|
||||
|
Екатерина - специалист по продаже а/м КАМАЗ
43118-010-10 (дв.740.30-260 л.с.) | 2 220 000 |
43118-6033-24 (дв.740.55-300 л.с.) | 2 300 000 |
65117-029 (дв.740.30-260 л.с.) | 2 200 000 |
65117-6010-62 (дв.740.62-280 л.с.) | 2 350 000 |
44108 (дв.740.30-260 л.с.) | 2 160 000 |
44108-6030-24 (дв.740.55,рест.) | 2 200 000 |
65116-010-62 (дв.740.62-280 л.с.) | 1 880 000 |
6460 (дв.740.50-360 л.с.) | 2 180 000 |
45143-011-15 (дв.740.13-260л.с) | 2 180 000 |
65115 (дв.740.62-280 л.с.,рест.) | 2 190 000 |
65115 (дв.740.62-280 л.с.,3-х стор) | 2 295 000 |
6520 (дв.740.51-320 л.с.) | 2 610 000 |
6520 (дв.740.51-320 л.с.,сп.место) | 2 700 000 |
6522-027 (дв.740.51-320 л.с.,6х6) | 3 190 000 |
Нужны самосвалы? Обратите внимание на Ford-65513-02. |
Контактная информация.
г. Набережные Челны, Промкомзона-2, Автодорога №3, база «Партнер плюс».
тел/факс (8552) 388373.
Схема проезда
Содержание статьи
В современном автомобилестроении существует множество технических решений реализации дифференциала. В зависимости от привода автомобиля используют различные типы узлов: для заднеприводных, переднеприводных и дифференциальные устройства для внедорожников. Кроме того этот узел трансмиссии классифицируют по внутреннему устройству (конический, цилиндрический, червячный) и способу блокировки.
Основная задача дифференциала — обеспечивать колёсам разную скорость вращения. Такой способ вращательного движения необходим для правильного вхождения машины в повороты, при пробуксовке колес и в другие моменты. Когда машина поворачивает, то разные колёса описывают разные траектории. Если ведущие колеса будут двигаться с одинаковой скоростью, то выполнить поворот на такой машине будет очень сложно. Распределение моментов между приводимыми в движение колёсами происходит при помощи дифференциала.
Во время пробуксовки одного из колёс, обычный планетарный механизм начнёт работать в сторону увеличения крутящего момента. Колесо начинает буксовать ещё сильнее. Колесо, находящееся на твёрдой поверхности, перестанет крутиться. Для решения таких проблем дифференциальные устройства обеспечиваются блокировочными механизмами различных типов: ручными или автоматическими. Блокировка дифференциала значительно повышает проходимость полноприводного автомобиля. Пока хотя бы одно колесо цепляет дорогу, машина двигается.
Различают два основных вида дифференциальных механизмов: межколёсный и межосевой. Межколёсный предназначается для различных автомобилей с приводом на два колеса. Межосевой делит крутящий момент на все четыре. В зависимости от модели дифференциала, используются различные конструктивные решения механизма. В переднеприводных машинах этот узел обычно помещают в картере коробки передач. У заднепрводных раздаточные шестерни размещают в корпусе заднего моста.
Полноприводные внедорожники используют для размещения дифференциального механизма чаще всего отдельную раздаточную коробку («Land Cruiser», «Нива»). Некоторые производители используют конструкцию с двумя раздельными дифференциалами (Jeep «Cherokee», UAZ «Hunter»), размещёнными в переднем и заднем мостах.
Самым простым устройством на базе планетарного редуктора является свободный дифференциал. Рассмотрим вкратце принцип его действия. Вращение от двигателя передаётся на механизм шестернёй главной передачи. Зубья жёстко передают движение на ведомую шестерню большого размера, находящуюся в корпусе дифференциала.
На ведомой шестерёнке закреплены два конических сателлита с двумя степенями свободы: они вращаются вместе с ведомой шестернёй, и одновременно могут вращаться вдоль своей оси. Когда автомобиль едет прямо, сателлит бежит по большому кругу и передаёт одинаковое вращательное движение на обе полуоси. Как только машина поворачивает, сателлиты совершают вращательные движения вокруг своей оси, и скорость вращения полуосей изменяется. В результате одно из колёс движется медленнее, а другое, описывающее больший поворотный радиус, быстрее.
У свободного дифференциала есть один большой недостаток. В момент пробуксовки одного из колёс, сателлит начинает прокручиваться и передавать весь импульс движения на него. Буксующее колесо крутится с большой скоростью, в то время как стоящее на твёрдой почве второе колесо, бездействует. Особенно опасно, когда такие процессы происходят на большой скорости.
Если на дороге попадается участок с неравномерной обледенелой поверхностью, то машина со свободным дифференциалом может уйти в неуправляемый занос. Для решения этой проблемы используется блокировка дифференциала.
Естественным решением предотвращения пробуксовки является временная приостановка одного из компонентов механизма. Существует несколько решений этой задачи: можно временно блокировать одно из колёс, полуось, сам дифференциальный узел или даже двигатель. По способу реализации разделяют блокировки следующих типов: ручная, самоблокирующаяся, электронная.
Самым простым вариантом блокирования дифференциального механизма является его ручное отключение. Обычно такая функция реализуется с помощью специального рычага или кнопки в салоне внедорожника. Движением рычага блокируется возможность вращения сателлитов вдоль своей оси, и планетарка становится обычной муфтой. Выполнять подобную операцию следует только во время полной остановки автомобиля с выжатым сцеплением.
Использовать блокировку следует при движении на малых скоростях по сложнопроходимым дорогам. При отключенном дифференциале, автомобиль становится трудноуправляемым и стремится ехать по прямой.
Поэтому ручное управление механизмом раздачи мощности по колёсам требует определённых навыков водительского мастерства. Ручной блокировкой дифференциала оборудуются внедорожники с жёсткой рамой: «Land Cruiser», «Hilux», «Нива» и другие.
Для увеличения проходимости автомобиля и упрощения управлением в трудных условиях были созданы несколько моделей самоблокирующихся дифференциалов. Принцип работы этих узлов основан на возникновении блокировки работы узла при определённых обстоятельствах.
Рассмотрим подробнее дифференциалы Speed sensitive, которые срабатывают, если полуоси начинают вращаться на различных угловых скоростях.
Примером автомобиля, где установлен такой тип дифференциала, может служить Toyota «Rav4» с вискомуфтой. Одна часть этого узла закреплена на чашке дифференциала, другая часть на полуоси. В режиме обычного движения или небольшом расхождении в повороте, рабочие поверхности муфты двигаются независимо и не мешают вращению полуосей. Вращение одной из осей, с заметно большей скоростью, приводит к тому, что вискомуфта срабатывает и начинает тормозить движение.
При падении скорости, сила трения уменьшается, и части узла вновь становятся независимыми. Такой дифференциал вполне подходит для автовладельцев, которые не стремятся покорить все вершины бездорожья. В городском режиме и на грунтовых дорогах машины с такими дифференциалами прекрасно себя зарекомендовали. Но у вискомуфты есть проблемные места — в сложной ситуации она не тянет нагрузками, начинает греться, запаздывает со включением и может прийти в нерабочее состояние.
На спецтехнике устанавливают другой тип самоблокирующихся дифференциальных механизмов — кулачковые пары. Примером реализации служит «ГАЗ-66». Данная конструкция узла позволяет в разы повысить проходимость машины, но чревата опасными ситуациями, когда дифференциал самопроизвольно заклинивает. Схема действия проста, как всё гениальное. Вместо планетарки в механизме применяются зубчатые пары. Они свободно поворачиваются при малейших расхождениях в скоростях колёс, а при значительном расхождении заклинивают.
Интересный вариант конструкторского решения самоблокирующегося дифференциала реализован в Kia «Sportage». Основанный на похожих методах, что и вискомуфта, этот тип использует пластины для торможения нежелательных вращений. Принципиальным отличием или существенным усовершенствованием является использование гидравлической системы для сближения фрикционных пластин.
При возникновении большой разницы в скоростях полуосей срабатывает насос, который нагнетает давление масла в системе фрикционов и заставляет пластины сближаться. Таким образом, скорость вращения пробуксовывающего колеса начинает снижаться, и происходит перераспределение крутящего момента.
Более современным и эффективным можно назвать дифферинциалы Torque sensitive, приходящие в рабочее состояние при снижении скорости вращения на одной из полуосей. Такой узел осуществляет контроль за показателями скоростей вращения и снижает их в автоматическом режиме.
Конструктивно такие дифференциальные устройства представляют собой обычный свободный дифференциал с комплектом подпружиненных фрикционных гасителей скорости, размещённых между полуосями и чашкой дифференциала. Принцип действия основан на свойствах гипоидных передач, которые могут самопроизвольно разблокироваться. Различают три основных конструктивных реализации этого типа дифференциалов.
Первый тип использовался на внедорожнике Toyota «Celica GT-4» и назывался Т-1. Каждая полуось в этом узле имеет свои сателлиты, связанные между собой. Таким образом, как только возникает разница в крутящих моментах сателлитов, червяк синхронизирует их, и колёса будут крутиться с одной и той же скоростью. Диапазон их разницы определяется углом наклона зубчиков межсателлитового вала.
Такой механизм приводит к тому, что колёса либо движутся с одной скоростью (при езде по прямой), либо благодаря синхронизированным сателлитам делают обороты с различными скоростями (при повороте). Никаких пробуксовок не возникает. Модель узла трансмиссии с такими характеристиками стала популярна не только среди внедорожников, её установили на спортивную машину Mazda «RX-7» (1991 г.).
В продолжение серии была выпущена модель T-2, более чувствительная к разнице в скоростях. Как и аналогичный механизм Rod Quaife, эта конструкция отличается наличием более сложной передачи между сателлитами вместо червяка. Эта модель приобрела ещё большую популярность и применима для большого количества машин: BMW «Z3», Audi «A4», «A6», «A8», родстеры Honda «S2000», Volkswagen «Passat» (B6), Mazda «MX-5», внедорожники «Range Rover», Hummer.
Третья разновидность дифференциалов модели Torque sensitive называется Т-3 и используется чаще всего в качестве межосевых узлов. Это более совершенная конструкция позволяет автоматически распределять нагрузку между задней и передней осями в определенном промежутке. Обычно это происходит в диапазоне 65 на 35. Если на пути Lexus «GX 470», оснащенного таким дифференциалом, выступает препятствие, то сила тяги у него будет подаваться на те колёса, которые ещё могут зацепить дорожное покрытие.
Механический способ блокировки дифференциала не стоит рассматривать, как единственную разработку, направленную на улучшение проходимости и повышение контроля за автомобилем. Примером может служить система управления трансмиссией с помощью электроники — Traction Control (TRAC) — схема контролирования за тягой и сцеплением колёс. В основе TRAC лежит простой принцип: отслеживание и коррекция частоты оборотов колёс при помощи специальных датчиков.
Как только колесо начинает буксовать, в это время включается тормоз и крутящий момент уходит на другую полуось. На первый взгляд машина будет вести себя, как будто у неё блокировали дифференциал. На самом деле эта система даже эффективнее механической блокировки, проще в исполнении и надежнее. Кроме того, TRAC не создает помех в работе механизмов любых дифференциалов, а является их удачным дополнением. Именно поэтому современные внедорожники, такие как «Hilux», Lexus, «Prado» оборудованы электронным управлением Traction Control.
Наиболее популярным и современным решением в области конструирования дифференциального узла стало изобретение активного дифференциала. Идея этого механизма в том, чтобы не тормозить полуоси и колёса, а напротив, разгонять их до большей скорости. С помощью электроники и фрикционных сцеплений колесо, бегущее по внешнему кругу, получает в разы больший момент, чем внутреннее.
Благодаря этому техническому решению прохождение крутых поворотов отличается легкостью и устойчивостью. Это обстоятельство сразу же взяли на вооружение производители спортивных автомобилей. Но до выхода в широкое производство этому типу дифференциалов ещё далеко.
Дифференциал за годы своего существования прошёл большой путь эволюционного развития и это не удивительно. Конструкторы автомобилей сделали всё возможное, чтобы этот узел стал надёжным и обеспечивал комфортное и беспрепятственное движение автомобиля. Если задаваться вопросом, с каким дифференциалом выбрать машину, то это наиболее улучшенная модель из разряда Torque sensitive, с дополнением в виде электронного управления Traction Control.
Оценка статьи:
Загрузка...motorsguide.ru
Он представляет собой планетарный механизм, предназначенный для распределения крутящего момента между ведущими полуосями транспортного средства и обеспечения вращения ведущих колёс с различной частотой при движении по кривой или по неровностям пути.
Требования к диф-алу:
- должен обеспечивать распределение крутящего момента по ведущим колёсам или мостам в соответствии с их тяговыми возможностями по условию сцепления с дорогой;
- иметь высокий КПД;
- обеспечивать хорошую управляемость и устойчивость ав-ля при движении по дорогам с неравномерным коэф-том сцепления, на поворотах и при движении по неровностям дороги;
- иметь малые габариты и вес;
- иметь высокую надёжность и износостойкость.
Классификация:
По конструктивным признакам: зубчатые; червячные; кулачковые;
По кинематике: симметричные; несимметричные;
По коэф-ту блокировки: с малым трением; с повышенным трением; с полным трением;
По способу блокировки: с принудительной блокировкой; самоблокирующиеся;
По назначению: межосевой; колёсный.
Симметричные диф-лы –у к-ых передаточное число =1, т. е. полуосевые шестерни имеют одинаковый диаметр и равное число зубьев.
Несимметричные диф-лы– у к-ых передаточное число не=1, и у них полуосевые шестерни имеют разные диаметры и числа зубьев.
Преимущества симметричных:- простота устройства;
- малые размеры и масса;
- надёжность;
- высокий КПД;
- обеспечение устойчивости при движении по скользкой дороге и торможении двигателем.
Недостаток: ограниченная проходимость.
Межосевой симметричный диф-ал.
Крестовина 1, несущая шестерни-сателлиты, установлена на валу 6, являющемся продолжением выходного вала раздаточной коробки. Шестерни-сателлиты находятся в зацеплении с боковыми коническими шестернями. Правая коническая шестерня выполнена заодно целое с цилиндрической шестерней 2, а левая – с шестерней 7. Шестерня 2 находится в зацеплении с шестерней 4, установленной на валу 5 привода среднего моста. Шестерня 7 находится в зацеплении с шестерней 8, установленной на валу 9 привода заднего моста.
Если при движении ав-ля колёса среднего и заднего ведущих мостов вращаются с одинаковой скоростью, то крестовина с сателлитами вращается как одно целое с коническими шестернями межосевого диф-ала. Крутящий момент равномерно распределяется между обоими ведущими мостами.
В случае вращения колёс того и другого мостов с разными скоростями боковая коническая шестерня, связанная с колёсами, имеющими меньше число оборотов, вращаеися медленнее, чем другая. Это вызывает перекатывание сателлитов по боковой шестерне, вращающейся с меньшим числом оборотов, в рез-те чего сателлиты начинают вращаться на своих осях. Вращение сателлитов увеличивает число оборотов другой боковой шестерни, и колёса, связанные с ней, получают более быстрое вращение.
Схема, пр-п работы и свойства самоблокирующихся дифференциалов повышенного трения.
Для повышения проходимости автомобиля при движении по бездорожью применяют дифференциалы с принудительной блокировкой или самоблокирующийся дифференциал.
Сущность принудительной блокировки состоит в том, что ведущий элемент (корпус) дифференциала в момент включения блокировки жестко соединяется с полуосевой шестерней. Для этого предусмотрено специальное дистанционное устройство с зубчатой муфтой.
Самоблокирующийся дифференциал повышенного трения (кулачковый), применяемый на автомобиле ГАЗ-66, показан на рис. 1, а, б.Он состоит из внутренней5и наружной6звездочек, между кулачками которых заложены сухари 3 сепаратора4.Сепаратор выполнен за одно целое с левой чашкой дифференциала и соединен с ведомой шестерней2главной передачи. Правая чашка (на чертеже не показана) свободно охватывает наружную звездочку и в сборе с левой чашкой образует корпус дифференциала. Звездочки дифференциала своими внутренними шлицами соединяются полуосями 7.
При вращении ведомой шестерни главной передачи и движении автомобиля по прямой сухари оказывают одинаковое давление на кулачки обеих звездочек и заставляют их вращаться с одной скоростью.
Когда одно из колес попадает на поверхность дороги с большим сопротивлением движению, то связанная с ним звездочка начинает вращаться с меньшей частотой, чем сепаратор. Сухари, находящиеся в сепараторе, оказывают большее давление на кулачки замедляющейся звездочки и ускоряют ее вращение.
Таким образом, в местах контакта сухарей с кулачками звездочек возникает повышенное трение, которое препятствует сильному изменению относительных скоростей обеих звездочек, и колеса вращаются примерно с одной угловой скоростью. Из-за сил трения сухарей по кулачкам происходит перераспределение моментов. На ускоряющейся звездочке силы трения направлены против вращения, на отстающей - по направлению вращения. Крутящий момент на отстающей звездочке возрастает, а на ускоряющейся уменьшается на момент сил трения в результате пробуксовка колёс исключается.
studfiles.net
Один из главных недостатков конических дифференциалов – ухудшение проходимости автомобиля из-за вероятности пробуксовки ведущих колес, когда левое и правое колеса перемещаются по участкам дорожного покрытия с разными сцепными свойствами. Принудительная жесткая блокировка дифференциала, применяемая в конструкции многих автомобилей, не лишена недостатков, которые подробнее описаны здесь, поэтому в конструкции трансмиссии современных автомобилей, предназначенных для движения по неблагоприятным дорогам, часто используют дифференциалы, автоматически распределяющие крутящий момент между полуосями ведущего моста в зависимости от дорожных условий. Такие дифференциалы называют самоблокирующимися.
Самоблокирующиеся дифференциалы позволяют частично устранить пробуксовку при разных коэффициентах сцепления колес автомобиля, повышают проходимость автомобиля и его управляемость при движении по плохим дорогам, улучшают динамику разгона автомобиля на дорогах с любым покрытием, не требуют дополнительных усилий от водителя (название «самоблокирующийся» говорит само за себя) и взаимозаменяемы со стандартными дифференциалами. Полной блокировки колес в таких дифференциалах не наступает, поэтому нагрузки на полуоси не столь критичные, как у дифференциалов с принудительной блокировкой. Самоблокирующиеся дифференциалы автоматически снимают блокировку полуосей при сбросе газа при прямолинейном движении, когда выравниваются скорости полуосей. Самоблокирующиеся дифференциалы не лишены и недостатков, среди которых можно отметить основные: ухудшается управляемость автомобиля (особенно если блокировка включена на переднем мосту), увеличиваются нагрузки на узлы и агрегаты трансмиссии (особенно на коробку передач, карданную передачу и полуоси).
Ниже описаны наиболее распространенные типы самоблокирующихся дифференциалов, применяемые в конструкции современных автомобилей.
***
Фрицкионный (дисковый) самоблокирующийся дифференциал включает пакет фрикционных дисков (фрикционную муфту), установленный между корпусом дифференциала и полуосевой шестерней. При прямолинейном движении автомобиля корпус дифференциала вращается синхронно с обеими полуосями, но как только возникает разница в скоростях вращения корпуса и одной из полуосей, на отстающее колесо подается дополнительный момент благодаря наличию трения в пакете дисков. Другими словами, когда дифференциал пытается передать одной полуоси чрезмерный крутящий момент (колесо попало на лед и сопротивление кручению очень мало), сила трения между дисками препятствует возникновению большой разницы. Разумеется, если величина момента превысит силу трения в дисках, вращение все равно перераспределится на ось, которая вращается с меньшим сопротивлением. Недостатком такого дифференциала является усиленный износ дисков и необходимость использовать специальные смазочные материалы, иначе диски быстрее засаливаются и блокировка перестает работать.
***
Вязкостная муфта (вискомуфта) состоит из набора близко расположенных друг к другу перфорированных дисков, одна половина которых соединяется с помощью выступов с внутренней ступицей муфты, а вторая наружными выступами с корпусом. Между дисками находится силиконовая (кремнийорганическая) жидкость высокой вязкости. Валы муфты могут свободно вращаться с небольшой разницей в угловых скоростях, но, если разница в скоростях увеличивается, жидкость внутри муфты густеет, начинает действовать как твердое тело и предотвращает чрезмерное проскальзывание дисков. Возникающий блокирующий момент обусловлен свойствами вязкой жидкости. Если в качестве дифференциала использовать такую муфту, она будет перераспределять крутящий момент так, что большая его часть будет поступать на колеса, вращающиеся с меньшей скоростью.
К недостаткам вязкостной муфты следует отнести инертность ее блокировки - муфта срабатывает с запаздыванием. Неизбежный нагрев жидкости в муфте, который происходит при проскальзывании дисков, приводит к изменению ее характеристик. Существенным недостатком таких устройств является их влияние на процесс торможения, поскольку при резком торможении может произойти одновременное блокирование всех колес автомобиля. При использовании вязкостных муфт в трансмиссиях автомобилей с антиблокировочными тормозными системами приходится применять дополнительные устройства для разблокирования муфт при торможении.
***
Гидророторный (героторный) самоблокирующийся дифференциал (Gerodisk или Hydra-lock) - конструктивно и принципиально похож на фрикционный самоблокирующийся дифференциал, только между шестерней полуоси и корпусом дифференциала имеется, помимо фрикциона, масляный насос с поршнем. При возникновении разницы угловых скоростей полуоси и корпуса, поршень нагнетает масло и сжимает фрикцион, который, в свою очередь, блокирует шестерню полуоси с чашкой дифференциала, перераспределяя крутящий момент на отстающую полуось за счет возникшей силы трения.
***
Такие дифференциалы еще называют червячными или винтовыми. Работа зубчатого самоблокирующиеся дифференциала основана на свойстве червячной пары расклиниваться и блокировать полуоси при определенном соотношении крутящих моментов. Дифференциал блокируется из-за разности крутящих моментов на полуосях. Винтовой дифференциал Torsen (англ. «TORque SENsing» - чувствующий крутящий момент) представляет собой механический самоблокирующийся дифференциал, в котором используется сложный набор червячных шестерен.
Набор шестерен внутри дифференциала состоит из ведомых (полуосевых) червячных колес и ведущих (сателлитов) червячных шестерен. Основной особенностью такой конструкции является то, что червячные шестерни могут приводить во вращение другие шестерни, но сами не могут приводиться во вращение. Такая особенность приводит к появлению некоторой степени блокирования дифференциала. При низких значениях входного крутящего момента шестерни дифференциала вращаются свободно и его действие напоминает работу обычного симметричного дифференциала. Когда входной крутящий момент увеличивается, набор червячных шестерен нагружается и в определенный момент два выходных вала блокируются, т. е. как только одно из колес теряет тягу, разница в крутящем моменте колес приводит к заклиниванию шестерен и частичной блокировке дифференциала.
Форма и размер зубчатых колес в этом дифференциале определяет коэффициент передачи крутящего момента. Например, если дифференциал конструкции Torsen сконструирован с передаточным числом 5:1, то он способен дифференцировать крутящий момент между колесами до 5-кратной величины. Дифференциал конструкции типа Quaife отличается тем, что оси сателлитов параллельны полуосям автомобиля. Сателлиты расположены в специальных нишах чашки дифференциала. При этом парные сателлиты имеют не прямозубое зацепление, а образуют еще одну червячную пару, которая, расклиниваясь, так же участвует в процессе блокировки. Аналогичную конструкцию имеет дифференциал конструкции типа Eaton TrueTrac Differential.
***
Кулачковый самоблокирующийся дифференциал, срабатывает при разности угловых скоростей вращения полуосей. Принцип работы кулачковых блокировок достаточно прост. Вместо классического шестеренчатого планетарного механизма используются кулачковые или зубчатые пары, которые при небольшой разнице в угловых скоростях полуосей имеют возможность взаимно проворачиваться (перескакивать), а при пробуксовке резко заклиниваются и полностью блокируют полуоси друг с другом.
Для этих блокировок характерны шумы и щелчки в редукторе, вызванные перескакивание механизма разблокировки дифференциала. Поэтому такая блокировка раньше в основном применялась применяется только в военной и специальной технике, где нужно большое тяговое усилие и долговечность в ущерб управляемости и комфорту. В ведущих мостах современных автомобилей повышенной проходимости наиболее распространена конструкция кулачкового дифференциала типа Detroit Soft Locker со специальным демпфирующим устройством на каждой полуоси, частично поглощающим шумы, характерные для работы этой блокировки. На отдельной странице приведено подробное описание кулачкового дифференциала повышенного трения, применяемого в конструкции автомобиля ГАЗ-66-11.
***
Межосевые дифференциалы
k-a-t.ru
Как и следует из названия, одинарные (или одноступенчатые) главные передачи состоят из одной пары зубчатых колес (шестерен), которые могут быть цилиндрическими, коническими с прямыми или спиральными зубьями, а также гипоидными. Применение того или иного типа конических зубчатых колес диктуется особенностями компоновки автомобиля, возможностью упрощения конструкции агрегатов, снижения стоимости их изготовления и эксплуатации.
***
Цилиндрические главные передачи широко используются в переднеприводных легковых автомобилях с поперечным расположением двигателя, например семейства ВАЗ-2108, -09, -10 и других. При этом обычно главная передача объединяется в одном корпусе (картере) с коробкой перемены передач, что позволяет существенно упростить и удешевить конструкцию трансмиссии. Пример конструктивного выполнения главной передачи автомобиля ВАЗ-2109 приведен на рис. 3, где показана четырехступенчатая коробка передач, выполненная заодно с главной передачей.
Ведущее зубчатое колесо главной передачи, имеющее небольшой размер, обычно выполняется заодно с вторичным валом КПП, ведомое зубчатое колесо крепится на чашке дифференциала. Зубья цилиндрических зубчатых передач могут выполняться прямыми, косыми или шевронными. Передаточные числа в таких главных передачах могут варьировать в пределах от 3,5 до 4,5 с целью снижения шума и габаритных размеров.
***
Такой тип главных передач применяется, когда необходимо изменить не только величину, но и направление передаваемого ведущим колесам крутящего момента. Конические главные передачи с прямыми или (чаще) спиральными зубьями наиболее просты по конструкции и технологичны в производстве, поэтому широко применяются на легковых автомобилях с приводом на задние колеса и грузовых автомобилях малой и средней грузоподъемности. Поскольку оси ведущего и ведомого зубчатых колес в таких передачах лежат в одной плоскости и пересекаются, такие передачи называют соосными коническими передачами.
К преимуществам соосных конических передач относится высокий КПД, технологичность производства, относительно невысокие требования к качеству смазочного материала и простота технического обслуживания. Тем не менее, у таких передач есть один существенный недостаток – их применение в конструкции автомобиля не позволяет снизить расположение центра масс и общую компоновку кузова автомобиля, что для многих легковых автомобилей и небольших грузовиков является актуальным вопросом.
По этой причине в качестве одинарной главной передачи некоторых легковых и грузовых автомобилей применяются конические передачи с перекрещивающимися осями зубчатых колес, т. е. оси колес в таких передачах лежат не в одной плоскости и не пересекаются. Такие передачи называются гипоидными.
***
Гипоидная главная передача применяется на отечественных автомобилях ГАЗ-66-11, ЗИЛ-431410, ЗИЛ-133, марки «Волга» и многих других. Ось ведущего вала и ведущей шестерни в гипоидной передаче расположена ниже оси ведомой шестерни на величину «Е» (рис. 1, б), называемую гипоидным смещением. Такая конструкция главной передачи позволяет ниже расположить карданную передачу заднеприводного автомобиля и, тем самым, сделать ниже компоновку всего автомобиля. При этом улучшается такой важный эксплуатационный показатель автомобиля, как устойчивость к опрокидыванию, а также появляется возможность сделать ниже пол автомобиля, особенно в районе «карданного тоннеля», что повышает комфорт пассажиров заднего сиденья заднеприводного легкового автомобиля. Иногда в многоосных автомобилях смещение «Е» в гипоидных передачах делают вверх, что позволяет сделать ведущий вал проходным, а на переднеприводных автомобилях такая конструкция позволяет проще выполнить условия компоновки. Смещение «Е» обычно выполняется в пределах 30…45 мм в зависимости от размера передачи.
В гипоидных передачах зубья зубчатых колес имеют спиральную форму, благодаря чему достигается увеличение площади контакта зубьев, бесшумность их работы и прочностные показатели передачи. Однако при такой конструкции конической передачи существенно повышаются силы трения между поверхностями зубьев колес, в зоне контакта появляется эффект поперечного и продольного скольжения зубьев, из-за чего в гипоидных передачах приходится применять дополнительное упрочнение поверхностей зубьев зубчатых колес и специальные смазочные материалы для увеличения срока их службы.
Скольжение зубьев приводит к снижению КПД передачи и даже возможности ее заедания (при превышении допустимой нагрузки), а применение относительно дорогостоящих смазок – к удорожанию технического обслуживания, что относится к недостаткам гипоидных передач.
Достоинством гипоидных передач является плавность хода и низкий уровень шума во время работы, а такой недостаток, как продольное скольжение имеет и положительную сторону, поскольку благодаря ему улучшается приработка зубьев колес передачи. Увеличение зоны контакта зубьев позволяет уменьшить размеры ведущего зубчатого колеса, поскольку при работе передачи нагрузка на каждый зуб уменьшается. Кроме того, как указывалось выше, применение гипоидных передач позволяет корректировать компоновку трансмиссии и общую компоновку автомобиля.
***
На автомобиле ГАЗ-66-11 (рис. 2) главная передача – гипоидная, смонтирована в отдельном картере редуктора, который свободно вставляется в отверстие картера моста и закрепляется болтами. Он может быть снят с автомобиля без отсоединения моста. Гипоидное смещение «Е» в передаче равно 32 мм, передаточное число – 6,83.
Основные элементы конструкции главной передачи: картер 2, ведущее зубчатое колесо 9, ведомое зубчатое колесо 17. Картер является базовой деталью. Он отлит из ковкого чугуна. В картере имеется контрольное отверстие, закрытое резьбовой пробкой 10 для заправки смазкой и контроля ее уровня.
Ведущее зубчатое колесо 9 главной передачи изготовлено как одно целое с валом. Его опорами являются два конических подшипника 8, смонтированных в стакане 6, и один цилиндрический подшипник 11, установленный в гнезде картера.
Регулировку зацепления зубчатых колес осуществляют прокладками 5. Регулировка в процессе эксплуатации не нарушается благодаря наличию предварительного натяга в подшипниках 8. В заднем мосте большое внимание уделено смазыванию конических подшипников ведущего зубчатого колеса. Смазочный материал к этим подшипникам подводится принудительно, для чего в картере установлена маслосъемная втулка, которая, соприкасаясь с ведомым зубчатым колесом, собирает масло и направляет его к подшипникам по специальному каналу. Ведомое зубчатое колесо 17 прикреплено к корпусу дифференциала 3 корончатыми гайками. Предварительный натяг подшипников 12 зубчатого колеса 17 регулируют гайками 15 и 20. Этими гайками регулируют величину бокового зазора, а также величину и расположение пятна контакта в зацеплении гипоидных зубчатых колес.
Для предотвращения чрезмерных деформаций зубчатого колеса при передаче максимальных усилий в картере редуктора установлен упор 4 регулируемого типа. Он состоит из винта, напрессованной на него бронзовой втулки и гайки. В случае ослабления затяжки гайки необходимо регулировочный винт завернуть до отказа, затем отвернуть его на 1/6 оборота и законтрить гайку. Благодаря этому зазор между торцами ведомого зубчатого колеса 17 и втулкой упора будет восстановлен.
Для предотвращения повышения давления внутри картера моста при нагревании деталей и смазочного материала во время работы в картере устанавливают сапун – специальный клапан, соединяющий внутреннюю полость моста с атмосферой.
***
Применение конических и гипоидных зубчатых передач ограничено значением передаточного числа и несущей способностью зубчатого зацепления, поскольку при передаче значительного крутящего момента необходимо увеличивать модуль зуба, размеры зубчатых колес и общие габариты главной передачи. Это негативно сказывается на компоновке автомобиля и дорожном просвете, который существенно уменьшается при увеличении габаритных размеров средней части ведущего моста, в которой обычно располагается редуктор главной передачи. Чтобы снизить нагрузку на зубья зубчатых колес и уменьшить габариты агрегатов на автомобилях большой грузоподъемности применяют двойные (двухступенчатые) главные передачи.
***
Двойная главная передача
k-a-t.ru
Межосевой дифференциал может быть сконструирован так, чтобы распределять крутящий момент несимметрично. Если распределение момента по осям неравное, то большая часть момента обычно передается к задним колесам. Это объясняется тем, что при разгоне автомобиля или движении на подъем большая часть массы автомобиля перераспределяется на задние колеса и они могут реализовать больший крутящий момент, чем передние, и, кроме того, уменьшение доли крутящего момента, поступающего к передним колесам, улучшает управляемость автомобиля и меньше подвергает ее влиянию изменения крутящего момента.Для любого автомобиля с четырьмя ведущими колесами важно обеспечить движение автомобиля в случае, если одно из колес теряет сцепление с дорогой. Если одно из колес на оси буксует, то дифференциал передает на другое крутящий момент, недостаточный для движения. Если автомобиль имеет привод на четыре колеса и три дифференциала, то достаточно попасть одним колесом на скользкую поверхность, чтобы лишить автомобиль способности тронуться с места. Существуют различные способы борьбы с этим нежелательным свойством. Один из таких способов—это блокировка дифференциала. При заблокированном дифференциале крутящий момент, подводимый к колесам с лучшим сцеплением, увеличивается. Необходимо учитывать, что, если вся величина крутящего момента передается в одном направлении, карданный вал и полуоси должны быть сделаны более прочными, чтобы исключить возможность их поломки. Внедорожные автомобили, работающие в сложных условиях, могут иметь устройства, блокирующие как межосевой, так и задний межколесный дифференциалы. Блокировка дифференциала передней оси обычно не предусматривается из-за негативного воздействия на управляемость автомобиля. Другим распространенным способом улучшения характеристик трансмиссий современных полноприводных автомобилей является применение различных устройств повышенного трения, применяющихся в качестве межосевых и задних дифференциалов. Самый простой способ заключается в создании дополнительного трения при проскальзывании деталей в дифференциале. Здесь, однако, требуется ограничить величину проскальзывания таким образом, чтобы оно не оказывало чрезмерного влияния на возможность движения колес автомобиля с небольшой разницей в угловых скоростях при обычном повороте. Таким образом, дифференциалы повышенного трения должны быть такими, чтобы передавать только часть крутящего момента на колесо с хорошим сцеплением. Следует помнить, что любой дифференциал повышенного трения, независимо от места его расположения (в раздаточной коробке или ведущих мостах) отнимает часть механической энергии переводя ее в тепло, а, значит, увеличивает расход топлива. Повышается также изнашивание шин и трансмиссии в целом. Поэтому простые устройства с фрикционными шайбами или кулачковые дифференциалы устанавливались главным образом на грузовиках повышенной проходимости, то есть там, где обеспечение преодоления бездорожья считается более важной задачей, чем обеспечение экономичности. В раздаточных коробках таких автомобилей часто дифференциал вообще отсутствовал (ГАЗ-66, УАЗ) и оба моста имели жесткую связь между собой. При движении по сухому асфальту во избежание чрезмерного изнашивания шин передний мост отключался, так что полноприводными эти автомобили могли быть только вне дорог или в зимнее время года. Гораздо лучше, если дифференциал сможет «почувствовать» момент начала проскальзывания колеса и сумеет перераспределить крутящий момент на отстающее колесо. Другими словами, желательно использовать самоблокирующийся дифференциал. В ранее выпускавшихся моделях использовались вязкостные муфты (вискомуфты) и дифференциалы типа Torsen. Иногда применялось их сочетание: вязкостные муфты в качестве межосевых дифференциалов, а Torsen в качестве заднего дифференциала. В настоящее время все большее распространение получают фрикционные муфты с контролируемой степенью блокировки, когда фрикционные диски сжимаются с определенным усилием. Такие муфты могут применяться для управления распределением крутящего момента между передними и задними колесами под электронным контролем. Конструкторы современных полноприводных легковых автомобилей предлагают использовать такие чувствительные устройства, управляющие сцеплением колес с дорогой и поведением автомобиля вместо простой блокировки дифференциалов.
Устройство вязкостной муфты (вискомуфты):1 — корпус;2 — вал корпуса;3, 6 — ведущий и ведомый валы;4 — диски;5 — уплотнения
Вязкостная муфта (патент Фергюссона) является наиболее простым и дешевым устройством повышенного трения, и поэтому ее часто применяют в трансмиссиях автомобилей.Вязкостная муфта состоит из набора близко расположенных друг к другу перфорированных дисков, одна половина которых соединяется с помощью выступов с внутренней ступицей муфты, а вторая наружными выступами с корпусом.Между дисками находится силиконовая (кремнийорганическая) жидкость высокой вязкости. Валы муфты могут свободно вращаться с небольшой разницей в угловых скоростях, но, если разница в скоростях увеличивается, жидкость внутри муфты начинает действовать как твердое тело и предотвращает чрезмерное проскальзывание дисков. Возникающий блокирующий момент обусловлен свойствами вязкой жидкости. Если в качестве дифференциала использовать такую муфту, она будет перераспределять крутящий момент так, что большая его часть будет поступать на колеса, вращающиеся с меньшей скоростью.К недостаткам вязкостной муфты следует отнести экспоненциальный закон ее блокировки. Муфта срабатывает с запаздыванием. Неизбежный нагрев жидкости в муфте, который происходит при проскальзывании дисков, приводит к изменению ее характеристик. Существенным недостатком таких устройств является их влияние на процесс торможения, поскольку при резком торможении может произойти одновременное блокирование всех колес автомобиля. При использовании вязкостных муфт в трансмиссиях автомобилей с антиблокировочными тормозными системами приходится применять дополнительные устройства для разблокирования муфт при торможении.
Межосевой дифференциал Torsen:1, 3 — правая и левая полуосевые шестерни;2 — корпус дифференциала;4 — сателлит, связанный с правой полуосевой шестерней;5, 7 — выходные валы дифференциала;6 — сателлит, связанный с левой полуосевой шестерней
Дифференциал Torsen (TORque SENsing — чувствующий крутящий момент) представляет собой механический самоблокирующийся дифференциал, в котором используется сложный набор червячных шестерен.Набор шестерен внутри дифференциала состоит из ведомых (полуосевых) червячных колес и ведущих (сателлитов) червячных шестерен. Основной особенностью такой конструкции является то, что червячные шестерни могут приводить во вращение другие шестерни, но сами не могут приводиться во вращение. Такая особенность приводит к появлению некоторой степени блокирования дифференциала. В зависимости от величины передаточного числа и конструкции дифференциала, крутящий момент может распределяться по осям автомобиля в соотношении от 2,5:1 (70 % : 30 %) до 6:1 (86 % : 14 %) или даже до 7:1 (87.5 % : 12.5 %), а также распределяться в любых промежуточных значениях. При низких значениях входного крутящего момента шестерни дифференциала вращаются свободно и его действие напоминает работу обычного симметричного дифференциала. Когда входной крутящий момент увеличивается, набор червячных шестерен нагружается и в определенный момент два выходных вала блокируются.
Межосевой дифференциал Torsen Audi Quattro:1 — корпус дифференциала;2,4 — передняя и задняя шестерни;3 — червячные сателлиты;5 — фланец карданной передачи;6 — ось сателлитов;7 — прямозубые шестерни;8 — ведомый вал;9 — полый ведущий вал;А — к передней оси;В — к задней оси
Дифференциал Torsen имеет линейную характеристику, перераспределение крутящего момента происходит практически мгновенно и он не оказывает влияния на процесс торможения. Эти свойства механизма обусловили его широкое использование в качестве межколесных и межосевых дифференциалов автомобилей. Основным недостатком является сложность его изготовления и сборки и, как следствие, высокая стоимость.
Принцип действия активной гидравлической муфты:1 — выходной вал;2 — рабочий поршень;3 — диски;4 — поршневой насос;5 — управляющий клапан;6 — входной вал
Вязкостные муфты и дифференциалы Torsen являются пассивными системами. В последние годы в конструкции трансмиссий современных автомобилей все чаще начинают применять активные устройства, представляющие собой муфты, в которых для блокирования валов используются многодисковые мокрые сцепления.Для управления многодисковым сцеплением используется давление масла, которое воздействует на поршень, сжимающий диски. Давление масла регулируется с помощью контрольного клапана. Крутящий момент с помощью таких муфт может распределяться как между передней и задней осями автомобиля, так и между колесами одной оси.
Муфта HaldexШведская фирма Haldex по своему патенту выпускает муфту с многодисковым мокрым сцеплением, электрическим гидронасосом и гидроаккумулятором.Электрический насос работает только при движении автомобиля и создает небольшое давление масла, для того чтобы не происходило задержки в срабатывании муфты. Давление на поршень, сжимающий диски сцепления, поступает от гидравлического поршневого насоса, который создает давление, как только возникает различие в угловых скоростях соединенных муфтой валов. Давление, создаваемое насосом, пропорционально разнице в частоте вращения валов. Управляет работой муфты Haldex встроенный в нее электронный блок управления, который связан с другими электронными системами управления автомобилем. Муфта может работать при любых скоростях движения автомобиля как при движении вперед, так и при заднем ходе. Она не влияет на работу антиблокировочной системы (АБС) вследствие очень быстрой активации и деактивации и обеспечивает полностью контролируемое распределение крутящего момента по осям. В настоящее время муфты Haldex устанавливаются в трансмиссиях полноприводных версий автомобилей.
wiki.zr.ru
Сто с лишним лет назад впервые нашел применение на транспорте механизм, называемый дифференциалом. Француз Л. Болле оснастил им в 1878 году свой паровой автомобиль «Манселль», а годом позже англичанин Д. Старлей применил дифференциал для трехколесного велосипеда. В дальнейшем этот механизм стал неотъемлемой принадлежностью автомобиля.
Рис 1. — Конический дифференциал автомобиля ГАЗ—51: 1 — ведомая шестерня; 2, 7 — коробка дифференциала; 3, 6 — полуосевые шестерни; 4 — сателлиты; 5 — крестовина (ось) сателлитов.Ведущие колеса проходят при движении на повороте или по неровной дороге разные расстояния. Если оба колеса получают от двигателя вращение с одинаковой скоростью, то одно из них в таких условиях непременно будет проскальзывать. Установленный между колесами дифференциал позволяет им делать разное число оборотов. Он может иметь либо конические шестерни (рис. 1), как у большей части автомобилей, либо цилиндрические (рис. 2). Работают оба одинаково.
На повороте внутреннее колесо и связанная с ним через полуось дифференциальная шестерня 3 проходят меньший путь и вращаются медленнее. В свою очередь, сателлиты 4 перекатываются по замедлившей вращение шестерне 3 и вращаются вокруг своих осей. При этом они сообщают дополнительную скорость вращения другой дифференциальной шестерне 6 и внешнему колесу. Работа дифференциала характеризуется двумя свойствами, определяющими его достоинства и недостатки.
Рис 2. — Цилиндрический дифференциал (позиции те же, что и на рис. 1).Первое свойство таково, что сумма оборотов дифференциальных шестерен (и связанных с ними полуосей) равна удвоенному числу оборотов дифференциальной коробки (или, иными словами, ведомой шестерни главной передачи). Это означает, что, когда одно колесо неподвижно, другое начинает вращаться вдвое быстрее. А если остановить машину трансмиссионным тормозом, то есть сообщить дифференциальной коробке нулевое число оборотов, полуоси (следовательно, и колеса) будут вращаться с одинаковой скоростью в разные стороны. Этим свойством пользуются опытные водители легковых автомобилей, чтобы развернуть машину на месте, не прибегая к помощи руля.
Второе свойство — распределение между дифференциальными шестернями (полуосями) поступающего к ним крутящего момента в заданном соотношении. В большей части конструкций он распределяется поровну, и подобные дифференциалы называют симметричными. Соотношение делают и иным — пропорциональным нагрузке на колеса. В этом случае дифференциал называют несимметричным. Такой механизм можно встретить на тяжелом мотоцикле «Днепр—12» с ведущим колесом коляски (соотношение 63 и 37%).
Вернемся к хорошо знакомому всем автомобилистам симметричному дифференциалу заднего ведущего моста. В силу второго свойства, когда одно из колес машины буксует и из-за отсутствия сцепления с грунтом не передает крутящего момента, механизм неумолимо сообщает другому колесу такой же, то есть нулевой момент. При этом свободное от нагрузки буксующее колесо быстро набирает обороты, а колесо, находящееся на твердом грунте, в соответствии с первым свойством механизма уменьшает свою скорость вращения и в конце концов останавливается.
Как видим, второе свойство дифференциала обусловливает большой недостаток, который ограничивает проходимость автомобиля. Для его устранения применяется блокировка действия дифференциала в момент начала буксования колеса.
Рис 3. — Механизм блокировки межосевого дифференциала автомобиля ВАЗ—2121: 1 — ведомый вал, связанный с ведомой шестерней дифференциала; 2 — подвижная зубчатая муфта; 3 — коробка дифференциала; 4 — зубчатый венец ведомого вала.Ручная блокировка (рис. 3) осуществляется кулачковой или зубчатой муфтой 2, которая соединяет коробку 3 дифференциала и одну из дифференциальных шестерен и связанную с ней полуось 1. Однако, каким бы ни был привод блокирующего устройства (механический, пневматический, электрический), момент включения его определяется опытом и квалификацией водителя, который должен своевременно почувствовать начало буксования. Подчас после преодоления трудного участка он забывает или запаздывает выключить блокировку. Отсюда повышенные износ шин, расход топлива, дополнительные нагрузки на детали трансмиссии.
Сложнее и дороже автоматические блокирующие устройства, но за последнее время они получают все более широкое распространение. Среди десятков конструкций наиболее известны два типа самоблокирующихся механизмов — кулачковый и фрикционный.
Рис 4. — Самоблокирующийся кулачковый дифференциал автомобиля ГАЗ—66: 1 — ведомая шестерня; 2 — коробка дифференциала; 3 — шлицевая обойма правой полуоси; 4 — сухарик; 5 — шлицевая обойма левой полуоси; 6 — крышка коробки дифференциала.В кулачковом самоблокирующемся дифференциале (рис. 4) два ряда сухариков 4 находятся в сепараторе, который связан с крышкой коробки дифференциала. Размещенные между обоймами 3 и 5, каждая из которых посредством шлицев соединена со своей полуосью ведущего моста, сухарики могут перемещаться в окнах сепаратора под действием кулачков на обоймах 3 и 5.
Во время прямолинейного движения машины крутящий момент передается через ведомую шестерню 1 на крышку 6 коробки дифференциала и связанный с ней сепаратор, далее — на сухарики 4. Сухарики заклиниваются (сечение А—А на рис. 4) между кулачками обойм 3 и 5 и передают на них и, следовательно, на полуоси крутящий момент.
Как только одно из колес (то есть одна из полуосей и обойм 3 и 5) начнет пробуксовывать или «забегать» на повороте, соответствующая обойма поворачивается относительно другой так (сечение Б—Б), что сухарики 4 свободно, без заклинивания располагаются между их кулачками. Крутящий момент не передается, и обе обоймы (значит и оба колеса) могут поворачиваться независимо одна от другой. В следующий момент взаимное расположение обойм изменяется, и сухарики заклиниваются между ними, вновь передавая крутящий момент. В этой конструкции на поворотах и при буксовании происходят попеременно пульсирующая передача крутящего момента и взаимное проворачивание колес. Такой механизм нередко можно встретить на автомобилях повышенной проходимости.
Рис 5. — Самоблокирующийся фрикционный дифференциал «Дана»: 1 — фланец на коробке дифференциала для крепления ведомой шестерни; 2, 7 — шкворни крестовины; 3 — фрикцион; 4 — коробка дифференциала; 5 — обойма фрикциона; 6 — полуосевая шестерня; 8 — ось пальцев крестовин.Фрикционные самоблокирующиеся дифференциалы (рис. 5), большую часть которых выпускает фирма «Дана» (США), работают на другом принципе. При движении по прямой они функционируют как обычные дифференциалы с коническими шестернями. Как только на повороте или в начале пробуксовки одно из колес и связанная с ними полуосевая шестерня 6 начинают проворачиваться относительно другого колеса и шестерни, при вращении сателлитов дифференциала возникают направленные в противоположные стороны усилия. Поскольку крестовина дифференциала «Дана» состоит из двух независимых шкворней 2 и 7, то под действием этих усилий концы шкворней, перемещаясь в фигурных пазах коробки 1 дифференциала, отодвигаются один от другого. При этом через сателлиты и скользящие на шлицах полуосевые шестерни 5 они сжимают пакет фрикционных дисков 3. Каждый из двух пакетов выполняет роль блокировочной тормозной муфты, которая притормаживает полуосевую шестерню относительно коробки дифференциала тем больше, чем выше осевое усилие, создаваемое шкворнями. А оно, в свою очередь, пропорционально степени взаимного поворота полуосевых шестерен, то есть колес.
Такие самоблокирующиеся дифференциалы, относительно сложные и дорогостоящие, применяют на легковых машинах, а также на гоночных и раллийных автомобилях.
Рис 6. — Межколесный симметричный конический неблокируемый дифференциал автомобиля «Руссо-Балт-С24-30» 1911 года. Принципиально конструкция узла за 70 лет не претерпела изменений: 1 — ведомая коническая шестерня; 2 — сателлит; 3 — дифференциальная шестерня; 4 — крестовина; 5 — коробка дифференциала; 6 — полуось.Все эти разнообразные дифференциалы, конические и цилиндрические, симметричные и несимметричные, блокируемые и неблокируемые, могут быть использованы на автомобилях в качестве и межколесных и межосевых. Пока речь у нас шла о межколесных, которые применяются очень давно, и их базовая конструкция (рис. 6) за последние 70 лет мало изменилась. Распространение внедорожных автомобилей со всеми ведущими колесами, трехосных грузовиков с колесной формулой 6X4 вызвало к жизни в 30-е годы так называемые межосевые дифференциалы, устанавливаемые в раздаточной коробке или в одном из ведущих мостов.
Для чего нужен межосевой дифференциал? На легковом автомобиле повышенной проходимости (ВАЗ—2121), трехосном грузовике с колесной формулой 6X4 (ЗИЛ—133Г1, КамАЗ—5320), трехосном внедорожном грузовике со всеми ведущими колесами (ЗИЛ-131, «Урал—375Д», «Урал—4320») ведущие мосты могут работать в разных по сцеплению колес с дорогой условиях, перекатываться через неровности, проходя в один и тот же момент разный по длине путь. Это означает, что возможны вращение колес одного ведущего моста относительно колес другого и их пробуксовка. Следовательно, в трансмиссию таких машин необходимо включать дифференциал между ведущими мостами так же, как и между ведущими колесами, и по тем же причинам предусмотреть устройство для их блокирования.
Рис 7. — Межосевой несимметричный цилиндрический блокируемый дифференциал лесовозного автомобиля МАЗ—501: 1 — вал привода переднего моста; 2 — шлицевая муфта блокировки; 3 — шлицевой хвостовик коробки дифференциала; 4 — дифференциальная шестерня привода переднего моста; 5 — ведомая шестерня, объединенная с коробкой дифференциала; 6 — дифференциальная шестерня привода заднего моста; 7 — вал привода заднего моста; 8 — сателлит.Для четырехосного внедорожного автомобиля могут потребоваться семь дифференциалов (четыре межколесных, два между парами ведущих мостов и один центральный) с устройствами для их блокировки. Это усложняет конструкцию, и, естественно, нередко возникает компромиссное решение. На двух- и трехосных машинах в большинстве случаев применяется один межосевой дифференциал. У ВАЗ—2121 (см. рис. 3), ЗИЛ—133Г1, КамАЗ—5320 он симметричный. Что же касается таких машин, как двухосные лесовозы МАЗ—501 и МАЗ—509, то у них нагрузка на заднюю ведущую ось при буксировке стволов деревьев вдвое больше, чем на переднюю. Поэтому межосевой несимметричный дифференциал (рис. 7) делит между мостами крутящий момент в соотношении 2:1.
Обратимся к устройству межосевых дифференциалов ЗИЛ—133Г1 (рис. 8) и КамАЗ—5320 (рис. 9). Разные по конструктивному выполнению, они одинаковы по принципиальному решению. У обеих машин ведущими являются два задних моста, объединенных в тележку. От коробки передач крутящий момент поступает к среднему ведущему мосту, в который вмонтирован симметричный блокируемый конический межосевой дифференциал. В обоих случаях для блокировки служит зубчатая муфта 8.
У ЗИЛ—133Г1 (см. рис. 8) и ЗИЛ—133ГЯ крутящий момент поступает через ведущий вал 9 и сидящую на его шлицах крестовину на коробку 4 межосевого дифференциала. Сателлиты 2 распределяют крутящий момент поровну между дифференциальными шестернями 1 и 5. От первой вращение передается на цилиндрический редуктор среднего моста и затем к коническим шестерням главной передачи. От второй — через шлицевое сочленение на вал привода заднего моста, который имеет свой цилиндрический редуктор и главную передачу с коническими шестернями. При смещении муфты 8 вправо дифференциальная шестерня 1 зубчатым венцом жестко соединяется через ведущий вал 9 и крестовину 3 с дифференциальной коробкой 4.
Рис 8. — Межосевой симметричный блокируемый конический дифференциал автомобиля ЗИЛ—133ГЯ: 1 — дифференциальная шестерня привода среднего ведущего моста; 2 — сателлит; 3 — крестовина; 4 — коробка дифференциала; 5 — дифференциальная шестерня привода заднего ведущего моста; 6 — вал привода заднего ведущего моста; 7 — ведущая коническая шестерня главной передачи среднего моста; 8 — муфта блокировки; 9 — ведущий вал привода среднего и заднего мостов.На КамАЗ—5320, КамАЗ—5410 и КамАЗ—5511 (см. рис. 9) от коробки передач крутящий момент поступает на ведущий вал 9 (составляющий одно целое с передней половиной коробки 4 межосевого дифференциала), далее через крестовину 3 и сателлиты 2 он распределяется между дифференциальными шестернями 1 и 5. Первая из них соединена шлицами с хвостовиком ведущей конической шестерни в главной передаче среднего ведущего моста. К межколесному дифференциалу и полуосям вращение передается от главной передачи через цилиндрический редуктор. На задний же ведущий мост вращение от шестерни 5 передается связанным с ней шлицами валом 6.
Блокируется межосевой дифференциал смещением влево зубчатой муфты 8. Надвигаясь на зубчатый венец коробки 4 дифференциала, муфта замыкает ее с дифференциальной шестерней 1 и передает крутящий момент на задний ведущий мост, минуя межосевой дифференциал.
Применение межосевого дифференциала позволяет улучшить условия работы ведущих мостов, уменьшить износ покрышек, обеспечить более высокие тяговые качества на скользких дорогах, повысить проходимость по грунту. Включать механизм его блокировки на грузовиках следует, только когда автомобиль остановлен или движется с малой скоростью. Выключать же можно на ходу. На легковых машинах блокировать дифференциал можно на любой скорости.
Рис 9. — Межосевой симметричный блокируемый конический дифференциал автомобиля КамАЗ—5320 (позиции те же, что и на рис. 8).Дифференциальный механизм, как уже было сказано, давно известная конструкция. И тем не менее верно служит доныне, и из десятков тысяч запатентованных изобретений и авторских свидетельств на механизмы подобного назначения, появившихся с тех пор, лишь немногие выдерживают испытание на практике. Червячные самоблокирующиеся дифференциалы, обгонные роликовые муфты и другие устройства на некоторое время получали определенное распространение, но быстро становились достоянием истории. Совсем недавно увидела свет очередная новинка — «гидравлический дифференциал». Его устанавливают на американских легковых автомобилях «Игл» с обоими ведущими мостами в раздаточной коробке, где он играет роль самоблокирующегося межосевого дифференциала. Это — гидромуфта, соединяющая два ведомых элемента — карданные валы ведущих мостов. Муфта заполнена синтетической жидкостью, рецепт которой держится в секрете. Физические свойства жидкости таковы, что при относительном проскальзывании половин гидромуфты вязкость ее начинает пропорционально увеличиваться до тех пор, пока этот состав не загустеет настолько, что блокирует пробуксовку половин муфты. К сожалению, пока нет достоверных данных о поведении жидкости при значительных перепадах температур, ее способности просачиваться через сальники, стоимости. Поэтому при всей заманчивости применения «гидравлического дифференциала» преждевременно делать многообещающие выводы.
А. ЗУБАРЕВ, инженер («За Рулем» №10, 1981)
Литература
В. И. Анохин. Отечественные автомобили. 4-е издание. М., «Машиностроение», 1977, стр. 359-362, 381-383, 393-395, 403-415.Д. Б. Бутенко. Тяжелые мотоциклы. Устройство и эксплуатация. М., Воениздат, 1976, стр. 117-122, 252. И. В. Гринченко, Р. А. Розов и др. Колесные автомобили высокой проходимости. М., «Машиностроение», 1967, стр. 95-102.Н. Н. Коротоношко. Автомобили высокой проходимости. М., Машгиз, 1957, стр. 87-116.А. С. Литвинов, Р. В. Ротенберг, А. К. Фрумкин. Шасси автомобиля. М., Машгиз, 1963, стр. 170-178, 230-257.Ю. Мацкерле. Автомобиль сегодня и завтра (перевод с чешского). М., «Машиностроение», 1980, стр. 65-67, 333-337.И. И. Селиванов. Автомобили и транспортные гусеничные машины высокой проходимости. М., «Наука», 1967, стр. 33-40, 45-56.
own.in.ua
Самоблокирующийся дифференциал
1. позволяет устранить пробуксовку при разных коэффициентах сцепления колес автомобиля. 2. повышает проходимость автомобиля и его управляемость при движении по дорогам с разным покрытием. 3. улучшает динамику разгона автомобиля на дорогах с любым покрытием. ну это все реклама…
вернемся к реальности — зачем оно надо ?! Вы никогда не застревали на своей любимой Волге? Видели как буксует одно колесо которое висит в воздухе или попало в грязь/снег, а второе спокойно стоит и машина никуда не едет? это работает дифференциал его задача передавая крутящий момент на колеса, но при этом позволять им вращаться с разной угловой скоростью но часто этот плюс превращается в большой минус…
и тогда на сцене появляется дифференциал повышенного трения его конструкция позволяет колесам вращаться с немного различной угловой скоростью, но при этом в нужный момент блокироваться и передавать равный крутящий момент от мотора на оба задних колеса
Что такое самоблокирующийся червячный дифференциал? Самоблокирующийся червячный дифференциал (самоблок) — устройство, которое позволяет частично компенсировать главный недостаток свободного дифференциала, а именно его полную беспомощность при наезде одного колеса на скользкое покрытие. По принципу работы, самоблокирующиеся дифференциалы можно разделить на два типа: speed sensitive, то есть срабатывающих от разницы в угловых скоростях вращения полуосей, и torque sensitive — срабатывающих от разницы передаваемого на полуоси крутящего момента. Для понимания работы самоблока сначала разберёмся с принципом работы обыкновенного дифференциала и его недостатками. Дифференциал — это механическое устройство, которое передает крутящий момент с одного источника на два независимых потребителя таким образом, что угловые скорости вращения источника и обоих потребителей могут быть разными относительно друг друга. Такая передача момента возможна благодаря применению так называемого планетарного механизма. В автомобилестроении, дифференциал является одной из ключевых деталей трансмиссии. В первую очередь он служит для передачи момента от коробки передач к колёсам ведущего моста. Принцип работы обыкновенного дифференциала Почему для этого нужен дифференциал? В любом повороте, путь колеса оси, двигающегося по короткому (внутреннему) радиусу, меньше, чем путь другого колеса той же оси, которое проходит по длинному (внешнему) радиусу. В результате этого, угловая скорость вращения внутреннего колёса должна быть меньше угловой скорости вращения внешнего колеса. В случае с не ведущим мостом, выполнить это условие достаточно просто, так как оба колеса могут не быть связанными друг с другом и вращаться независимо. Но если мост ведущий, то необходимо передавать крутящий момент одновременно на оба колеса (если передавать момент только на одно колесо, то возможность управления автомобилем по современным понятиям будет очень плохой). При жесткой же связи колёс ведущего моста и передачи момента на единую ось обоих колёс, автомобиль не мог бы нормально поворачивать, так как колеса, имея равную угловую скорость, стремились бы пройти один и тот же путь в повороте. Дифференциал позволяет решить эту проблему: он передаёт крутящий момент на раздельные оси обоих колёс (полуоси) через свой планетарный механизм с любым соотношением угловых скоростей вращения полуосей. В результате этого, автомобиль может нормально двигаться и управляться как на прямом пути, так и в повороте. Однако, ввиду физики устройства, у планетарного механизма есть очень нехорошее свойство: он стремится передать полученный крутящий момент туда, куда легче. Например, если оба колеса моста имеют одинаковое сцепление с дорогой и усилие, необходимое для раскручивания каждого из колёс одинаковое, дифференциал будет распределять крутящий момент равномерно между колёсами. Но стоит только появится ощутимой разнице в сцеплении колёс с дорогой (например, одно колесо попало на лёд, а другое осталось на асфальте), как дифференциал тут же начнёт перераспределять момент на то колесо, усилие для раскрутки которого наименьшее (то есть на то, которое находится на льду). В результате, колесо, находящееся на асфальте перестанет получать крутящий момент и остановится, а колесо, находящееся на льду примет на себя весь момент и будет вращаться с увеличенной угловой скоростью, причем планетарный механизм будет играть роль редуктора, повышающего скорость вращения этого колеса. Естественно, это явление сильно ухудшает проходимость и управляемость автомобиля. Ведь по логике вещей, в рассмотренной ситуации момент желательно передавать на колесо, расположенное на асфальте, чтобы автомобиль мог продолжить движение. В полноприводных автомобилях дифференциалом обычно оборудованы два моста, а зачастую дифференциал можно обнаружить еще и между мостами (межосевой дифференциал). Таким образом, мы получаем схему трансмиссии, в которой присутствуют целых три дифференциала: два мостовых и один межосевой. Последний необходим для постоянного движения с полным приводом и передачей момента на все четыре колеса. Ведь в повороте колёса рулевого моста (обычно переднего) имеют совсем другие угловые скорости, нежели чем колёса заднего моста. Межосевой дифференциал призван передавать крутящий момент от коробки передач к обоим ведущим мостам с разным соотношением угловых скоростей. Такая схема с тремя дифференциалами является одной из самых распространённых схем для постоянного полного привода (Full time 4WD). Возвращаясь к вышеописанному проблемному свойству планетарного механизма, интересно рассмотреть ситуацию, когда полноприводный автомобиль с межосевым дифференциалом одним из четырёх колёс попал на тот же лёд (или в скользкую яму). Что тогда произойдёт? Дифференциал моста, колесо которого находится на льду, отдаст весь полученный крутящий момент на это колесо. Межосевой дифференциал, в свою очередь, тоже стремится передать крутящий момент туда, куда легче. Естественно, межосевому дифференциалу легче отдать момент на мост с прокручивающимся на льду колесом, нежели чем на мост, колёса которого имеют хорошее сцепление с дорогой и могут двигать автомобиль. В результате, весь крутящий момент от двигателя и коробки передач пойдёт на раскручивание единственного колеса, находящегося на льду. Остальные три колеса остановятся и не будут получать никакого крутящего момента от дифференциалов. Итог: из четырёх ведущих колёс осталось только одно, которое проскальзывает на льду — полноприводный автомобиль «застрял». Как же заставить дифференциалы передавать крутящий момент на колёса с более хорошим дорожным сцеплением? Для этого были разработаны различные способы частичной и полной, ручной и автоматической блокировки дифференциалов, которые будут рассмотрены ниже. Основной целью блокировки дифференциала является передача необходимого крутящего момента обоим его потребителям (полуосям или карданам). Существуют принципиально разные методы решения данной задачи.Самоблокирующийся червячный дифференциал типа «Квайф»
Автором этой конструкции является англичанин Rod Quaife. В данном случае, оси сателлитов параллельны полуосям. Сателлиты расположены в своеобразных карманах чашки дифференциала. При этом парные сателлиты имеют не прямозубое зацепление, а образуют между собой еще одну гипоидную пару, которая расклиниваясь, так же участвует в процессе блокировки.
Принцип работы:
На рисунке приведен эскиз самоблокирующегося дифференциала. Рассмотрим его элементы и принцип работы. Когда одно из колес (например, правое) начинает отставать, связанная с ним полуосевая шестерня 4 вращается медленнее корпуса 1 и поворачивает входящий с ней в зацепление сателлит 5. Он передает движение связанному с ним сателлиту 5 из левого ряда, а тот, в свою очередь, на левую полуосевую шестерню 3. Так обеспечиваются разные угловые скорости колес в повороте. Благодаря разности крутящих моментов на колесах в винтовом зацеплении возникают осевые и радиальные силы, прижимающие полуосевые шестерни 3, 4 и сателлиты 5, 6 торцами к корпусу 1, 2. Сателлиты 5, 6 также прижимаются к поверхности отверстий 8, в которых они расположены. За счет этого и возникают силы осуществляющие частичную блокировку. Степень блокировки определяется соответствующим коэффициентом.
Кулачковый дифференциал
Кулачковый дифференциал является одним из дифференциалов повышенного трения. Такие дифференциалы при передаче крутящего момента к ведущим колесам автомобиля увеличивают его на отстающем колесе по сравнению с забегающем (буксующим).
Принцип работы кулачкового дифференциала иллюстрирует следующая схема:
На ней изображены две зубчатые рейки 2 и 3 со скругленными кулачками, водило дифференциала 1, в отверстиях которого располагаются сухарики 5. Ведущим звеном является водило. Усилие от водила передается на сухарики 5. Сухарики, опираясь закругленными концами на кулачки реек 2 и 3, толкают рейки в направлении перемещения водила. При одинаковых скоростях реек 2 и 3 все элементы на схеме движутся с той же скоростью, а сухарики в отверстиях водила неподвижны. Рассмотрим случай, когда скорость одной рейки, например, нижней рейки 2, становиться выше. Тогда ее кулачек, на который опирается сухарик, «убегает» вперед. Верхняя рейка своим кулачком подталкивает сухарик вниз. Скорость верхней рейки будет меньше, чем скорость водила. Но для перемещения сухарика требуется преодолеть трение в парах «отверстие водила-сухарик» и «сухарик-кулачек верхней рейки». Поэтому усилие, передаваемое от водила на отстающую рейку будет выше, чем на перемещающуюся с большей скоростью.
Для того, чтобы из рассматриваемой схемы получить реальную конструкцию, достаточно «свернуть» в кольцо обе рейки и водило. Цифрами на рисунке обозначены те же детали, что и на предыдущей схеме. Водило 1 соединено с корпусом дифференциала и ведомой шестерней главной передачи. Внутренняя звездочка 2 с кулачками через шлицевое соединение передает момент на левую полуось. Наружная звездочка 3 — на правый борт автомобиля. Представленная конструкция обеспечивает увеличение момента на отстающем колесе в 4-5 раз по сравнению с буксующим. Шариковый дифференциал он же ДАК (Дифференциал автоматический красикова)
Принцип работы • Механизм представляет собой симметричный, механический дифференциал с автоматической блокировкой. • Дифференциал не содержит электронных, пневматических, гидравлических и других компонентов управления. • Чисто механическая система деталей, не требует регулировки, настройки или наладки. • Система смазки стандартная, как у классического дифференциала. • Габариты и вес устройства аналогичен классическому дифференциалу. • Количество основных деталей, 6 шт. • Монтаж автоматического дифференциала на автомобиль не отличается от монтажа классического дифференциала. • Автоматический дифференциал предназначен для работы в трансмиссиях любых колёсных транспортных средств, на различных дорогах и бездорожье, во всёх диапазонах скоростей и нагрузок. 1. Фланец шестерни главной передачи. 2. Корпус дифференциала. 3. Полуоси транспортного средства. 4. Полуосевые элементы. 5. Канал для прохождения шариков. 6. Тела качения – шарики.
«ДАК» — состоит из корпуса 2, с расположенными в центре двумя цилиндрическими полуосевыми элементами 4 торцами соприкасающимися друг с другом. На поверхностях полуосевых элементов выполнена винтовая резьба, на одном правого, на другом левого направления вращения. В корпусе 2 продольно оси его вращения выполнены два параллельных отверстия 5 близко расположенные друг к другу, равные диаметру применяемого шарика. Концы этих отверстий, соединены между собой, образуют замкнутый канал овальной формы, который заполняется шариками 6 одного диаметра. Замкнутая цепочка из шариков 6, если убрать полуосевые элементы 4, может перемещаться в овальном канале 5 совершенно свободно, без помех. Цепочка шариков в канале представляет собой как бы шестерню овальной формы, зубьями которой являются шарики. Одна длинная ветвь овального канала 5 расположена ближе к оси вращения полуосевых элементов 4 и вскрыта вдоль для погружения частей шариков в винтовые канавки резьбы полуосевых элементов. В каждый виток резьбы, заглублено по одному шарику цепочки, соединяя цепочкой шариков оба полуосевых элемента в единую кинематическую схему. Если мы станем поворачивать полуосевые элементы 4 в противоположные стороны, то цепочка шариков 6 придёт в движение, разрешая полуосевым элементам 4 легко и свободно поворачиваться. В этом случае «ДАК» работает как обычный дифференциал. Вращая корпус устройства 2, мы передаём мощность, через цепочку шариков 6 на винтовые канавки полуосевых элементов 4, а они, через полуоси 3, на колёса транспортного средства. При прямолинейном движении автомобиля полуосевые элементы неподвижны. Неподвижны и цепочки шариков их соединяющие. Оба ведущих колеса вращаются с одинаковой скоростью. В повороте наружное колесо увеличивает свои обороты относительно внутреннего колеса. Полуосевой элемент начинает вращаться, воздействуя на цепочки шариков своими винтовыми канавками. Цепочка шариков плавно сдвигается в овальном канале, позволяя другому полуосевому элементу, имеющему винтовые канавки противоположного направления вращения, вращаться в противоположную сторону, уменьшая обороты внутреннего колеса в той же пропорции, в которой увеличиваются обороты наружного. Таким образом, выполняется поворот автомобиля. В случае, когда одно из колёс попадает на скользкий участок, обычный, «классический» дифференциал позволяет колесу с наименьшей тягой увеличивать свои обороты, т.е. буксовать, юзить и т.д. С дифференциалом «ДАК» этого не происходит. Так как в этом случае полуосевой элемент буксующего колеса начинает вращаться. Его вращение, неизбежно вызывает вращение соединённого с ним цепочками шариков противоположного полуосевого элемента, который мгновенно довернёт другое колесо и вытолкнув машину, не даст ей буксовать. То есть проходимость, устойчивость и вездеходность автомобиля существенно увеличивается.
volga.ural.ru