Камаз 44108 тягач В наличии!
Тягач КАМАЗ 44108-6030-24
евро3, новый, дв.КАМАЗ 740.55-300л.с., КПП ZF9, ТНВД ЯЗДА, 6х6, нагрузка на седло 12т, бак 210+350л, МКБ, МОБ
 
карта сервера
«ООО Старт Импэкс» продажа грузовых автомобилей камаз по выгодным ценам
+7 (8552) 31-97-24
+7 (904) 6654712
8 800 1005894
звонок бесплатный

Наши сотрудники:
Виталий
+7 (8552) 31-97-24

[email protected]

 

Екатерина - специалист по продаже а/м КАМАЗ
+7 (904) 6654712

[email protected]

 

Фото техники

20 тонный, 20 кубовый самосвал КАМАЗ 6520-029 в наличии
15-тонный строительный самосвал КАМАЗ 65115 на стоянке. Техника в наличии
Традиционно КАМАЗ побеждает в дакаре

тел.8 800 100 58 94

Техника в наличии

тягач КАМАЗ-44108
Тягач КАМАЗ 44108-6030-24
2014г, 6х6, Евро3, дв.КАМАЗ 300 л.с., КПП ZF9, бак 210л+350л, МКБ,МОБ,рестайлинг.
цена 2 220 000 руб.,
 
КАМАЗ-4308
КАМАЗ 4308-6063-28(R4)
4х2,дв. Cummins ISB6.7e4 245л.с. (Е-4),КПП ZF6S1000, V кузова=39,7куб.м., спальное место, бак 210л, шк-пет,МКБ, ТНВД BOSCH, система нейтрализ. ОГ(AdBlue), тент, каркас, рестайлинг, внутр. размеры платформы 6112х2470х730 мм
цена 1 950 000 руб.,
КАМАЗ-6520
Самосвал КАМАЗ 6520-057
2014г, 6х4,Евро3, дв.КАМАЗ 320 л.с., КПП ZF16, ТНВД ЯЗДА, бак 350л, г/п 20 тонн, V кузова =20 куб.м.,МКБ,МОБ, со спальным местом.
цена 2 700 000 руб.,
 
КАМАЗ-6522
Самосвал 6522-027
2014, 6х6, дв.КАМАЗ 740.51,320 л.с., КПП ZF16,бак 350л, г/п 19 тонн,V кузова 12куб.м.,МКБ,МОБ,задняя разгрузка,обогрев платформы.
цена 3 190 000 руб.,

СУПЕР ЦЕНА

на АВТОМОБИЛИ КАМАЗ
43118-010-10 (дв.740.30-260 л.с.) 2 220 000
43118-6033-24 (дв.740.55-300 л.с.) 2 300 000
65117-029 (дв.740.30-260 л.с.) 2 200 000
65117-6010-62 (дв.740.62-280 л.с.) 2 350 000
44108 (дв.740.30-260 л.с.) 2 160 000
44108-6030-24 (дв.740.55,рест.) 2 200 000
65116-010-62 (дв.740.62-280 л.с.) 1 880 000
6460 (дв.740.50-360 л.с.) 2 180 000
45143-011-15 (дв.740.13-260л.с) 2 180 000
65115 (дв.740.62-280 л.с.,рест.) 2 190 000
65115 (дв.740.62-280 л.с.,3-х стор) 2 295 000
6520 (дв.740.51-320 л.с.) 2 610 000
6520 (дв.740.51-320 л.с.,сп.место) 2 700 000
6522-027 (дв.740.51-320 л.с.,6х6) 3 190 000


Перегон грузовых автомобилей
Перегон грузовых автомобилей
подробнее про услугу перегона можно прочесть здесь.


Самосвал Форд Нужны самосвалы? Обратите внимание на Ford-65513-02.

КАМАЗы в лизинг

ООО «Старт Импэкс» имеет возможность поставки грузовой автотехники КАМАЗ, а так же спецтехники на шасси КАМАЗ в лизинг. Продажа грузовой техники по лизинговым схемам имеет определенные выгоды для покупателя грузовика. Рассрочка платежа, а так же то обстоятельство, что грузовики до полной выплаты лизинговых платежей находятся на балансе лизингодателя, и соответственно покупатель автомобиля не платит налогов на имущество. Мы готовы предложить любые модели бортовых автомобилей, тягачей и самосвалов по самым выгодным лизинговым схемам.

Контактная информация.

г. Набережные Челны, Промкомзона-2, Автодорога №3, база «Партнер плюс».

тел/факс (8552) 388373.
Схема проезда



Основы теплотехники. Цикл дизеля


Идеальные циклы поршневых двигателей внутреннего сгорания.

Идеальные циклы поршневых двигателей



Понятие о цикле двигателя внутреннего сгорания

Последовательность термодинамических процессов в любом современном поршневом двигателе внутреннего сгорания в той или иной степени приближена к одному из трех характерных циклов, называемых идеальными циклами Отто, Дизеля и Сабатэ – Тринклера (Сабатье – Тринклера). При этом принципиальное различие этих циклов проявляется лишь в характере процесса сгорания топлива (подвода теплоты), который в идеальном цикле Отто протекает в условиях постоянного объема камеры сгорания, в цикле Дизеля – при постоянном давлении в цилиндре, а в цикле Сабатэ – последовательно по изохорному, а затем по изобарному процессам.

Исходя из приведенных характеристик, циклы Отто, Дизеля и Сабатэ – Тринклера иногда называют, соответственно, циклами быстрого, постоянного и смешанного сгорания, которые положены в основу работы карбюраторного, компрессорного и бескомпрессорного двигателей.

Приведенные ниже идеальные циклы тепловых двигателей внутреннего сгорания описывают последовательность термодинамических процессов, протекающие по двухтактному сценарию, т. е. поршень в цилиндре совершает за один цикл два хода - вверх и вниз. Реальные тепловые двигатели могут работать и по двухтактному, и по более эффективному четырехтактному циклу.

***

Цикл Отто

Идеальный цикл теплового двигателя внутреннего сгорания с принудительным воспламенением горючей смеси, который обычно называют циклом Отто, на самом деле был описан и предложен еще в 1862 году французским инженером Альфонсом Бо Де Роша (1815-1891), т. е. задолго до создания Николаусом Августом Отто своего знаменитого двигателя, первый образец которого был изготовлен спустя полтора десятилетия - в 1878 году. Поэтому заслуга Отто заключается лишь в осуществлении указанного цикла на практике.

В своем двигателе Отто первым применил сжатие рабочей смеси для поднятия максимальной температуры цикла, которое осуществлялось по адиабате (т. е. без теплообмена с внешней средой). Последовательность термодинамических процессов в цикле Отто можно проследить по приведенной ниже диаграмме (рис. 1). После сжатия газо-топливной смеси она воспламенялась от внешнего источника (свечи), после чего начинался процесс подвода теплоты, который протекал практически по изохоре (т. е. при постоянном объеме цилиндра двигателя). Этот процесс на диаграмме представлен в виде вертикального участка, начинающегося с момента воспламенения горючей смеси в цилиндре. Изохорный характер процесса подвода теплоты объясняется тем, что воспламенившаяся газо-топливная смесь сгорает очень быстро, при этом процесс сопровождается резким повышением (скачком) давления и температуры в цилиндре.

Далее следовало адиабатическое расширение, в процессе которого двигателем осуществлялась полезная работа (рабочий ход поршня). В конце процесса расширения следовал изохорный отвод теплоты (открывание клапанов и продувание цилиндра). На этом цикл завершался, после чего следовало повторение указанной последовательности процессов, составляющих череду аналогичных циклов.

Как указывалось выше, А. Отто первым применил сжатие рабочей смеси перед воспламенением, благодаря чему КПД его двигателя значительно превышал КПД двигателя Э. Ленуара, в котором сжатие не предусматривалось. Современные двигатели, работающие по схеме цикла Отто, имеют степень сжатия (в зависимости от конструктивных особенностей) от 8 до 12,5. По такому циклу работают двигатели с принудительным воспламенением горючей смеси, использующие в качестве топлива бензин или газ. Более высокая степень сжатия в таких двигателях приводит к детонационному самовоспламенению смеси, т. е. теряется контроль над процессом воспламенения и сгорания топлива, а сам двигатель, по существу, начинает "превращаться" в беспорядочно работающий дизель со всеми вытекающими от детонации последствиями.

Из-за относительно невысокой степени сжатия горючей смеси в цилиндрах, термический КПД таких двигателей ниже, чем в дизельных двигателях, и достигает 30-35 %.

Двигатели, работающие по циклу Отто, в настоящее время широко применяются в автомобилях, лодочных моторах, маломощных летательных аппаратах и т. п.

***



Цикл Дизеля

Другой характерный идеальный цикл для ДВС называют циклом Дизеля, по имени изобретателя дизельного двигателя. Этот цикл характеризуется подводом теплоты (сгоранием топлива) по изобаре, т. е. при постоянном давлении в цилиндре двигателя.

Как и в случае с циклом Отто, называть цикл, в котором сгорание топлива осуществляется по изобаре, циклом Дизеля будет не совсем справедливо. Изначально Р. Дизель предлагал осуществлять сжигание топлива по изотерме (как в идеальном цикле Карно) и запатентовал именно такой способ подвода тепла к рабочему телу. Однако, уже первые практические испытания показали, что цикл, предложенный Р. Дизелем, не имеет никакого практического и теоретического значения. Всякое приближение процессов горения к изотерме в цикле Дизеля приводило к увеличению расхода топлива. И лишь некоторое время спустя анализ диаграммы рабочего цикла дизельного двигателя, построенного в России на заводе "Л.Нобеля" показал, что линия сгорания топлива в нем протекает по изобаре. При этом достигался наиболее высокий КПД. Тем не менее, название цикл Дизеля установилось и теперь навсегда связано с именем знаменитого изобретателя конструкции тепловых двигателей уникального типа.

Цикл Дизеля протекает по следующему сценарию (см. диаграмму на рис. 1). Сжатие осуществляется по адиабате, как и в цикле Отто, с той лишь разницей, что степень сжатия и давление в конце такта значительно выше. Это прослеживается на приведенной диаграмме. В конце такта сжатия происходит впрыск топлива и начинается его горение (подвод теплоты), которое осуществляется по изобаре, т. е. при постоянном давлении. Именно в этом заключается принципиальное отличие цикла Дизеля от цикла Отто, где теплота подводится изохорно (при постоянном объеме), поскольку топливо сгорает очень быстро, а его воспламенение (от искры) начинается чуть раньше, чем поршень достигал верхнего положения. Изобарное сжигание топлива в дизельном двигателе связано с относительно медленным (лавинообразным) воспламенением – сначала сгорают легкие фракции, затем более тяжелые. В результате процесс горения растягивается во времени и поршень успевает "убежать" от верхней мертвой точки, при этом давление в цилиндре остается неизменным. Далее, как и в цикле Отто, следовало адиабатическое расширение, а затем изохорный отвод теплоты (выпуск газов и продувка цилиндра после открывания клапанов).

Принципиальное и конструктивное отличие заключалось в том, что Дизель предложил сжимать в цилиндре не топливовоздушную смесь, как в двигателях Отто, а воздух. В конце такта сжатия температура воздуха поднималась настолько, что впрыскиваемое в цилиндр топливо возгоралось самостоятельно, т. е. происходило самовоспламенение топлива. Для осуществления самовозгорания приходилось значительно увеличить степень сжатия, которая в дизельных двигателях в 2-3 раза выше, чем в карбюраторных двигателях. Дизель, проектируя свой двигатель, предполагал применить стократную степень сжатия, но, как показали первые же испытания, тепловая и механическая напряженность деталей двигателя при таких нагрузках превышала допустимые значения. Опытные образцы не выдерживали нагрузки и разрушались даже при значительном утяжелении конструкции с целью повышения прочности. Тем не менее, современные разработки по усовершенствованию дизельных двигателей направлены, в том числе, на значительное увеличение степени сжатия, поскольку это напрямую связано с повышением КПД и экономичности двигателя.

По легенде считается, что Р. Дизель изобрел свой знаменитый двигатель, накачивая ручным насосом колесо велосипеда. После нескольких энергичных манипуляций насосом, он заметил, что его корпус-цилиндр сильно нагрелся, и даже обжигал руку. Это и натолкнуло изобретателя на идею, которая принесла ему мировую славу и бессмертие в памяти благодарного человечества.

Особенностью системы питания Дизеля, в его первозданном виде, было компрессорное пневматическое распыливание топлива, на смену которому со временем пришло механическое распыливание посредством топливных насосов высокого давления (ТНВД) и форсунок, предложенных в 1898 году французом Сабатэ.

Отказ от пневматического (компрессорного) впрыска был связан с тем, что на привод компрессора приходилось 10-15% полезной работы двигателя, в связи с чем расход топлива у таких дизелей был не совсем приемлемым, т.е. эффективные показатели были ниже, чем у цикла Сабатэ – Тринклера. Кроме того, гидравлический впрыск топлива позволял увеличить динамические показатели работы дизельного двигателя. Однако индикаторные и экологические показатели компрессорного ("чистого") дизельного двигателя были выше, чем у двигателей, работающих по циклу Сабатэ – Тринклера (о них речь пойдет ниже). Связанно это было с более качественным смесеобразованием – в цилиндр подавалась топливовоздушная смесь, а не топливо в жидкой фазе как у современных дизелей.

Повсеместный переход от пневматического на механическое (бескомпрессорное) распыливание топлива и соответственно с цикла Дизеля на цикл Сабатэ - Тринклера начался в 30-х годах прошлого столетия. В настоящее время двигатели, работающие по "чистому" циклу Дизеля не производятся, за исключением экспериментальных и опытных образцов.

***

Цикл Сабатэ – Тринклера

Цикл, включающий два последовательных термодинамических процесса сгорания топлива – сначала по изохоре, а затем по изобаре, называют циклом Сабатэ – Тринклера. Пожалуй, это название цикла тоже можно оспорить, поскольку французский инженер Сабатэ (Сабатье) запатентовал в 1898 году не цикл, а механическое устройство (форсунку с распылителем), которое должно было подавать жидкое топливо непосредственно в цилиндры в два этапа. По замыслу Сабатэ это должно привести к более полному и быстрому сгоранию топлива.

В начале прошлого века российский инженер Густав Тринклер изобрел принципиально новый двигатель, опытный образец которого был изготовлен в 1902 году на Путиловском заводе. Снятая с работающего двигателя индикаторная диаграмма показала, что сгорание топлива в нем происходило по смешанному циклу – сначала по изохоре (при постоянном объеме), а затем по изобаре (при постоянном давлении). Таким образом, первым в мире двигателем с самовоспламенением, работающим по циклу смешанного сгорания, был двигатель конструкции Г. Тринклера, изготовленный в России.

Термодинамические процессы в цикле Сабатэ – Тринклера осуществляется в следующей последовательности (см. диаграмму на рис. 1). Сжатие воздуха, как и в цикле Дизеля, осуществлялось по адиабате. Теплота подводится смешанно: изохорно (вертикальный участок на p-V диаграмме), а затем изобарно (горизонтальный участок на диаграмме). Далее следовало адиабатическое расширение, после чего изохорный отвод теплоты (вертикальный отрезок в конце такта расширения на диаграмме).

Смешанный цикл в двигателе Тринклера имел место благодаря применению гидравлического впрыска топлива посредством форсунок, а также предварительному воспламенению топлива не в цилиндре, а в отдельной небольшой камере, соединенной каналом с объемом цилиндра. Именно в эту камеру бескомпрессорным (гидромеханическим) способом впрыскивалось топливо, где и начинался процесс его горения. Применение отдельной камеры позволяло поддерживать в ней более высокую температуру, чем в цилиндре, поскольку ее стенки не успевали остыть при отводе теплоты из цилиндра. Благодаря этому процесс горения топлива в камере протекал очень быстро (практически, по изохоре, как в цикле Отто), а затем горение распространялось в цилиндр и здесь уже протекало по изобарному сценарию, как в цикле Дизеля. Двигатели Тринклера чаще называют бескомпрессорными или форкамерными дизелями или просто дизелями.

Как упоминалось выше, все выпускающиеся в настоящее время дизельные двигатели на самом деле работают по циклу Сабатэ - Тринклера, т. е. циклу со смешанным подводом теплоты и с механическим распыливанием топлива.

Степень сжатия у безнаддувных двигателей достигает значения 18-22; у наддувных высокофорсированных двигателей - 13-15. Замечено, что с увеличением рабочего объема цилиндров дизельного двигателя и с уменьшением его оборотистости возрастает экономичность, т. е. КПД.

Область применения этих двигателей очень широкая. Их устанавливают в генераторных, насосных, энергетических установках и на электростанциях, в легковых и грузовых автомобилях, тракторах, сельскохозяйственной и дорожной технике, на тепловозах, судах, самолетах и т. д.

***

Сравнение эффективности идеальных циклов

Попробуем сравнить эффективность рассмотренных выше идеальных циклов с помощью диаграммы T-s (рис. 2), описывающей зависимость между энтропией и температурой рабочего тела. Анализ будет наиболее наглядным при одинаковых степенях сжатия в рассматриваемых двигателях (представим, что такое возможно).

Из приведенной диаграммы (рис. 2б) видно, что процессы сжатия 1-2 у всех трех типов двигателей (карбюраторного, дизельного и бескомпрессорного) совпадают, а если отводить одинаковое количество теплоты, то будут совпадать и процессы 4-1.

Следует отметить, что на диаграмме T–s изохора всегда проходит круче изобары, следовательно, в карбюраторном двигателе при одинаковом количестве подведенной теплоты будет совершаться больше работы на величину заштрихованной площади. Исходя из этого, можно сделать вывод: изохорное сжигание топлива эффективнее изобарного.

Однако в действительности названные двигатели работают при разных степенях сжатия, и практический интерес представляет сравнение их эффективности при одинаковых максимальных температурах сгорания, поскольку именно они определяют в основном температурную напряженность машины и ее КПД.

Следующая диаграмма T-s (рис. 2в) показывает циклы Отто, Дизеля и Сабатэ-Тринклера при одной и той же максимальной температуре. В этом случае на диаграмме T–s должны совпадать точки 3, что соответствует одинаковой максимальной температуре в цикле и одинаковому количеству отводимой за цикл теплоты.

Здесь отрезки 1–2, 1–2' и 1–2" изображают адиабатное сжатие в циклах Отто, Дизеля и Сабатэ-Тринклера соответственно, 2–3 – изохорный подвод теплоты в цикле Отто, 2'–3 – изобарный в цикле Дизеля, 2"–3' и 3'–3 – изохорный и изобарный в цикле Сабатэ-Тринклера. Остальные процессы – адиабатное расширение (рабочий ход) 3–4 и изохорный отвод теплоты 4–1 – при рассматриваемых условиях одинаковы для всех трех циклов.

Как видно из этой диаграммы, максимальная теплота q0 (площадь, заключенная внутри контура цикла), преобразуемая в полезную работу и, следовательно, максимальный термодинамический КПД имеет место в случае цикла Дизеля, минимальный – в случае цикла Отто. Цикл Сабатэ-Тринклера по эффективности преобразования теплоты в полезную работу занимает промежуточное положение.

Конечно, наиболее ценные результаты дает сопоставление циклов при одинаковых максимальных температурах и одинаковых расходах топлива (одинаковых количествах подводимой за цикл теплоты). Но сделать это с помощью диаграммы T–s практически невозможно, поскольку пришлось бы так подбирать количество отводимой теплоты, чтобы площади каждого из сравниваемых циклов были одинаковы. Такой анализ может быть проведен с помощью моделирования на компьютере.

***

Термодинамика поршневого двигателя

Скачать теоретические вопросы к экзаменационным билетам по учебной дисциплине "Основы гидравлики и теплотехники" (в формате Word, размер файла 68 кБ)

Скачать рабочую программу по учебной дисциплине "Основы гидравлики и теплотехники" (в формате Word):

Скачать календарно-тематический план по учебной дисциплине "Основы гидравлики и теплотехники" (в формате Word):



k-a-t.ru

Цикл дизеля | GD-T.net

  В этой статье пойдет речь о том, какие процессы происходят в цилиндрах тепловозных дизелей, работающих по 4-хтактному и 2-хтактному рабочему циклу. Четыре такта в одном цилиндре двигателя осуществляются на протяжении двух полных оборотов коленчатого вала, что соответствует 720 градусам. А что касается двухтактных дизелей, то там за один оборот коленвала выполнятся полный рабочий цикл в одном цилиндре.

Четырехтактный дизель

  Сначала о преимуществах четырехтактных дизельных двигателях перед двухтактными, они следующие:
  • уменьшенный расход дизельного топлива;
  • системы воздухоснабжения устроены проще, чем у 2-хтактных дизелей;
  • “стойко” переносят переменные нагрузки во время работы;
  • тепловая напряженность ниже, чем у 2-хтактных.

Подробней о том, какие процессы происходят в полостях цилиндров четырехтактного дизеля, читайте ниже:

  • Такт “Впуск” (0o-180o). Органы газораспределения открывают впускные клапаны, в основном на тепловозных дизелях их по два на каждой цилиндровой крышке. В это же время поршень направляется к нижней мертвой точке (НМТ), цилиндр заполняется свежим зарядом воздуха.
  • Такт “Сжатие” (180o-360o). Поршень проходит НМТ, закрываются впускные клапаны. Далее поршень перемещается к верхней мертвой точке (ВМТ). Воздух начинает сжиматься, что влечет за собой увиличение температуры сжатого воздуха к отметке в 600 градусов по Цельсию. На некотором расстоянии до ВМТ в полость цилиндра при помощи форсунки подается дизельное топливо в туманообразном виде. Момент опережения подачи топлива выражается в градусах поворота кривошипа и выбирается заводом изготовителем, исходя из проведенных расчетов и (или) же опытным путем. Впрыск топлива осуществляется под высоким давлением, от 210 атм. и выше. Величина этого давления на каждом дизеле разная. После подачи топлива начинается процесс смешивания с горячим воздухом, который протекает очень быстро. Вслед за смешиванием, полученная смесь самовоспламеняется. В результате выделяется огромное количество тепла, растет давление и повышается температура.
  • Такт “Рабочий ход” (360o-540o). Уже после прохождения поршнем ВМТ, топливо еще подается форсункой на протяжении нескольких градусов поворота кривошипа. В это время бурно протекает горение и расширение газов. Вследствие этого поршень совершает полезную работу, воздействуя на коленчатый вал.
  • Такт “Выпуск” (540o-720o). На некотором расстоянии поршня до НМТ выпускные клапаны уже начинают открываться. Количество выпускных, как и впускных клапанов, на одной цилиндровой крышке обычно тоже ограничивается двумя штуками. Преждевременное открытие клапанов необходимо для того, чтобы удалить часть отработавших газов, давление которых еще достаточно высокое, что позволит снизить сопротивление на поршень при дальнейшем движении вверх. Во время движения поршня к ВМТ сгоревшее топливо отводится через выпускные клапаны в выпускной коллектор.

У каждого отдельного взятого дизельного двигателя, для достижения наилучшего газообмена, в определенные моменты происходит открытие и закрытие газораспределительных клапанов. Эти моменты выражаются в градусах угла поворота кривошипа и отображаются на диаграммах фаз газораспределения, которые можно увидеть в технической литературе для каждого отдельно взятого дизеля. Тщательно осмотрев любую из диаграмм, можно увидеть, что на протяжении некоторого времени впускные и выпускные клапаны одного цилиндра пребывают открытыми. А если быть точнее впускные клапаны до ВМТ начинают открываться, а момент закрытия выпускных клапанов припадает после прохождения поршнем ВМТ. Пребывание всех клапанов в открытом состоянии называется периодом перекрытия клапанов. Благодаря этому достигается качественное удаление остатков отработанных газов, и полноценное наполнение полости цилиндра свежей порцией воздуха. Длительность одновременного открытия всех клапанов в одной цилиндровой крышке зависит от того, насколько форсирован дизель. Например, у дизеля 6чн21/21, период перекрытия клапанов составляет, примерно, 135 градусов поворота кривошипа.

Двухтактный дизель

  Этим дизеля можно “приписать” такие достоинства:
  • органы газораспределения устроены проще, чем у 4-хтактных;
  • с одной единицы объема цилиндра полученная мощность выходит больше, чем 4-хтактных при одинаковых условиях.

На данный момент мне известно лишь несколько моделей двухтактных дизелей, установленных на тепловозах:

  • тепловоз М62 – дизель 14Д40;
  • тепловоз ТЭП60 – дизель 11Д45;
  • тепловоз ТЭ3 (грузовой) и ТЭ7 (пассажирский) – дизель 2Д100;
  • тепловозы типа ТЭ10 – дизель 10Д100.

V-образные дизеля 14Д40 и 11Д45 относятся к одному типу двигателей и имеют большое количество взаимозаменяемых узлов, к тому же у них применена одинаковая схема продувки (газообмена).Такая схема называется клапанно-щелевая. Суть работы двигателей при этой схеме следующая. Во время нахождения поршня в НМТ происходит наполнение цилиндра сжатым воздухом при помощи узлов системы воздухоснабжения. Наддувочный воздух попадает в полость цилиндра через продувочные окна, расположенные в нижней части цилиндровой втулки. Одновременно с этим поршень начинает движение вверх и выталкивает остаток отработанных газов, через четыре выпускных клапана в выпускной коллектор. Во время приближения поршня к ВМТ, на определенном расстоянии до мертвой точки подается топливо, которое воспламенятся от сжатия. Расширяющиеся газы толкают поршень вниз, и цикл начинается заново. В дизелях работающим таким образом предусмотрены распределительные валы, которые открывают и закрывают выпускные клапаны через промежуточные звенья (рычаги, штанги).  Выше упомянутая мною, схема газообмена в 2-хтактных дизелях 11Д45 и 14Д40 уступает прямоточно-щелевой схеме использованной на дизелях типа Д100 (2Д100, 10Д100 и т.д).В двухтактных дизелях Д100 воплощено множество особенностей, одна из которых это присутствие двух коленчатых валов в одном двигателей. За счет этой отличительной черты в дизеле со встречно движущимися поршнями есть возможность реализовать прямоточно-щелевую схему газообмена.В одном из цилиндров дизеля Д100 за один рабочий цикл происходят следующие процессы. В первую очередь хочу отметить тот факт, что вращение коленчатых валов согласовано так, что нижний поршень опережает верхний поршень на 12 градусов поворота кривошипа. Во время впрыска топлива поршни, находящиеся в одной цилиндровой втулке, приближаются друг к другу. Топливо интенсивно смешивается с воздухом и самовоспламенится из-за предварительного сжатия воздуха.

Кстати, температура воздуха напрямую зависит от давления в цилиндре, то есть чем выше давление в цилиндре, тем выше температура этого сжатого воздуха.

Далее топливно-воздушная смесь горит и расширяется, чем и воздействует на поршни, которые удаляются друг от друга. Потом нижний поршень открывает выпускные окна, через которые начинают удаляться отработанные газы. Через некоторый угол поворота кривошипа верхний поршень открывает продувочные окна. Сквозь эти продувочные окна в пространство цилиндра проникает наддувочный воздух, который сперва вытесняет остатки горевшей смеси. А затем, после того, как нижний поршень закроет выпускные окна, свежий заряд воздуха еще продолжает поступать через верхние (продувочные) окна, чтобы наполнить цилиндр необходимым количеством воздуха для следующей порции топлива. Когда верхний поршень закроет продувочные окна, начинается сжатие воздуха… и все начинается заново.

gd-t.net

Цикл Дизеля

⇐ ПредыдущаяСтр 50 из 51Следующая ⇒

Данный цикл является циклом поршневого двигателя с подводом теплоты при постоянном давлении (рис. 6.15).

Цикл состоит из адиабатного процесса сжатия 1-2, изобарного процесса 2-3, в котором к рабочему телу подводится теплота q , адиабатного процесса расширения 3-4 и условно замыкающего цикл изохорного процесса 4-1, где от рабочего тела отводится теплота q .

 
  Рис. 6.15. Цикл Дизеля  

 

Цикл Дизеля применяется в поршневых двигателях с самовоспламенением топлива от сжатия. В идеальном цикле Дизеля (как и в цикле Отто) не рассматриваются вспомогательные процессы всасывания и выхлопа.

Для исследования цикла Дизеля необходимо задать: род рабочего тела (k, R), его параметры в исходной точке цикла 1, степень сжатия в адиабатном процессе и степень расширения в изобарном процессе подвода теплоты q .

Найдём температуру рабочего тела в характерных точках цикла 2, 3 и 4.

В адиабатном процессе 1-2 , откуда .

В изобарном процессе 2-3 , тогда .

В адиабатном процессе 3-4 , откуда

В изобарном процессе 2-3 к рабочему телу подводится теплота

В изохорном процессе 4-1 от рабочего тела отводится теплота

Тогда работа цикла Дизеля и его термический КПД равны:

, .

Видно, что термический КПД цикла Дизеля зависит от степени сжатия e и степени расширения в процессе подвода теплоты. При постоянном значении увеличение e ведёт к росту . Возрастание приводит к увеличению работы цикла, но уменьшает значение термического КПД цикла.

Цикл Дизеля нашел широкое применение в поршневых двигателях с самовоспламенением топлива. В таких двигателях в процессе 1-2 сжимается не топливовоздушная смесь, а чистый воздух, причём с большим значением степени сжатия (e= 16…25). В результате температура воздуха в конце сжатия поднимается до 550…750 ˚С. В процессе расширения 2-3 в цилиндр впрыскивается топливо, которое при такой температуре самовоспламеняется и сгорает. Впрыск топлива дозируется так, чтобы, несмотря на увеличение объёма, давление в цилиндре оставалось практически постоянным.

Из сравнения формул термических КПД циклов Отто и Дизеля следует, что при одинаковых степенях сжатия e цикл Отто будет иметь более высокий КПД, чем цикл Дизеля. Действительно, при любых значениях k и будет выполняться соотношение , вследствие чего > .

Литература

1. Кобельков В.Н., Улас В.Д. Федоров Р.М. Термодинамика и теплопередача. Под ред. Р.М.Федорова. – М.: ВВИА им. Н.Е. Жуковского, 2012 г. 328 с.

2. Мелик-Пашаев Н.И., Кобельков В.Н., Воротников Б.А., Березин Г.В. Техническая термодинамика и теплопередача. – М.: ВВИА им. Н.Е. Жуковского, 1983 г. 267 с.

3. Мухачев Г.А., Щукин В.К. Термодинамика и теплопередача. – М.: Высшая школа, 1991, 480 с.

4. Михеев М.А., Михеева И.М. Основы теплопередачи. – М.: Энергия, 1973. 396 с.

 

Содержание

Лекция 1. Термодинамическая система и ее состояние ……………………….. 3

1.1. Основные понятия и определения ………………………………………….. 3

1.2. Параметры состояния системы и уравнение состояния …………………… 3

1.3. Уравнение состояния идеального газа ……………………………………… 4

1.3.1. Уравнение состояния идеального газа ……………………………………. 5

1.3.2. Уравнения состояния реальных газов …………………………………….. 6

mykonspekts.ru

Рабочий цикл четырехтактного дизельного двигателя

Рабочий цикл авто с дизельным двигателем отличается тем, что при такте впуска в цилиндр двигателя поступает очищенный  воздух, а не горючая смесь, как в карбюраторном двигателе.

1.Первый такт — впуск.

Поршень перемещается от ВМТ к НМТ, через открытый впускной клапан в цилиндр поступает очищенный воздух (из-за разрежения, создаваемого поршнем). Воздух перемешивается с небольшим количеством оставшихся от предыдущего цикла отработавших газов, температура повышается и в конце такта впуска достигает 300—320 К, а давление  0.08—0.09 МПа. Коэффициент наполнения цилиндра 0,9 и выше, т. е. больше, чем у карбюраторного двигателя.

Рабочий цикл ДВС

1.1.Работа четырехтактного одноцилиндрового дизельного  двигателя:

а — впуск воздуха; б — сжатие; в — рабочий ход; г - выпуск отработавших газов; 1— цилиндр; 2 — топливный насос, 3 — поршень: 4 — форсунка, 5 — впускной клапан, 6 — выпускной клапан

2.Второй такт — сжатие.

Поршень движется от НМТ к ВМТ, впускной и выпускной клапаны закрыты. Давление и температура воздуха увеличиваются и в конце такта составляют соответственно 3—5 МПа и 800—900 К. Степень сжатия регламентируется исправностью деталей КШМ и равна 17—21.

3.Третий такт — рабочий ход.

В конце такта сжатия (20—30 градусов угла поворота коленчатого вала ло прихода поршня в ВМТ) с помощью насоса через форсунку в цилиндр под высоким давлением (15—20 МПа) в мелкораспыленном виде впрыскивается порция топлива. Топливо от соприкосновения с нагретым воздухом испаряется, его пары перемешиваются с нагретым воздухом и воспламеняются. При сгорании топлива, вследствие подвода большого количества теплоты, резко увеличиваются лишение и температура образовавшихся газов. В начале такта расширения давление газов составляет 7—8 МПа. а температура 2100—2300 К. Под действием давления поршень перемешается от ВМТ к НМТ, совершая полезную работу. Объем цилиндра увеличивается, давление и температура газов снижаются и при подходе поршня к НМТ составляют 0,2-0,4 МПа .

4.Четвертый такт — выпуск.

Поршень перемещается от НМТ к ВМТ. Через открытый выпускной клапан отработавшие газы выталкиваются через выпускной трубопровод в окружающую среду. В конце такта выпуска давление газов равно 0,11 -0,12 МПа, температура 850—1200.  После этого рабочий цикл дизеля повторяется.В двухтактных двигателях время, отводимое на рабочий цикл, используется более полно, так как процессы выпуска и впуска совмещены по времени с процессами сжатия и рабочего хода. Рабочий цикл происходит за 360 градусов (один оборот коленчатого вала).

При движении поршня от ВМТ к НМТ одновременно происходят процессы расширения и выпуска с продувкой цилиндра, а при обратном движении от НМТ к ВМ1 впуск и сжатие. Изменения параметров цикла (давление и температура) соответствуют изменениям параметров четырехтактного двигателя.Сравнение рабочих циклов четырех- , двухтактных двигателей показывает, что при одинаковых размерах цилиндра и частоте вращения коленчатого вала мощность двухтактных двигателей выше в 1.5—1,7 раза. Он проще по конструкции и компактнее.К недостаткам двухтактного двигателя следует отнести ограниченное время газообмена, что ухудшает очистку цилиндра от отработавших газов, увеличивает потери части свежею заряда, снижает экономичность.

Работа дизельного двигателя, подробнее

www.autoezda.com

Цикл Дизеля Википедия

Термодинамические циклы Статья является частью серии «Термодинамика». Разделы термодинамики
Эталонный цикл Эдвардса
Цикл Аткинсона
Цикл Брайтона/Джоуля
Цикл Гирна
Цикл Дизеля
Цикл Калины
Цикл Карно
Цикл Ленуара
Цикл Миллера
Цикл Отто
Цикл Ренкина
Цикл Стирлинга
Цикл Тринклера
Цикл Хамфри
Цикл Эрикссона
Начала термодинамики
Уравнение состояния
Термодинамические величины
Термодинамические потенциалы
Термодинамические циклы
Фазовые переходы
См. также «Физический портал»

Цикл Дизеля — термодинамический цикл, описывающий рабочий процесс двигателя внутреннего сгорания с воспламенением впрыскиваемого топлива от разогретого рабочего тела, цикл дизельного двигателя. Идеальный цикл Дизеля состоит из четырёх процессов:

p-V диаграмма цикла Дизеля
  • 1—2 адиабатное сжатие рабочего тела;
  • 2—3 изобарный подвод теплоты к рабочему телу;
  • 3—4 адиабатное расширение рабочего тела;
  • 4—1 изохорное охлаждение рабочего тела.

КПД цикла Дизеля η=1−1k(mk−1m−1)1nk−1{\displaystyle \eta =1-{\frac {1}{k}}\left({\frac {m^{k}-1}{m-1}}\right){\frac {1}{n^{k-1}}}}, где n=V1/V2{\displaystyle n=V_{1}/V_{2}} — степень сжатия,

m=V3/V2{\displaystyle m=V_{3}/V_{2}} — коэффициент предварительного расширения, k{\displaystyle k} — показатель адиабаты.

Идеальный цикл лишь приблизительно описывает процессы, происходящие в реальном двигателе, но для технических расчётов в большинстве случаев точность такого приближения удовлетворительна.

См. также[ | код]

  • Поршневой двигатель внутреннего сгорания
  • Термодинамический цикл

Ссылки[ | код]

  • Термодинамические циклы разных двигателей
  • Циклы двигателей внутреннего сгорания (двс)
Это

ru-wiki.ru

Цикл Дизеля — WiKi

Термодинамические циклы Статья является частью серии «Термодинамика». Разделы термодинамики
Эталонный цикл Эдвардса
Цикл Аткинсона
Цикл Брайтона/Джоуля
Цикл Гирна
Цикл Дизеля
Цикл Калины
Цикл Карно
Цикл Ленуара
Цикл Миллера
Цикл Отто
Цикл Ренкина
Цикл Стирлинга
Цикл Тринклера
Цикл Хамфри
Цикл Эрикссона
Начала термодинамики
Уравнение состояния
Термодинамические величины
Термодинамические потенциалы
Термодинамические циклы
Фазовые переходы
править
См. также «Физический портал»

Цикл Дизеля — термодинамический цикл, описывающий рабочий процесс двигателя внутреннего сгорания с воспламенением впрыскиваемого топлива от разогретого рабочего тела, цикл дизельного двигателя. Идеальный цикл Дизеля состоит из четырёх процессов:

p-V диаграмма цикла Дизеля
  • 1—2 адиабатное сжатие рабочего тела;
  • 2—3 изобарный подвод теплоты к рабочему телу;
  • 3—4 адиабатное расширение рабочего тела;
  • 4—1 изохорное охлаждение рабочего тела.

КПД цикла Дизеля η=1−1k(mk−1m−1)1nk−1{\displaystyle \eta =1-{\frac {1}{k}}\left({\frac {m^{k}-1}{m-1}}\right){\frac {1}{n^{k-1}}}}, где n=V1/V2{\displaystyle n=V_{1}/V_{2}} — степень сжатия,

m=V3/V2{\displaystyle m=V_{3}/V_{2}} — коэффициент предварительного расширения, k{\displaystyle k} — показатель адиабаты.

Идеальный цикл лишь приблизительно описывает процессы, происходящие в реальном двигателе, но для технических расчётов в большинстве случаев точность такого приближения удовлетворительна.

ru-wiki.org

Цикл Дизеля — Википедия (с комментариями)

Материал из Википедии — свободной энциклопедии

Цикл Дизеля — термодинамический цикл, описывающий рабочий процесс двигателя внутреннего сгорания с воспламенением впрыскиваемого топлива от разогретого рабочего тела, цикл дизельного двигателя. Идеальный цикл Дизеля состоит из четырёх процессов:

КПД цикла Дизеля <math>\eta=1-\frac{1}{k}\left(\frac{m^k-1}{m-1}\right)\frac{1}{n^{k-1}}</math>, где <math>n=V_1/V_2</math> — степень сжатия,

<math>m=V_3/V_2</math> — коэффициент предварительного расширения, <math>k</math> — показатель адиабаты.

Идеальный цикл лишь приблизительно описывает процессы, происходящие в реальном двигателе, но для технических расчётов в большинстве случаев точность такого приближения удовлетворительна.

См. также

Напишите отзыв о статье "Цикл Дизеля"

Ссылки

  • [www.chuvsu.ru/~victor/junior/junior/lek10-2.html Термодинамические циклы разных двигателей]
  • [ttech.pstu.ac.ru/teplot/tt/study/2006-07/lection/td/t8/dvs_gtu.htm Циклы двигателей внутреннего сгорания (двс)]

Отрывок, характеризующий Цикл Дизеля

Охотник дядюшки с другой стороны скакал на перерез волку, и собаки его опять остановили зверя. Опять его окружили. Николай, его стремянной, дядюшка и его охотник вертелись над зверем, улюлюкая, крича, всякую минуту собираясь слезть, когда волк садился на зад и всякий раз пускаясь вперед, когда волк встряхивался и подвигался к засеке, которая должна была спасти его. Еще в начале этой травли, Данила, услыхав улюлюканье, выскочил на опушку леса. Он видел, как Карай взял волка и остановил лошадь, полагая, что дело было кончено. Но когда охотники не слезли, волк встряхнулся и опять пошел на утек. Данила выпустил своего бурого не к волку, а прямой линией к засеке так же, как Карай, – на перерез зверю. Благодаря этому направлению, он подскакивал к волку в то время, как во второй раз его остановили дядюшкины собаки. Данила скакал молча, держа вынутый кинжал в левой руке и как цепом молоча своим арапником по подтянутым бокам бурого. Николай не видал и не слыхал Данилы до тех пор, пока мимо самого его не пропыхтел тяжело дыша бурый, и он услыхал звук паденья тела и увидал, что Данила уже лежит в середине собак на заду волка, стараясь поймать его за уши. Очевидно было и для собак, и для охотников, и для волка, что теперь всё кончено. Зверь, испуганно прижав уши, старался подняться, но собаки облепили его. Данила, привстав, сделал падающий шаг и всей тяжестью, как будто ложась отдыхать, повалился на волка, хватая его за уши. Николай хотел колоть, но Данила прошептал: «Не надо, соструним», – и переменив положение, наступил ногою на шею волку. В пасть волку заложили палку, завязали, как бы взнуздав его сворой, связали ноги, и Данила раза два с одного бока на другой перевалил волка.

wiki-org.ru


© 2007—2018
423800, Набережные Челны , база Партнер Плюс, тел. 8 800 100-58-94 (звонок бесплатный)