов проводят по величине предельных напряжений.
Прочность обычно определяется пределом прочности, который равен отношению максимальной (наибольшей) нагрузки, вызвавшей разрушение стержня, к площади его первоначального поперечного сечения:
σ В= Рmах / Fо
где Рmах — максимальная нагрузка, Н;
Fо— площадь первоначального поперечного сечения стержня, м2.
Предел прочности, называемый также временным сопротивлением, — важнейшая характеристика. Если напряжения в изделии, конструкции или инструменте превзойдут предел прочности, то они разрушаются.
Упругость оценивается пределом упругости, который равен отношению наибольшей нагрузки, не вызывающей остаточных деформаций стержня, к площади его первоначального поперечного сечения
σуп = Руп/Fо,
где Руп — наибольшая нагрузка, не вызывающая остаточных деформаций, Н.
Если напряжения в деталях превзойдут предел упругости, то они изменят свою форму и размеры, что может иметь катастрофические последствия.
Пластичность металлов характеризуется относительным удлинением и относительным поперечным сужением.
Относительным удлинением называется отношение приращения длины стержня после разрыва к его первоначальной длине:
ι - ι0
δ = ──────100
ι 0
где ι0 — первоначальная длина образца, мм;
ι— длина образца после разрыва, мм;
ι — ι0=۵ι — абсолютное удлинение, мм.
Относительным сужением называется отношение уменьшения площади поперечного сечения стержня после разрыва к первоначальной площади его поперечного сечения:
F0 - F
Ψ = ────── 100
F0
где Fо — первоначальная площадь поперечного сечения стержня;
F— площадь поперечного сечения стержня после разрыва, мм2;
Fо—F = ۵F — абсолютное сужение, мм2.
Чем больше значение относительного удлинения и сужения, тем пластичнее металл. У хрупких металлов эти величины незначительны или равны нулю. Хрупкость металла является отрицательным свойством, а пластичность положительным.
Испытание металлов на растяжение проводят на разрывных машинах, которые обеспечивают приложение к образцам статических, т.е. постоянных или плавно возрастающих нагрузок.
Хрупкие металлы (чугун, закаленная сталь и др.), работающие на изгиб, испытывают не только на растяжение, но и на изгиб. При этом определяют предел прочности на изгиб (σИЗГ) по соответствующим формулам. Испытания проводят на разрывных машинах, имеющих для этого специальные приспособления в виде двух опор, на которые укладывают образец. Посредине образца создают равномерно повышающуюся нагрузку до его разрушения.
Предел прочности на изгиб — важнейшая характеристика металлов конструкций, работающих на изгиб. Испытанию на изгиб подвергают большинство судостроительных металлов.
Испытание металлов на твердость. Твердостью называется способность металла оказывать сопротивление проникновению в него другого более твердого материала.
В настоящее время применяют разнообразные методы испытания металлов на твердость. Наиболее распространены методы, при которых в металл под действием статической нагрузки вдавливают специальный наконечник-индентор (шарик, конус или пирамиду). Эти методы называют по фамилии их авторов: Бринелля, Роквелла и Виккерса. Твердость определяют также ударным вдавливанием шарика (метод Польди) и методом упругой отдачи бойка (метод Шора).
Приближенно твердость можно оценить и по углублениям, оставляемым чертилкой, кернером, зубилом и другими режущими инструментами. О твердости судят по глубине отпечатка, оставленного на металле наконечником или режущими инструментами. Чем больше глубина отпечатка при одинаковой нагрузке на внедряемый материал одинакового размера, тем меньше твердость и наоборот.
Испытывая металл на твердость, можно просто и быстро определить его механические свойства, причем не только в лабораториях, но и на производстве. По величине твердости можно приближенно судить и о других механических свойствах металлов: прочности, износостойкости и т.п., а также обрабатываемости. Чем металл тверже, тем его труднее обрабатывать.
В зависимости от твердости выбирают металлы для изготовления тех или иных деталей, конструкций, инструментов. Рассмотрим наиболее распространенные методы испытания металлов на твердость.
Метод Бринелля заключается во вдавливании под действием статической нагрузки в поверхность испытуемого образца стального шарика диаметром 2,5; 5 или 10 мм.
Твердость по методу Бринелля выражается в числах твердости НВ (Н — твердость, В — Бринелля).
Испытание на твердость по методу Бринелля проводится на приборах с применением плоских или круглых образцов и деталей. Для получения точных результатов на поверхности образцов не должно быть ржавчины, окалины, вмятин и т. п.
Метод Роквелла заключается во вдавливании под действием статической нагрузки в поверхность испытуемого металла алмазного конуса или стального закаленного шарика диаметром 1,59 мм.
В приборах (твердомерах) Роквелла в отличие от приборов Бринелля число твердости определяют непосредственно по шкале индикатора.
Числа твердости по Роквеллу не имеют размерности и обозначаются символом HR (Н — твердость, R — Роквелл). К символу добавляется обозначение шкалы индикатора (А, В или С), по которой измерялась твердость, и соответствующее числовое значение твердости.
По методу Роквелла можно испытывать мягкие и твердые металлы, а также готовые изделия, так как отпечатки от наконечника незначительны. Испытание занимает мало времени (не более 50 с), не требует никаких измерений; показания читаются непосредственно по шкале индикатора.
Метод Виккерсазаключается во вдавливании под действием статической нагрузки в поверхность испытуемого металла четырехгранной алмазной пирамиды.
Метод Польдизаключается во вдавливании стального шарика под действием динамической (ударной) нагрузки в поверхность испытуемого металла и эталонного образца.
По соотношению площадей или диаметров отпечатков расчетным путем по таблицам определяют твердость металла. Она будет тем меньше, чем больше отпечаток на испытуемом металле по сравнению с отпечатком на эталонном образце, и наоборот.
Испытание металлов на ударную вязкость. Ударной вязкостью (динамической прочностью) называется способность металлов оказывать сопротивление действию ударных (динамических) нагрузок.
Многие детали машин, конструкции и инструменты испытывают при эксплуатации ударные нагрузки. Например, судовые конструкции подвергаются ударам волн, льда и т. п. Поэтому при их изготовлении необходимо учитывать эту важнейшую характеристику.
Металлы, легко разрушающиеся под действием ударной нагрузки, называются хрупкими. Они непригодны для изготовления деталей, работающих в условиях ударных нагрузок. Вязкими называются металлы, разрушающиеся при значительных ударных нагрузках и значительных пластических деформациях.
Испытание металлов на ударную вязкость проводят на механизмах, называемых маятниковыми копрами. Оно заключается в ударном изломе (изгибе) маятником копра образца и в подсчете израсходованной работы на разрушение образца.
Маятник поднимают на некоторую высоту Н. С этой высоты он свободно падает разрушает образец и снова поднимается на некоторую высоту h. Работа, затраченная на разрушение образца,
А = P(H — h) или А =Pι(cosβ — cosα),
где Р — сила тяжести (вес) маятника, Н;
Н — высота подъема маятника до удара, м;
h — высота подъема маятника после удара, м;
l- длина маятника, м.
Ударную вязкость металла определяют по величине удельной ударной вязкости аH, равной отношению работы, затраченной на разрушение образца, к площади его поперечного сечения в месте разрушения:
аH = А/F
где А — работа, затраченная на разрушение образца, Дж;
F — площадь поперечного сечения образца в месте разрушения, м2.
Современный маятниковый копер имеет шкалу, градуированную непосредственно в единицах работы. Если поднять маятник на некоторую высоту Н, то стрелка покажет запас энергии маятника до удара РН вджоулях. После разрушения образца маятник поднимается на некоторую высоту h, в это время стрелка покажет запас энергии-маятника Ph после удара. Таким образом, ударная вязкость
аH = (РН — Ph)/F.
Ударная вязкость зависит не только от рода металла, но и от его температуры, химического состава, структуры и т. д. Например, две марки стали, с разной структурой могут иметь совершенно, различные значения ударной вязкости, но почти одинаковые другие механические свойства.
Испытание металлов на усталостную прочность (выносливость).Многие детали машин и механизмов, некоторые конструкции и инструменты при эксплуатации подвергаются действию переменных нагрузок, т. е. меняющихся по значению, направлению или по значению и направлению одновременно. Таким нагрузкам подвергаются, например, корпуса судов детали машин (валы, оси, шатуны, коленчатые валы).
В результате длительного воздействия переменных нагрузок прочность металла уменьшается и деталь, конструкция или инструмент разрушается. Разрушение металла часто наступает при напряжениях, которые значительно меньше, чем предел прочности, а иногда даже меньше, чем предел текучести.
Способность металлов сопротивляться усталостному разрушению называется усталостной прочностью (выносливостью). Показателем ее является предел усталости (выносливости), который определяют в ходе испытания на специальных машинах. Испытания проводят на переменный изгиб, растяжение-сжатие и кручение.
Чаще всего применяют способ испытания изгибом при вращении (рис. 4). В этом случае один конец образца закрепляют в патроне, а к другому через шарикоподшипник подвешивают груз. При вращении наружные волокна образца попеременно будут испытывать растягивающие и сжимающие усилия. При достижении некоторого числа перемен (циклов) образец разрушается. Число циклов определяют по установленному на станке счетчику.
Рис. 4. Схема испытания образца на усталостную прочность: 1 — патрон станка; 2 — образец;
Подшипник качения
Пределом усталости металлов называется максимальное напряжение, при котором образец еще выдерживает неограниченное число циклов, не разрушаясь. Пределы усталости обозначают:
при изгибе — σ-1;
при растяжении-сжатии — σ-1p;
при кручении — τ-1.
Между пределом усталости и пределом прочности существует следующая приблизительная зависимость:
σ-1 == 0,47σв; σ-1p = 0,32σв; τ-1 = 0,22σв.
Усталостная прочность зависит от значения переменных напряжений, состояния поверхностей деталей и других факторов. Ее следует учитывать при создании, например, быстроходных судов, сверхзвуковых самолетов, космических кораблей, мощных турбин, испытывающих при эксплуатации переменные нагрузки.
Металлы, работающие в сложных условиях, испытывают при повышенных и пониженных температурах, в условиях коррозии, при истирании и т. д.
Технологические свойства характеризуют способность металлов поддаваться технологической обработке, целью которой является придание металлам определенных форм, размеров и свойств. К ним относятся: литейные свойства, ковкость, свариваемость, прокаливаемость, обрабатываемость резанием и др. Поведение металла при технологической обработке определяют по технологическим пробам.
Технологические пробы применяют главным образом для определения пригодности материала к тому или иному способу обработки. О результатах технологических испытаний судят по состоянию поверхности после испытания (отсутствие трещин, надрывов, изломов). Наиболее распространены следующие технологические пробы: на изгиб в холодном и нагретом состоянии; на перегиб и выдавливание; на осадку; на раздачу и обжатие труб; искровая.
К физическим свойствам металлов и сплавов относятся: плотность, температура плавления, теплопроводность, электро-проводность, тепловое расширение, удельная теплоемкость и способность намагничиваться (табл. 1).
Химические свойства — способность металлов и сплавов сопротивляться воздействию окружающей среды, которое проявляется в различных формах. Под влиянием кислорода воздуха и влаги металлы подвергаются коррозии: чугун и сталь ржавеют; бронза покрывается зеленым слоем оксида меди; сталь при нагреве в печах без защитной атмосферы окисляется, превращаясь в окалину, а в серной кислоте растворяется.
Металлы и сплавы, стойкие против окисления при высокой температуре нагрева, называются жаростойкими или окалиностойкими. Из них изготовляют такие детали, как клапаны двигателей внутреннего сгорания и др. Золото, серебро и нержавеющие стали слабо поддаются коррозии.
Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
zdamsam.ru
Механические свойства характеризуют способность материала сопротивляться деформации и разрушению под действием приложенных нагрузок.
По характеру изменения во времени действующей нагрузки механические испытания могут быть статическими (на растяжение, сжатие, изгиб, кручение), динамическими (на ударный изгиб) и циклическими (на усталость).
По воздействию температуры на процесс их делят на испытания при комнатной температуре, низкотемпературные и высокотемпературные (на длительную прочность, ползучесть).
Статические испытания проводятся при воздействии на образец с определенной скоростью постоянно действующей нагрузки. Скорость деформации составляет от 10-4 до 10-1 с-1. Статические испытания на растяжение относятся к наиболее распространенным. Свойства, определяемые при этих испытаниях, приведены в многочисленных стандартах по техническим условиям на материалы. К статическим относятся испытания на растяжение, сжатие, изгиб, кручение.
Динамические испытания характеризуются приложением к образцу ударной нагрузки и значительной скоростью деформации. Длительность испытания не превышает сотен долей секунды. Скорость деформации составляет около 102 с-1. Динамические испытания чаще всего проводят по схеме ударного изгиба образцов с надрезом.
Циклические испытания характеризуются многократными изменениями нагрузки по величине и по направлению. Примером испытаний являются испытания на усталость, они длительны и по их результату определяют число циклов до разрушения при разных значениях напряжения. В конечном итоге находят предельные напряжения, который образец выдерживает без разрушения в течение определенного числа циклов нагружения.
Испытания на твердость.
Простейшим механическим свойством является твердость. Методы определения твердости в зависимости от скорости приложения нагрузки делятся на статические и динамические, а по способу ее приложения - на методы вдавливания и царапания. Методы определения твердости по Бринеллю, Роквеллу, Виккерсу относятся к статическим методам испытания.
Твердость - это способность материала сопротивляться вдавливанию в него более твердого тела (индентора) под действием внешних сил.
При испытании на твердость в поверхность материалов вдавливают пирамиду, конус или шарик (индентор), в связи с чем различают методы испытаний, соответственно, по Виккерсу, Роквеллу и Бринеллю. Кроме того, существуют менее распространенные методы испытания твердости: метод упругого отскока (по Шору), метод сравнительной твердости (Польди) и некоторые другие.
При испытании материалов на твердость не изготавливают стандартных специальных образцов, однако к размерам и поверхности образцов и изделий предъявляются определенные требования.
Твердость по Виккерсу (ГОСТ 2999-75) устанавливают путем вдавливания в металл индентора - алмазной пирамиды с углом при вершине 136° под действием постоянной нагрузки Р: 1; 2; 2,5; 3; 5; 10; 20; 30; 50 или 100 кгс и выдержки под нагрузкой в течение 10-15 с. Для определения твердости черных металлов и сплавов используют нагрузки от 5 до 100 кгс, медных сплавов - от 2,5 до 50 кгс, алюминиевых сплавов - от 1 до 100 кгс. После снятия нагрузки с помощью микроскопа прибора находят длину диагонали отпечатка, а твердость HVрассчитывают по формуле
HV = 1,854*P/d2
где Р - нагрузка, кгс; d- диагональ отпечатка, мм.
Имеется таблица зависимости твердости от величины нагрузки и длины диагонали. Поэтому на практике вычислений не производят, а пользуются готовой расчетной таблицей. Твердость по Виккерсу HVизмеряется в кгс/мм2, Н/мм2 или МПа. Значение твердости по Виккерсу может изменяться от HV2060 до HV5 при нагрузке 1 кгс.
По методу Бриннелля вдавливают в образец или изделие стальной закаленный шарик диаметром 10, 5 или 2,5 мм под действием нагрузок 3000, 1000, 750, 500, 250, 62,5 кгс и др. (ГОСТ 9012-59, рис. 1.). Полученный круглый отпечаток на образце измеряют под лупой и по таблицам находят величину твердости по Бринеллю, значение которой не превышает 450 НВ. Твердость по Бринеллю почти совпадает со значениями твердости по Виккерсу.
Твердость НВ - это также величина напряжений сопротивления вдавливанию:
HB=P/Fot=P/πDt=2P/πD(D-√(D2-d2))
где P- нагрузка, кгс;
Fot- площадь отпечатка, мм2;
t- глубина сегмента отпечатка;
D- диаметр шарика, мм;
d- диаметр отпечатка, мм.
Твердость по Бринеллю НВ (по умолчанию) имеет размерность кгс/мм2, например, твердость алюминиевого сплава равна 70 НВ. При нагрузке, определяемой в ньютонах, твердость по Бринеллю измеряется в МПа. Например, твердость отожженной стали равна 207 НВ при нагрузке 3000 кгс, диаметре шарика 10 мм, диаметре отпечатка 4,2 мм или, учитывая коэффициент перевода: 1 Н = 9,8 кгс,
НВ = 2 028 МПа.
Рис. 1. Схема определения твердости по Бринеллю
По методу Роквелла (ГОСТ 9013-59) вдавливают алмазный конус с углом при вершине 120° (шкалы А и С) или стальной шарик диаметром 1,5875 мм (шкала В).
При этом определяют твердость, соответственно, HRA, HRC и HRB. В настоящее время измерение твердости по методу Роквелла является наиболее распространенным методом, потому что при использовании твердомеров Роквелла не требуется измерять отпечаток, число твердости считывается со шкалы прибора сразу после снятия основной нагрузки.
Метод заключается во вдавливании в испытуемый образец индентора под действием двух последовательно прикладываемых нагрузок - предварительной Р0 и основной Р1 которая добавляется к предварительной, так что общая нагрузка Р = Р0 + Р1 После выдержки в течение нескольких секунд основную нагрузку снимают и измеряют остаточную глубину проникновения индентора, который при этом продолжает находиться под действием предварительной нагрузки. Перемещение основной стрелки индикатора на одно деление шкалы соответствует перемещению индентора на 0,002 мм, которое принимается за единицу твердости.
На рис. 2 представлена схема измерения твердости по методу Роквелла алмазным или твердосплавным конусом. При испытаниях измеряют глубину восстановленного отпечатка. Шкалы А и С между собой совпадают, поскольку испытания проводят одним и тем же индентором - алмазным конусом, но при разных нагрузках: 60 и 150 кгс соответственно. Твердость в этом случае определяется как
HRC= t/0,002=100-(H-h)/0,002
По шкале В (нагрузка 100 кгс, шарик)
HRB = 130-(H-h)/0,002
Рис. 2. Схема определения твердости по Роквеллу (индентор - конус)
На практике значения твердости по Роквеллу не рассчитываются по формулам, а считываются с соответствующей (черной или красной) шкалы прибора. Шкалы HRC и HRA используются для высокой твердости, HRB -для низкой. Число твердости по Роквеллу измеряют в условных единицах, оно является мерой глубины вдавливания индентора под определенной нагрузкой.
Испытание на растяжение материалов проводят в соответствии с ГОСТ 1497-84 «Методы испытаний на растяжение». Стандарт устанавливает методы статических испытаний на растяжение черных и цветных металлов для определения при температуре 20 °С пределов пропорциональности, упругости, текучести, временного сопротивления разрыву, относительного удлинения и относительного сужения, модуля упругости.
Для испытаний применяют плоские и цилиндрические образцы, вырезанные из детали или специально изготовленные. Размеры образцов регламентированы указанным стандартом, они подчиняются геометрическому подобию и могут быть короткими и длинными. Для цилиндрического образца берется соотношение начальной рабочей длины l0 и исходного диаметра d0 : l0= 5d0- короткий образец, l0= 10d0 - длинный образец. Для плоского образцаберется соотношение рабочей длины l0 и площади поперечного сечения F0:
l0= 5,65√F0 - короткий образец, l0= 11,3√F0 - длинный образец. Цилиндрические образцы изготавливаются диаметром 3 мм и более. Образцы состоят из рабочей части длиной l0 и головок, форма и размер которых соответствуют захватам машины (рис. 3).
Рис. 3. Цилиндрические и плоские образцы до (а) и после (б) испытания на растяжение
Растяжение образца проводят на специальных машинах, позволяющих фиксировать величину прилагаемой нагрузки и изменение длины образца при растяжении. Эти же машины дают возможность записывать изменение длины образца при увеличении нагрузки (рис. 4), т.е. первичную диаграмму испытания на растяжение в координатах: нагрузка Р, Н, кН; и абсолютное удлинение образца А, мм.
Рис. 4. Первичная диаграмма растяжения
Измеряя величину нагрузки в характерных точках диаграммы испытаний на растяжение (рис.4), определяют следующие параметры механических свойств материалов:
σ пц- предел пропорциональности, точка р;
σ 0,05 - предел упругости, точка е;
σ т - предел текучести физический, точка s;
σ 0,2- предел текучести условный;
σ в - временное сопротивление разрыву, или предел прочности, точка b.
Значения 0,05 и 0,2 в записи предела упругости и текучести соответствуют величине остаточной деформации ∆l в процентах от l0 при растяжении образца. Напряжения при испытании на растяжение вычисляют путем деления нагрузки Р, соответствующей характерной точке на диаграмме, на площадь первоначального поперечного сечения F0 рабочей части испытуемого образца:
σпц=Pпц / F0 ; σ0,05=P 0,05 / F0 ; σт=Pт / F0 , или σв=P max / F0 ;
Площадь поперечного сечение F0определяется по следующим формулам:
для цилиндрического образца
F0 = πd02/ 4
для плоского образца
F0 = a0*b0
где а0 - первоначальная толщина; b0 - первоначальная ширина образца.
В точке k устанавливают напряжение сопротивления разрушению материала.
Предел пропорциональности и предел упругости определяют с помощью тензометра (прибор для определения величины деформации). Предел текучести физический и условный рассчитывают, находя нагрузку по диаграмме растяжения. Если на диаграмме нет площадки текучести, то для вычисления условного предела текучести необходимо провести графические построения на диаграмме (рис. 1.5). Вначале находят величину остаточной деформации, равную 0,2 % от l0, далее отмечают отрезок на оси деформации, равный 0,2 % от l0, и проводят линию, параллельную пропорциональному участку диаграммы растяжения, до пересечения с кривой растяжения.
Рис. 5. Определение предела текучести
Нагрузка P0,2 соответствует точке их пересечения. Физический и условный предел текучести характеризуют способность материала к началу пластической деформации, т.е. сопротивление малой пластической деформации.
Предел прочности можно подсчитать, используя показания силоизмерителя, по максимальной нагрузке Рmax при разрыве либо найти Рmax (Рв) по первичной диаграмме растяжения. Характер деформации при растяжении вязких и хрупких материалов существенно различается.
Хрупкие материалы после достижения максимальной нагрузки быстро разрушаются без значительной пластической деформации, поэтому σв для
хрупких материалов является характеристикой сопротивления разрушению, а для пластичных - характеристикой сопротивления деформации.
Напряжение разрушения определяют как истинное. При этом нагрузку разрушения делят на конечную площадь поперечного сечения образца после разрушения FK:
Sк=Pк/Fк
Все рассчитанные таким образом величины являются характеристиками прочности материала.
Пластичность, т.е. способность деформироваться без разрушения, характеризуется изменениями размеров образца. При испытании на разрыв определяют следующие характеристики пластичности:
относительное удлинение
δ=(lk-l0)/ l0*100%
относительное сужение
Ψ=(F0к-F)/ F0*100%
где lк, Fк — соответственно, длина рабочей части и площадь поперечного сечения образца после разрыва.
Рассчитанные характеристики механических свойств после испытания на растяжение заносятся в протокол.
Испытания на ударный изгиб.
Ударная вязкость характеризует удельную работу, затрачиваемую на разрушение при ударе образца с надрезом. Ударная вязкость испытывается на маятниковом копре с постоянным запасом работы маятника по ГОСТ 9454-78 «Металлы. Метод испытания на ударный изгиб при пониженной, комнатной и повышенной температурах». Стандарт распространяется на черные и цветные металлы и сплавы и устанавливает метод испытания при температурах от -100 до +1000 °С. Метод основан на разрушении ударом маятникового копра образца с концентратором напряжений. В результате испытания определяют полную работу, затраченную при ударе К, или ударную вязкость КС.
Используют образцы прямоугольной формы с концентратором типа U, V, Т (усталостная трещина). Наиболее распространенными образцами являются образцы размерами 55x10x10 мм с U-концентратом 2x2 мм (рис. 6).
Рис. 6. Стандартный образец с U-образным надрезом для испытаний на ударный изгиб
На разрушение ударом образца затрачивается только часть энергии маятника, в связи с чем маятник после разрушения образца продолжает двигаться, отклоняясь на определенный угол. Чем больше величина работы, затрачиваемой на разрушение образца, тем на меньший угол он отклоняется от вертикали после разрушения. По величине этого угла и определяют работу удара К или работу, затраченную на разрушение образца. Работу разрушения К относят к площади поперечного сечения образца Soв месте излома и тем самым находят КС - ударную вязкость:
KC = K/S0,
где Kизмеряется в Дж (кгс*м), S0— в м2 (см2).
В зависимости от вида концентратора ударная вязкость обозначается
KCU, KCV, КСТ и имеет размерность МДж/м2 (МДж/см2) или кгс*м/см2.
markmet.ru