|
||||
|
Екатерина - специалист по продаже а/м КАМАЗ
43118-010-10 (дв.740.30-260 л.с.) | 2 220 000 |
43118-6033-24 (дв.740.55-300 л.с.) | 2 300 000 |
65117-029 (дв.740.30-260 л.с.) | 2 200 000 |
65117-6010-62 (дв.740.62-280 л.с.) | 2 350 000 |
44108 (дв.740.30-260 л.с.) | 2 160 000 |
44108-6030-24 (дв.740.55,рест.) | 2 200 000 |
65116-010-62 (дв.740.62-280 л.с.) | 1 880 000 |
6460 (дв.740.50-360 л.с.) | 2 180 000 |
45143-011-15 (дв.740.13-260л.с) | 2 180 000 |
65115 (дв.740.62-280 л.с.,рест.) | 2 190 000 |
65115 (дв.740.62-280 л.с.,3-х стор) | 2 295 000 |
6520 (дв.740.51-320 л.с.) | 2 610 000 |
6520 (дв.740.51-320 л.с.,сп.место) | 2 700 000 |
6522-027 (дв.740.51-320 л.с.,6х6) | 3 190 000 |
Нужны самосвалы? Обратите внимание на Ford-65513-02. |
Контактная информация.
г. Набережные Челны, Промкомзона-2, Автодорога №3, база «Партнер плюс».
тел/факс (8552) 388373.
Схема проезда
65. Трехфазные двухскоростные двигатели |
Трехфазные двигатели, позволяющие менять число оборотов, очень часто используются в воздушных охладителях для того, чтобы обеспечивать изменение расхода воздуха в соответствии с изменением его температуры: малая скорость (МС) при низкой температуре, например, зимой, и большая скорость (БС) при высокой температуре, например, летом (см. раздел 20.5).Как правило, двухскоростными двигателями также оснащаются градирни (их работа подробно рассматривается в разделе 73). На рис. 65.1 показан вариант градирни, оборудованной двухскорост-ным двигателем (поз. 1) для привода центробежного вентилятора (поз. 2).
При выключенном вентиляторе и работающем компрессоре температура воды на входе в градирню (поз. 3) начинает повышаться. Термостат (поз. 4), установленный на выходе из градирни, обнаруживает подъем температуры и выдает команду на запуск двигателя с малой скоростью (МС). Если температура воды продолжает расти, термостат переводит двигатель на большую скорость (БС) и градирня работает с максимальной производительностью.
ДВИГАТЕЛЬ С ДВУМЯ РАЗДЕЛЬНЫМИ ОБМОТКАМИ
Это самый простой двигатель. Он представляет собой обычный двигатель, рассчитанный на одно значение напряжения трехфазного переменного тока и имеет клеммную коробку с 6 клеммами (поз. А на рис. 65.2). Схема подключения обмоток этого двигателя к клеммам показана в нижней части рис. 65.2.
Внутри такого двигателя имеются две абсолютно независимых обмотки, каждая из которых предназначена для реализации разного числа оборотов. Если питание подключено к клеммам Ш, IV и 1W двигатель вращается с малой скоростью МС (поз. В). Если питание подано на клеммы 2U, 2V и 2W, двигатель вращается с большой скоростью БС (поз. С).
ВНИМАНИЕ! Схема на рис. 65.2 очень похожа на схему двигателя с раздельным подключением обмоток PW (см. пункт 64.1). Чтобы избежать ошибок, внимательно ознакомьтесь с табличкой на корпусе двигателя и изучите схемы, в противном случае возможны непоправимые последствия.
Действительно, в отличие от двигателя PW, обмотки двухско-ростного двигателя, схема которого изображена на рис. 65.2, никогда не должны быть запитаны вместе, иначе двигатель мгновенно сгорит!
65.1. УПРАЖНЕНИЕ 1. Двигатель с раздельными обмотками |
Нарисуйте схему подключения обмоток и управления работой двухскоростного трехфазного двигателя, предназначенного для привода вентилятора градирни, зная, что переключение скоростей обеспечивается термостатом с двухступенчатой регулировкой температуры.В помощь вам на рис. 65.3 приведено обозначение клемм, имеющееся внутри клеммной коробки.
Решение упражнения 1
Схема подключения обмоток представлена на рис. 65.4.Двигатель может вращаться с МС (питание подано на клеммы 1U, 1V и 1W) или с БС (запита-ны клеммы 2U, 2V и 2W).Треугольник вершиной вниз указывает на то, что между контакторами МС и БС существует механическая блокировка. Благодаря ей, как только один из контакторов замкнут, становится невозможным замкнуть другой контактор, даже если вы случайно нажали на него рукой.
Такой тип блокировки позволяет избежать ошибки, обусловленной человеческим фактором. Действительно, если замкнуть оба этих контактора одновременно, даже на несколько тысячных долей секунды, двигатель может мгновенно сгореть: напоминаем, что при нормальной температуре скорость электронов равна примерно 250000 км/с, то есть более чем 6 раз в секунду позволяет обернуться вокруг Земли!Существует и другая опасность: представим себе, что двигатель вращается со скоростью 960 об/мин (МС) и в этот момент размыкается контактор МС и замыкается контактор БС, чтобы обеспечить вращение со скоростью 1450 об/мин, но в другом направлении! Момент сопротивления на валу двигателя в этом случае оказался бы невероятно большим, двигатель подвергся бы очень высоким механическим и электрическим нагрузкам и, в лучшем случае, сработало бы реле тепловой защиты. В худшем случае двигатель просто бы сгорел.Поэтому абсолютно необходимо, чтобы при переключении с режима МС на режим БС двигатель продолжал вращаться в том же направлении. То есть порядок подключения фаз должен соблюдаться одинаковым. Иначе говоря, если фаза L1, например, подключена к клемме Ш для режима МС, то эта же фаза L1 должна быть подведена и к клемме 2U для режима БС
А кстати, прежде чем читать дальше, вы нарисовали схему управляющей цепи?
Принципиальная схема цепи управления представлена на рис. 65.5.Если приборы контроля, управления и безопасности разрешают запуск двигателя, напряжение подается на контакт 2. Если реле тепловой защиты (контакты 2-3) и плавкий предохранитель (контакты 3-4 и 4-5) замкнуты, напряжение подается на контакт 5 регулятора температуры воды на выходе из градирни, который является общим для двух ступеней регулирования температуры.Допустим, что температура воды низкая. Тогда оба контакта 5 разомкнуты и обмотки МС, БС и R не за-питаны. Когда температура воды начнет расти, контакты 5-6 замыкаются и через нормально замкнутые контакты 6-7 реле R подается питание на реле МС, обеспечивающее работу двигателя на режиме МС.При этом размыкаются нормально замкнутые контакты 8-9 реле МС. Когда расход теплой воды в градирню увеличится и температура воды поднимется еще больше, регулятор температуры замкнет контакты 5-8. В результате будет подано напряжение на реле R, вследствие чего разомкнутся контакты 6-7, обесточится реле МС и замкнутся контакты 8-9 реле МС. Напряжение поступит на реле БС и двигатель перейдет на режим БС (заметим, что в этом случае момент сопротивления на валу двигателя будет очень небольшим, поскольку двигатель уже работал на режиме МС).Далее, если температура воды упадет, реле-регулятор температуры разомкнет контакты 5-8 второй ступени. Вследствие этого будет снято напряжение с реле БС и реле R. Контакты 6-7 реле R замкнутся, будет подано напряжение на реле МС, после чего разомкнутся контакты 8-9 и двигатель вновь перейдет на режим МС.В нашем примере двигатель на режиме БС вращался со скоростью 1450 об/мин и, как только разомкнутся контакты 8-9, он тут же переходит на режим МС, когда вращение осуществляется со скоростью 960 об/мин. Иначе говоря, происходит мгновенное замедление скорости вращения от значения 1450 об/мин до значения 960 об/мин. Усилие, необходимое при этом для того, чтобы затормозить двигатель, является причиной возникновения значительных механических нагрузок и, как следствие, заметного пика по току в цепи питания обмотки МС.Этот недостаток можно устранить (см. рис. 65.6), установив вместо реле мгновенного срабатывания реле R с временной задержкой (такое реле часто называют реле замедленного действия).
В тот момент, когда по команде регулятора температуры размыкаются контакты 5-8 второй ступени, реле БС обесточивается, также как и обмотка реле R замедленного действия (рис. 65.6). Однако контакты 6-7 реле R остаются разомкнутыми в течение заданного времени задержки (в данном случае 3 секунды) после снятия с него напряжения. В течение этого времени у нас не подается напряжение ни на обмотку БС, ни на обмотку МС. Вращение двигателя замедляется, причем тем быстрее, чем больше момент сопротивления на вентиляторе.
Спустя 3 секунды контакты 6-7 реле R замыкаются.К этому моменту вращение двигателя замедляется до скорости, близкой к 960 об/мин. На обмотку МС подается напряжение и двигатель продолжает вращаться со скоростью 960 об/мин не испытывая ни механических пиковых нагрузок, ни забросов по току.
Многоскоростные электродвигатели изготавливаются на базе основного исполнения односкоростных двигателей и подразделяются на:
Схемы подключения двухскоростных электродвигателей отличаются в зависимости от соотношения числа оборотов. При соотношении 1/2, т.е - 1500/3000, 750/1500 и 500/1000 применяется следующая схема:При соотношении 2/3 и 3/4, т.е -1000/1500, 750/1000 применяется другая схема:Схема подключения трехскоростных электродвигателей:Схема подключения четырехскоростных электродвигателей:
Марка | Мощн.кВт | Об/мин | Ток, А | МоментН*м | Iп/Iн | Моментинерциикгм2 | Массакг |
АИР132S4/2 | 6 | 1455 | 12,5 | 39,4 | 7 | 0,032 | 70 |
7,1 | 2900 | 14,6 | 23,4 | 7 | |||
АИР132М4/2 | 8,5 | 1455 | 17,3 | 55,8 | 7,5 | 0,045 | 83,5 |
9,5 | 2925 | 19,1 | 31 | 8,5 | |||
АИР180S4/2 | 17 | 1470 | 34,5 | 110 | 6,7 | 0,16 | 170 |
20 | 2930 | 39,3 | 65,2 | 6,4 | |||
АИР180М4/2 | 22 | 1470 | 43,7 | 143 | 7,5 | 0,2 | 190 |
26 | 2935 | 50,5 | 84,6 | 7,5 | |||
5А200М4/2 | 27 | 1475 | 53,4 | 175 | 7,4 | 0,27 | 245 |
35 | 2945 | 64,9 | 114 | 7,2 | |||
5А200L4/2 | 30 | 1470 | 57,6 | 195 | 7 | 0,32 | 270 |
38 | 2945 | 67,8 | 123 | 7 | |||
5А225М4/2 | 42 | 1480 | 81,7 | 271 | 7 | 0,5 | 345 |
48 | 2960 | 87,6 | 155 | 7,5 | |||
5АМ250S4/2 | 55 | 1485 | 102 | 354 | 7,3 | 1,2 | 485 |
60 | 2975 | 114 | 193 | 7,8 | |||
5АМ250М4/2 | 66 | 1485 | 121 | 424 | 7,2 | 1,7 | 520 |
80 | 2970 | 148 | 257 | 7,2 | |||
1000/1500 об/мин | |||||||
АИР132S6/4 | 5 | 965 | 12 | 49,5 | 5,6 | 0,053 | 68,5 |
5,5 | 1435 | 11,1 | 36,6 | 5,7 | |||
АИР132М6/4 | 6,7 | 970 | 16 | 66 | 6,2 | 0,074 | 81,5 |
7,5 | 1440 | 14,7 | 49,7 | 6,2 | |||
АИР180М6/4 | 15 | 975 | 33,6 | 147 | 6,6 | 0,27 | 180 |
17 | 1450 | 33 | 112 | 6 | |||
5А200М6/4 | 20 | 980 | 44 | 195 | 6,5 | 0,41 | 245 |
22 | 1460 | 42,2 | 144 | 6 | |||
5А200L6/4 | 24 | 980 | 55,2 | 234 | 6,9 | 0,46 | 265 |
27 | 1480 | 51,5 | 174 | 6,5 | |||
500/1000 об/мин | |||||||
АИР180М12/6 | 7 | 485 | 22,4 | 138 | 4,5 | 0,27 | 200 |
13 | 975 | 25,9 | 127 | 6 | |||
5А200М12/6 | 8 | 485 | 30,6 | 158 | 4 | 0,41 | 245 |
15 | 980 | 30,1 | 146 | 6 | |||
5А200L12/6 | 10 | 485 | 31,1 | 197 | 4 | 0,46 | 265 |
18,5 | 975 | 36,3 | 181 | 6 | |||
5А225М12/6 | 14 | 485 | 43,9 | 276 | 4 | 0,65 | 320 |
25 | 980 | 48,5 | 244 | 6 | |||
5АМ250S12/6 | 16 | 495 | 56,5 | 309 | 4,4 | 1,2 | 435 |
30 | 990 | 58,3 | 289 | 6,6 | |||
5АМ250М12/6 | 18,5 | 490 | 60,1 | 361 | 4 | 1,4 | 455 |
36 | 985 | 71,1 | 349 | 5,3 | |||
750/1500 об/мин | |||||||
АИР132S8/4 | 3,6 | 715 | 9,7 | 48,1 | 4,8 | 0,053 | 68,5 |
5 | 1435 | 10,3 | 33,3 | 5,9 | |||
АИР132М8/4 | 4,7 | 715 | 12,4 | 62,8 | 5 | 0,074 | 82 |
7,5 | 1440 | 15,8 | 49,7 | 6,4 | |||
АИР180М8/4 | 13 | 730 | 33,6 | 170 | 5,5 | 0,27 | 180 |
18,5 | 1465 | 35,9 | 121 | 6,7 | |||
5А200М8/4 | 15 | 730 | 40,2 | 196 | 5,3 | 0,41 | 245 |
22 | 1460 | 42,2 | 144 | 6,4 | |||
5А200L8/4 | 17 | 725 | 39 | 224 | 5 | 0,46 | 275 |
24 | 1450 | 45,5 | 158 | 5,5 | |||
5А225М8/4 | 23 | 735 | 55,3 | 299 | 5,5 | 0,7 | 330 |
34 | 1475 | 62,7 | 220 | 6,5 | |||
5АМ250S8/4 | 33 | 740 | 75,3 | 426 | 5,3 | 1,2 | 435 |
47 | 1480 | 87,2 | 303 | 6,4 | |||
5АМ250М8/4 | 37 | 740 | 81,5 | 478 | 6 | 1,4 | 465 |
55 | 1480 | 99,8 | 355 | 7 | |||
750/1000 об/мин | |||||||
АИР132S8/6 | 3,2 | 725 | 8,7 | 42,2 | 4,6 | 0,053 | 68,5 |
4 | 965 | 9,1 | 39,6 | 5 | |||
АИР132М8/6 | 4,5 | 720 | 11,9 | 59,7 | 5,4 | 0,074 | 81,5 |
5,5 | 970 | 12,3 | 54,1 | 6 | |||
АИР180М8/6 | 11 | 730 | 26,3 | 144 | 5,3 | 0,27 | 180 |
15 | 970 | 30,1 | 148 | 6 | |||
5А200М8/6 | 15 | 730 | 35,4 | 196 | 5,5 | 0,41 | 245 |
18,5 | 975 | 37,2 | 181 | 6 | |||
5А200L8/6 | 18,5 | 730 | 43,6 | 242 | 5,5 | 0,46 | 265 |
23 | 975 | 46,2 | 225 | 6 | |||
5А225М8/6 | 22 | 740 | 51,7 | 284 | 6 | 0,7 | 330 |
30 | 985 | 58,6 | 291 | 6 | |||
5АМ250S8/6 | 30 | 740 | 70,8 | 387 | 6 | 1,2 | 435 |
37 | 990 | 73,2 | 357 | 6,4 | |||
5АМ250М8/6 | 42 | 740 | 93,2 | 542 | 5,5 | 1,4 | 485 |
50 | 985 | 96,6 | 485 | 6,1 |
Марка | МощностькВт | Об/мин | ТокА | МоментН*м | Iп/Iн | Моментинерц.кгм2 | Вескг |
1000/1500/3000 об/мин | |||||||
АИР132S6/4/2 | 2,8 | 955 | 7,6 | 28 | 5 | 0,053 | 70 |
4 | 1440 | 8,9 | 26,5 | 5 | |||
4,5 | 2895 | 9,7 | 14,8 | 6,3 | |||
АИР132М6/4/2 | 3,8 | 955 | 10,1 | 38 | 5,5 | 0,074 | 83,5 |
5,3 | 1440 | 11,3 | 35,1 | 6,5 | |||
6,3 | 2895 | 13 | 20,8 | 7 | |||
750/1500/3000 об/мин | |||||||
АИР132S8/4/2 | 1,8 | 710 | 6,1 | 24,2 | 4 | 0,053 | 70 |
3,4 | 1440 | 7,5 | 22,5 | 6 | |||
4 | 2895 | 8,6 | 13,2 | 6,5 | |||
АИР132М8/4/2 | 2,4 | 710 | 8,5 | 32,3 | 4,5 | 0,074 | 83,5 |
4,5 | 1440 | 9,8 | 29,8 | 6,3 | |||
5,6 | 2895 | 11,7 | 18,5 | 6,7 | |||
750/1000/1500 об/мин | |||||||
АИР132S8/6/4 | 1,9 | 710 | 6,4 | 25,5 | 4 | 0,053 | 68,5 |
2,4 | 950 | 6,1 | 24,1 | 4,4 | |||
3,4 | 1410 | 7,7 | 23 | 4,6 | |||
АИР132М8/6/4 | 2,8 | 720 | 9,4 | 37,1 | 4,5 | 0,074 | 81,5 |
3 | 960 | 7,7 | 29,8 | 5 | |||
5 | 1425 | 10,7 | 33,5 | 5,2 | |||
АИР180М8/6/4 | 8 | 740 | 22,9 | 103 | 5,4 | 0,27 | 180 |
11 | 975 | 24,3 | 108 | 6,1 | |||
12,5 | 1475 | 27 | 80,9 | 6,5 | |||
5А200М8/6/4 | 10 | 740 | 30,3 | 129 | 5,5 | 0,41 | 245 |
12 | 985 | 27 | 116 | 6 | |||
17 | 1475 | 36 | 110 | 6,5 | |||
5А200L8/6/4 | 12 | 735 | 31,6 | 156 | 5,3 | 0,46 | 270 |
15 | 985 | 31,9 | 145 | 6 | |||
20 | 1475 | 39,9 | 130 | 6,5 | |||
5А225М8/6/4 | 15 | 740 | 38,9 | 194 | 5,5 | 0,7 | 330 |
17 | 985 | 34,9 | 165 | 6,5 | |||
25 | 1480 | 48 | 160 | 6,3 | |||
5АМ250S8/6/4 | 22 | 740 | 52 | 284 | 5,7 | 1,2 | 435 |
25 | 990 | 51,1 | 241 | 7,6 | |||
33 | 1485 | 62,2 | 212 | 7 | |||
5АМ250М8/6/4 | 24 | 740 | 56,8 | 310 | 5,7 | 1,4 | 465 |
33 | 990 | 65,6 | 318 | 7,4 | |||
38 | 1485 | 71,7 | 244 | 6,8 |
Марка | МощностькВт | Об/мин | ТокА | МоментН*м | Iп/Iн | Моментинерц. кгм2 | Вескг |
500/750/1000/1500 об/мин | |||||||
АИР180М12/8/6/4 | 3 | 485 | 12,7 | 59,1 | 4,1 | 0,27 | 180 |
5 | 730 | 15,5 | 72 | 4,8 | |||
6 | 965 | 12,7 | 59,4 | 4,8 | |||
9 | 1465 | 18,6 | 58,7 | 6 | |||
5А200М12/8/6/4 | 4,5 | 490 | 16,8 | 87,7 | 3,5 | 0,41 | 245 |
8 | 735 | 20,5 | 104 | 4,5 | |||
9 | 980 | 18,9 | 87,7 | 5 | |||
12 | 1470 | 23,3 | 78 | 5,1 | |||
5А200L12/8/6/4 | 5 | 490 | 18,1 | 97,4 | 4 | 0,46 | 270 |
9 | 735 | 23,8 | 123 | 5 | |||
11 | 980 | 23,5 | 107 | 4,5 | |||
15 | 1470 | 29,5 | 97 | 5 | |||
5А225М12/8/6/4 | 7,1 | 490 | 26,4 | 138 | 4,5 | 0,7 | 325 |
13 | 740 | 36,6 | 168 | 6 | |||
14 | 985 | 28,4 | 136 | 6 | |||
20 | 1490 | 38,4 | 128 | 7,3 | |||
5АМ250S12/8/6/4 | 9 | 495 | 32,5 | 174 | 4,7 | 1,2 | 435 |
17 | 745 | 43,5 | 218 | 5,9 | |||
18,5 | 990 | 37,1 | 179 | 5,9 | |||
27 | 1485 | 52,4 | 173 | 7 | |||
5АМ250М12/8/6/4 | 12 | 495 | 42,2 | 232 | 4,8 | 1,4 | 465 |
21 | 745 | 51,7 | 269 | 6,1 | |||
24 | 990 | 47,6 | 232 | 6,6 | |||
30 | 1490 | 57,5 | 192 | 7,8 |
Цены на многоскоростные эл-двигатели составлют +(40-60)% к цене базового исполнения
electronpo.ru
Cтраница 1
Двухскоростные асинхронные электродвигатели применяются на мощных тепловых электростанциях в качестве привода для дымососов, циркуляционных насосов и дутьевых вентиляторов. [1]
У двухскоростных асинхронных электродвигателей ротор делается с короткозамкнутой обмоткой, у которой число полюсов устанавливается автоматически в зависимости от числа полюсов статора. [2]
В двухскоростных асинхронных электродвигателях с отношением скоростей вращения 1: 2 всегда применяют одну обмотку, а при ином соотношении, например 2: 3 - две раздельные обмотки, хотя эта задача может быть решена и при помощи одной специальной переключаемой обмотки. [3]
Привод насоса с двухскоростным асинхронным электродвигателем наиболее часто применяется ввиду его простоты. Снижение частоты вращения происходит ступенчато за счет подключения обмотки с большим числом полюсов. Обмотка малой скорости может быть выполнена независимо от обмотки большой скорости и может подключаться к автономной сети аварийного источника. [4]
Питание цепи управления двухскоростным асинхронным электродвигателем предусмотрено от отдельной сети Л11 - Л12, что дает возможность опробовать действие всех аппаратов без включения силовой цепи. [5]
Привод насоса с двухскоростным асинхронным электродвигателем выгодно отличается из-за его простоты. Снижение частоты вращения происходит ступенчато за счет подключения обмотки с большим числом полюсов. Обмотка малой скорости может быть выполнена независимо от обмотки большой скорости и подключаться к автономной сети аварийного источника. На рис. 4.26 приведена схема включения двухскоростного электродвигателя. [6]
Следует сказать, что двухскоростные асинхронные электродвигатели, широко используемые для привода тягодутьевых и циркуляционных механизмов, при двух независимых трехфазных обмотках с разным числом полюсов требуют прокладки двух кабелей и установки двух выключателей для каждого двигателя. [7]
Наиболее распространена система с двухскоростным асинхронным электродвигателем с короткозамкнутым ротором, с двумя независимыми обмотками на статоре. В этих системах применяются специальные лифтовые электродвигатели с отношением скоростей 1: 4 или 1: 3, характеристики которых отвечают требованиям привода лифтовых установок: повышенные пусковые моменты, ограниченное значение максимальных моментов как в двигательном, так и в генераторном режимах, ограниченные значения пусковых токов и др. Двухскоростной электродвигатель позволяет снижать в несколько раз рабочую скорость лифта перед остановкой, что обеспечивает необходимую точность остановки. Пуск лифта в такой системе осуществляется подключением к сети обмотки большой скорости. При этом лифт разгоняется и переходит в рабочую скорость. Перед остановкой лифта отключается от сети обмотка на большой скорости и включается обмотка малой скорости. Электродвигатель переходит в режим генераторного торможения, скорость лифта снижается в 3 или 4 раза, и лифт подходит к уровню этажа. Остановка осуществляется отключением от сети обмотки малой скорости и наложением механического тормоза. Обмотка малой скорости приводного электродвигателя лифта обеспечивает также перемещение лифта на сниженной скорости в режиме ревизии. [8]
Кабельный барабан электротрактора приводится двухскоростным асинхронным электродвигателем ( см. задачу 2), характеристики которого даны на фиг. [9]
Если в качестве приводного применен двухскоростной асинхронный электродвигатель с двумя статорными обмотками, то при включении одной из них в сеть в другой обмотке ( по принципу трансформатора) наводится ЭДС, величина которой равна подведенному напряжению. Следовательно, прикосновение к выводам не включенной в сеть статор-ной обмотки очень опасно. [10]
В лифтостроении применяют одно - и двухскоростные асинхронные электродвигатели. Частота вращения электромагнитного поля, а следовательно, и ротора при неизменной частоте питающего тока зависит от числа пар полюсов в обмотке статора электродвигателя. [11]
На рис. 179 приведены механические характеристики двухскоростного асинхронного электродвигателя, регулируемого с постоянным номинальным моментом. [13]
На рис. 178 приведены также механические характеристики двухскоростного асинхронного электродвигателя, номинальная мощность которого при регулировании скорости вращения остается практически постоянной. [15]
Страницы: 1 2
www.ngpedia.ru
Схема присоединения многоскоростного асинхронного электродвигателя с короткозамкнутым ротором Треугольник(или звезда)\\ двойная звезда ------ Д/YY.
Низшая скорость — Д(треугольник(или звезда Y ): 750 об мин2U, 2V, 2W свободны, на 1U, 1V, 1W подается напряжение. Высшая скорость — YY. 1500 об мин.1U, 1V, 1W замкнуты между собой, на 2U, 2V, 2W подается напряжениеДвухскоростные двигатели имеют одну полюсопереключаемую обмотку с шестью выводными концами. Обмотка двигателей с соотношением частот вращения 1 : 2 выполняется по схеме Даландера и соединяется в треугольник Д (или в звезду Y) при низшей частоте вращения и в двойную звезду (YY) при высшей частоте вращения Схема соединения обмоток показана на рисунке.Средняя скорость. 1000 об мин. Обмотка на 1000 об мин подключается независимо от остальных своим пускателем, не участвующим в схеме Даландера.Запуск двухскоростного двигателя с переключающимися полюсами без инверсии вращения для схемы Даландера.Электрические характеристики элементов контроля и защиты необходимые для выполнения этого типа запуска, как минимум должны быть: Контактор К1, для включения и выключения двигателя на маленькой скорости (PV). Мощность должна быть такой же либо превышать In двигателя в треугольном соединении и с категорией обслуживания АС3.Контакторы К2 и К3, для включения и выключения двигателя на большой скорости (GV). Мощность этих контакторов должна быть такой же либо превышать In двигателя соединенного двойной звездой и категориеи обслуживания АС3.Термореле F3 и F4, для защиты от перегрузок на обоих скоростях. Каждый из них будет измерять In, употребляемый двигателем на защищаемой скорости.Предохранители F1 и F2, для защиты от К.З. должно быть типа аМ и мощностью такой же или превышающей максимальное In двигателя, в каждой из своих двух скоростей.Предохранитель F5, для защиты цепей контроля.Система кнопок, с простым прерывателем остановки S0 и двумя двойными прерывателями движения S1 и S2.Перейдем к описанию в краткой форме процесса запуска, как на малой скорости, так и на большой: а) запуск и остановка на маленькой скорости (PV).Запуск путем нажатия на S1.Замыкание контактора цепи К1 и запуск двигателя соединенного треугольником.Автопитание через (К1, 13–14).Открытие К1, которое действует как шторка для того, чтобы хотя запущен в движение S2, контакторы большой скорости К2 и К3 не были активизированы.Остановка путем нажатия на S0.б) запуск и остановка на большой скорости (GV).Запуск путем нажатия на S2.Замыкание контактора звезды К2, которое формирует звезду двигателя при коротком замыкании: U1, V1 и W1.Замыкание контактора К3 (К2, 21–22) таким образом, что двигатель работает соединением в двойную звезду.Автопитание через (К2, 13–14).Открытие (К2, 21–22) и (К3, 21–22), которые действуют как шторки для того, чтобы никогда не закрывался К1 в то время, как закрыты К2 или К3.Остановка путем нажатия на S0.Вспомогательные контакты системы кнопок (S1 и S2, 21–22)действуют как защитные двойные шторки системы кнопок в том случае, если на оба прерывателя попытаются нажать одновременно, чтобы никакой из контакторов не активизировался и эти контакты можно было бы убрать в том случае, если есть защитные шторки механического типа между К1 и К2.
sampolim-spb.ru
С момента изобретения асинхронного двигателя появились различные вариации его исполнения. Но способы подключения остались прежними. Наиболее популярны две схемы: звезда и треугольник. Рассмотрим преимущества и недостатки каждой из них. Выясним, какой метод подключения оптимален.
При соединении обмоток статора асинхронного двигателя по схеме «звезда их концы объединяют в одной точке. При питании от трехфазной электролинии вольтаж подается на их начала.
Способ подходит для подключения трехфазных двигателей к трехфазной линии по большему напряжению. Например:
Преимущество метода заключается в плавном запуске мотора и его мягкой работе. Это благоприятно сказывается на его эксплуатационном сроке. Но в этом кроется недостаток: схема «звезда» несет потери по мощности в полтора раза по сравнению с подключением способом «треугольник».
Остается вопрос: можно ли, и если да, то, как подключить асинхронный двигатель на 220 или 127 Вольт (низшие значения вольтажа из двух номинальных) звездой? Да, можно. Но это будет невыгодно из-за высокой потери мощности, которая прямо пропорциональна подающемуся напряжению и зависит от способа включения. Поэтому потери мощности по специфике соединения будут сочетаться с потерями по вольтажу (вместо 380 Вольт будет 220В).
Схема «треугольник» отличается от предыдущей тем, что обмотки соединяются последовательно. Тогда конец первой обмотки соединяется с началом второй, конец которой – с началом третьей, вывод которой – с началом первой.
Преимущество способа заключается в том, что он обеспечивает достижение максимальной мощности. Но при запуске двигателя образуются высокие пусковые токи, которые могут привести к уничтожению изоляции. Поэтому не рекомендуется подавать высокое напряжение.
Треугольное соединение используется для подключения однофазного двигателя к однофазной сети 127 или 220 Вольт. Она же применяется для трехфазных электродвигателей с двумя номинальными напряжениями при включении в однофазную сеть (только на меньшее значение):
Внимание! Существуют трехфазные электросети: 600, 380, 220 и 127 Вольт. Но к бытовым из них относят только с напряжением в 380. А 220 в быту относится к однофазным линиям. Поэтому наибольшее распространение получили моторы 220/380В, которые можно подключить как в городе, так и в частном доме.
С технической точки зрения для высокого значения номинального напряжения схема «треугольник» тоже подходит. Но ввиду высоких пусковых токов это нецелесообразно и очень опасно: изоляция сгорит от тепла, выделяемого обмоткой.
Для продолжительной эксплуатации электродвигателя важен мягкий запуск, а для высокой производительности – большая мощность. Для того чтобы сочетать преимущества описанных выше способов соединения обмоток, была разработана новая схема: треугольник-звезда. Она подходит для высокомощных моторов от 5 кВт.
Для подключения электродвигателя таким способом понадобится реле времени. Технически управление выглядит следующим образом:
Описание принципа питания:
Описать можно простыми словами: включение в работу электродвигателя сначала происходит посредством соединения обмоточных выводов в звезду. Этим обеспечивается мягкий и плавный запуск без перегревания. Когда мотор наберет обороты, автоматические происходит переключение на треугольное соединение. Момент переведения сопровождается незначительным снижением скорости вращения. Однако она быстро восстанавливается.
Если работа асинхронного электродвигателя может иметь несколько режимов, отличающихся по скорости вращения ротора, то говорят, что он многоскоростной. Различают двухскоростной, трехскоростной и четырехскоростной вариант исполнения. Схемы их подключения сложные, но основываются на уже рассмотренных нами способах соединения: «звезда» и «треугольник».
Двухскоростной мотор может подключаться тремя способами:
Подключение трехскоростного асинхронного двигателя отличается лишь тем, что у такого мотора не одна, а две обмотки, которые не зависят друг от друга. Первая подключается так же, как двухскоростной мотор с одной обмоткой по схеме «а». Вторая соединяется звездой. Всего выводов – 9.
У четырехскоростного мотора тоже две независимые друг от друга обмотки. Но в отличие от трехскоростного двигателя подключение каждой обмотки производится по схеме треугольник/сдвоенная звезда.
Для асинхронных электродвигателей, работающих на одной скорости, характерно наличие шести контактов для трех обмоток (по одному контакту на начало и конец для каждой из них). Если на моторе указано их предназначение, то можно сразу приступать к подсоединению. Но иногда следы меток стираются, или их нет совсем. Тогда перед подключением необходимо определить пары выводов, а также места, где намотка начинается, а где заканчивается.
Сначала нужно определить выводы, принадлежащие только одной обмотке. Всего получится три пары. Для этого используйте лампу и соединительные провода:
Внимание! Во время работы следите, чтобы оголенные выводы намоток не касались друг друга. Иначе пары могут быть определены ошибочно.
Есть два метода:
Внимание! Для краткости: Н – начало, К – конец.
Описание метода трансформации:
Описание способа поиска Н и К подбором фаз:
Внимание! Метод подбора фаз подходит только для маломощных моторов до 5 кВт.
Однофазный мотор можно подключить только к однофазной линии. Трехфазный двигатель подходит как для однофазной, так и для трехфазной линии. Причем для однофазного подключения в сеть 127 или 220 Вольт выгодна схема «треугольник», а для линий 220 и 380 Вольт с тремя фазами – «звезда». В зависимости от технических характеристик мотора подключение может выполняться путем комбинаций этих методов.
electricdoma.ru
С момента изобретения асинхронного двигателя появились различные вариации его исполнения. Но способы подключения остались прежними. Наиболее популярны две схемы: звезда и треугольник. Рассмотрим преимущества и недостатки каждой из них. Выясним, какой метод подключения оптимален.
При соединении обмоток статора асинхронного двигателя по схеме «звезда их концы объединяют в одной точке. При питании от трехфазной электролинии вольтаж подается на их начала.
Способ подходит для подключения трехфазных двигателей к трехфазной линии по большему напряжению. Например:
Преимущество метода заключается в плавном запуске мотора и его мягкой работе. Это благоприятно сказывается на его эксплуатационном сроке. Но в этом кроется недостаток: схема «звезда» несет потери по мощности в полтора раза по сравнению с подключением способом «треугольник».
Остается вопрос: можно ли, и если да, то, как подключить асинхронный двигатель на 220 или 127 Вольт (низшие значения вольтажа из двух номинальных) звездой? Да, можно. Но это будет невыгодно из-за высокой потери мощности, которая прямо пропорциональна подающемуся напряжению и зависит от способа включения. Поэтому потери мощности по специфике соединения будут сочетаться с потерями по вольтажу (вместо 380 Вольт будет 220В).
Схема «треугольник» отличается от предыдущей тем, что обмотки соединяются последовательно. Тогда конец первой обмотки соединяется с началом второй, конец которой – с началом третьей, вывод которой – с началом первой.
Преимущество способа заключается в том, что он обеспечивает достижение максимальной мощности. Но при запуске двигателя образуются высокие пусковые токи, которые могут привести к уничтожению изоляции. Поэтому не рекомендуется подавать высокое напряжение.
Треугольное соединение используется для подключения однофазного двигателя к однофазной сети 127 или 220 Вольт. Она же применяется для трехфазных электродвигателей с двумя номинальными напряжениями при включении в однофазную сеть (только на меньшее значение):
Внимание! Существуют трехфазные электросети: 600, 380, 220 и 127 Вольт. Но к бытовым из них относят только с напряжением в 380. А 220 в быту относится к однофазным линиям. Поэтому наибольшее распространение получили моторы 220/380В, которые можно подключить как в городе, так и в частном доме.
С технической точки зрения для высокого значения номинального напряжения схема «треугольник» тоже подходит. Но ввиду высоких пусковых токов это нецелесообразно и очень опасно: изоляция сгорит от тепла, выделяемого обмоткой.
Для продолжительной эксплуатации электродвигателя важен мягкий запуск, а для высокой производительности – большая мощность. Для того чтобы сочетать преимущества описанных выше способов соединения обмоток, была разработана новая схема: треугольник-звезда. Она подходит для высокомощных моторов от 5 кВт.
Для подключения электродвигателя таким способом понадобится реле времени. Технически управление выглядит следующим образом:
Описание принципа питания:
Описать можно простыми словами: включение в работу электродвигателя сначала происходит посредством соединения обмоточных выводов в звезду. Этим обеспечивается мягкий и плавный запуск без перегревания. Когда мотор наберет обороты, автоматические происходит переключение на треугольное соединение. Момент переведения сопровождается незначительным снижением скорости вращения. Однако она быстро восстанавливается.
Если работа асинхронного электродвигателя может иметь несколько режимов, отличающихся по скорости вращения ротора, то говорят, что он многоскоростной. Различают двухскоростной, трехскоростной и четырехскоростной вариант исполнения. Схемы их подключения сложные, но основываются на уже рассмотренных нами способах соединения: «звезда» и «треугольник».
Двухскоростной мотор может подключаться тремя способами:
Подключение трехскоростного асинхронного двигателя отличается лишь тем, что у такого мотора не одна, а две обмотки, которые не зависят друг от друга. Первая подключается так же, как двухскоростной мотор с одной обмоткой по схеме «а». Вторая соединяется звездой. Всего выводов – 9.
У четырехскоростного мотора тоже две независимые друг от друга обмотки. Но в отличие от трехскоростного двигателя подключение каждой обмотки производится по схеме треугольник/сдвоенная звезда.
Для асинхронных электродвигателей, работающих на одной скорости, характерно наличие шести контактов для трех обмоток (по одному контакту на начало и конец для каждой из них). Если на моторе указано их предназначение, то можно сразу приступать к подсоединению. Но иногда следы меток стираются, или их нет совсем. Тогда перед подключением необходимо определить пары выводов, а также места, где намотка начинается, а где заканчивается.
Сначала нужно определить выводы, принадлежащие только одной обмотке. Всего получится три пары. Для этого используйте лампу и соединительные провода:
Внимание! Во время работы следите, чтобы оголенные выводы намоток не касались друг друга. Иначе пары могут быть определены ошибочно.
Есть два метода:
Внимание! Для краткости: Н – начало, К – конец.
Описание метода трансформации:
Описание способа поиска Н и К подбором фаз:
Внимание! Метод подбора фаз подходит только для маломощных моторов до 5 кВт.
Однофазный мотор можно подключить только к однофазной линии. Трехфазный двигатель подходит как для однофазной, так и для трехфазной линии. Причем для однофазного подключения в сеть 127 или 220 Вольт выгодна схема «треугольник», а для линий 220 и 380 Вольт с тремя фазами – «звезда». В зависимости от технических характеристик мотора подключение может выполняться путем комбинаций этих методов.
electricdoma.ru
Трёхфазные электродвигатели получили большое распространение как в промышленном использовании, так и в личных целях благодаря тому что они значительно эффективнее двигателей для обычной двухфазной сети.
Трехфазный асинхронный двигатель представляет собой устройство, состоящее из двух частей: статора и ротора, которые разделены воздушным зазором и не имеют никакой механической связи друг с другом.
На статоре расположены три обмотки, намотанные на специальном магнитопроводе, который набран из пластин специальной электротехнической стали. Обмотки намотаны в пазах статора и расположены под углом в 120 градусов друг к другу.
Ротор представляет собой конструкцию, опирающуюся на подшипники, имеющую крыльчатку для вентиляции. В целях электропривода ротор может иметь прямую связь с механизмом либо через редукторы или другие системы передачи механической энергии. Роторы в асинхронных машинах могут быть двух видов:
Главной движущей силой в трехфазном асинхронном двигателе является вращающееся магнитное поле, которое возникает, во-первых, благодаря трехфазному напряжению, а, во-вторых, взаимному расположению обмоток статора. Под его воздействием в роторе возникают токи, создающее поле, которое взаимодействует с полем статора.
Асинхронным двигатель называют из-за того, что частота вращения ротора отстает от частоты вращения магнитного поля, ротор постоянно пытается «догнать» поле, но его частота всегда меньше.
Для того чтобы заставить работать двигатель существует несколько различных схем подключения, наиболее используемые среди них — звезда и треугольник.
Такой способ подключения применяется в основном в трехфазных сетях с линейным напряжением 380 вольт. Концы всех обмоток: C4, C5, C6 (U2, V2, W2), — соединяются в одной точке. К началам обмоток: C1, C2, C3 (U1, V1, W1), — через аппаратуру коммутации подключаются фазные проводники A, B, C (L1, L2, L3). При этом напряжение между началами обмоток будет 380 вольт, а между местом подключения фазного проводника и местом соединения обмоток буде составлять 220 вольт.
На табличке электродвигателя указывается возможность подключения по способу «звезда» в виде символа Y, а также может указываться и можно ли подключить по другой схеме. Соединение по такой схеме может быть с нейтралью, которая подключается к точке соединения всех обмоток.
Такой подход позволяет эффективно защитить электродвигатель от перегрузок при помощи четырехполюсного автоматического выключателя.
Соединение «звездой» не позволяет электродвигателю, приспособленному для сетей 380 вольт развить полную мощность в силу того, что на каждой отдельной обмотке будет напряжение в 220 вольт. Однако, такое соединение позволяет не допустить перегрузки по току, старт электродвигателя происходит плавно.
В клеммной коробке будет сразу видно, когда электродвигатель соединен по схеме «звезда». Если есть перемычка между тремя выводами обмоток, то это однозначно говорит о том, что применяется именно эта схема. В любых других случаях применяется другая схема.
Для того чтобы трехфазный двигатель мог развить свою максимальную паспортную мощность используют подключение, которое получило название «треугольник». При этом конец каждой обмотки соединяют с началом последующей, что в действительности образует на принципиальной схеме треугольник.
Выводы обмоток соединяют следующим образом: C4 соединяют с C2, С5 с C3, а С6 с C1. При новой маркировке это выглядит так: U2 соединяется с V1, V2 с W1, а W2 cU1.
В трехфазных сетях между выводами обмоток будет линейное напряжение 380 вольт, а соединение с нейтралью (рабочим нулем) не требуется. Такая схема имеет особенность еще и в том, что возникают большие пусковые токи, которые может не выдержать проводка.
На практике иногда применяют комбинированное подключение, когда на этапе запуска и разгона используется подключение «звездой», а в рабочем режиме специальные контакторы переключают обмотки на схему «треугольник».
В клеммной коробке подключение треугольником определяется наличием трех перемычек между клеммами обмоток. На табличке двигателя возможность подключения треугольником обозначается символом Δ, а также может указываться мощность, развиваемая при схеме «звезда» и «треугольник».
Трехфазные асинхронные двигатели занимают значительную часть среди потребителей электроэнергии благодаря своим очевидным достоинствам.
Поделиться:
Нет комментариев
elektrik24.net
Бытовых ситуаций много, особенно у тех, кто проживает в своем собственном частном доме. К примеру, необходимо установить в гараже точильный станок с асинхронным электродвигателем, который работает от трехфазной сети переменного тока. А на участок проведена лишь однофазная сеть на 220 В. Что делать? В принципе, это не проблема, потому что любой трехфазный электрический движок можно подключить и к однофазной сети, главное знать, как это сделать. Итак, наша задача в этой статье разобраться в позиции – асинхронный двигатель подключение на 220 вольт.
Существуют две классические схемы такого подключения, в которых присутствуют конденсаторы. То есть, сам электродвигатель становится не асинхронным, а конденсаторным. Вот эти схемы:
Конечно, это не единственные варианты, но в этой статье будем говорить именно о них, как о самых простых и часто используемых.
На схемах хорошо видно, что в них установлены конденсаторы: рабочий и пусковой, которые в свою очередь называются фазосдвигающими. А так как в данной схеме эти элементы являются основными, то самый важный момент – это правильно подобрать конденсатор по емкости, которая бы соответствовала мощности мотора.
Существует формула, по которой емкость можно рассчитать. Правда, для схемы звезда и треугольника она отличается коэффициентом. Для схемы звезда формула вот такая:
С=2800*I/U, где I – это ток, который можно замерить в питающем проводе клещами, U – это напряжение однофазной сети – 220 В.
Формула для треугольника:
С=4800*I/U.
Здесь загвоздка может быть только в определение силы тока, просто клещей может не оказаться под рукой, поэтому предлагаем упрощенный вариант формулы:
С=66*Р, где Р – это мощность электродвигателя, которая наносится на шильдик мотора или в его паспорте. По сути, получается так, что емкость рабочего конденсатора в размере 7 мкФ должно хватить на 0,1 кВт мощности двигателя. Обычно электрики берут именно это соотношение, когда перед ними ставиться вопрос, как подключить асинхронный двигатель с 380 на 220 В. И еще один момент – конденсатор контролирует силу тока, поэтому так важно правильно подобрать его емкость. И самое главное в подключении двигателя добиться того, чтобы значение тока при эксплуатации электродвигателя не поднималось выше номинальной величины.
Что касается пускового конденсатора, то его обязательно устанавливают в схему, если при пуске мотора действует хотя бы минимальная нагрузка. Включается он обычно буквально на пару секунд, пока ротор не наберет свои обороты. После чего он просто отключается. Если по каким-то причинам пусковой конденсатор не отключится, то произойдет перекос фаз, и двигатель перегреется.
Внимание! Так как в процессе пуска, тем более под нагрузкой, величина тока сильно возрастает, то и емкость пускового конденсатора должна быть раза в три больше конденсатора рабочего.
Есть еще один показатель, на который необходимо обратить внимание при выборе. Это напряжение. Правило здесь одно: напряжение конденсатора должно быть больше напряжения в однофазной сети на 1,5.
Специалисты рекомендуют в качестве пускового и рабочего конденсаторов использовать одинаковые модели. Самый простой вариант – это бумажные конструкции в герметичном металлическом корпусе. Правда, есть у них один существенный недостаток – большие габаритные размеры. Поэтому если перед вами стоит вопрос, как подключить небольшой мощности двигатель 380 на 220 вольт, то количество таких конденсаторов будет приличным, и вся конструкция будет смотреться не очень.
Можно использовать для этих целей электролитические приборы, но их схема подключения отличается от предыдущей, потому что в нее придется установить резисторы и диоды. К тому же эти конденсаторы при пробое взрываются. Есть более современные виды – это полипропиленовые модели металлизированного типа. Себя они зарекомендовали хорошо, претензий к ним сейчас у специалистов нет.
Иногда возникает необходимость провести подключение так, чтобы трехфазный двигатель, подсоединенный к однофазной сети, вращался то в одну, то в другую стороны. Для этого необходимо установить в схему любой управляющий прибор. Это может быть тумблер, кнопка или ключи управление. Но здесь есть два основных требования:
Вот схема, по которой подключается этот элемент в питание электродвигателя:
Здесь видно, что реверс осуществляется подачей электроэнергии на разные полюса конденсаторов.
Схема трехфазного асинхронного двигателя с подключением к 220 вольт – дело реальное. Проблем с ним быть не должно. Здесь главное, и это было показано в статье, правильно подобрать конденсаторы (рабочие и пусковые) и правильно выбрать схему подключения. Особое внимание придется уделить правилам соединения, где в основе будет лежать сам двигатель, а, точнее, его возможности.
onlineelektrik.ru
Автор КакПросто!
В наше время асинхронные агрегаты используются главным образом в режиме двигателя. Устройства, имеющие мощность более 0.5 кВт обычно изготавливают трёхфазными, меньшей мощности – однофазными. За свое долгое существование асинхронные двигатели нашли широкое применение в разных отраслях промышленности и сельского хозяйства. Их используют в электроприводе подъёмно-транспортных машин, металлорежущих станков, транспортёров, вентиляторов и насосов. Менее мощные двигатели применяют в устройствах автоматики.
Инструкция
Возьмите трехфазный асинхронный двигатель. Снимите клеммную коробку. Для этого выкрутите отверткой два винта, которыми она крепится к корпусу. Концы обмоток двигателя обычно выведены на 3-х или 6-и клеммную колодку. В первом случае это означает, что фазные статорные обмотки соединены «треугольником» или «звездой». Во втором - не подключены между собой. В этом случае на первый план выходит их правильное соединение. Включение «звездой» предусматривает объединение одноименных выводов обмоток (конец или начало) в нулевую точку. При подключении «треугольником» следует соединить конец первой обмотки с началом второй, затем конец второй - с началом третьей, а затем конец третьей - с началом первой.
Возьмите омметр. Его используйте в том случае, когда выводы обмоток асинхронного электродвигателя не маркированы. Определите прибором три обмотки, обозначьте их условно I, II и III. Соедините две любые из них последовательно, чтобы найти начало и конец каждой из обмоток. Подайте на них переменное напряжение величиной 6 - 36 В. К двум концам третьей обмотки подключите вольтметр переменного тока. Возникновение переменного напряжения говорит о том, что обмотки I и II были подключены согласно, если его нет, то встречно. В этом случае поменяйте местами выводы одной из обмоток. Затем отметьте начало и конец I и II обмоток. Для определения начало и конца третьей обмотки, поменяйте местами концы обмоток, допустим, II и III, и по вышеописанной методике повторите измерения.
Подключите к трехфазному асинхронному двигателю, который включен в однофазную сеть, фазосдвигающий конденсатор. Определить его требуемую емкость (в мкФ) можно по формуле С = k*Iф/U, где U - напряжение однофазной сети, В, k - коэффициент, который зависит от соединения обмоток, Iф - номинальный фазный ток электродвигателя, A. Учитывайте, что когда обмотки асинхронного электродвигателя соединены «треугольником», то k = 4800, «звездой» - k = 2800. Примените бумажные конденсаторы МБГЧ, К42-19, которые должны быть рассчитаны на напряжение не меньше, чем напряжение питающей сети. Помните, что даже при правильно рассчитанной емкости конденсатора, асинхронный электродвигатель разовьет мощность не более 50-60 % от номинала.
Источники:
Распечатать
Как подключить асинхронный двигатель
www.kakprosto.ru
autofluids.ru
Изобретение относится к электротехнике, и может быть использовано в электроприводах со ступенчатым регулированием скорости. Сущность изобретения заключается в том, что с целью повышения энергетических показателей и упрощения электропривода за счет уменьшения числа коммутирующих элементов и новой схемы включения конденсаторов в однофазном двухскоростном асинхронном двигателе, содержащем две главные и одну конденсаторную обмотки, соединенных по схеме звезда и состоящих из двух полуобмоток каждая и с коммутирующими элементами для переключения обмоток на двоичную звезду, включены конденсаторы в каждую полуобмотку конденсаторной обмотки, один из которых зашунтирован коммутирующим элементом. 1 ил.
Изобретение относится к электротехнике и может быть использовано в электроприводах со ступенчатым регулированием скорости при наличии однофазной питающей сети, в частности в бытовых электроприборах: кухонные комбайны, деревообрабатывающие станки, кондиционеры, вентиляторы, центробежные насосы и другие механизмы, работающие с вентиляторным моментом на двух скоростях.
Предлагаемое изобретение направлено на решение задачи, заключающейся в повышении энергетических показателей и упрощении электропривода. Известен трехфазный асинхронный электродвигатель с однофазным источником питания, содержащий 6 обмоток в двух группах с тремя обмотками в каждой и выводами для подключения к однофазной сети и к четырем конденсаторам, а также коммутирующие элементы для переключения схемы обмоток с целью изменения пар полюсов [1] Недостатком описанного аналога является сложность устройства, в связи с наличием шести полных обмоток и наличием 4-х конденсаторов. Известен также однофазный двухскоростной асинхронный электропривод, содержащий асинхронный двигатель с соотношением числа полюсов 4:2, обмотки статора соединены в треугольник. Каждая обмотка выполнена в виде двух полуобмоток с выводами между ними. Коммутирующие элементы включены с возможностью переключения обмоток на двойную звезду и переключения конденсатора [2] Недостатком этого аналога является сложность схемы переключения, так как имеется необходимость переключения конденсатора. Кроме того, схема переключения обмоток с треугольника на двойную звезду при вентиляторном характере нагрузки будет обусловливать низкие энергетические показатели на одной из скоростей электропривода. Наиболее близким по совокупности существенных признаков к заявляемому изобретению является однофазный двухскоростной электропривод, который содержит асинхронный двигатель, обмотки статора соединены в звезду, две из которых главные и одна конденсаторная, подключенная к первой главной обмотке, каждая обмотка выполнена в виде двух полуобмоток с выводами между ними, коммутирующие элементы включены между сетью и началами главных обмоток, сетью и выводами полуобмоток главных обмоток, между началами главных обмоток и между выводами полуобмоток второй главной и конденсаторной обмоток, причем в одну из конденсаторных полуобмоток включен конденсатор с коммутирующими элементами для его переключения между зажимом сети и выводом полуобмоток конденсаторной обмотки. У прототипа и предлагаемого изобретения имеются сходные существенные признаки: асинхронный двигатель, обмотки статора которого соединены в звезду, две из которых главные и одна конденсаторная, подключенная к первой главной обмотке, каждая обмотка выполнена в виде двух полуобмоток с выводами между ними, коммутирующие элементы включены между сетью и началами главных обмоток, сетью и выводами полуобмоток главных обмоток, между началами главных обмоток и между выводами полуобмоток конденсаторной и второй главной обмоток, причем в конденсаторную полуобмотку включен конденсатор. Коммутирующие элементы могут быть выполнены на базе тиристоров, герконов или контактов переключателей, реле и другой коммутирующей аппаратуры. На схемах прототипа коммутирующие элементы не показаны, однако их наличие однозначно определяется переходом от одной указанной схемы звезда, к другой двойная звезда. Недостатком прототипа является сложность схемы переключения, обусловленная необходимостью переключения конденсатора из одной цепи в другую, а также низкие энергетические показатели как при пуске, так и в рабочем режиме, что обусловлено тем, что емкость конденсатора для каждого режима: пуск на пониженную скорость, пуск на повышенную скорость, работа на пониженной скорости, работа на высокой скорости, должна быть разной и отличаться, как показывают расчеты, в 4 раза. Цель изобретения упрощение устройства и повышение его энергетических показателей за счет уменьшения числа коммутирующих элементов и оригинальной схемой включения конденсаторов в обмотки двигателя. Для достижения поставленной цели предлагаемое изобретение однофазный двухскоростной асинхронный электропривод содержит следующие, общие выраженные определенными понятиями существенные признаки, совокупность которых направлена на решение связанной с целью изобретения задачи. Обмотки статора, соединенные в звезду, две из них главные и одна конденсаторная, подключенная к первой главной обмотке. Каждая обмотка выполнена в виде двух полуобмоток с выводами между ними. Коммутирующие элементы включены между сетью и началами главных обмоток, а также сетью и выводами полуобмоток главных обмоток, между началами главных обмоток и между выводами полуобмоток второй главной и конденсаторной обмоток. Устройство содержит два конденсатора, причем конденсаторы включены в каждую полуобмотку конденсаторной обмотки, а один из конденсаторов зашунтирован коммутирующим элементом. По отношению к прототипу у предлагаемого изобретения имеются следующие отличительные признаки: дополнительный конденсатор, включенный во вторую конденсаторную полуобмотку и зашунтированный коммутирующим элементом. Перечисленные выше отличительные признаки вместе со сходными признаками прототипа обеспечивают работоспособность устройства с достижением технического результата уменьшения числа коммутирующих элементов и, таким образом, упрощения устройства и повышения его энергетических показателей. Между отличительными признаками и целью изобретения существует следующая причинно-следственная связь: включение в схему второго конденсатора и включение конденсаторов в каждую полуобмотку конденсаторной обмотки позволяет при переходе от одной скорости двигателя к другой не переключатель конденсаторы, что позволяет отказаться от четырех коммутирующих элементов. Шунтирование второго конденсатора коммутирующим элементом позволяет обеспечить высокие энергетические показатели при пуске и в рабочем режиме электропривода на обеих скоростях. По имеющимся у авторов сведениям совокупность существенных признаков, характеризующих сущность изобретения не известна из уровня техники, что позволяет сделать вывод о соответствии заявляемого изобретения критерию "Новизна". По мнению авторов, сущность предлагаемого изобретения не следует для специалиста явным образом из известного уровня техники, так как из него не выявляется вышеуказанное влияние на получаемый технический результат новое свойство объекта совокупность признаков, которые отличают от прототипа предлагаемое изобретение, что позволяет сделать вывод о его соответствии критерию "Изобретательский уровень". Совокупность существенных признаков, характеризующих сущность изобретения, в принципе, может быть многократно использована в двухскоростных асинхронных электроприводах, с получением технического результата, заключающегося в уменьшении числа коммутирующих элементов и регулировании емкости конденсаторов обуславливающих обеспечение достижения поставленной цели упрощения устройства и повышения его энергетических показателей, что позволяет сделать вывод о соответствии изобретения критерию "Промышленная применимость". На чертеже изображена схема электропривода. Изобретение однофазный двухскоростной асинхронный электропривод содержит асинхронный двигатель, обмотки статора соединены в звезду, две из которых главные выполнены в виде двух полуобмоток, первая главная содержит полуобмотки 1,2, вторая главная 3,4. Конденсаторная обмотка состоит из полуобмоток 5,6 и соединена с первой главной обмоткой. Между полуобмотками имеются выводы 7 и 8 от главных обмоток и вывод 9 от конденсатоpной обмотки. Между сетью 10 и началами главных обмоток 11 и 12 установлен коммутирующий элемент в виде выключателя 13, а между сетью 10 и выводами полуобмоток главных обмоток 7 и 8 установлен коммутирующий элемент в виде выключателя 14. Между началами главных обмоток 11 и 12 установлен коммутирующий элемент в виде контакта 15, а между выводами полуобмоток второй главной и конденсаторной обмоток 8 и 9 установлен контакт 16. В полуобмотку 5 включен конденсатор 17, а в полуобмотку 6 конденсатор 18, зашунтированный контактом 19. Схема управления ручная или автоматическая (не показана) позволяет производить коммутационные операции независимо каждым коммутирующим элементом 13, 14, 15, 16, 19. Работает устройство следующим образом. Для пуска двигателя на пониженную скорость замыкают контакт 19 и включают двигатель на сеть 10 посредством выключателя 13, при этом остальные коммутирующие элементы 14, 15, 16 разомкнуты. В этом случае в конденсаторной обмотке подключен только один фазосдвигающий конденсатор 17, по мере разгона двигателя до заданной скорости производят размыкание контакта 19 и двигатель работает в номинальном режиме с уменьшенной в два раза емкостью сдвигающих конденсаторов 17 и 18, так как при последовательном соединении конденсаторов емкость уменьшается. Это позволяет повысить энергетические показатели электропривода при пуске и в рабочем режиме. Для пуска двигателя на повышенную скорость предложенный электропривод позволяет обеспечить двухступенчатый пуск. На первом этапе двигатель запускают по пониженной скорости описанным выше способом. На втором этапе размыкают выключатель 13, замыкают контакты 15 и 16 и затем замыкают выключатель 14. При этом обмотка двигателя образует схему двойной звезды с меньшим числом пар полюсов и двигатель разгоняется до заданной повышенной скорости в том же направлении, что и на первом этапе, что объясняется переменой фазы питающей сети 10, подключаемой к конденсаторной обмотке 5, 6. Конденсаторы 17 и 18 оказываются включенными последовательно с полуобмотками 5 и 6, которые соединены параллельно, что увеличивает общую емкость и обеспечивает высокие энергетические показатели на повышенной скорости. Возможен также прямой пуск двигателя на повышенную скорость, как это предусмотрено у прототипа. В качестве примера рассмотрим однофазный двухскоростной электропривод вентилятора с квадратичной зависимостью мощности от частоты вращения 0,75/3,0 кВт при частоте вращения 7500/1500 об/мин. Из известного справочника выбираем наиболее подходящий двигатель 4А112МА8/4У3 со следующими данными для схемы соединения треугольник двойная звезда. Мощность 1,9/3,0 кВт Напряжение 380/220 В Ток 3,25/3,48А КПД, 72/75 cos 0,71/0,89 При пересчете на соединение звезда двойная звезда на низкой скорости к обмоткам прикладывается напряжение в 1,73 раз меньше по сравнению с соединением треугольник. С учетом изменения степени насыщения магнитной цепи данные двигателя примут следующие значения: Мощность 0,73/3,0 кВт Напряжение 220/220 В Ток 1,7/3,48А КПД% 78/75 cos 0,81/0,89 Емкость конденсатора при соединении двойная звезда определяется формулой C 2800 2800 26 мкФ Полученная емкость рассчитана на одну параллельную ветвь двойной звезды, следовательно, берем два конденсатора 17, 18 по 25 мкФ каждый. При соединении обмоток в звезду с последовательным соединением конденсаторов емкость станет в два раза меньше, т.е. 12,5 мкФ. Проверяем соответствие этой величины емкости схеме соединения звезда C 2800 12,53 мкФ что вполне соответствует выбранному значению. Отсюда вытекает дополнительный положительный эффект повышение надежности за счет повышения коэффициента запаса конденсатора по напряжению, так как при последовательном соединении к каждому конденсатору прикладывается по 0,5 Uc/ Uc/, т.е. 110 В. В других известных схемах конденсаторного пуска, пусковая емкость включается параллельно рабочей емкости и отключается после разгона, т.е. не используется, а рабочая емкость работает при полном напряжении. При пуске (отключенном конденсаторе 18 путем замыкания контакта 19) емкость конденсаторной обмотки увеличится в два раза по сравнению с рабочей величиной, что соответствует известным рекомендациям и обеспечивает хорошие пусковые характеристики электропривода. Таким образом, предлагаемое изобретение позволяет без переключения конденсаторов обеспечить высокие энергетические показатели электропривода как при пуске, так и в номинальном режиме на двух скоростях. Предлагаемое изобретение представляет значительный интерес для народного хозяйства, так как позволит упростить двухскоростные электроприводы и уменьшить расход электроэнергии в рабочих режимах, что положительно скажется на состоянии окружающей среды. Предлагаемое решение не оказывает отрицательного воздействия на состояние окружающей среды.Формула изобретения
ОДНОФАЗНЫЙ ДВУХСКОРОСТНОЙ АСИНХРОННЫЙ ЭЛЕКТРОПРИВОД, содержащий асинхронный двигатель, обмотки статора которого соединены в звезду, две из которых главные и одна конденсаторная, подключенная к первой главной обмотке, каждая обмотка выполнена в виде двух полуобмоток с выводами между ними, коммутирующие элементы включены между сетью и началами главных обмоток, сетью и выводами полуобмоток главных обмоток, между началами главных обмоток и между выводами полуобмоток конденсаторной и второй главной обмоток, в одну конденсаторную полуобмотку включен конденсатор, отличающийся тем, что в другую конденсаторную полуобмотку включен дополнительный конденсатор, зашунтированный коммутирующим элементом.РИСУНКИ
Рисунок 1www.findpatent.ru