Камаз 44108 тягач В наличии!
Тягач КАМАЗ 44108-6030-24
евро3, новый, дв.КАМАЗ 740.55-300л.с., КПП ZF9, ТНВД ЯЗДА, 6х6, нагрузка на седло 12т, бак 210+350л, МКБ, МОБ
 
карта сервера
«ООО Старт Импэкс» продажа грузовых автомобилей камаз по выгодным ценам
+7 (8552) 31-97-24
+7 (904) 6654712
8 800 1005894
звонок бесплатный

Наши сотрудники:
Виталий
+7 (8552) 31-97-24

[email protected]

 

Екатерина - специалист по продаже а/м КАМАЗ
+7 (904) 6654712

[email protected]

 

Фото техники

20 тонный, 20 кубовый самосвал КАМАЗ 6520-029 в наличии
15-тонный строительный самосвал КАМАЗ 65115 на стоянке. Техника в наличии
Традиционно КАМАЗ побеждает в дакаре

тел.8 800 100 58 94

Техника в наличии

тягач КАМАЗ-44108
Тягач КАМАЗ 44108-6030-24
2014г, 6х6, Евро3, дв.КАМАЗ 300 л.с., КПП ZF9, бак 210л+350л, МКБ,МОБ,рестайлинг.
цена 2 220 000 руб.,
 
КАМАЗ-4308
КАМАЗ 4308-6063-28(R4)
4х2,дв. Cummins ISB6.7e4 245л.с. (Е-4),КПП ZF6S1000, V кузова=39,7куб.м., спальное место, бак 210л, шк-пет,МКБ, ТНВД BOSCH, система нейтрализ. ОГ(AdBlue), тент, каркас, рестайлинг, внутр. размеры платформы 6112х2470х730 мм
цена 1 950 000 руб.,
КАМАЗ-6520
Самосвал КАМАЗ 6520-057
2014г, 6х4,Евро3, дв.КАМАЗ 320 л.с., КПП ZF16, ТНВД ЯЗДА, бак 350л, г/п 20 тонн, V кузова =20 куб.м.,МКБ,МОБ, со спальным местом.
цена 2 700 000 руб.,
 
КАМАЗ-6522
Самосвал 6522-027
2014, 6х6, дв.КАМАЗ 740.51,320 л.с., КПП ZF16,бак 350л, г/п 19 тонн,V кузова 12куб.м.,МКБ,МОБ,задняя разгрузка,обогрев платформы.
цена 3 190 000 руб.,

СУПЕР ЦЕНА

на АВТОМОБИЛИ КАМАЗ
43118-010-10 (дв.740.30-260 л.с.) 2 220 000
43118-6033-24 (дв.740.55-300 л.с.) 2 300 000
65117-029 (дв.740.30-260 л.с.) 2 200 000
65117-6010-62 (дв.740.62-280 л.с.) 2 350 000
44108 (дв.740.30-260 л.с.) 2 160 000
44108-6030-24 (дв.740.55,рест.) 2 200 000
65116-010-62 (дв.740.62-280 л.с.) 1 880 000
6460 (дв.740.50-360 л.с.) 2 180 000
45143-011-15 (дв.740.13-260л.с) 2 180 000
65115 (дв.740.62-280 л.с.,рест.) 2 190 000
65115 (дв.740.62-280 л.с.,3-х стор) 2 295 000
6520 (дв.740.51-320 л.с.) 2 610 000
6520 (дв.740.51-320 л.с.,сп.место) 2 700 000
6522-027 (дв.740.51-320 л.с.,6х6) 3 190 000


Перегон грузовых автомобилей
Перегон грузовых автомобилей
подробнее про услугу перегона можно прочесть здесь.


Самосвал Форд Нужны самосвалы? Обратите внимание на Ford-65513-02.

КАМАЗы в лизинг

ООО «Старт Импэкс» имеет возможность поставки грузовой автотехники КАМАЗ, а так же спецтехники на шасси КАМАЗ в лизинг. Продажа грузовой техники по лизинговым схемам имеет определенные выгоды для покупателя грузовика. Рассрочка платежа, а так же то обстоятельство, что грузовики до полной выплаты лизинговых платежей находятся на балансе лизингодателя, и соответственно покупатель автомобиля не платит налогов на имущество. Мы готовы предложить любые модели бортовых автомобилей, тягачей и самосвалов по самым выгодным лизинговым схемам.

Контактная информация.

г. Набережные Челны, Промкомзона-2, Автодорога №3, база «Партнер плюс».

тел/факс (8552) 388373.
Схема проезда



Виды карбюраторов для автомобиля. Виды карбюраторов


Типы карбюраторов

Строительные машины и оборудование, справочник

Категория:

   Ремонт топливной аппаратуры автомобилей

Типы карбюраторов

Наиболее важной частью системы питания карбюраторного двигателя является смесеобразующее устройство, которое служит для приготовления горючей смеси из паров бензина и воздуха в определенной пропорции. Смесеобразующее устройство, объединенное с поплавковой камерой, представляет собой карбюратор простейшего типа (рис. 17).

Принцип работы смесеобразующего устройства заключается в следующем. Топливо из бака подается в поплавковую камеру, в которой поддерживается постоянный его уровень с помощью поплавкового механизма.

При работе двигателя поршень начинает перемещаться вниз, засасывая воздух в цилиндр. В этом случае поток воздуха приобретает наибольшую скорость в диффузоре смесеобразующего устройства и создает разрежение у устья распылителя. Под действием этого разрежения топливо начинает вытекать из распылителя, разделяется на мельчайшие капельки, перемешивается и испаряется в потоке воздуха, образуя горючую смесь. Таким образом, образовавшаяся горючая смесь через дроссельную заслонку и клапан поступает в цилиндр двигателя. Дроссельная заслонка служит для регулировки подачи необходимого количества горючей смеси в цилиндры на различных режимах работы.

В зависимости от направления потока воздуха в смесеобразу-ющем устройстве карбюраторы подразделяются на несколько типов. Наиболее широко применяют карбюраторы, в которых горючая смесь движется сверху вниз (рис. 17). Такие карбюраторы называют карбюраторами с падающим потоком смеси. Они обеспечивают высокие мощно-стные и экономические показатели и удобное для обслуживания расположение на двигателе. Карбюраторы с движением горючей смеси вверх называют карбюраторами с восходящим потоком. Они относятся к устаревшим конструкциям, поэтому в данном учебнике не рассматриваются.

Для современных многоцилиндровых двигателей стали применять двухкамерные карбюраторы с параллельным и последовательным открытием дроссельных заслонок. Название «двухкамерные» карбюраторы получили по числу имеющихся в них смесительных устройств, или смесительных камер. Двухкамерный карбюратор (рис. 18) с параллельным открытием дроссельных заслонок имеет две смесительные камеры, одну поплавковую камеру и две дроссельные заслонки, закрепленные на одной оси. При повороте оси дроссельные заслонки будут открывать сечение выпускных патрубков карбюратора синхронно, обеспечивая параллельное действие смесительных камер. Каждая смесительная камера карбюратора отдельным трубопроводом соединяется с группой цилиндров и питает их горючей смесью.

Двухкамерный карбюратор с последовательным открытием дроссельных заслонок имеет примерно такое же устройство. Разница заключается лишь в приводе дроссельных заслонок и конструкции выпускного патрубка, который делается общим для обеих смесительных камер. При работе этого карбюратора вначале открывается дроссельная заслонка одной камеры (основной). Как только первая заслонка откроется на 70—80% от полного открытия, начинает открываться дроссельная заслонка второй камеры (дополнительной). При этом вступает в работу дополнительная смесительная камера, обеспечивая поступление в цилиндры большого количества горючей смеси.

Рис. 17. Схема смесеобразующего устройства карбюраторного двигателя: 1 — поплавковая камера карбюратора, 2 — поплавок, 3 — игольчатый клапан, 4 — штуцер подачи бензина, 5 —отверстие, сообщающее полость поплавковой камеры с атмосферой, 6 — входной воздушный патрубок, 7 — распылитель, 8 — диффузор, 9 — смесительная камера, 10 — главный жиклер, 11 — дроссельная заслонка, 12 — выходной патрубок, 13 — впускной клапан, 14 — цилиндр двигателя, 15 — поршень

Применение многокамерных (двухкамерных) карбюраторов позволяет улучшить наполнение цилиндров двигателя горючей смесью, так как уменьшаются потери напора смеси во впускных трубопроводах. Это объясняется тем, что смесь движется постоянно в одном направлении. Особенно хорошие результаты дают такие карбюраторы в V-образных двигателях, где каждая камера карбюратора снабжает горючей смесью один ряд цилиндров. Применение многокамерных карбюраторов обеспечивает увеличение мощности двигателя, снижение расхода топлива и токсичности отработавших газов. Это преимущество многокамерных карбюраторов наиболее полно проявляется у карбюраторов с последовательным открытием дроссельных заслонок.

Рис. 18. Двухкамерный карбюратор с параллельным открытием дроссельных заслонок:1 — поплавковая камера, 2— смесительные камеры, 3 — дроссельные заслонки. 4 — выпускные патрубки карбюратора

Читать далее: Устройство и работа простейшего карбюратора

Категория: - Ремонт топливной аппаратуры автомобилей

Главная → Справочник → Статьи → Форум

stroy-technics.ru

Карбюраторы. История развития карбюраторов. Успехи прошлого и перспективы будущего.

Спросите любого матерого каракумника об автомобильных модификациях минувших дней, и в его глазах вспыхнет искра энтузиазма. Первая стадия тюнинга популярных спортивных авто и мускулкаров из 60-х и 70-х включала в себя выпускной коллектор Hooker, впуск Edelbrock и карбюратор Holley. Тюнинговые впускные коллекторы и карбюраторы были популярны еще во времена гонок по соляным озерам в 1940-х и времена взросления хот-род сообщества в 1950х. Популярность этих деталей остается широкой и в наши дни. Ну чтож, взглянем на историю компании, которая продала 250 млн. карбюраторов? Если вам не особо интересна техническая составляющая или история карбюраторов, рекомендую ознакомиться более душевной статьей о карбюраторах от Валеры Вакуленко.
Пусть некоторых не просвещенных в технических вопросах людей внешний вид карбюраторов приводит в замешательство, на самом деле это очень простые устройства. Если говорить простыми словами, карбюраторы – это механические дозаторы топлива, которые функционируют согласно логическим и вполне понятным физическим законам. За годы существования дизайн карбюраторов эволюционировали с относительно простого до хитровыдуманного, что предлагается сегодня. Разновидностей карбюраторов много, но на протяжении всей истории карбюраторов, автопроизводители использовали три основных типа этих приборов (по направлению потока рабочей смеси): с восходящим, горизонтальным и нисходящим потоком. Карбюраторы с восходящим потоком преимущественно использовались до конца 1930-х годов в авиации, они обладали важной особенностью для работающих на большой высоте моторов - их было трудно залить. Карбюраторы с гравитационной подачей топлива также применялись и на автомобилях. Карбюраторы с восходящим потоком можно было устанавливать ниже карбюраторов с горизонтальным и нисходящим потоком.

Карбюраторы с горизонтальным потоком в основном применялись на рядных «четверках» и «шестерках». Преимущество использования данного типа карбюратора на рядных моторах заключается в том, что на каждый цилиндр идет индивидуальный впускной тракт, топливная линия и дроссель. Для рядного двигателя это важно по той причине, что не каждому цилиндру нужно одинаковое количество смеси, а его можно корректировать за счет длины впускного тракта. Такие карбюраторы выглядят круто. Например, двухкамерный карбюратор Mikuni с горизонтальным потоком, которым заменяют однокамерные стоковые карбюраторы Hitachi S.U. на автомобилях Datsun серии Z и других спортивных японских и европейских автомобилях, это хороший пример качественных карбюраторов с горизонтальным потоком.
История карбюраторов с горизонтальным потоком началась с французской компании Solex, которая занималась проектированием карбюраторов после Первой Мировой войны. На протяжении многих лет компания Solex занималась усовершенствованием карбюраторов с горизонтальным потоком, а их продукция применялась на многих европейских моделях, от итальянских Alfa Romeo, до французских Renault и Peugeot.Примерно в 1960х компания Mikuni приобрела лицензию на производство карбюраторов Solex в Японии. В итоге Mikuni создала один из самых лучших карбюраторов, превзойдя Solex. Сегодня очень трудно найти комплект автомобильных карбюраторов Mikuni, но компания до сих пор выпускает комплекты карбюраторов с горизонтальным потоком для мотоциклов и водного транспорта.Еще одно имя, которое стоит упоминания – Эдуард Вебер. В период 1920-30-х годов Вебер, уже достигший успеха на рынке легковых гражданских автомобилей, с уверенностью вышел на гоночный рынок и начал производство карбюраторов для Maserati и Alfa Romeo. Согласно информации на вебсайте компании, благодаря Веберу после Первой Мировой появились двухкамерные карбюраторы с горизонтальным потоком.
Карбюраторы с нисходящим потоком позволяют поддерживать обильную подачу смеси в двигатель. Большинство восьмицилиндровых двигателей используют карбюраторы с нисходящим потоком, потому что впускной коллектор и карбюратор такого типа легко пристроить между двумя ГБЦ и без проблем снабжать воздухом и топливом каждый цилиндр. Тип карбюраторов с нисходящим потоком стал основным выбором компании Holley с 1950-х годов.Десятки лет карбюраторы Holley были синонимом хот-род культуры, а достигли такой популярности за счет выпуска нескольких карбюраторов, которые стали необходимой модификацией на пути к мощному двигателю. Такие популярные карбюраторы, как серия 4150, 4160, 3310,Double Pumpers и Dominator изменили то, как хотроддеры, гонщики и автоэнтузиасты идут к своей цели. Карбюратор серии 3310, которые применялись на 425-сильной версии Chevrolet Chevelle 1965 года, получили звание самой влиятельной детали для тюнинга от журнала Hot Rod.
История Holley начинается с братьев-подростков Джорджа и Эрла Холли из Брэдфорда, штат Пенсильвания. В конце XIX века братья Холи разработали чертежи и отливные формы для изготовления одноцилиндрового двигателя.В итоге получился трехколесный транспорт, развивающий скорость в 40 км/ч, который затем эволюционировал вот в это – Holley “Motorette”. В 1903 году после встречи с Генри Фордом два брата основали компанию Holley Carburetor, которая занималась производством карбюраторов для компании Ford.Год за годом дело братьев развивалось, особенно в Первую и Вторую Мировые войны, т.к. компания Holley участвовала в военных контрактах и производила топливные системы для лодок Packard, карбюраторы для самолетов DC-3 и B-25 Mitchell. У половины карбюраторов, что прошли через две войны, была печать фирмы Holley. После войны компания сфокусировалась на изготовлении топливных систем для автомобильных заводов, а также создании аналогов. Автомобили становились очень популярны среди американцев в «Золотую Эпоху» американской истории.
В 1940х самыми популярными карбюраторами были Holley 94 и Stromberg 97. Вне зависимости от типа, марки и модели автомобиля, вы можете быть уверены, существовали где-то в стране ребята-хот-роддеры, которые занимались корчеванием этих автомобилей. Вполне привычным делом было видеть закорчеванный хот-род с навороченными карбюраторами, восседающими на впускном коллекторе Edelbrock. Даже сегодня, в эпоху инжекторов и прямого впрыска, можно встретить хот-роды с классическими «плоскоголовыми» моторами, на которые были установлены карбюраторы Stromberg 97.В 1950-х Holley разработали четырехкамерный карбюратор Model 4150, впервые дебютировавший на Ford Thunderbird в 1957 году. Это была невероятно важная инновация в истории карбюраторов. 4150 стал самым популярным карбюратором, который ставили на тюненные авто, благодаря его простому устройству и модульной конструкции.
1960-е это не только пора секса, наркотиков и рок-н-ролла, это десятилетие принадлежало мускулкарам. Такие производители, как Chevrolet, Dodge и Ford в это время выпускали высокомощные версии мускулкаров и в то время, как базовые версии оснащались карбюраторами Quadrajet, Carter AFB, Thermoquad, топливным системам Holley выпала честь стать частью настоящих монстров. Camaro Z/28, Chevelle с биг-блоком, Boss Mustang? Shelby Cobra – лишь немногие из автомобилей, на которые с завода устанавливались 4-х камерные карбюраторы Holley. Holley также сотрудничали с Chevrolet при создании 1967-69 427 Tri-Power Corvette, а также с Chrysler при создании системы Six-Pack.В 1968 году Holley создала самый большой 4-х камерный карбюратор, который компания когда-либо выпускала для автомобилей того времени. Деталь разрабатывалась в секрете с программой NASCAR Ford, его мощность составляла 1050 кубических фут в минуту, окрестили его The Dominator. Даже сегодня карбюраторы Holley применяются во многих классах NASCAR, за исключением серии Sprint Cup, которая перешла на инжекторы в 2012 году.1980-е привнесли несколько изменений в мир карбюраторов. Компания Edelbrock Corporation, которая ранее занималась производством впускных коллекторов, расширила свой профиль до карбюраторов. Хотя большинство автопроизводителей уже перешли на оснащение автомобилей инжекторными топливными системами, карбюраторы все еще доминировали в мото- и автоспорте. Новом тысячелетии карбюраторы продолжали свою эволюции, благодаря широкому применению в авто и мотоспорте. Хотя у инжекторных систем есть свои неоспоримые преимущества, классические карбюраторные автомобили обладают особым характером и харизмой, которых не хватает современным автомобилям. Пусть легендарные компании Mikuni и Solex перестали заниматься производством автомобильных карбюраторов с горизонтальным потоком, такие компании, как Demon, Edelbrock, Holley и Quick Fuel и многие другие продолжают поддерживать жизнь в рынке автомобильных карбюраторов и создают еще более совершенные творения.Оглядываясь назад в историю, можно увидеть прогресс, который прошли различные конструкции карбюраторов и то, как происходит смесь воздуха и топлива перед подачей в камеру сгорания. Некоторые карбюраторы выглядели очень странно (например, Holley Teapot), другие были намного эффективнее остальных (карбюраторы, которые производили в период нефтяного кризиса 1970х), а третьи позволяли автоэнтузиастам выжимать все из своих моторов, как Dominator из серии NASCAR и NHRA.Если не брать во внимание 4-камерные карбюраторы, которые на протяжении десятков лет выглядели одинаково, карбюраторы эволюционировали во многих планах. С улучшением ДВС и увеличением объема моторов, карбюраторы приходилось подстраивать под них и калибровать процесс смеси воздуха и топлива при разных оборотах коленвала. В результате появились высокомощные карбюраторы на подобие Holley Gen 3 Ultra XP Dominator.Современное топливо – настоящее зло для автомобилей, которые долго простаивают без дела, вне зависимости, карбюраторные они или нет. Антикоррозийное покрытие, которое применяется на современных карбюраторах, защищает топливную систему классических автомобилей от высокого содержания этанола и химических добавок, которые могут натворить дел. Эта проблема – одна из самых главных, которую учитывают производители карбюраторов в 21 веке. Вне зависимости от типа карбюратора или его марки, важно уделять ему внимание и соблюдать определенные меры по хранению и эксплуатации, если хотите, чтобы карбюратор служил вам верой и правдой.Материалы, применяемые в изготовлении карбюраторов, тоже менялись со временем. Взгляните на пример современного карбюратора. На фотографии выше представлен 4-камерный карбюратор Holley Ultra XP 4150. Если сравнивать с классическими цинковыми карбюраторами прошлого, XP 4150 изготовлен из облегченных деталей, в нем применяются штампованные алюминиевые пластины и измерительные блоки. Снижение веса в верхней точке двигателя – это снижение веса в критической области. Более того, наличие литых полочек в топливной камере снижает нежелательное выплескивание топлива. Карбюратор не только круто работает, но и не менее круто выглядит благодаря адонизированному черному металлу. Несмотря на то, что сегодня карбюраторы нельзя считать стандартной деталью для современного автомобиля, они еще не уступили свое место в мире классических и спортивных автомобилей. Автоэнтузиасты по всему миру продолжают восстанавливать и модифицировать старые автомобили, а карбюраторы – это отличная и недорогая альтернатива инжекторным системам. Многие гоночные организации допускают к соревнованиям автомобили с карбюраторами, карбюраторные двигатели выступают и в кольцевых гонках и на драге. Где есть любители покрутить гайки, там всегда будет прогресс и модернизация, даже если это касается таких древних систем, как карбюраторы.

Рекомендую ознакомиться с другой, более душевной статьей о карбюраторах от Валеры Вакуленко.

Автор: Блэйн Барнетт (Blane Burnett), маркетинговый и PR координатор при компании Holley.Перевод: Артем Никулин

Еще больше крутых и интересных статей об автомобилях вы найдете в нашем паблике FastLane. Подписывайтесь, не упустите интересные истории!

Оригинал статьи на сайте SpeedHunters

carakoom.com

Солекс 21053: описание, устройство

Важная часть карбюратора

Вот эта часть карбюратора

Всем, кто ищет инструкции по установке Солекс 21053 1107010 20, предлагается ознакомиться с ними. Карбюратор — это, возможно, важнейшая часть автомобиля. Ведь именно от него зависит то, сколько топлива будет потреблять машина. К тому же от данной части автомобиля зависят еще и динамические его показатели, которые будут непременно возрастать с улучшением качества карбюратора.

Слабые карбюраторы, характерные для малолитражек, будут глушить мощные двигатели, объемом превышающие 1,5 литра. Это будет мешать авто разогнаться максимально. Даже если вы установили подходящий к машине карбюратор, польза от него будет далеко не полной, если он не настроен. Настраивать его несложно, однако для этого нужно обладать небольшим багажом знаний, который поможет в достижении цели.

Вернуться к оглавлению

Виды карбюраторов

Следует сказать, что карбюраторы на ВАЗ существуют всего трех типов. Это карбюраторы Вебер, Солекс и Озон. Все три с успехом применяются на отечественных автомобилях, так как почти все они разрабатывались для этой цели. Исключением является карбюратор типа Вебер. Его история начинается с Италии, а поскольку некоторые российские авто тоже имеют эти корни, итальянский карбюратор как нельзя лучше чувствует себя в них. Создателем является Эдуард Вебер — человек, который подарил миру улучшение динамических показателей авто, а также меньший расход топлива.

Следующим карбюратором является Озон. Главной задачей при его разработке было уменьшение расхода топлива. На данный момент Озон еще можно встретить на многих автомобилях, однако попадаются они все реже. Дело в том, что карбюратор часто ломается. Конечно, назвать его совсем бесполезным нельзя, ведь свою задачу (создать меньший в сравнении с Вебером расход топлива) он выполнил на отлично. А если его правильно настроить, то динамические показатели тоже будут неплохие.

Тип Вебер

Устройство Вебер

Следующий карбюратор — Солекс 21053 1107010. 21053 1107010 20 — это карбюратор Солекс пятой модификации. Солекс — это французская фирма, которая давно уже перестала выпускать свою продукцию. Ее дело подхватил ДААЗ (Димитровский Автоагрегатный Завод), который делает это и по сей день. Отличие Солекса от Озона минимальное, но существенное. Оно заключается в том, что карбюратор не ломается. При этом его показатели неплохие, их можно улучшить, правильно наладив устройство. Однако процесс настройки карбюратора не самый простой, и именно по этой причине выше упомянут карбюратор Солекс 21053 1107010. Дело в том, что модификация 21053 1107010 20 уже максимально налажена, и от вас требуется просто правильная его установка. В ней, кстати, тоже можно немного подкорректировать характеристики на устройство.

Вернуться к оглавлению

Описание устройства

Устройство карбюратора довольно простое, если не вникать в дополнительные детали. Сверху находятся две сквозные камеры. Их главная задача — это всасывание воздуха в аппарат для дальнейшего смешивания его с бензином. Впрыск бензина осуществляют жиклеры, а с воздухом он смешивается через диффузоры. Те, в свою очередь, располагаются прямо по центру камер Солекса. Они создают необходимое разряжение в давлении, чтобы происходило втягивание топлива. Топливо поступает из расположенной справа от диффузоров поплавковой камеры. Уровень бензина в них должен соответствовать норме, о которой будет рассказано ниже. Регулируется он при помощи специального поплавка и запорной иглы.

Все это верхняя часть карбюратора. Последней частью является крышка, расположенная прямо над поплавковой камерой. Ее необходимо снять при работах. Функция нижней части — обеспечение работы верхней. Все, что находится под уровнем поплавковой камеры, называется корпусом карбюратора. Его составные части — это нижние окончания первичной и вторичной камер (те самые, что служат для потока воздуха) и расположенные внутри них дроссельные заслонки, в задачу которых входит открывать и закрывать сквозное движение кислорода. Свою работу заслонки начинают поочередно, сначала открывая первичную, а затем и вторичную камеру.

Вернуться к оглавлению

Установка карбюратора Солекс 21053 на классику

Агрегат Солекс

Устройство Солекс

Теперь можем приступить к процессу замены родного карбюратора автомобиля на Солекс модификации 21053 1107010 20. На ВАЗах старый карбюратор — это обычно Озон, произведенный на базе ДААЗ. Главная проблема его в том, что он далеко не так надежен, как хотелось бы. К тому же расход топлива на нем несколько больше, чем на Солексе. Именно поэтому заменяется один на другой. Кроме того, чтобы просто установить Солекс 21053 на классику, желательно правильно его настроить.

Порядок установки карбюратора Солекс 21053 на классику ничем не отличается от установки на нее иных моделей данного устройства. Солекс 21053 на классику легко разместить в любом двигателе заднеприводного ВАЗа. Итак, для начала следует устранить всякую вероятность попадания инородных частиц во впускной коллектор. Достигаем этой цели путем очищения моторного отсека от грязи. Не нужно добиваться идеального блеска. Просто помойте его.

Теперь отключите озоновский карбюратор от всего, что держит его в машине. Аккуратнее всего отсоединяйте шланги от системы подогрева и топливные шланги. Сделав это, нужно снять трос от воздушной заслонки. Он крепится на скобе, которую необходимо вынуть прежде всего. Затем можно достать старый карбюратор. С той же целью, с которой вы мыли отсек двигателя, следует очистить и ту площадь, на которой стоял Озон. Если в процессе вы обнаружите на поверхности какие-либо трещины, дыры и неровности, то нужно их обязательно замазать герметиком.

Теперь пора создать теплоизоляцию для Солекса 21053 1107010 20. Достигнуть этого помогут утеплительные прокладки. Укладывать их следует друг на друга, чередуя тонкие и более плотные. Сверху установите карбюратор 21053 1107010 20. Для большего комфорта в будущем следует ставить Солекс 21053 на классику сразу без верхней крышки. При этом привод дроссельной заслонки не должен находиться позади. Со стороны верхней части головки блока нужно расположить кулису тяги привода от первичной и вторичной камеры. Задача кулисы — регуляция дроссельной заслонки. На старом Озоне вы найдете простые пластмассовые наконечники от тяги, можно снять их и установить вместо наконечников на Солексе.

Теперь нужно отрегулировать длину троса от привода дроссельной заслонки. Если он оказался чуть длиннее, чем расстояние до карбюратора, его необходимо подрезать. Проделав данные изменения, можно закрыть крышку на карбюраторе. Старую прокладку использовать не стоит. Закрыв карбюратор крышкой, следует начать его подсоединение ко всему, что вы отключили от Озона. Проведите к тройнику карбюратора соединение с системой охлаждения. Теперь нужно протянуть шланги и от раздатчика системы зажигания. Затем установите тройник у фильтра тонкой очистки. Его следует ставить на топливопровод. К тройнику подсоедините провод, ведущий к поплавковой камере карбюратора. Сделать это нужно при помощи обратного клапана. Теперь осталось обратно прикрепить возвратную пружину, а на первое время (для безопасности) можно установить еще и дополнительную, прикрепив ее к вершине блока.

Электрический клапан подключите к реле света, а затем установите основание воздушного фильтра и элемент фильтрации и подсоедините их к системе выпуска газа. Карбюратор Солекс 21053 на классику установлен. 21053 1107010 20 будет долго служить, если вы будете соблюдать некоторые правила по его настройке и время от времени проводить его чистку.

Вернуться к оглавлению

Настройка

Настройте агрегат

Агрегат требует настройки

После того как вы установили Солекс 21053 на классику, нужно настроить его. Делается это для того, чтобы получить лучшие показатели в скорости езды автомобиля и уменьшить его расход топлива. Итак, первое, с чего следует начать, — настройка уровня топлива в поплавковой камере. Настраивать его можно при помощи специального шаблона. Однако, поскольку бензонасосы на машинах не всегда одинаковые, делать так не стоит.

Настраивать уровень нужно следующим путем:

  • На пять минут заведите двигатель и дайте ему поработать на холостых оборотах. Надо сказать, что заведется он, даже если Солекс совсем слабый и жиклеры давно пора сменить.
  • Дав отработать указанное время, заглушите мотор.
  • Снимите топливопроводный шланг. Если этого не произвести, то бензин может политься по нему и изменить показания. Отверните винты, крепящие крышку Солекса, и вытащите трос подсоса.
  • Снимая крышку, будьте предельно осторожны, если сделать это неправильно, можно повредить поплавки.
  • Любым приспособлением для измерения расстояния определите количество сантиметров от уровня топлива до того места, где раньше была крышка.

В обеих камерах будет различное расстояние, однако нужны показатели от 23 до 25 см. Подровнять уровень топлива можно, искривив поплавки и слив все лишнее. Теперь можно поставить назад все, что вы сняли с карбюратора в процессе. Заведите двигатель и следите за обеими камерами Солекса. Если с них капает бензин, то нужно еще немного уменьшить количество топлива.

Если мотор барахлит, значит, нужно его увеличить. Затем снова посмотрите уровень жидкости в топливном бочке. Скорее всего, до успеха вы сделаете 3-4 попытки. Сократить количество времени, которое вы потратите на работу, можно, подкачивая бензин рукой.

Вернуться к оглавлению

Настраиваем холостой ход

Регулировка холостого хода

Регулируем холостой ход

Разобравшись с предыдущим пунктом, возьмитесь за холостой ход. Это не увеличит скорость езды, но уменьшит расход топлива.

  1. Отыщите рукой болт, отвечающий за качество смеси.
  2. Аккуратно закрутите его до самого конца. Только не переборщите, иначе можно сорвать резьбу.
  3. Когда крутить винт станет трудно, следует сделать несколько поворотов назад — 5-6, не больше.
  4. Поверните ключ зажигания и заведите мотор. Теперь нужно найти оптимальное соотношение положения винта качества и состояния в штуцере вакуумного разряжения. Для этого полностью уберите подсос и доведите обороты двигателя до 500-1200.
  5. Медленно поворачивайте болт качества до тех пор, пока двигатель не начнет слегка барахлить. Но, не дав ему заглохнуть, начните затем крутить его обратно, вплоть до момента правильной работы мотора.
  6. Нащупайте болт, отвечающий за количество оборотов, и доведите их до 850-900. Поскольку скорее всего после этого двигатель начнет глохнуть, нужно немного подрегулировать его винтом качества. С первого раза всего этого не добиться. Все указанные действия стоит продолжать до тех пор, пока машина не будет работать на указанных оборотах при минимальном положении винта качества.
Вернуться к оглавлению

Замена жиклеров

Нельзя просто поменять жиклеры. вы обязательно должны понимать, зачем и как это делается. А потому следует ознакомиться с тем, с чем вам предстоит работать. Топливные жиклеры подают в двигатель некоторое количество бензина, которое втягивается туда благодаря диффузорам. Количество втянутого через жиклеры бензина напрямую зависит от объема двигателя. Отсюда следует, что для правильного расхода топлива нужно устанавливать меньшие жиклеры на больший объем двигателя.

Уровень топлива регулируем

Регулировка уровня топлива

Выбирают жиклеры сначала для топлива, а затем уже для воздуха. Не трогайте вторичную камеру Солекса до тех пор, пока не подберете жиклеры для первой. Самым простым путем было бы отыскать заводской Солекс, который уже имеет искомые жиклеры, рассчитанные на подобный объем двигателя. Однако не забывайте, что не все Солексы подходят на моторы ВАЗа.

У некоторых Солексы заработают сразу, а у других не будут работать вовсе. Поэтому не нужно думать, что можно взять для своего Солекса жиклеры от любого другого карбюратора подобного объема. Отыщите тот, который приспособлен для жигулей, и приобретите такие жиклеры, как на нем. Итак, Солекс 21053 на классику установлен и настроен. Не забывайте регулярно прочищать его для качественной работы.

Вернуться к оглавлению

Как мыть карбюратор?

Поверхность Солекса можно протереть спиртом и подобными средствами. Протерев поверхность, следует прочистить сам карбюратор посредством теплого воздуха. Как это делается? Можно воспользоваться воздушным, а в случае его отсутствия — автомобильным компрессором. Избавьтесь от воздухоочистителя и тщательно следите за тем, чтобы инородные частицы не попали в Солекс.

Каждый 1.5 года замена фильтра

Топливный фильтр следует поменять

Чистку сетчатого фильтра можно производить раз в 1,5 года. Просто снимите его и помойте, удалив все скопившееся на нем. Не забывайте, что неметаллические части карбюратора следует мыть отдельно! Дело в том, что жидкость, применяемая для металлов, может привести их в негодность.

В поплавковой камере разберите воздушный фильтр и открутите с него хомут. Поскольку поплавок уже настроен, постарайтесь не погнуть и не сломать его. Ставя обратно крышку карбюратора, постарайтесь не опускать поплавок вниз. Топливо из камеры можно извлечь при помощи шприца или резиновой груши. Затем нужно прочистить ее, не повредив поверхность, и вернуть содержимое назад. Топливные жиклеры очищаются при помощи металлической или медной проволоки. Если они загрязнены несильно, то можно просто продуть их. Этим рекомендациям нужно следовать раз в год, чтобы не допустить поломок и ухудшения качества карбюратора.

expertvaz.ru

Карбюратор — Википедия

Карбюра́тор — узел системы питания ДВС Отто, предназначенный для приготовления горючей смеси оптимального состава путём смешивания (карбюрации, фр. carburation) жидкого топлива с воздухом и регулирования количества её подачи в цилиндры двигателя. Имеет широчайшее применение на разных двигателях, обеспечивающих работу самых разнообразных устройств. На массовых автомобилях с 80-х годов ХХ в. карбюраторные системы подачи топлива вытесняются инжекторными.

Основы устройства и виды карбюраторов[править]

Карбюраторы подразделяются на барботажные, в данный момент не использующиеся, мембранно-игольчатые и поплавковые, составляющие подавляющее большинство всех карбюраторов.

Барботажный карбюратор представляет собой бензобак, в котором на некотором расстоянии от поверхности топлива имеется глухая доска и два широких патрубка — подающий воздух из атмосферы и отбирающий смесь в двигатель. Воздух проходил под доской над поверхностью топлива и, насыщаясь его парами, образовывал горючую смесь. При всей примитивности и «несерьёзности» этот карбюратор — единственный, обеспечивавший смесь с воздухом именно паровой фракции топлива. Дроссельная заслонка стояла на двигателе отдельно. Барботажный карбюратор делал двигатель очень требовательным к фракционному составу топлива, так как испаряемость его должна была занимать весьма узкий температурный диапазон, вся конструкция была взрывоопасной, громоздкой, тяжёлой в регулировании. Топливо-воздушная смесь в длинном тракте частично конденсировалась, этот процесс зависел чаще от погоды.

Мембранно-игольчатый карбюратор уже представляет собой отдельный законченный узел и, как следует из названия, состоит из нескольких камер, разделённых мембранами, жёстко связанными между собою штоком, который заканчивается иглой, запирающей седло клапана подачи топлива. Камеры соединяются каналами с разными участками смесительной камеры и с топливным каналом. Вариант — связь между мембранами и клапаном неравноплечими рычагами. Характеристики таких карбюраторов определялись тарированными пружинами, на которые опирались мембраны и/или рычаги. Система рассчитана так, чтобы соотношение вакуума, давления топлива и скорости смеси обеспечивали должное соотношение топлива и воздуха. Неоценимое достоинство такого карбюратора — наряду с простотой — способность работать буквально в любом положении по отношению к силе тяжести. Недостатки — относительная сложность регулировки, некоторая нестабильность характеристики (пружины!), чувствительность к ускорениям, перпендикулярным мембранам, неширокий диапазон количества смеси на выходе, медленные переходы между установившимися режимами. Такие карбюраторы используются на двигателях, по условиям работы не имеющих определённого пространственного положения (двигатели бензорезов, газонокосилок, поршневых самолётов, например, карбюраторы АК-82БП стояли на ЛА-5), или просто на дешёвых конструкциях. Именно такой карбюратор стои́т как вспомогательный на газобалонном автомобиле ЗИЛ-138.

Наконец, поплавковый карбюратор, необозримо многоликий и разнообразный в своих многочисленных модификациях, составляет подавляющее большинство современных карбюраторов и состоит из поплавковой камеры, обеспечивающей стабильный приток топлива, смесительной камеры, фактически представляющей трубку Вентури и многочисленных дозирующих систем, состоящих из топливных и воздушных каналов, дозирующих элементов — жиклёров, клапанов и актюаторов. Поплавковые карбюраторы при прочих равных условиях обеспечивают самые стабильные параметры смеси на выходе и обладают самыми высокими эксплуатационными качествами. Поэтому они и получили столь широкое распространение.

Все дальнейшие материалы данной статьи посвящены именно поплавковым карбюраторам.

Принцип работы поплавкового карбюратора с постоянным сечением диффузора[править]

Схема простейшего карбюратора с падающим потоком

Простейший карбюратор состоит из двух функциональных элементов: поплавковой камеры (10) и смесительной камеры (8).

Топливо по трубке (1) поступает в поплавковую камеру (10), в которой плавает поплавок (3), на который опирается запорная игла (2) поплавкового клапана. При расходовании топлива его уровень в поплавковой камере понижается, поплавок опускается, игла открывает подачу топлива, при достижении заданного уровня клапан закрывается. Таким образом, поплавковый клапан поддерживает постоянный уровень топлива.

Из поплавковой камеры топливо поступает через жиклёр (9) в распылитель (7). Количество топлива, подающегося из распылителя (7), по закону Бернулли зависит при прочих равных условиях от проходного сечения жиклёра и степени вакуума в диффузоре, а также от сечения диффузора. Соотношение сечений диффузора и главного топливного жиклёра является одним из основополагающих параметров карбюратора.

При впуске давление в цилиндрах двигателя понижается. Наружный воздух засасывается в цилиндр, проходя через смесительную камеру (8) карбюратора, в которой находится диффузор (трубка Вентури) (6), и впускной трубопровод, распределяющий готовую смесь по цилиндрам. Распылитель помещается в самой узкой части диффузора, где, по закону Бернулли, скорость потока достигает максимума, а давление уменьшается до минимума.

Благодаря балансировочному отверстию (4) в поплавковой камере поддерживается атмосферное давление. В практически выпускаемых карбюраторах, работающих с воздушными фильтрами, вместо этого отверстия используется балансировочный канал поплавковой камеры, ведущий не в атмосферу, а в полость воздушного фильтра или в верхнюю часть смесительной камеры. В этом случае дросселирующее влияние фильтра сказывается равномерно на всей газодинамике карбюратора, который становится балансированным. Под влиянием разности давлений происходит истечение топлива из распылителя. Топливо, вытекающее из распылителя, дробится в струе воздуха, распыляется, частично испаряясь и, перемешиваясь с воздухом, образует горючую смесь. В реальных карбюраторах используется построение топливоподающей системы, при котором в распылитель подаётся не гомогенное жидкое топливо, а эмульсия из топлива и воздуха. Такие карбюраторы называют эмульсионными. Как правило, вместо одиночного диффузора используется двойной. Дополнительный диффузор имеет небольшие размеры и расположен в главном диффузоре концентрически. Через него проходит только часть общего потока воздуха. Вследствие высокой скорости в центральной части при небольшом сопротивлении основному потоку воздуха достигается более качественное распыление. Количество смеси, поступающей в цилиндры, а, следовательно, и мощность двигателя регулируется дроссельной заслонкой (5), у многих карбюраторов, особенно горизонтальных, вместо поворотной заслонки используется шибер — золотник.

Природным пороком карбюратора с постоянным сечением диффузора является противоречие между необходимостью, с одной стороны, увеличивать проходное сечение диффузора для снижения газодинамических потерь на входе в двигатель, и, с другой стороны, необходимостью уменьшать проходное сечение диффузора для обеспечения качества распыления топлива с его последующим испарением. Этот парадокс технически обойден в карбюраторах с постоянным разрежением (Stromberg, SU, Mikuni) и с переменным сечением диффузора. Отчасти эту проблему решает введение дополнительной смесительной камеры с последовательным открытием дросселей, тогда суммарное сечение диффузоров оказывается ступенчато изменяемым. В послевоенные годы в СССР широко использовались карбюраторы с двухступенчатым регулированием воздуха с параллельным дополнительным диффузором в одной смесительной камере — семейство К-22.

Поплавковая камера[править]

Уровень топлива в поплавковой камере - одна из важнейших констант карбюратора. От него зависит устойчивая работа системы холостого хода и переходных систем всех камер, то есть, работа двигателя на малых оборотах непосредственно. А так как регулировка системы холостого хода фактически закладывает правильную компенсацию состава ГДС, то косвенно от стабильности уровня зависит работа на всех режимах.

Позиция уровня топлива в камере закладывается конструктором так, чтобы при любых отклонениях карбюратора от вертикали не происходило самопроизвольного истечения топлива из распылителей в смесительную камеру.

Особенность компоновки современных карбюраторов в том, что на расположенных поперечно двигателях возникает необходимость компенсировать приливно-отливные явления. С целью такой компенсации в простейших случаях создаются дополнительные экономайзеры (ДААЗ-1111). В более дорогих карбюраторах используются спараллеленные поплавковые камеры, расположенные по бокам карбюратора и соединенные либо поперечным каналом (ДААЗ-2108), либо отдельной сообщающей полостью, из которой запитаны жиклеры. Поплавковых клапанов в этом случае может быть два ("Пирбург-2ВЕ"), расположенных в крайних точках по бокам.

Поплавок/поплавки могут быть полыми (ДААЗ), как правило, они выполняются паянными из штампованных латунных половинок, либо изготовленными из пористой пластмассы (К-88).

Для компенсации воздействия вибраций двигателя на уровень топлива поплавковые клапаны демпфируются либо введением демпферной пружины со штоком или шариком, либо наличием упругого упорного или запорного элемента (ПЕКАР).

В ряде карбюраторов поплавковый клапан расположен в дне камеры. В этих случаях компоновка позволяет, сняв крышку карбюратора, непосредственно отслеживать уровень топлива. С этой же целью во многих моделях карбюраторов использовались смотровые окна, расположенные в боковой или передней стенке поплавковой камеры и позволяющие видеть уровень непосредственно в процессе работы двигателя.

Балансированный карбюратор может иметь систему стояночной разбалансировки поплавковой камеры, которая представлена механическим или электрическим клапаном, сообщающим её полость во время стоянки с атмосферой. В этом случае существенно облегчается пуск горячего двигателя, так как переобогащенный парами топлива воздух не накапливается в карбюраторе. С целью улавливания этих паров и из экологических соображений в поздних конструкциях вводится ещё газопоглотитель - ёмкость с вкладышем из активированного угля. При отключении от поплавковой камеры после пуска двигателя его полость соединяется с системой вентиляции картера и поглощенные пары бензина сжигаются двигателем в составе рабочего заряда.

Основные дозирующие системы[править]

Двигатель в процессе эксплуатации работает в разных режимах, требующих смеси разного состава, часто с резким изменением содержания фракции паров топлива. Для приготовления смеси состава, оптимального при любом режиме работы двигателя, карбюратор с постоянным сечением распылителя имеет разнообразные дозирующие устройства. Они вступают в работу или выключаются из работы в разное время или работают одновременно, обеспечивая наиболее выгодный (в отношении получения наибольшей мощности и экономичности) состав смеси на всех режимах двигателя.

  • Главная дозирующая система (ГДС) современного карбюратора, как правило, имеет пневматическую компенсацию состава смеси. Такая система имеет один главный топливный жиклер и один воздушный жиклер, выходящие в эмульсионный колодец, расположенный вертикально или наклонно (карбюраторы Zennith и их модификации). Воздух поступает из ГВЖ в эмульсионную трубку, имеющую вертикальные ряды отверстий. Образующаяся между стенками колодца и трубкой топливовоздушная первичная эмульсия поступает по каналу к распылителю, расположенному в смесительной камере. ГТЖ расположен снизу, поэтому уровень топлива при расходовании эмульсии в распылителе стремится подняться за счет притока из поплавковой камеры. Однако его поступление ограничено ГТЖ. С другой стороны, чем ниже уровень топлива в эмульсионном колодце, тем больше воздуха поступает в эмульсию из отверстий в трубке, тем больше его в смеси и тем больше степень компенсации. Возможен вариант, когда и топливо, и воздух подаются внутрь эмульсионной трубки.

Ранее существовали ГДС со спараллелеными жиклерами и последовательными диффузорами (К - 22), в которых компенсация обеспечивалась, главным образом, системой холостого хода и за счет упругости пластин, открывающих поток воздуха в отдельном большом диффузоре, бензин при этом подавался из параллельного компенсационного жиклера. В относительно простеньких карбюраторах малолитражек использовалась ГДС с компенсационным колодцем и ограничительным компенсационным жиклером. Ввиду неглубокой компенсации и относительно небольшого количества подаваемого топлива, т. е. негибкости в эксплуатации, карбюраторы с такими системами перестали выпускаться к середине 60х годов ХХ века.

ГДС современного карбюратора обеспечивает гибкость состава смеси от 1 : 14 до 1 : 17 весовых частей бензина : воздуха. На основных режимах ГДС обеспечивает смесь экономичного или обедненного состава - 1 : 16 - 1 : 16,5.

Совершенно особую конструкцию имеет ГДС горизонтального карбюратора с игольным регулированием. В этой системе одновременно механически изменяется количество воздуха, проходящего через диффузор - за счет подъёма шибера, и количество подаваемого в него же топлива - за счет иглы переменного профиля, проходящей через жиклер и механически изменяющей его проходное сечение. Характеристическая кривая такого карбюратора обеспечивается механически жестко заданным соотношением сечения диффузора и сечения жиклера, которые зависят только от высоты подъёма шибера. В карбюраторах постоянного разрежения этот уровень в каждый момент времени обеспечивается автоматически за счет действия демпфирующей системы золотника и разрежения в зоне дроссельной заслонки, определяемого нагрузкой двигателя и углом поворота дросселя.

  • Система холостого хода (СХХ) с переходной системой и система вентиляции картера — помимо обеспечения работы на режимах с невысоким вакуумом, которого недостаточно для включения в работу ГДС, на всех остальных режимах обеспечивает компенсацию состава смеси в ГДС.

Так как при работе на холостом ходу над дросселем не имеется разрежения, необходимого для включения в работу главной дозирующей системы, для обеспечения режимов с неглубоким вакуумом и малыми углами открытия дросселя требуется отдельная система, способная обеспечивать смесеобразование при малых расходах воздуха в смесительной камере. Она может быть параллельной (используется очень редко), последовательной, иметь разные типы распыливания - дроссельное, задроссельное, может быть автономной (АСХХ).

СХХ представляет собою воздушный, топливный и эмульсионный каналы с дозирующими элементами - жиклерами холостого хода или актюаторами. Топливный жиклер холостого хода запитывается из нижней части эмульсионного колодца ГДС, таким образом он оказывается включен в топливный канал ГДС. Воздушный жиклер ХХ соединен с пространством верхней части смесительной камеры, что обеспечивает изменение количества воздуха, поступающего в СХХ при разных режимах работы двигателя. Ввиду указанных выше особенностей, СХХ является очень важным звеном компенсации смеси для ГДС. Очень часто воздух подается в СХХ по двум или по трем каналам, что обеспечивает двух- или трехступенчатое эмульгирование, способствующее дополнительной гомогенизации смеси и улучшению равномерности состава смеси по цилиндрам. СХХ открывается в смесительную камеру в задроссельном пространстве, где на холостых оборотах имеется вакуум достаточной для её работы степени. В канал СХХ открываются переходные отверстия, расположенные в зоне кромки приоткрытой дроссельной заслонки. К-88 и ДААЗ-2108 вообще имеют одно вертикальное щелевидное отверстие, часть его, расположенная ниже кромки дросселя, обеспечивает холостой ход, при открывании дросселя эта часть естественно увеличивается, обеспечивая переходный режим.

Дроссельная заслонка на холостом ходу почти закрыта, разрежение в карбюраторе имеется только сразу за ней. За счёт этого разрежения в отверстие холостого хода из главной дозирующей системы через топливный жиклер холостого хода подается топливо, смешанное с воздухом, поступающим из воздушного жиклера холостого хода и дополнительных воздушных каналов. При этом образуется обогащенная смесь, необходимая для поддержания холостых оборотов двигателя, с соотношением "бензин - воздух" в пределах от 1 : 12 до 1 : 14,5.

На переходном режиме, то есть при небольших углах открытия дроссельной заслонки, эмульсия из каналов СХХ поступает в зону кромки дроссельной заслонки через одно или несколько переходных отверстий, смешиваясь с проходящим воздухом и обедняясь до 1 : 15 - 1 : 16,5.

Как уже указывалось, некоторые карбюраторы (К-88, к-90, ДААЗ-2108) имеют в зоне кромки дросселя одно вертикальное щелевидное отверстие. Такое построение обеспечивает эффективную компенсацию и плавное изменение состава смеси на переходном режиме. Задавая форму щели, можно добиться практически идеальной переходной характеристики.

На остальных режимах работы двигателя система холостого хода компенсирует состав смеси, образуемой главной дозирующей системой и поэтому является чрезвычайно важной для правильной работы карбюратора. Известны случаи, когда после неквалифицированной регулировки СХХ при сохранении оборотов холостого хода карбюратор практически терял работоспособность.

Для обеспечения равномерности состава смеси по цилиндрам и стабильности параметров и смесеобразования, и момента зажигания СХХ часто выполняется автономной, с дополнительными смесительными устройствами, фактически представляющими собой карбюратор в карбюраторе, работоспособный при малых расходах воздуха (например, АСХХ «Каскад»). Такая система имеет основной канал, входное отверстие которого расположено в зоне опускающейся кромки дроссельной заслонки, а устье выходит в зону под дросселем. За счет такого расположения движение воздуха и смеси в канале прекращается при открытии дросселя моментально. В этот канал выводится на холостом ходу вся эмульсия, образовавшаяся в СХХ, однако для качественного равпыливания смешивание её с воздухом осуществляется в специальных распылителях, обеспечивающих при небольших расходах воздуха и эмульсии очень высокие скорости движения - на уровне скорости звука. За счет этого АСХХ обеспечивает качество распыливания, недостижимое для других систем холостого хода. В более качественных карбюраторах используются АСХХ с тройным, а иногда и четырёхкратным эмульгированием.

Распылители АСХХ строятся по различным схемам. Простейшая из них - СХХ карбюратора ДААЗ-2140. В нём поток воздуха проходит через небольшую горизонтальную щель, в которую сверху открывается ещё одна щель - из эмульсионного канала. Соотношение сечений обеспечивает скорости газов на уровне скорости звука. АСХХ "Каскад" имеет кольцевидный распылитель с радиально расположенными отверстиями, из которых в поток воздуха поступает эмульсия - такая система фактически копирует в миниатюре смесительную камеру. В центре распылителя имеется винт специального профиля, обеспечивающий регулировку количества смеси. В СХХ с сопловидными распылителями в центр канала, по которому движется эмульсия, подаётся из винта с каналом воздух, т. е. такая система - как бы "Каскад" наоборот.

Для перекрытия подачи топлива на принудительном холостом ходу в СХХ включается экономайзер принудительного холостого хода (ЭПХХ), представляющий собою клапан, отключающий подачу топлива, и систему управления этим клапаном, либо электронную, либо электронно-пневматическую (Тюфяков). При переходе двигателя в режим ПХХ происходит подача управляющего сигнала на исполнительный клапан. На более современных двигателях, имеющих микропроцессорную систему управления, этот сигнал формируется этой системой (АЗЛК-21412). Клапан может быть расположен либо непосредственно в выходном отверстии АСХХ, и полностью перекрывать подачу смеси, либо иметь иглу, отсекающую подачу топлива через жиклер. Во втором случае возрастает инерционность системы, при выходе из режима ПХХ имеется короткий неустановившийся период, когда СХХ уже работает, а топливо по длинному каналу от жиклера ещё не поступило. Но такая система проще в построении и дешевле, менее подвержена неблагоприятным воздействиям в эксплуатации. Именно такая система ПХХ используется на ДААЗ-2108. Системы с клапаном в устье используются на ДААЗ-2107, -05 и 2140. Они обеспечивают практически мгновенную смену режимов, но сложнее, дороже и требовательнее в эксплуатации настолько, что многие владельцы автомобилей с такими системами их просто отключали.

Своеобразно построен ЭПХХ на К-90. Там каналы холостого хода обеих камер заканчиваются довольно большими полостями, в которых расположены тарелки электромагнитных клапанов, при подаче напряжения на которые происходит отключение подачи смеси, то есть, при выходе ЭПХХ из строя карбюратор продолжает работать в обычном режиме.

СХХ карбюраторов, установленных на двигателях, приводящих компрессоры кондиционеров, мощные генераторы и/или нагруженных АКПП, часто оснащаются управляемым упором дроссельной заслонки, который стабилизирует обороты холостого хода при включении сервисных устройств, приподнимая дроссель при подключении нагрузки от дополнительных агрегатов.

Переходная система вторичной камеры карбюратора с последовательным открытием дросселей, в основном, аналогична СХХ, но имеет важные отличия. Так как ГДС вторичной камеры сама по себе настраивается на получение относительно обогащенной мощностной смеси, ей не требуется столь глубокая степень компенсации, как в первичной камере. Поэтому переходная система, как правило, выполняется по схеме параллельной запитки топливом и её топливный жиклер сообщается непосредственно с поплавковой камерой, а не с эмульсионным колодцем ГДС. Таким образом, включение в работу и переходной системы, и ГДС вторичной камеры происходит параллельно, чем обеспечивается необходимая степень обогащения смеси.

Любой современный двигатель обеспечивает утилизацию горючих и чрезвычайно токсичных картерных газов. Система отсоса картерных газов, она же система вентиляции картера, состоит из двух ветвей - большой и малой. Большая ветвь представляет собою трубу, в которой имеется пламегаситель и маслоотделитель. Газы, прошедшие через них, поступают в воздушный фильтр инерционно-масляного типа до масляной ванны либо в картонный воздушный фильтр в непосредственной близости от горловины первичной камеры, смешиваются там с воздухом и подаются в цилиндры. На холостом ходу и переходном режиме разрежение над камерой достаточно невелико, поэтому параллельно большой ветви используется малая. Это трубка, соединяющая большую ветвь с задроссельным пространством; во многих карбюраторах она снабжается золотником, отсекающим сообщение задроссельного пространства с большой ветвью при открытии дросселя и предотвращающим, таким образом, подсасывание под дроссель воздуха параллельно смесительной камере.

  • Экономайзеры и эконостаты - дополнительные параллельные системы подачи топлива в смесительную камеру, обогащающие смесь при высоких уровнях вакуума, то есть при нагрузках, близких к максимальным, когда экономическая смесь не может обеспечить потребностей двигателя. Экономайзеры имеют принудительное управление, пневматическое или механическое. Эконостаты, по сути дела, просто трубки определённого сечения, иногда с эмульсионными каналами (ДААЗ), выведенные в пространство смесительной камеры выше диффузора, то есть в зону, где вакуум появляется при максимальных нагрузках, в отличие от ГДС.

В некоторых старых конструкциях карбюраторов без эмульгирования топлива экономайзер имел жиклёр, параллельный главному топливному жиклёру ГДС, открываемый принудительно. В эмульсионных карбюраторах такая схема не используется ввиду нарушения характеристики пневмокомпенсации ГДС.

В относительно дешевых карбюраторах, в которых ГДС сама по себе обеспечивает относительно богатый состав смеси на большинстве режимов, экономайзеры и эконостаты не используются.

  • Система рециркуляции отработанных газов. Обеспечивает замещение части воздуха выхлопными газами на режимах торможения двигателем. Способствует снижению уровня окислов азота (NО) и оксида углерода (CO) в выхлопе.

Применяется на небольшом количестве типов двигателей.

  • Насос-ускоритель. Необходим для подачи дополнительной порции топлива при резком открытии дросселя. Необходимость подачи дополнительного количества топлива определяется отнюдь не его "инерционностью" в каналах карбюратора при резком разгоне, как это обычно указывается в популярных изданиях, а нарушением в этот момент условий смесеобразования во впускной системе, в результате чего до цилиндров в первые моменты после начала резкого разгона доходит только часть поданного карбюратором топлива. Ускорительный насос компенсирует этот эффект и обеспечивает требуемый состав горючей смеси в цилиндрах в первый же момент после начала разгона. Бывают поршневые и диафрагменные, устанавливаемые на все карбюраторы с начала 70-х годов ХХ века. Поршневые ускорители имеют менее стабильные параметры и не позволяют изменять интенсивность впрыска в зависимости от угла поворота дросселя.

Карбюраторы, способные обеспечить поступление смеси оптимального состава на всех режимах, т. е. карбюраторы с игольным регулированием состава и карбюраторы постоянного разрежения ускорителя не имеют - за ненадобностью.

  • Пусковое устройство. Представляет собой заслонку над смесительной камерой с системой управления ею. При её прикрытии существенно возрастает степень вакуума во всей смесительной камере, что приводит к резкому обогащению смеси, необходимому для холодного пуска. (Того же эффекта можно достичь, забывая вовремя менять картонный элемент в воздушном фильтре). Чтобы поток воздуха не перекрывался полностью, заслонка либо опирается на пружину и располагается эксцентрично, либо снабжается клапаном, обеспечивающим минимальное поступление воздуха. Для пуска и прогрева двигателя необходимо прикрыть воздушную заслонку и приоткрыть дроссельную. Воздушная заслонка может иметь механический, автоматический или полуавтоматический привод.

В первом случае её закрывает водитель при помощи рукоятки, называемой манеткой. Полуавтоматический привод воздушной заслонки распространён наиболее широко как простой и эффективный. Заслонка закрывается водителем вручную, а приоткрывается автоматически диафрагмой, работающей от возникающего при первых вспышках разрежения во впускном коллекторе. Это предотвращает переобогащение смеси и возможную остановку двигателя сразу после пуска. Такое пусковое устройство имеют все карбюраторы ДААЗа и К-151. Автоматический привод широко применяется за границей, а в практике отечественного автопрома распространения не получил ввиду существенной сложности, относительно низкой надёжности и недолговечности при характерных для климата большей части территории СССР/России больших перепадах температур. В этом случае воздушную заслонку закрывает биметаллический или церезиновый термоэлемент, обогреваемый жидкостью из системы охлаждения или электрическим нагревателем. По мере прогрева двигателя термоэлемент нагревается, открывая воздушную заслонку. На отечественных автомобилях такое пусковое устройство имели только карбюраторы отдельных моделей ВАЗ (в основном, экспортных). В иных системах использовался электромеханический привод с датчиком температуры.

Регулировки[править]

Регулировка карбюратора обеспечивается на стадии проектирования и отработки экспериментальных образцов и обеспечивается, в основном, следующими конструктивными особенностями:

  • тип главной дозирующей системы (ГДС), способ её компенсации, способ запитывания СХХ и переходной системы/систем;
  • число, диаметр и расположение переходных отверстий;
  • сечения малого диффузора, главного топливного жиклёра ГДС, главного воздушного жиклёра ГДС, форма эмульсионной трубки/трубок;
  • соотношение геометрических параметров смесительных камер и характеристика открытия вторичной камеры;
  • объём впрыска насоса-ускорителя, направление его струи;
  • разрежение открытия пневматических экономайзеров или угол открытия механического экономайзера;
  • конкретное место расположения сопла эконостата;
  • уровень топлива в поплавковой камере — основополагающий параметр для правильной работы на холостом ходу и, что важнее, на переходном режиме. На работу в других режимах влияет намного меньше, чем принято считать. Задаётся конструктором так, чтобы при максимальном наклоне карбюратора в эксплуатации (езда в гору) топливо не вытекало из распылителей самостоятельно.

Доступные регулировки карбюратора в эксплуатации направлены на индивидуальную подгонку конкретного экземпляра карбюратора к конкретному двигателю и обеспечение его сезонной регулировки, а также на восстановление исходных технических параметров — уровня топлива, позиций заслонок, оборотов холостого хода. Последняя регулировка чрезвычайно важна, так как система холостого хода обеспечивает глубокую степень компенсации ГДС первичной камеры и, стало быть, задает её характеристику (а не только и не столько уровень холостых оборотов. Можно, слегка покрутив винты и изменив их позиции, прийти к тем же оборотам холостого хода и сделать карбюратор практически неработоспособным).

Органы регулировки СХХ первичной камеры:

  • Винт токсичности — в эмульсионных карбюраторах и эмульсионных СХХ с двойной подачей воздуха обеспечивает качество первичной эмульсии СХХ, чаще за счёт изменения количества первичного воздуха. Обеспечивает стабильность переходного режима и компенсацию ГДС. В карбюраторах ДААЗ - 2101 - 2107 должен быть в норме отвёрнут от упора на ½ — ¼ оборота, на заводе зачеканивается заглушкой. На карбюраторах семейства "Солекс" роль винта токсичности играет упорный винт дроссельной заслонки вторичной камеры. После сборки карбюратора без стенда для регулировки расхода воздуха через закрытую заслонку должен быть отвернут на 2/3 - 3/4 оборота от начала подъёма заслонки.
  • Винт качества — обеспечивает качество вторичной эмульсии, непосредственно поступающей в цилиндры на режимах холостого хода и переходном, как правило за счёт изменения количества эмульсии. Наряду с винтом токсичности задаёт степень компенсации ГДС.
  • Винт количества — задаёт число оборотов холостого хода, выставляется при отрегулированном составе смеси, на параметры карбюратора в целом влияет несущественно. В АСХХ изменяет количество подаваемой смеси за счёт изменения сечение эмульсионного канала. При совмещенной СХХ, как в простейшем карбюраторе, изменяет позицию дроссельной заслонки первичной, иногда вторичной (системы со щелевым распылением) камеры, приоткрывая её.

По наличию регулирования сечения распылителя[править]

По способу регулирования сечения распылителя и, соответственно, разрежения у распылителя выделяют карбюраторы:

  • С постоянным разрежением — SU, Stromberg в Европе и Keihin, Mikuni в Японии — при наличии, фактически, единственной дозирующей системы обеспечивают не только все потребности двигателей на всех режимах, но способны выдавать смесь с содержанием паровой фракции топлива не менее 90-97 % — параметр, практически недостижимый для других топливных систем, считая и любые впрысковые. Обеспечивается максимально высоким уровнем вакуума у распылителя при любом расходе воздуха.
  • С постоянным сечением распылителя. К этому типу относятся ВСЕ серийно выпускаемые в СССР и России автомобильные карбюраторы. Для обеспечения некоторой гибкости строятся карбюраторы с последовательным открытием смесительных камер или дополнительного диффузора (К-22).
  • Промежуточное положение занимают горизонтальные карбюраторы с золотниковым дросселированием, часто применяемые на мотоциклах. В них количество подаваемой смеси регулируется вертикальным шибером/золотником, изменяющим проходное сечение диффузора. Одновременно специальная профилированная игла изменяет проходное сечение главного топливного жиклёра, что так же, как у карбюратора с постоянным разрежением, существенно упрощает конструкцию узла.

По направлению потока рабочей смеси[править]

По направлению потока рабочей смеси карбюраторы делятся на горизонтальные и вертикальные. Вертикальный карбюратор, в котором поток смеси движется снизу вверх, называется карбюратором с восходящим потоком, сверху вниз — с нисходящим, или падающим потоком. При горизонтальном направлении потока — с горизонтальным потоком.

Наибольшее распространение в исторической перспективе получили карбюраторы с нисходящим и с горизонтальным потоком. Их основные преимущества состоят в лучшем наполнении цилиндров горючей смесью с существенно меньшими газодинамическими потерями по сравнению с карбюраторами с восходящим потоком, а также в доступности и удобстве обслуживания, так как расположен такой карбюратор на двигателе сверху или сбоку.

По количеству камер[править]

По количеству смесительных камер различают однокамерные и многокамерные карбюраторы, последние могут иметь камеры с параллельным открытием — такие карбюраторы называются ещё спаренными или спараллеленными, например, К-126, и с последовательным открытием камер, которые тоже могут быть спараллеленными, например, четырёхкамерные К-85, Solex 4A1 имеют две спараллеленные секции по две последовательно открываемые камеры; 4А1, вдобавок, имеет вторичные камеры с диффузорами постоянного разрежения(!). Существовали также особые трёхкамерные карбюраторы, например, типа К-156 на «Волге» ГАЗ-3102 с форкамерно-факельным зажиганием. Третья камера, параллельная основной первичной, служила для приготовления обогащённой смеси, подающейся в форкамеру. Сдвоенные карбюраторы часто ставят на двигатели с цилиндрами, далеко отстоящими друг от друга. Тогда каждая половина карбюратора снабжает «свои» цилиндры — К-84 и К-88, К-126 и К-135.

Четырёхкамерный карбюратор фирмы «Holley» (США)

На одном двигателе могут устанавливаться два и более карбюратора. Так, на оппозитных и многорядных двигателях, в которых возможно расслаивание смеси в больших коллекторах с длинными каналами, обеспечивающих большие газодинамические потери, используются как минимум два карбюратора (Альфа-Ромео, М-72, Днепр-МТ10). На спортивных автомобилях, на двигателях самолётов с большим числом цилиндров часто серийно устанавливались карбюраторы по числу цилиндров, работающие параллельно. В последнем случае следует указать на огромную пропускную способность, скажем, 24-х карбюраторов, разбросанных буквально по всему двигателю. Достичь таких параметров с одним карбюратором с «ветвистым» коллектором с каналами сложной формы в принципе невозможно. Часто так же — с целью обеспечить минимальное сопротивление всасыванию — комплектуются спортивные двигатели.

По типу вентиляции поплавковой камеры[править]

Различают карбюраторы балансированные и небалансированные. В последнем случае воздух поступает в поплавковую камеру не из полости воздушного фильтра, а непосредственно из атмосферы, что упрощает и удешевляет конструкцию, в то же время делая её чувствительной к состоянию воздушного фильтра — по мере его загрязнения смесь становится всё более богатой.

Распространение[править]

В настоящее время на автомобилях инжекторные системы подачи топлива в большинстве случаев заменили карбюраторы. Это связано с преимуществом инжектора, который может длительное время (сотни тысяч километров пробега) сохранять выхлоп автомобиля в рамках современных экологических требований и обеспечивать более точное, по сравнению с карбюратором, дозирование топлива на всех режимах двигателя. Однако гомогенность карбюраторной смеси для систем впрыска остаётся недостижимой. В то же время известно, что, если смесь в цилиндре содержит хотя бы 65 % топлива в паровой фракции, этого достаточно для нормального процесса сгорания. При увеличении капельной фракции неблагоприятно сдвигается граница детонации. Тем не менее, современные мотоциклы продолжают оснащаться карбюраторами; ввиду смягчения лицензионных требований всё чаще — постоянного разрежения, так как они не уступают системам впрыска по многим экологическим параметрам, будучи на порядок проще и дешевле.

Преимущества и недостатки[править]

Главными достоинствами карбюратора являются высокая гомогенность смеси на выходе, низкая стоимость и технологическая доступность при изготовлении, относительная простота в обслуживании и ремонте. Современный карбюратор требует довольно высокого уровня подготовки технического персонала. В то же время для целой армии относительно несложных двигателей для различных сервисных устройств карбюратор ещё долго останется незаменимым. Относительным недостатком карбюратора, ставшим основной причиной его вытеснения как основы автомобильных систем питания, является невозможность обеспечить смесь индивидуального состава для каждой вспышки - инжекторные системы с распределенным впрыском действуют именно таким образом, обеспечивая наибольшую экологичность работы двигателя.

Юрген Казердорф. Карбюраторы зарубежных автомобилей (Vergaser testen undeinstellem). — 2-е, испр. и доп. — М.: За рулем, 2000. — 192 с.

А. В. Дмитриевский, В. Ф. Каменев. Карбюраторы автомобильных двигателей. — М.: Машиностроение, 1990. — 223 с.

Росс Твег. Системы впрыска бензина. — М.: За рулем, 1999. — 144 с.

А. С. Хачиян, К. А. Морозов, В. Н. Луканин и соавт. Двигатели внутреннего сгорания. Учебник для ВУЗов. — 2. — М.: Высшая школа, 1985, с изменениями. — 311 с.

Грибанов В. И., Орлов В. А. Карбюраторы двигателей внутреннего сгорания. — Л(СПб).: Машиностроение, 1967. — 284 с.

www.wikiznanie.ru

Жиклер — Словарь автомеханика

Жиклер – это деталь карбюратора с калиброванным отверстием, предназначается для дозированной подачи газообразной смеси или другого топлива.

Виды жиклеров и его функции

Деталь различают по тому, какие она функции выполняет, а также в зависимости от расположения в карбюраторе. Деталь можно разделить на несколько видов: жиклер воздушный, компенсационный, топливный жиклер. Также существует жиклер с холостым ходом. Деталь оценивается по свойствам эксплуатации. Вычисляется количество жидкости, пропускаемое сквозь калиброванное отверстие за определенное количество времени. Деталь имеет маркировку в виде трехзначного числа, если это жиклер карбюратора, которая, как правило, нанесена на торец. Данное число позволяет определить функциональность жиклера в кубических сантиметрах, если давление водяного столба составляет 1000 мм.

Жиклеры карбюратора. Виды и размеры жиклеров

Отверстие, которое находится в жиклере должно быть строго калиброванным. Не рекомендуется прочищать деталь острыми предметами, чтобы не нарушить ее функциональность.

Изготовлен жиклер из цветного металла, поэтому его легко деформировать.

Основные поломки, связанные с жиклером

В основном поломка происходит при засорении карбюраторных жиклеров. Владельцы авто постоянно сталкиваются с неисправностями в работе карбюратора из-за того, что в жиклеры попадают мелкие частицы пыли. Также поломки происходят из-за некачественного топлива.

Как решить проблему засора?

Последовательность действий по очистке жиклеров:

  1. снимаем полностью воздушный фильтр;
  2. При очистке жиклеров тонкой проволокой будьте осторожны чтобы не повредить отверстие, рекомендуется продувать, а не чистить.

  3. при помощи отвертки ослабляем хомуты, которые крепят шланги, предназначенные для подачи топлива;
  4. затем нужно отвернуть пробку третьего фильтра в карбюраторе, изъять элемент фильтрации, предварительно очистив его, а затем продуть при помощи обычного насоса;
  5. снимаем крышку карбюратора;
  6. продуть: жиклер холостого хода, также воздушный жиклеры, все клапаны и каналы специального распылителя от ускорительного насоса, жиклеры переходной системы;
  7. очищаем винт пятого состава смеси, работающей на холостом ходу, затем продуваем все топливные каналы, а также системы карбюратора. При необходимости можно полностью заменить жиклеры из ремкомплекта. После выполнения данной операции следует установить карбюраторную крышку и завернуть винты.

Таким образом, как мы видим, жиклер это простая деталь топливной системы автомобиля, но и она нуждается в периодической проверке, очистке или замене.

etlib.ru

Виды карбюраторов для автомобиля

Без карбюратора невозможен запуск автомобиля, так как он смешивает топливо и воздух, чтобы произвести горючую смесь для работы двигателя. Кроме того, он управляет количеством смеси, которое должно попасть в цилиндр. Если посмотреть только на работу, то карбюратор служит своеобразной форсункой, так как он переводит топливо в очень мелкое газообразное состояние и распыляет его. Огромный выбор карбюраторов доступен.

Различают несколько различных видов карбюратора, однако каждый из этих видов имеет одну общую черту, а именно: поплавковая камера, поплавок. Эта поплавковая камера служит для хранения топлива в свободной поверхности топлива, ее объем сохраняется постоянным. Пространство, которое находится в поплавковой камере, называется вентиляцией поплавковой камеры, так как оно связано посредством вентиляции.

Три примера различных карбюратора в разрезе видов - это простой карбюратор, твердо диффузорный карбюратор и карбюратор с переменным диффузором поперек. При установке простого карбюратора поток воздуха направляется за счет сужения поперечного сечения. Это создает перепад давления, который человек использует для того, чтобы измерять поток топлива с соплом и продвигать его внутри карбюратора. На любое поперечное сечение топливной форсунки приходится, по крайней мере, сужение. Воздух и топливо здесь расположены почти идентично.

В канале всасываемого воздуха плотного диффузорного карбюратора находится непосредственно диффузор, который служит сужению. В зависимости от воздушного потока  диффузор карбюратора в основной системе, связанный с ним, по крайней мере, один жиклер. Если в воздухе находятся небольшие токи, то остается также производимый перепад давления. Чтобы дозировать топливо, нужно перетащить разность давлений, которая царит между входом и подходом впускного трубопровода. На диффузор карбюратора нужно обеспечить несколько систем, а разгонять насос, чтобы обеспечить топливом при прогретом двигателе адекватного снабжения.

Если же использовать карбюратор с переменным диффузорным сечением, то здесь подвижный орган для сужения впускного воздуховода является поршень. Для этого поршня, который проникает в канал под прямым углом или через маятник, вниз по течению хранится и со стороны канала, суживает лоскут часто с одной струей воздуха.

Другой особый тип карбюраторов - это Fish-карбюратор. Первый Fish-карбюратор был изобретен в 1930-х годах в Америке Джон р. Fish хотя и не был автомехаником или инженером, но большое понимание аэродинамики и давления в определенных обстоятельствах имел. Так что его Fish-карбюратор не работал после принцип Вентури, как и большинство других карбюратор, специальное сконструированный по принципу разности давления.

 

www.go01.ru

Виды карбюраторов — AUTO-GL.ru

Карбюраторный двигатель по причине своих отличных эксплуатационных характеристик пользуется популярностью на протяжении длительного времени. Такие моторы сочетают простоту конструкции, надежность и ремонтопригодность. Особенностью силовых агрегатов данного типа является внешнее смесеобразование. Топливо смешивается с кислородом в карбюраторе и в последующем подается в камеру сгорания.

Виды карбюраторов

Фактически, карбюратор представляет собой устройство, где происходит приготовление топливной смеси за счёт смешивания жидкого топлива с воздухом.

Содержание статьи

Виды карбюраторов

  • В зависимости от способа образования смеси карбюраторы принято разделять на пульверизационные и испарительные. Первоначально популярностью пользовались испарительные модификации, однако впоследствии наибольшее распространение получили пульверизационные, которые обеспечивают максимально качественное разбрызгивание смеси в камере сгорания.
  • В зависимости от числа используемых смесительных камер принято выделять одно, двух и четырехкамерные модификации.
  • Также карбюраторы различаются в зависимости от способа и порядка открытия дроссельных заслонок. Так, заслонки в карбюраторах могут открываться принудительно и автоматически. При этом открытие заслонок на вторичной камере может проходить последовательно или параллельно. Всё это непосредственно влияет на конструкцию агрегата, обеспечивая приготовление качественной воздушно-топливной смеси и ее последующее полное сгорание в двигателе.
  • Наибольшей популярностью сегодня пользуются карбюраторы с нисходящим потоком и соответствующим направлением главного воздушного клапана.
  • Также существуют модификации карбюраторов с горизонтальным и восходящим воздушным потоком. Однако подобные разновидности по причине сложной конструкции не получили сегодня должного распространения и встречаются крайне редко.
  • В зависимости от типа камеры принято разделять барботажные, мембранно-игольчатые, поплавковые. На сегодняшний день барботажные карбюраторы уже не используются, а вот мембранно-игольчатые и поплавковые все еще распространены. Мембранные разновидности состоят из нескольких камер, которые соединяются игольчатым клапаном. Именно открытие и закрытие клапанов позволяет регулировать объем поступающей топливной смеси. Поплавковые разновидности имеют одну камеру сгорания с установленным внутри поплавком. Именно такой поплавок и регулирует работу запорного клапана, позволяя поддерживать постоянный уровень топлива в камере.

Устройство карбюратора

Несомненным преимуществом карбюратора является его простота конструкции, он состоит из двух элементов: поплавковой камеры 10 и смесительной камеры 8.

Топливо под давлением по трубке 1 подается в поплавковую камеру 10, где находится поплавок 3 и запорная игла 2. Такая игла фактически является простейшим клапаном, который регулирует уровень топлива в камере. Наличие такого клапана позволяет обеспечить постоянный уровень топлива в поплавковой камере в процессе работы двигателя, а, следственно, подача бензина в цилиндры осуществляется равномерно. А благодаря балансировочному отверстию (4) в поплавковой камере поддерживается атмосферное давление.

Затем топливо поступает через жиклёр 9 в распылитель 7. При этом количество топлива, которое выходит из распылителя, зависит от степени вакуума, образовавшегося в диффузоре и диаметре проходящего отверстия в жиклере.

При впуске давление в цилиндрах уменьшается. Воздух из окружающей среды поступает в цилиндр через смесительную камеру 8, где расположен диффузор 6 (трубка Вентури), и впускной трубопровод, который распределяет готовую смесь по цилиндрам.

Распылитель находится в самой узкой части диффузора, где, по закону Бернулли, скорость потока достигает мах значения, а давление падает до мin значения. Выход топлива из распылителя осуществляется за счёт разности давлений.

Управление карбюратором и дроссельной заслонкой 5 может выполняться исключительно механически через связь с педалью газа, так и различными автоматическими системами, которые устанавливались на поздних модификациях в карбюраторных двигателях. Наибольшее распространение получила система управления карбюратором с металлическим тросом, которая отличается простотой конструкции и надежностью.

Подача воздуха происходит путем открытия и закрытия воздушной заслонки. Такая заслонка на большинстве двигателей имеет полуавтоматических ход. В процессе эксплуатации работа используемой воздушной заслонки может нарушаться, что приводит к переобогащению смеси или ее обеднению. Именно поэтому в ходе эксплуатации такого карбюраторного двигателя необходимо регулярно производить осмотр и соответствующую регулировку воздушной заслонки и всего карбюратора.

Одной из разновидностей карбюраторов являются эмульсионные варианты, в которых в распылитель поступает уже не жидкое топливо, а эмульсия, полученная из воздуха и топлива. Считается, что эмульсионные карбюраторы обеспечивают максимальный коэффициент полезного действия, что достигается за счёт улучшенного распыления бензина в воздушной смеси.

Регулировка карбюратора

Карбюраторный двигатель отличается простотой конструкции, однако подобная система впрыска топлива неизменно требует исправной работы всех механизмов и узлов. Нарушение настройки карбюратора, а подобные проблемы неизменно возникают в процессе эксплуатации этого механизма, приводят к ухудшению приемлемости, экономичности, при этом отмечается увеличение показателей токсичности отработанных газов. Именно поэтому нужно пристально следить за состоянием работы карбюратора и при необходимости вносить соответствующие корректировки.

Автовладельцу при эксплуатации автомобиля с карбюраторным агрегатом доступно две регулировки путем изменения положения винта количества и винта качества. Винт количества отвечает за показатель оборотов на холостом ходу. Тогда как изменение положения винта качества позволяет регулировать степень обогащения топливно-воздушной смеси.

В редких случаях могут отмечаться серьезные поломки, в особенности при появлении неучтенного подсоса воздуха или же нарушении герметичности клапана и системы холостого хода. Всё это приводит к необходимости диагностики и ремонта карбюратора силами специалистов сервисного центра.

Преимущества и недостатки

Преимущества:

  • Если говорить о преимуществах карбюратора, то можем отметить простоту конструкции и надежность. В такой системе питания используются простые механизмы, которые управляются механически и практически не имеют подвижных частей. Фактически, ломаться в карбюраторе нечему, поэтому подобный узел отличается надежностью и долговечностью.
  • Если сравнивать карбюраторный мотор с инжекторным, то из преимуществ можно отметить лучшую работу при низких температурах и устойчивый запуск в жару и холод. Регулировка карбюратора не представляет сложности. Имеется два винта, изменение положения которых позволит внести необходимые корректировки в работу силового агрегата.

Однако и недостатки у двигателей данного типа всё же имеются:

  • В первую очередь это зависимость работы силового агрегата от качества топлива. При наличии в бензине липучих посторонних примесей, может забиваться распылитель, что приводит к неровной работе силового агрегата.
  • Следует сказать, что в сравнении с инжектором карбюраторные моторы существенно проигрывают в вопросах мощности. Карбюратор не способен обеспечить качественное разбрызгивание топлива в камере сгорания, соответственно в сравнении с инжектором такой мотор будет иметь увеличенный расход топлива, а также меньшие показатели мощности с одинакового объема.
  • В простоте карбюраторных двигателей кроются как преимущества, так и недостатки. Если в инжекторе можно внести программой какие-либо изменения в работу силового агрегата, то у карбюратора какая-либо регулировка работы системы питания двигателя существенно затруднена.

На сегодняшний день карбюраторные двигатели практически полностью вытеснены инжекторными агрегатами, которые отличаются улучшенными динамическими и топливно-экономическими показателями работы. Впрочем, многие автовладельцы по достоинству оценили простоту и надежность карбюраторных двигателей и с удовольствием используют машины с таким типом силовых агрегатов и по сей день.

auto-gl.ru


© 2007—2018
423800, Набережные Челны , база Партнер Плюс, тел. 8 800 100-58-94 (звонок бесплатный)